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T-Function via Weyl Function
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Sato introduced the 7-function to describe solutions to a wide class of
completely integrable differential equations. Later Segal-Wilson represented
it in terms of the relevant integral operators on Hardy space of the unit
disc. This paper gives another representation of the 7-functions by the Weyl
functions for 1d Schrédinger operators with real valued potentials, which
will make it possible to extend the class of initial data for the KdV equation
to more general one.
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1. Introduction

The discovery of spectral invariants by [2] was a trigger of the succeeding
rapid development of the study of the KdV equation

Orf =6f0:f — Do f.

Since then, most of the works have been done by using the scattering data for
decaying solutions, and the discriminant for periodic solutions. On the other
hand, the algebraic structure of the KdV equation was revealed by [13] based on
the results by [4,8], and provided a unified approach to a wide class of integrable
systems. Since his argument was algebraic, so obtained solutions were rational,
multi-solitons and algebro-geometric ones, and all these solutions were described
by 7-functions. It has been a problem to what extent this method is effective
to obtain general solutions to the KdV equation such as solutions starting from
almost periodic functions. [14] considered a kind of closure of Sato’s framework
to obtain a certain class of transcendental solutions. However, their solutions
still remain in a meromorphic class on the entire complex plane C. It should
be noted that [10] proposed an algorithm to construct solutions to the KdV
equation, although it seems that his method also has difficulty to go beyond the
class investigated by [14].
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Since Sato’s theory gives a unified way to solve the KdV equation at least
algebraically, there is some hope to exceed the already existing frameworks. In
the following the outline of Sato’s method developed by [14] is described. Let g be
a function (for the present ¢ can be complex valued) on R. The basic assumption
on ¢ is that the associated Schrodinger equation

—83f +af = —2f (1.1)

has a Baker—Akhiezer function f for all z € C satisfying |z| > R for some R > 0,
where f is called a Baker—Akhiezer function if f has an expression

flz,z) =" (1 + Z an(x)z_">
n=1

converging on {|z| > R}. This condition on ¢ is equivalent to the reflectionless
property on (RQ, oo) if the potential is real valued, which will be seen later. For
r > R let W be the closure of the linear span of { f (z, 2)}, g in the Hilbert space
H=L?(z|=7r) (D, ={2€C;|z| <r}, D, = {2z € C;|z| =r}). From (1.1) we
have easily

(W.1) If f € W, then 22f € W.
Let Hy = span{z": n=0,1,2,...}, H_. =span{z": n=-1,-2,...} in H,
and p4+ be the orthogonal projections to Hi respectively. Define the second
property by

(W.2) py: W — H. is bijective.

The totality of closed subspaces of H satisfying (W.1), (W.2) is denoted by
Gr®) | which will be replaced by Gr® (ID,) if it is necessary. In a general setting
of Gr® the property (W.2) is replaced by the Fredholm condition of p,. Set

r= {g = el : h is holomorphic on {|2| <+'} for some r’ > r} .

Then, for W € Gr®, g € I' a new subspace g\ satisfies (W.1), however the
property (W.2) is not always valid. For a given W € Gr® let § > 0 be such
that e®*W € Gr® holds for any = € R such that || < 6. To find such a ¢ is
always possible because e®*W € Gr® for z = 0. Then, an adhoc derivation of
the potential ¢ and the Baker—Akhiezer function from W is as follows.

The property (W.2) for e®*W implies that there exists a unique element f
of W satisfying

e (z) €1+ H.,

which is denoted by f(z,z). Since any element of H_ has Taylor expansion at

z = 00, we have

u(x,z)=ef(v,2) - 1= alz<37) 4 GQZ(;?) I a3z(3x)

Taking derivative with respect to = yields

{ f(z,2) = —ze ™ (1 +u(x,2)) + e " (z, 2),

" (x,2) = 22 (1 4+ u(x, 2)) — 2z %% (z, 2) + e %" (x, 2),
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which shows

e (—f" (z,2) — 24} () f (,2) + 2°f (2, 2))
=2zu'(x,2) — v (z,2) — 2d) (x) (1 + u (z, 2))

=Y (2044 (z) — af (x) — 24 (2) ag (z)) 27"
p)

Since the first term belongs to e”*W due to (W,1) and the last term is an element
of H_, we have

{ — f"(w,2) = 2 (2) f (2, 2) + 2 f (x,2) = 0,

1.2
Yl () ol (1) — 20} (D)o (1) =0, k=12, 7

where we have used the property (W.2) again for the space e**W. Therefore, if
we define

qw (z) = —2d} (z), (1.3)

then f (z,z) is the Baker—Akhiezer function for gy .

