Journal of Mathematical Physics, Analysis, Geometry 2014, vol. 10, No. 3, pp. 309–319

Refinement of Isoperimetric Inequality of Minkowski with the Account of Singularities in Boundaries of Intrinsic Parallel Bodies

V.I. Diskant

Cherkasy State Technologic University 460 Shevchenko Blvd., Cherkasy 18006, Ukraine E-mail: diskant@chiti.uch.net

Received May 14, 2013, revised December 23, 2013

The following inequalities are proved:

$$S^{n}(A,B) \ge n^{n} \sum_{i=0}^{k-1} V(B_{A_{i}}) \left(V^{n-1}(A_{i}) - V^{n-1}(A_{i+1}) \right) + S^{n}(A_{-T}(B),B),$$

$$S^{n}(A,B) \ge n^{n} \int_{0}^{T} g(t) df(t) + S^{n}(A_{-T}(B),B),$$

$$S^n(A,B) \ge n^n \int_0^q g(t) df(t) + S^n(A_{-q}(B),B)$$

where V(A), V(B) stand for the volumes of convex bodies A and B in \mathbb{R}^n $(n \geq 2)$, S(A, B) denotes the area of the surface of the body A relative to the body B, q is the capacity factor of the body B with respect to the body A, $A_i = A_{-t_i}(B) = A/(t_i B)$ is the inner body parallel to the body A with respect to the body B at a distance t_i , $0 = t_0 < t_1 < \ldots < t_i < \ldots < t_{k-1} <$ $t_k = T < q$, B_{A_i} is a shape body of A_i relative to B, $g(t) = V(B_{A_{-t}(B)})$, $f(t) = -V^{n-1}(A_{-t}(B))$, $\int_0^T g(t)df(t)$ is the Riemann–Stieltjes integral of the function g(t) by the function f(t), and $\int_0^q g(t)df(t) = \lim_{T \to q} \int_0^T g(t)df(t)$.

Key words: convex body, isoperimetric inequality, Minkowski inequality. Mathematics Subject Classification 2010: 53B50.

© V.I. Diskant, 2014

By a convex body in the *n*-dimensional Euclidean space \mathbb{R}^n $(n \ge 2)$ we mean a convex compact set with non-empty interior.

Let A and B be convex bodies in \mathbb{R}^n , $A + \lambda B$ with $\lambda \geq 0$ stand for their linear combination in Minkowski's sense, E be a unit ball whose center coincides with the origin \bar{o} of the coordinate system in \mathbb{R}^n , Ω denote the boundary sphere of the ball E.

The volume $V(A + \lambda E)$, $\lambda \ge 0$, is expressed by the Steiner formula

$$V(A + \lambda E) = \sum_{k=0}^{n} C_n^k V_{n-k}(A) \lambda^k,$$

where $V_{n-k}(A)$ is the (n-k)-th basic measure of the body A. In particular, $V_n(A) = V(A)$, whereas $nV_{n-1}(A) = S(A)$ is the area of the boundary surface of the body A [1, p. 176]. It follows from the Steiner formula that

$$S(A) = \lim_{\lambda \to +0} \frac{V(A + \lambda E) - V(A)}{\lambda}$$

Minkowski [2, p. 57] obtained a generalization of the Steiner formula, which reads as follows:

$$V(A + \lambda B) = \sum_{k=0}^{n} C_n^k V_k(A, B) \lambda^k,$$

where $V_k(A, B)$ is the k-th mixed volume of the bodies A and B, $V_0(A, B) = V(A)$. It follows from the Minkowski formula that

$$nV_1(A,B) = \lim_{\lambda \to +0} \frac{V(A+\lambda B) - V(A)}{\lambda}.$$

Since $nV_1(A, E) = S(A)$, it is natural to call $nV_1(A, B)$ the area of the surface of the body A relative to the body B and denote it by S(A, B).

