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1. Introduction

In the last years much attention has been paid to the generalization of the
classical characterization theorems of mathematical statistic to various algebraic
structures. The case when random variables take values in locally compact
Abelian groups was studied in details (see, e.g., [1–8], [12–10]).

Let X be a second countable compact Abelian group, ξi, i = 1, 2, . . . , n,
be independent random variables with values in X and distributions µj . Let
αij , i, j = 1, 2, . . . , n be continuous endomorphisms of the group X. Consider the
linear forms Lj =

∑n
i=1 αijξi, j = 1, 2, . . . , n.

The problem of the characterization of the Haar distribution on a compact
Abelian group first was considered by J.H. Stapleton in [15]. He proved that if
X is a compact connected Abelian group, αij are integers and µj satisfy some
conditions, then the independence of the linear forms Lj implies that all µj are
the Haar distributions on X.

In [8], G.M. Feldman studied the problem of the chracterization of convolu-
tions of Gaussian and Haar distributions on an arbitrary locally compact Abelian
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group. He proved, in particular, that if X is a compact Abelian group, n = 2,
αij are topological automorphisms of X satisfying some conditions, and µj has a
continuous density, then the independence of the linear forms Lj implies that µj

are the Haar distributions on X.
The present paper is devoted to the characterization of the Haar distribution

on compact Abelian groups. The above mentioned results proved in [15] and [8]
follow from our main theorem.

Let X be a locally compact Abelian group. Let Y = X∗ be the character
group of X. If x ∈ X and y ∈ Y , then denote by (x, y) the value of the character
y at the element x. Let K be a subgroup of X. Denote by A(Y, K) = {y ∈ Y :
(x, y) = 1 for all x ∈ K} its annihilator. Denote by End(X) the set of continuous
endomorphisms of X, and by Aut(X) the group of the topological automorphisms
of X. For each α ∈ End(X) denote by α̃ the adjoint continues endomorphism of
the group Y defined by the formula (x, α̃y) = (αx, y) for all x ∈ X, y ∈ Y. The
identity automorphism of the group denote by I.

Denote by M1(X) the convolution semigroup of probability distributions on
X. Let µ ∈ M1(X). Denote by σ(µ) the support of µ. The characteristic function
of the distribution µ is defined by the formula

µ̂(y) =
∫

X

(x, y)dµ(y), y ∈ Y.

For µ ∈ M1(X) define the distribution µ̄ ∈ M1(X) by the formula µ̄(B) = µ(−B)
for all Borel sets of X. Then ̂̄µ(y) = µ̂(y). Put Fµ = {y ∈ Y : µ̂(y) = 1}. Then
Fµ is a closed subgroup of Y , σ(µ) ⊂ A(X, Fµ), the function µ̂(y) is invariant
with respect to Fµ, i.e., µ̂(y + h) = µ̂(y), y ∈ Y , h ∈ Fµ.

Denote by mX a Haar measure on X. If X is a compact group, we assume
that mX ∈ M(X). In this case the characteristic function of mX is of the form

m̂X(y) =

{
1, y = 0,

0, y 6= 0.
(1)

2. The Main Theorem

To prove the main theorem we need some lemmas.

Lemma 2.1. ([10]) Let X be a second countable locally compact Abelian
group, Y be its character group. Let ξi, i = 1, 2, . . . , n, n ≥ 2, be indepen-
dent random variables with values in X and distributions µi. The linear forms
Lj =

∑n
i=1 αijξi, j = 1, 2, . . . , n, where αij ∈ End(X), are independent if and
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only if the characteristic functions µ̂i(y) satisfy the equation

n∏

i=1

µ̂i




n∑

j=1

α̃ijuj


 =

n∏

i=1

n∏

j=1

µ̂i(α̃ijuj), uj ∈ Y. (2)

Let µ ∈ M1(X). Expand µ into the sum

µ = aµac + bµs + cµd, (3)

where a ≥ 0, b ≥ 0, c ≥ 0, a + b + c = 1, µac is an absolutely continuous
distribution with respect to mX , µs is a singular distribution, and µd is a discrete
distribution. We say that µ has a non-trivial absolutely continuous component
with respect to mX if a > 0.