A solution to the KAV equation starting from gy is obtained similarly. As-
sume e®* =W € Gr® for any x,t € R. Let f (z,t,2) be a unique element f of
W satisfying

exz-l—tz?’f(z) €el+H_,

and set
exz+tz3f (x,t,2) =14u(z,t,z) with u(z,t,2z)e H_,

ay (z,t as (z,t as (x,t
1 ( )+2(2)+3(3)+
z V4 y4

u(z,t,z) =
qw (z,t) = a} (x,t),

where / denotes the derivative with respect to x. Taking derivatives of etz f
with respect to t, x yields

A (14 u) + O,
6:pz+tz3f/ = —z(1+u)+ "
em"'tZSf"' =23 (14u) + 3220 — 320" + ",
and hence we obtain
et (Ouf — 1" = 3al f") = Ou — 3220 4+ 3zu” — " + 3za) (1 4+ u) — 3u/d).
Then, the right side function is
—3ab + 3a} + 3aja; modulo H_.

Applying the second identities of (1.2) to e/*’ f (z,t, 2) and =" W yields

3 3
—3ab + 3a} + 3aja; = 2 (—af — 2d}ay + 2a] + 2d)ay) = ia'{,
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hence
ezz+tz3 O f— " _ 34/ /_§ "
if —f arf 2a1f
3
= Opu — 32%u + 3zu” — " + 3za} (1 +u) — 3u/d) — ia’{ (1+u),
which is an element of H_. Therefore, the property (W.2) for ez implies
n ! pl 3 14
of—f"—3a1f — §a1f =0,
thus
3
Oy — 322 + 320" — " + 3za) (1 +u) — 3u'a) — §a'1' (1+wu)=0.
The coefficient of z~! of the above left side function is
n

3
Oray — 3aj + 3ay — a’ + 3aag — 3 (a’l)2 - §a'1/a1 =0.

The second identity of (1.2) for =W yields
2a, —ay —2aja; =0, 2ah — ay — 2dajas =0,
hence

2 3
—3ay + 3aly — ay’ + 3alas — 3 (a/l) — —dlay

2
3 3
=3 (a'2/ + 2alla2) + 3alh — a’ + 3dlas — 3 (a’1)2 — 5a’l’al
1 3
_ZCLI{I — 5 (all)2
Consequently, we have
1 3
duar — g — 3 (a})* =0,

Taking derivative with respect to x shows

1 1 3
~29 om 2 A 0
2 rqw + 8(1 4QWQW )

hence
"

1 3
Orqw — qu + §CIW(]{/V =0,

which shows that gy (z, —4t) satisfies the KdV equation with initial data gy ().
The idea behind this calculation is an effective use of algebra of pseudo differential
operators, and a more systematic argument can be found in [14].
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The 7-function was introduced by Sato to describe the I-action on Gr(®. For
W e Gr® and f, € Hy let f_ be the unique element of H_ such that

f++f-eWw

is valid, which is possible due to (W.2). An operator Ay from H, to H_ is
defined by Aw f+ = f—. Then, for g € I' the tau-function is defined by

mw(g) = det (I + 971P+9AW) ) (1.4)

and the functions gy (x), qw(x,t) are given by the 7-functions in Lemma 4.4 as
follows:

qw(x) = =207 log Tw (™),  qw (x,t) = =20 log TW(e“‘HZS).

xz+Htz2ntl xz+tz3

If we use e in place of e , then we obtain solutions to the higher
order KdV equations. It is known that gW € Gr(® if and only if mw(g) # 0, and
Tw(g) has a cocycle property

w(9192) = Tw (91)7g,w (92)

(see Proposition 4.3), which will leads us to the definition of the KdV flow.
To treat real valued potentials some notions for Gr® are necessary. For a
function f on a domain of C set f (z) = f (z). Define W = {f; fe W} and set

real —

G ={wec® . w=W}, La={sel: g=g},

and
G'ff) — {W c GT‘(Z) : Tw(g) > (0 for any g € Freal} .

real *

For W € Grgil the corresponding potential ¢y takes real values. The first
theorem is

Theorem 1.1. An identity

GTS_Z) _ {W car? . gW € Gr® for any g € Freal}

real *

holds.

A sufficient condition for W to be an element of Grf) will be given by using

the m-function. Although the potential gy is obtained from W e Gr® through
Tw, this correspondence is not one to one. The quantity determining gy is called
in this paper m-function given by

f'(0,2)
f(0,2)
with the Baker—Akhiezer function f. Section 5 is devoted to investigation of

m-functions, especially 7y is decomposed into two components, one of which is
expressed by 7,,,, and depends only on myy.

mw(z) = —
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Usually integrable Hamiltonian systems have been linearized through action-
angle variables. In order to apply this point of view to the KdV equation we need
at least integrability of the solutions, namely ffoco |u (z)| dz < 0o in decaying case

and fol |u(x)| dx < oo in periodic case, and one can define conserved quantities
suitably. For almost periodic case [6,12] considered the KdV equation in the
framework of Hamiltonian systems. However, the lack of compactness and con-
nectedness of the invariant leaves prohibits to develop the argument further. Sato
did not take this approach and constructed directly the flow by the 7-functions.
Therefore, in his theory the 7-function is the crucial quantity. In the context
of Sato’s theory the Weyl functions were first used by [5] to define an element
of Sato’s Grassmann manifold. The purpose of the present paper is to give a
representation of the 7-functions by Weyl functions for 1d Schrédinger operators
with real potentials, so that one can obtain more general solutions.