If A is a polyhedron with k facets, then by Minkowski (see [3, p. 61]), its first mixed volume is expressed by the formula

$$V_1(A,B) = \frac{1}{n} \sum_{i=1}^k S(A_i) h_B(\hat{u}_i),$$
(1)

where \bar{u}_i (i = 1, 2, ..., k) are outside unit vectors normal to the facets of A, $S(A_i)$ is the area of the *i*-th facet of A, $h_B(\hat{u}_i)$ is the support value of the body B with respect to the vector \bar{u}_i .

In the general case, an expression for the first mixed volume, obtained by A.D. Aleksandrov [4, p. 39], has the form

$$V_1(A,B) = \frac{1}{n} \int_{\Omega} h_B(\bar{u}) F(A,d\omega),$$

where $F(A, \omega)$ is the surface function of the body A, ω denotes a domain in Ω .

Recall the first inequality of Minkowski for mixed volumes (see [3, p. 65]),

$$V_1^n(A,B) \ge V(B)V^{n-1}(A).$$
 (2)

The equality holds if and only if A is positively homothetic to the body B, i.e., A = kB, k > 0.

The isoperimetric inequality of Minkowski,

$$S^{n}(A,B) = (nV_{1}(A,B))^{n} \ge n^{n}V(B)V^{n-1}(A),$$
(3)

is virtually the same as (2). The equality holds in (3) if and only if it holds in (2). Besides, if B = E, then (3) leads to the following classical isoperimetric inequality:

$$S^{n}(A) \ge n^{n} V(E) V^{n-1}(A).$$

$$\tag{4}$$

Let us recall some notions. The Minkowski difference D = A/B of the convex bodies A and B is defined as the set of all points $\overline{d} \in \mathbb{R}^n$ such that $\overline{d} + B \subset A$ (see [1, p. 83]). It is known that the body D is convex. Moreover, if the origin in \mathbb{R}^n is moved, then D is subject to a parallel translation. The capacity factor q = q(A, B) of the body B with respect to the body A is defined as the greatest number α such that the body αB can be placed inside A by a parallel translation [5, p. 100]. Given $0 \le \sigma \le q$, the body $A_{-\sigma}(B) = A/(\sigma B)$ is called the intrinsic body parallel to the body A relative to the body B at the distance σ .

In [4, p. 97], A.D. Alexandrov introduced the notion of a convex body with a given domain of definition of the support function. Namely, let Ω' be a closed subset of the unit sphere Ω which does not belong to any closed hemisphere of Ω . Let $H^*(\bar{u})$ be a continuous positive function defined in Ω' . Given a vector $\bar{u} \in \Omega'$, consider a hyperplane $T(\bar{u})$ in \mathbb{R}^n orthogonal to \bar{u} and lying at the distance $H^*(\bar{u})$ from the origin \bar{o} in the direction of \bar{u} . Denote by $\overline{T(\bar{u})}$ the closed half-space in \mathbb{R}^n bounded by $T(\bar{u})$ and containing the origin. By A.D. Alexandrov, the convex body $N = \bigcap_{\bar{u} \in \Omega'} \overline{T(\bar{u})}$ is called a convex body with the definition domain Ω' of the support function. In what follows, we will use the notation $N = (\Omega', H^*(\bar{u}))$.

When dealing with functionals invariant under parallel translations, the choice of the origin in \mathbb{R}^n does not matter. Hence we will assume that $qB \subset A$ and that the origin \bar{o} belongs to the interior of B. Let $H_A(\bar{u})$ denote the support function of the body A. Then $A = (\Omega, H_A(\bar{u}))$ since $H_A(\bar{u})$ is continuous and positive in

 Ω . It is shown in [5, p. 107] that for A there exists a minimal domain $\Omega' = \Omega_A$ such that $A = (\Omega_A, H_A^*(\bar{u}))$, where $H_A^*(\bar{u})$ is the restriction to Ω_A of the support function $H_A(\bar{u})$ of the body A. For example, if A is a polyhedron in \mathbb{R}^n , then Ω_A is just a set of outward unit vectors normal to the facets of A. The body $B_A = (\Omega_A, H_B^*(\bar{u}))$ is called the shape body of the body A relative to the body B (see [5, p. 108]). Note that $B \subset B_A$. Remarkably, the body B_A takes into account the singularities in the boundary of the body A relative to the body B.