Lemma 2.2. Let X be a compact Abelian group, Y be its character group,
µ ∈ M(X). Assume that µ has a non-trivial absolutely continuous component
with respect to the mX and its support is not contained in a coset of a proper
subgroup of X. Then

sup
y∈Y, y 6=0

|µ̂(y)| < 1. (4)

P r o o f. If X is finite, then the statement of Lemma 2.2 is obvious. Suppose
that X is not finite. Then Y is an infinite discrete Abelian group. First note that

lim sup
k→∞

|µ̂(yk)| < 1 (5)

for any sequence {yk} which tends to infinity as k →∞. Indeed, it follows from
(3) that

µ̂(y) = aµ̂ac(y) + bµ̂s(y) + cµ̂d(y), y ∈ Y. (6)

By the condition a > 0, and taking into account that limk→∞ µ̂ac(yk) = 0, we get
from (6) that

lim sup
k→∞

|µ̂(yk)| ≤ b + c < 1.

Assume that there is a point y0 ∈ Y such that |µ̂(y0)| = 1. Put ν = µ ∗ µ̄.
Then ν̂(y0) = |µ̂(y0)|2 = 1, and hence Fν 6= {0}. Put G = A(X,Fν) and note
that G 6= X. We have σ(ν) ⊂ G. This implies that σ(µ) is contained in a coset
of G, which is contrary to the condition of the lemma. Thus,

|µ̂(y)| < 1, y ∈ Y, y 6= 0. (7)

Assume that supy 6=0 |µ̂(y)| = 1. This means that there exists a sequence
{yk}∞k=1 ⊂ Y such that |µ̂(yk)| → 1 as k → ∞. Note that Y is a discrete
group because X is a compact. Taking this into the account, it follows from (7)
that the sequence {yk}∞k=1 tends to infinity as k →∞, but this contradicts to (5).
The lemma is proved.
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Consider the matrix α = {αij}n
i,j=1, where αij ∈ End(X). The matrix α

defines a continuous endomorphism Xn → Xn by a natural way. We also denote
this endomorphism by α. The main result of the paper is the following theorem.

Theorem 2.3. Let X be a second countable compact Abelian group, ξi, i =
1, 2, . . . , n, be independent random variables with values in X and distributions
µi. Assume that µi satisfy the conditions:

(i) σ(µi) is not contained in a coset of a proper subgroup of X, i = 1, 2, . . . , n;
(ii) µi has a non-trivial absolutely continuous component with respect to the

mX , i = 1, 2, . . . , n.
Assume that the matrix α = {αij}n

i,j=1, where αij ∈ End(X), satisfies the
conditions:

(iii) every column of the matrix α contains at least two endomorphisms, which
are epimorphisms;

(iv) α is a topological automorphism of Xn.
Then the independence of the linear forms Lj =

∑n
i=1 αijξi, j = 1, 2, . . . , n,

implies that µi = mX , i = 1, 2, . . . , n.

P r o o f. Note that without loss of generality we can suppose that µ̂i(y) ≥ 0.
Indeed, put νi = µi ∗ µ̄i. Obviously, the distributions νi, i = 1, 2, . . . , n, satisfy
conditions (i) and (ii). Moreover, ν̂i(y) = |µ̂i(y)|2 ≥ 0, y ∈ Y . If we prove that
νi = mX , this implies that µi = mX , i = 1, 2, . . . , n.

By Lemma 2.1 the characteristic functions µ̂i(y) satisfy Eq. (2). Taking into
account that µ̂i(y) ≥ 0, we can reformulate condition (i) in the equivalent form

Fµi = {0}, i = 1, 2, . . . , n. (8)

Note that αij are epimorphisms if and only if Ker α̃ij = 0. Hence, we can
reformulate condition (iii) in the following equivalent form:

(iii)′ for any j0 there are at least two indexes i1, i2 such that the equalities
Ker(α̃i1j0) = {0}, Ker(α̃i2j0) = {0} hold.