To state the main results we need more terminologies. Suppose a Schrodinger
operator L, = —02 + q with real valued q € LlloC (R) is essentially self-adjoint
on L? (R) (the boundedness of ¢ is sufficient for this). Then it is known that
dim {f € L*(R4) : Lyf = zf} = 1 for every z € C\R. The Weyl functions m4
are defined by

!
My (Z) _ :tf:t (O>Z)
f+(0,2)
with two non-trivial f1 € {f € L*(R4) : Lyf = zf}. m4 are holomorphic on
C\R and have positive imaginary parts on C;. Gelfand-Levitan, Marchenko
showed that ¢ can be recovered from my uniquely (see [10]). A potential ¢ is
called reflectionless on F' € B (R) if its Weyl functions m4 satisfy

my (§+10) = —m_ (£ +10) (= —m_ ({ —i0)) ae. { € F. (1.5)
Set
) -my (—22) if Rez >0,
m(z) = { m_ (—z2) if Rez <0, (1.6)

and assume that there exist \g < 0 < A such that
infspLy > A9 and ¢ is reflectionless on (A, 00).

Then, m is holomorphic on C\ ([—\/—)\0, —Xo| U1 [—\/)\71, \/X]), and has an

expansion at z = oo like

2

m(z) =z+miz b moz 2 .-,

It will be seen later that this property of m implies the existence of the

Baker—Akhiezer function with r > \/(—Xg) V A1, and

Wi = {gp (z2) + (z2) m(z): @, Y€ H+}

is an element of Grf) (see Proposition 6.7).
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The second theorem is related to the construction of KdV flow by using m.
Set

Qs = {q : ¢ is reflectionless on (7“2, oo) and
sp Lq C [—1?%,00) for some r >0}, (1.7)
r, = {g = e/ : his an entire function with h = h} ,

and for ¢ € Q define
(K(9)q) () = —20; log 7w, (gez) .
where m is the m-function defined by (1.6). Then, we have

Theorem 1.2. {K(g)}gepm1 defines a flow on Qo such that

(K (%) q) (z) =q(a+1),
(K (6_4t23) q) () satisfies the KdV equation.

The next task is to represent the 7-function 7y, more concretely. For a
function f set

Fe2) = 5 (FWR) + 1 (V3) Io(a) = 5

2z

Let D, D' be simply connected bounded domains in C containing the interval
[—A1, — o], and satisfy D C D'. Set C = 9C, C' = 9D’ the boundaries of D,
D' respectively. We assume C, C’ are smooth curves and surround [—A1, —\g]
counterclockwise (see Fig. 1.1).

Fig. 1.1: Curves C and C'.

(f (V) = F(=V7)).

For 6 whose d., d, are holomorphic in a simply connected domain including
C’, set m(z) =m(z) — d (z), and define

\

QIR ACICaNEES AC PN
Ny (z,A) = ;m/Mi,(i;\)mo (X)‘1 ax, (1.8)
(N(9)1) () = 3 [ Ny (20 £ ()
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where g (z) = g(2)7!. The operator N,,(g) defines a trace class operator on

L2 (C).

Theorem 1.3. Forq € Oy and g € I'

ol We have

W, (9) = det (I + Nin(g)) -

Remark 1.4. The class Q. contains multi-solitons, algebro-geometric solu-
tions and they are dense in Q.. Especially all solutions considered in [3] are
included if infsp Ly > —oo. A necessary condition was obtained by [9], namely
she proved that if \g = infsp L,, and ¢ is reflectionless on (A1,00), then ¢ is

olomorpinic on mz| < 1 — A0 al as Doun
hol hi I A — Ao) 2! and has bound

() = Ml €200 — o) (1 VAT~ Agfim])

Since 1w (e,) is entire as a function of z, we know from Theorem 1.2 that ¢(z)
is meromorphic on the entire complex plane C.

This paper is intended to be self-contained, so many results are overlapping
with those of [14]. The author already published one paper [7] on the property
mw(g) # 0. However, it contains several mistakes in the proofs, moreover, the
whole story was not well organized. The present paper tries to improve these
points by employing several basic notions from the theory of Toeplitz operators.