G. Hadwiger [6, p. 368] obtained the following refinement of the classical isoperimetric inequality (4):

$$S^{n}(A) \ge n^{n} V(E_A) V^{n-1}(A), \tag{5}$$

where $E_A = (\Omega_A, H_E^*(\bar{u}))$. In [5, 108], inequality (5) was generalized by taking into account singularities in the boundary of the body A relative to the body B,

$$S^n(A,B) \ge n^n V(B_A) V^{n-1}(A).$$
(6)

In [7, p. 43], inequality (6) was refined by taking into account the nondegeneracy of $A_{-q}(B)$,

$$S^{n}(A,B) \ge n^{n}V(B_{A})V^{n-1}(A) + S^{n}(A_{-q}(B),B).$$
(7)

Now let T be an arbitrary number satisfying 0 < T < q. Divide the segment [0,T] into k parts by points $0 = t_0 < t_1 < \ldots < t_i < \ldots < t_k = T$. Denote $A_i = A_{-t_i}(B), 1 \le i \le k-1$, so $A_0 = A, A_k = A_{-T}(B)$.

The aim of the paper is to prove the following.

Theorem 1. The following inequality holds true, which refines inequality (6) by taking into account singularities in the boundaries of the bodies A_1 , A_2 , ..., A_{k-1} :

$$S^{n}(A,B) \ge n^{n} \sum_{i=0}^{k-1} V(B_{A_{i}}) \left(V^{n-1}(A_{i}) - V^{n-1}(A_{i+1}) \right) + S^{n}(A_{-T}(B),B).$$

Theorem 2. The following inequality holds true:

$$S^{n}(A,B) \ge n^{n} \int_{0}^{T} g(t) df(t) + S^{n}(A_{-T}(B),B),$$

where $g(t) = V(B_{A_{-t}(B)}), f(t) = -V^{n-1}(A_{-t}(B)), \int_{0}^{T} g(t)df(t)$ is the Riemann-Stieltjes integral of g(t) by f(t).

Theorem 3. The following inequality holds true:

$$S^{n}(A,B) \ge n^{n} \int_{0}^{q} g(t)df(t) + S^{n}(A_{-q}(B),B),$$
(8)

where $\int_{0}^{q} g(t) df(t) = \lim_{T \to q} g(t) df(t).$

P r o o f of Theorem 1. To prove Theorem 1, we will apply Lemma 1 obtained in [7, p. 43].

Lemma 1. The following inequality holds true for any $0 < \rho < q$:

$$V_1^n(A,B) - V(B_A)V^{n-1}(A) \ge V_1^n(A_{-\rho}(B),B) - V(B_A)V^{n-1}(A_{-\rho}(B)).$$

Putting $\rho = t_1$ in this inequality, we rewrite it as follows:

$$V_1^n(A,B) \ge V(B_A) \left(V^{n-1}(A) - V^{n-1}(A_1(B)) \right) + V_1^n(A_1(B),B).$$
(9)

Next, replacing A by A_1 and A_1 by A_2 , we have

$$V_1^n(A_1, B) \ge V(B_{A_1}) \left(V^{n-1}(A_1) - V^{n-1}(A_2(B)) \right) + V_1^n(A_2(B), B).$$

Substituting this lower bound for $V_1^n(A_1, B)$ in (9), we obtain the inequality

$$V_1^n(A,B) \ge V(B_A) \left(V^{n-1}(A) - V^{n-1}(A_1(B)) \right) + V(B_{A_1}) \left(V^{n-1}(A_1) - V^{n-1}(A_2(B)) \right) + V_1^n(A_2(B),B).$$
(10)

Similarly, using (9), one can obtain lower bounds for $V_1^n(A_2, B)$, $V_1^n(A_3, B)$,..., and substitute these bounds step by step into (10). After k steps, this iterative procedure results into the desired inequality given in Theorem 1, q.e.d.