Note also that α ∈ Aut(Xn) if and only if α̃ ∈ Aut(Y n). It is obvious that α̃
acts by the formula

α̃(u1, u2, . . . , un) =




n∑

j=1

α̃1juj ,
n∑

j=1

α̃2juj , . . . ,
n∑

j=1

α̃njuj


 , uj ∈ Y. (9)

Assume that not all µ̂i(y) are equal to m̂X(y). Then there exist ỹ ∈ Y, ỹ 6= 0,
and l0 such that

µ̂l0(ỹ) 6= 0. (10)

Put (ũ1, ũ2 . . . , ũn) = α̃−1(ỹ, 0, . . . , 0). It is obvious that there exists at least
one element ũj such that ũj 6= 0. It is easy to see that the case when ũj0 6= 0, ũj =
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0, j 6= j0, for some j0 is impossible. Indeed, in this case, α̃(0, 0, . . . , ũj0 , . . . , 0) =
(α̃1j0 ũj0 , α̃2j0 ũj0 , . . . , α̃nj0 ũj0) = (ỹ, 0, . . . , 0) contrary to condition (iii)′. Hence,
ũj1 6= 0, ũj2 6= 0 for some j1 and j2. Substituting ui = ũi in (2), we obtain

µ̂l0(ỹ) =
n∏

i=1

n∏

j=1

µ̂i(α̃ij ũj). (11)

Taking into account the inequality

0 ≤ µ̂i(y) ≤ 1, i = 1, 2, . . . , n, (12)

and condition (iii)′, we can infer from equality (11) that the inequality

µ̂l0(ỹ) ≤ µ̂i1(α̃i1j1 ũj1)µ̂i1(α̃i1j2 ũj2)µ̂i2(α̃i2j1 ũj1)µ̂i2(α̃i2j2 ũj2) (13)

holds for some i1, i2. From (13) and µ̂1(ỹ) 6= 0 it follows that

µ̂i(α̃ij1 ũj1) 6= 0, µ̂i(α̃ij2 ũj2) 6= 0, i = i1, i = i2, (14)

where ũj1 6= 0, ũj2 6= 0. Since ũj1 6= 0, ũj2 6= 0 and Ker(α̃ij1) = {0}, Ker(α̃ij2) =
{0}, we have that α̃ij1 ũj1 6= 0, α̃ij2 ũj2 6= 0. Thus, we proved the following
statement.

If (10) holds, then

µ̂l0(ỹ) ≤ µ̂l1(ỹl1)µ̂l2(ỹl2)µ̂l3(ỹl3)µ̂l4(ỹl4), (15)

where ỹlk 6= 0, k = 1, 2, 3, 4. It follows from (15) that µ̂lk(ỹlk) 6= 0, k = 1, 2, 3, 4.
Hence, in (15) we can replace µ̂l0(ỹ) with µ̂lk(ỹlk), k = 1, 2, 3, 4. As a result, we
get

µ̂l0(ỹ) ≤
16∏

k=1

µ̂lk(ỹlk) (16)

for some ỹk 6= 0, k = 1, 2, . . . , 16. By repeating this reasoning, we obtain the
inequality

µ̂l0(ỹ) ≤
4m+1∏

k=1

µ̂lk(ylk), (17)

where ylk 6= 0, k = 1, 2, . . . , 4m+1.
Put

Ci = sup
y 6=0

µ̂i(y). (18)

By Lemma 2.2, we have that Ci < 1. Put

C = max
1≤i≤n

Ci. (19)
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Then C < 1. From (17),(18) and (19) it follows that

µ̂1(ỹ) ≤ C4m+1
.

Since C4m+1 → 0 as m →∞, we can infer that µ̂l0(ỹ) = 0, which contradicts the
assumption. Therefore µ̂i(y) = 0 for all y ∈ Y , y 6= 0, i.e., µ̂i(y) = m̂X(y), y ∈ Y .
Hence µi = mX , i = 1, 2, . . . , n.

3. Remarks

We are to prove that Theorem 2.3 fails if we omit one of conditions (i)–(iv).
We need some new notations. Denote by T the circle group, by Z the group of

integers. The group Z is the character group of T. Denote by Z(m) the group of
the roots of the power m of the unity. Denote by Q the additive group of rational
numbers with the discrete topology. For an arbitrary a = (a0, a1, a2, . . .), aj > 1,
consider the group

Ha =
{

m

a0a1... . . . an
: m ∈ Z, n = 0, 1, 2 . . .

}

which is a subgroup of the group Q. The character group of Ha is called the
a-adic solenoid and is denoted by Σa. The group Σa is compact and connected.
Note that the character group of the group Q is Σa, where a = (2, 3, 4, . . .)