The proofs of Theorems 2 and 3 will be preceded by five lemmas.

Lemma 2 [7]. If the inequality

$$H_L(\bar{u}) \le H^*(\bar{u})$$

holds true for any $\bar{u} \in \Omega'$, then $L \subset \bar{L} \subset N$.

Next, let $C = A_{-\sigma}(B) = (\Omega', H_C^*(\bar{u}))$, where $\sigma \in [0, q]$ is a fixed number. Consider the body $(\Omega', H_B^*(\bar{u}))$ and the function $H_t^*(\bar{u}) = H_C^*(\bar{u}) - tH_B^*(\bar{u})$, $\bar{u} \in \Omega'$, $t \in (0, q - \sigma)$. Since the support function of a convex body is continuous in Ω , the function $H_t^*(\bar{u})$ is continuous in $\bar{\omega} \in \Omega'$. Moreover, the inclusion $qB \subset A$, the choice of the origin o and the inequality $\sigma + t < q$ together imply that

 $H_t^*(\bar{u}) = H_C^*(\bar{u}) - th_B^*(\bar{u}) > 0$ holds for any $\bar{u} \in \Omega'$. Therefore the function $H_t^*(\bar{u})$ generates a convex body $N_t = (\Omega', H_t^*(\bar{u}))$.

Lemma 3. Given the convex bodies C and B, the following equality holds true for any $0 < t < q - \sigma$:

$$N_t = C_{-t}(\bar{B}) = C_{-t}(B).$$

P r o o f. Let us show that $N_t \subset C_{-t}(\bar{B}) = C/(t\bar{B})$. Let \bar{a} be a point of N_t . Then $H_{\bar{a}}(\bar{u}) \leq H_t^*(\bar{u})$ holds for any $\bar{u} \in \Omega'$. The support function $H_{\bar{a}+t\bar{B}}(\bar{u})$ of the body $\bar{a} + t\bar{B}$ satisfies the inequality

$$H_{\bar{a}+t\bar{B}}(\bar{u}) = H_{\bar{a}}(\bar{u}) + tH_{\bar{B}}(\bar{u}) \le H^*t(\bar{u}) + tH_{\bar{B}}(\bar{u}) = H^*_C(\bar{u}), \quad \bar{u} \in \Omega'.$$

Then it follows from Lemma 2 that $\bar{a} + t\bar{B} \subset C$. Therefore, $\bar{a} \in C/(t\bar{B})$. Thus, $N_t \subset C_{-t}(\bar{B}) = C/(t\bar{B})$.

Now let us show that $C_{-t}(B) \subset N_t$. Let \bar{b} be a point not belonging to N_t . Then there exists $\bar{u}_0 \in \Omega'$ such that $H_{\bar{b}}(\bar{u}_0) > H_t^*(\bar{u}_0)$. Consequently, $H_{\bar{b}}(\bar{u}_0) + tH_B(\bar{u}_0) = H_{\bar{b}}(\bar{u}_0) + tH_B^*(\bar{u}_0) > H_C^*(\bar{u}_0)$. This means that the body $\bar{b} + tB$ does not belong to C. Hence \bar{b} does not belong to $C_{-t}(B) = C/(tB)$. Thus, $C_{-t}(B) \subset N_t$.

The inclusions $N_t \subset C_{-t}(\bar{B}) \subset C_{-t}(B) \subset N_t$ result in the desired equalities $N_t = C_{-t}(\bar{B}) = C_{-t}(B)$, q.e.d.

Lemma 4. The value of $V(B_{A_{-\sigma}(B)})$ is finite positive for any $0 \leq \sigma < q$.

P r o o f. Consider the shape body $B_{A_{-\sigma}(B)}$ of the body $A_{-\sigma}(B)$ relative to the body B. The support function of this shape body is defined in the domain $\Omega_{A_{-\sigma}(B)}$, which is the minimal domain of definition of the support function of the body $A_{-\sigma}(B)$. The minimal domain of definition Ω_A for the support function of the convex body A contains the set of all outward unit vectors normal to the support planes of the body A at regular points of the surface of A. Recall that a point in the boundary of A is called regular if there exists a unique support plane of A passing through this point. In [6, p. 368], it is shown that Ω_A can not belong to any closed hemisphere of the unit sphere Ω . Hence the shape body of the convex body A relative to the convex body B is a convex body and it has a finite positive volume, q.e.d.

Lemma 5. Let $0 \leq \sigma_1 < \sigma_2 < q$. Then the following inclusions hold true: $\Omega_{A_{-\sigma_1}(B)} \supset \Omega_{A_{-\sigma_2}(B)}, B_{A_{-\sigma_1}(B)} \subset B_{A_{-\sigma_2}(B)}.$ Moreover, the function $g(\sigma) = V(B_{A_{-\sigma}(B)})$ is increasing for any $\sigma \in [0, q)$.

P r o o f. Let Ω' be a domain of definition for the support function of the body $A_{-\sigma_1}(B)$. It follows from Lemma 3 that Ω' is a domain of definition for the support function of the body $A_{-\sigma_2}(B)$ since $\sigma_2 = \sigma_1 + t$, where $t = \sigma_2 - \sigma_1 > 0$.

Replace Ω' by the minimal domain of definition $\Omega_{A_{-\sigma_1}(B)}$ of the support function of the body $A_{-\sigma_1}(B)$. It follows from Lemma 3 that $\Omega_{A_{-\sigma_1}(B)}$ is a domain of definition for the support function of the body $A_{-\sigma_2}(B)$. Therefore, $\Omega_{A_{-\sigma_1}(B)} \supset$ $\Omega_{A_{-\sigma_2}(B)}$.

Let us prove the inclusion $B_{A_{-\sigma_1}(B)} \subset B_{A_{-\sigma_2}(B)}$. Actually, $B_{A_{-\sigma_1}(B)}$ (respectively, $B_{A_{-\sigma_2}(B)}$) is the intersection of the closed half-spaces supporting the body B whose outward unite normal vectors, translated to \bar{o} , belong to $\Omega_{A_{-\sigma_1}(B)}$ (respectively, to $\Omega_{A_{-\sigma_2}(B)}$). Since $\Omega_{A_{-\sigma_2}(B)} \subset \Omega_{A_{-\sigma_1}(B)}$, then $B_{A_{-\sigma_1}(B)} \subset B_{A_{-\sigma_2}(B)}$. Moreover, $V(B_{A_{-\sigma_1}(B)}) \leq V(B_{A_{-\sigma_2}(B)})$. Therefore, the function $g(\sigma) =$

 $V(B_{A-\sigma(B)})$, defined for $\sigma \in [0,q)$, is increasing, q.e.d.

Set $f_1(\sigma) = V(A_{-\sigma}(B)).$

Lemma 6. The function $f_1(\sigma)$, defined for $\sigma \in [0,q)$, is continuous and decreasing everywhere in [0,q).