We remind that a distribution γ ∈ M1(X) is called Gaussian (see [13, Ch.
IV]) if its characteristic function can be represented in the form

γ̂(y) = (x, y) exp{−ϕ(y)}, y ∈ Y,

where x ∈ X, and ϕ(y) is a continuous nonnegative function on Y satisfying the
equation

ϕ(u + v) + ϕ(u− v) = 2[ϕ(u) + ϕ(v)], u, v ∈ Y. (20)

Denote by Γ(X) the set of Gaussian distributions on X. Denote by I(X) the set
of idempotent distributions on X, i.e., the set of shifts of the Haar distributions
mK of compact subgroups K of X. Let x ∈ X. Denote by Ex the degenerate
distribution concentrated at the point x ∈ X.

Now we will show that if one of condition (i) − (iv) is not satisfied, then
Theorem 2.3 fails.

1. Put X = Σa × Z(3), a = (2, 2, 2, . . .). Consider independent identically
distributed random variables ξ1 and ξ2 with values in X and distribution µ = mK ,
where K = Σa. Consider the linear forms L1 = ξ1 + ξ2, L2 = ξ1 − ξ2. We have
Y ∼= Ha × Z(3), a = (2, 2, 2, . . .). To avoid introducing new notations, suppose
that Y = Ha×Z(3). For an arbitrary group G, denote by f2 the homomorphism
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f2 : G → G defined by the formula: f2g = 2g, g ∈ G. It is obvious that
f2 ∈ Aut(Y ), and hence f2 ∈ Aut(X).

On the one hand, it is obvious that condition (i) does not hold, but conditions
(ii)–(iv) hold.

On the other hand, taking into account that f2(K) = K as noted in [4,
Proposition 7.4], the linear forms L1, and L2 are independent, herewith µ 6= mX .

2. Put X = Σa, a = (2, 3, 4, . . .). As in item 1, we assume that Y = Q. Let
µ ∈ Γ(X) and µ̂(y) = exp{−y2}. It is obvious that {y ∈ Y : |µ̂(y)| = 1} = {0}.
Hence (i) holds.

Since X is a connected and not locally connected group, the distribution µ is
singular ([4, Proposition 3.14]). Hence (ii) is not fulfilled.

Consider independent identically distributed random variables ξ1 and ξ2 with
values in the group X and distribution µ. Consider the linear forms L1 = ξ1 + ξ2

and L2 = ξ1 − ξ2. It is obvious that conditions (iii) and (iv) hold.
It follows from Lemma 2.1 that the linear forms L1 and L2 are independent,

herewith µ 6= mX .
3. Let X be a finite Abelian group such that X is not isomorphic to the group

of the form Z(p), where p is a prime number. It was proved (see [10, Proposition
3.2]) that there exist independent identically distributed random variables ξ1 and
ξ2 with values in X and distribution µ and nonzero endomorphisms β, δ of the
group X such that the following conditions hold:

(a) the linear forms L1 = βξ1 + δξ2 and L2 = ξ1 + βξ2 are independent;
(b) µ 6∈ I(X);
(c) σ(µ) = X;
(d) β2 − δ ∈ Aut(X);
(e) β /∈ Aut(X).
Condition (i) follows from (c). Condition (ii) is fulfilled because we consider

the group X in the discrete topology. It follows from (e) that condition (iii) does
not hold. Finally, (d) implies (iv).

4. Put X = Σa, a = (3, 3, 3, . . .). Consider the function

ρ(x) = 1 + Re(x, y0),

where x ∈ X, y0 ∈ Y , y0 6= 0. It is obvious that ρ(x) ≥ 0, x ∈ X, and∫
X ρ(x)dmX(x) = 1. Let µ be a distribution on X with the density ρ(x) with

respect to mX . Then σ(µ) = X. Let ξi, i = 1, 2, 3, be independent identically
distributed random variables with values in X and with distribution µ. Consider
the linear forms L1 = ξ1+ξ2+ξ3, L2 = ξ1+3ξ2+ξ3, L3 = ξ1+ξ2+3ξ3. Obviously,

conditions (i)–(iii) hold. Moreover, it is easy to see that α =




1 1 1
1 3 1
1 1 3


 /∈
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Aut(X3) because (0, 1, 0) /∈ α̃(Y 3), i.e., (iv) does not hold. On the other hand,
as proved in [11], the linear forms L1 = ξ1 + ξ2 + ξ3, L2 = ξ1 + 3ξ2 + ξ3, L3 =
ξ1 + ξ2 + 3ξ3 are independent.
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