P r o o f. Along with the body $N = (\Omega', H^*(\bar{u}))$, let us consider a family of bodies $N_t = (\Omega', H^*(\bar{u}) + t\delta H^*(\bar{u}))$, where $\delta H^*(\bar{u})$ is a continuous function defined for $\bar{u} \in \Omega'$. A.D. Alexandrov proved that the first variation of the volume V(N), i.e.,

$$\delta V(N) = \lim_{t \to 0} \frac{V(N_t) - V(N)}{t}$$

is equal to

$$\delta V(N) = \int_{\Omega'} \delta H^*(\bar{u}) F(N, d\omega),$$

where $F(N, d\omega)$ is a surface measure of the body N which satisfies $F(N, \Omega - \Omega') = 0$ (see [4, p. 100–101]). It is shown in [7, p. 44] that $N_{\sigma} = (\Omega', H_{\sigma}^*(\bar{u})) = A_{-\sigma}(B)$. Applying the above to the body N_{σ} and to the family of bodies $(N_{\sigma})_t = (\Omega', H_{\sigma+t}^*(\bar{u})) = (\Omega', H_{\sigma}^*(\bar{u}) - tH_B^*(\bar{u}))$, we get

$$\frac{dV(A_{-\sigma}(B))}{d\sigma} = -\int_{\Omega'} H_B^*(\bar{u})F(A_{-\sigma}(B), d\omega) = -nV_1(A_{-\sigma}(B), B), \quad \sigma \in [0, q).$$

Therefore, the function $f_1(\sigma)$ has a finite derivative at the interval (0, q) and a finite right-hand side derivative at $\sigma = 0$, which is actually equal to $nV_1(A, B)$. This leads to the continuity of $f_1(\sigma)$ in [0, q).

It follows from (2) that the first mixed volume $V_1(A_{-\sigma}(B), B)$ of $A_{-\sigma}(B)$ and B is positive. Hence, $\frac{dV(A_{-\sigma}(B))}{d\sigma} < 0$ for $\sigma \in [0, q)$, q.e.d.

P r o o f of Theorem 2. Let us show that the integral $I = \int_{0}^{T} g(t)df(t)$, where 0 < T < q, $g(t) = V(B_{A_{-t}(B)})$, $f(t) = -V^{n-1}(A_{-t}(B))$, i.e., the Riemann–Stieltjes integral of g(t) relative to f(t) (see [8, p. 201]), exists.

By Lemma 5, the function $g(t) = V(B_{A_{-t}(B)})$ is increasing in the interval $t \in [0, T]$. Therefore, g(t) is a function of finite variation in [0, T]. Besides, in view of Lemma 6, the function $f_1(t) = V(A_{-t}(B))$ is continuous in the interval $t \in [0, q)$. Thus the function $-V^{n-1}(A_{-t}(B))$ is continuous in [0, T].

In [8, p. 204], it is proved that any function of finite variation is integrable with respect to any continuous function. Therefore the integral $I = \int_{0}^{T} g(t) df(t)$ exists.

Consider a Riemann sum of the integral in question which corresponds to a partition of the segment [0,T] by points $0 = t_0 < t_1 < \ldots < T_{k-1} < t_k = T$ with $\xi_i = t_i$. This Riemann sum has the form

$$\sigma = \sum_{i=0}^{k-1} V(B_{A_i}) \left(-V^{n-1}(A_{i+1}) - (-V^{n-1}(A_i)) \right).$$

Hence the statement of Theorem 1 can be rewritten as follows:

 $S^{n}(A,B) \ge n^{n}\sigma + S^{n}(A_{-T}(B),B).$

Applying an appropriate choice both of a sufficiently fine partition of the segment [0,T] into segments $[t_i, t_{i+1}]$ and of points $\xi_i \in [t_i, t_{i+1}]$, one can get $|I - \sigma| < \varepsilon$ for any arbitrary $\varepsilon > 0$. Thus Theorem 2 is proved.

P r o o f of Theorem 3. Let $\varphi(T) = \int_{0}^{T} g(t) df(t), \ \psi(T) = S^{n}(A_{-T}(B), B).$

Then the inequality in Theorem 2 can be rewritten as follows:

$$S^{n}(A,B) \ge n^{n}\varphi(T) + \psi(T), \quad 0 \le T < q.$$
(11)

Given $0 \leq t_1 < t_2 \leq q$, we have $A_{-t_2}(B) \subset A_{-t_1}(B)$. Indeed, if a point a_2 belongs to $A_{-t_2}(B)$, then $a_2 + t_2B \subset A$. Moreover, since $t_1B \subset t_2B$, then $a_2 + t_1B \subset A$. Therefore, a_2 belongs to $A_{-t_1}(B)$, so $A_{-t_2}(B) \subset A_{-t_1}(B)$.

Because the mixed volume is monotone with respect to any of its arguments and non-negative [2, p. 49], the function $\psi(T)$ is decreasing for $0 \leq T < q$, and its minimal value is equal to $S(A_{-q}(B), B)$.

From Lemma 4, it follows that $g(t) = V(B_{A_{-t}(B)})$ is a finite positive number for any $t \in [0, T]$. Moreover, it follows from Lemma 6 that $f(t) = -V^{n-1}(A_{-t}(B))$ is increasing for any $t \in [0, T]$. Therefore, the integral sum $\varphi(T)$ is non-negative and it increases if T increases. Because the summands in the right-hand side of

(11) are non-negative, any of them is less than or equal to the left-hand side of (11). Therefore, $S^n(A, B) \ge n^n \varphi(T)$, and hence $\varphi(T)$ has a limit value at $t \to q$. Denote this limit value by $\lim_{T\to q} \varphi(T) = \int_0^q g(t) df(t)$. Then, passing to the limit in the right-hand side of (11), we get (8), q.e.d.

Let us give an example when $\int_{0}^{q} g(t) df(t)$ exists and (8) refines (7).

E x a m p l e. We will consider convex polygons in the plane (see Fig. 1) where n = 2. Let B be an isosceles right triangle, k = 3, assuming that the origin \bar{o} belongs to B. Let A be a hexagon bounded by the broken line *abcdef*. Clearly, $A = A_0(B) = A/(0B) = A/\bar{o}$. Moreover, A and B are chosen in such a way that q = 4.

Fig. 1. The isosceles right triangle B, hexagon A, and the sequence of shape bodies.

To provide a partition of the segment [0,q], we chose $t_1 = 2$, $t_2 = 3$, $t_3 = 4$. Then $A_1 = A_{-2}(B) = A/(2B) = A/(2B_A)$ is a pentagon bounded by the broken line $ab_1c_1d_1e_1$. Next, $A_2 = A_{-3}(B) = A/(3B) = A_1/B = A_1/B_{A_1}$ is a parallelogram bounded by a broken line $a_2b_2c_2d_2$. Finally, $A_3 = A_{-4}(B) = A/(4B) = A_2/B = A_2/B_{A_2}$ is a segment o_1o_2 .

Let us describe the minimal domains of definition for support functions of the planar convex polygons in question. All these domains belong to the unite circle Ω centered at the origin o. We have the following.

 Ω_A consists of six points in Ω , which are the end-points of outward normal unit vectors to the sides of the hexagon *abcdef*.

 Ω_{A_1} consists of five points in Ω , which are the end-points of outward normal unit vectors to the sides of the pentagon $ab_1c_1d_1e_1$. Ω_{A_1} is the same as Ω_A excluding the end-point of the outward normal unit vector to the side ab.

 Ω_{A_2} differs from Ω_{A_1} by one point, the end-point of the outward normal unit vector to the side c_1d_1 .

 $\Omega_{o_1o_2}$ consists of two points in Ω , which are the end-points of outward normal unit vectors to the segment o_1o_2 .

 $\Omega_{A_{-t}(B)} = \Omega_A$ for any $t \in [0, 2)$. Hence the shape body for any $\Omega_{A_{-t}(B)}$, $t \in [0, 2)$, is B_A .

 $\Omega_{A_{-t}(B)} = \Omega_{A_1}$ for any $t \in [2,3)$. Hence the shape body for any $\Omega_{A_{-t}(B)}$, $t \in [2,3)$, is B_{A_1} .

 $\Omega_{A_{-t}(B)} = \Omega_{A_2}$ for any $t \in [3, 4)$. Hence the shape body for any $\Omega_{A_{-t}(B)}$, $t \in [3, 4)$, is B_{A_2} .

Since n = 2, replace S by l and V by S in (8) to get

$$S(A) = 38, \ S(A_1) = 15, \ S(A_2) = 6,$$

 $S(B_A) = \frac{3}{4}, \ S(B_{A_1}) = 1, \ S(B_{A_2}) = 2, \ |o_1 o_2| = 4.$

Applying (1) and the equality $S(A, B) = nV_1(A, B)$, we have

$$S(A,B) = 2V_1(A,B) = 2\left(\frac{1}{2}\sum_{I=1}^6 a_i h_B(\bar{u}_i)\right)$$
$$= |ab| \cdot 0 + |bc| \cdot \frac{\sqrt{2}}{2} + |cd| \cdot 1 + |de| \cdot \frac{\sqrt{2}}{2} + |ef| \cdot \frac{\sqrt{2}}{2} + |fa| \cdot 0 = 13,$$

$$S(A_{-q}(B), B) = |o_1 o_2| \cdot 1 + |o_2 o_1| \cdot 0 = 4.$$

Therefore, the left-hand side of (8) is equal to $l^2(A, B) = 13^2 = 169$. On the other hand, q(t) is a step-like function,

$$g(t) = \begin{cases} S(B_A) = \frac{3}{4}, & t \in [0, 2); \\ S(B_{A_1}) = 1, & t \in [2, 3); \\ S(B_{A_2}) = 2, & t \in [3, 4). \end{cases}$$

318

Hence the right-hand side of (8) is equal to

$$\begin{split} &4\int_{0}^{4}g(t)df(t)+S^{2}(A_{-q}(B),B)\\ &=4\left(\int_{0}^{2}g(t)df(t)+\int_{2}^{3}g(t)df(t)+\int_{4}^{4}g(t)df(t)\right)+S^{2}(A_{-q}(B),B)\\ &=4\left(\frac{3}{4}(38-15)+1\cdot(15-6)+2\cdot6\right)+4^{2}=169. \end{split}$$

The left-hand side of (7) also equals 169, whereas the right-hand side of (7) is equal to 130. Hence (8) refines (7).

References

- K. Leichtweiss, Konvexe Mengen. Hochschulbucher fur Mathematik, Bd. 81. Berlin: VEB Deutscher Verlag der Wissenschaften, 1980. (German)
- [2] T. Bonnesen and W. Fenchel, Theory of Convex Bodies. BSC Associates, Moscow, Idaho, 1987.
- [3] H. Busemann, Convex Surfaces. Interscience Tracts in Pure and Applied Mathematics. 6. New York–London: Interscience Publishers, 1958.
- [4] A.D. Alexandrov, Selected Works, Volume 1. Geometry and Applications Nauka, Novosibirsk, 2006. (Russian)
- [5] V.I. Diskant, Refinements of Isoperimetric Inequality and Stability Theorems in the Theory of Convex Bodies. — Modern Problems of Geometry and Analysis 14 (1989), 98–132. (Russian)
- [6] H. Hadwiger, Vorlesungen uber Inhalt, Oberflache und Isoperimetrie. Die Grundlehren der Mathematischen Wissenschaften. 93. Berlin–Gottingen– Heidelberg, Springer–Verlag, 1957. (German).
- [7] V.I. Diskant, The Behavior of Izoperemetric Difference at the Transition to a Parallel Body and a Refinement of the Generalized Inequality of Hadwiger. — Mat. Fiz., Anal., Geom. 10 (2003), No. 1, 40–48.
- [8] I.P. Natanson, Theory of Functions of a Real Variable. F. Unger Publishing Co, New York, 1964.