Throughout the paper we use the following notations. R denotes the real line
and C denotes the whole complex plane, and

Ry ={zeR: z>0}, R_={zeR: z<0},
Ci={z€C: Imz > 0}, C_.={z€C: Imz <0},
D, ={z€C: |z|<r}, 0D, ={2€C: |z|=71}.

Moreover, /z is defined _as a holomorphic function on C\R_ so that v1 = 1,
hence /z satisfies \/z = V/Z.

2. Grassmann manifold Gr®

For completeness sake we define the relevant spaces again. Let H = L? (9D,.)
and set

H, = the span of {2"}, -y, H- =thespanof {"} _ ,

in H. Then, H = H; & H_ (orthogonal sum) holds and p1 are the orthogonal
projections to Hy respectively. A closed subspace W of H is z*-invariant if it
satisfies the condition:

2W C W. (2.1)
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Any z2-invariant subspace can be identified with a shift invariant subspace in the
product space as follows. Product spaces of H, H,, H_ are denoted by the bold
H H,., H_, namely

H=HxH  H,=H xH,, H_=H xH._,

respectively. An identity H = H, & H_ holds and the associated orthogonal
projections are denoted by pi again. For z = (21,2), w = ! (wy,ws) € C2
denote

z-w=ziw + znwy, ||z|=Vz-Z, z='(z,%).

For a function f(2) =), fnz™ on 0D, set

fe(2) = Zf%zn’ fo(z) = Zf2n+1zn-

n n

Then, we have an isomorphism

Haf—>¢(f):<;z>eH. (2.2)

Then, W = ¢ (W) for a z2-invariant subspace W C H satisfies
W CW. (2.3)

A closed subspace W of H is called shift invariant if it satisfies (2.3). This
¢ clearly defines an isomorphism between z2-invariant subspaces W and shift
invariant subspaces W. We identify W with W from now on.

An example of shift invariant subspace in H is given by a 2 X 2 non-singular

matrix function A(z) on dD,. Assume every entry of A(z), A(z)~! belongs to
L*> (0Dy), and define

W=Az)H:={f(2)=A)u(z): we Hi}. (2.4)

Then, this W is a shift invariant closed subspace of H, since so is H . Denote
by Gr® the set of all z2-invariant closed subspaces W of H satisfying

py: W — Hy is bijective. (2.5)

W e Gr® if and only if W = ¢ (W) is a shift invariant closed subspace of H
satisfying

p+: W — H, is bijective. (2.6)
The property (2.6) is equivalent to the invertibility of the associated Toeplitz

operator. A Toeplitz operator T'(a) with a € L*° (9D,.) is a bounded operator on
H, defined by

T(a)f =p4 (af) for feH,.
For a bounded matrix function A(z) the associated (matrix) Toeplitz operator
T(A) is defined by

T(A)f =p+(Af) for feHy.
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In (2.4) W is a shift invariant closed subspace of H, and W satisfies (2.6) if and
only if T'(A) is invertible. Generally the invertibility of T'(A) is not easy to verify.
However, there is a case where one can reduce the problem to the invertibility of
a scaler Toeplitz operator as follows. For a bounded function m on 0D, define

then

T(4) = (I TW)) . 2.7)

Since

I T(m)\ (I =T (m)T(mo)™ "\ (I 0

0 T (mo)) \0O T (my) —\o0 1)’

I =T (m)T (mo) "\ (I T(me)\ (I 0

0 T (mo) " 0 T(mo,)) \0 I)°
T (A) is invertible if and only if so is T'(m,). A sufficient condition for the
invertibility of T"(m,) is given in the Lemma:

Lemma 2.1. Let a be continuous on C\D, satisfying
(i) a(z) # 0 for any z € C\D,.
(i)a(z)—1e€ H_.
Then, T (a) is invertible on Hy and T (a)™* = T(a™") is valid.

Proof. Under the conditions (i), (ii) @ maps H_ to H_ bijectively. For u €
_H+ let

a(2)u(z) = fr(2) + (=) with fs€ Ha.
Then, fi =p4 (au) = T(a)u, and
u=a"'fr+a ' fo=py (a7 fr) =T ) fy =T(a T (a)u,
hence T'(a~1)T(a)u = u holds. Similarly one can prove T'(a)T(a™ )u = u. O

An example of a is given by m defined in (1.6) by two Weyl functions m.,
and assume m is holomorphic on C\ ([—r,r] Ui [—r,7]). Then, T (m,) defined on
{|2| = s*} is invertible for any s > r. This is because

my (2) = ~ma(—2) + m_(—z),

2z

and m4 + m_ has positive imaginary part on C,.
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3. Characteristic matrix

In this section we investigate the condition (2.5) (equivalently (2.6)) by intro-
ducing characteristic matrix.
Let H = L? (0D,) with inner product

(f.g)= % /Ozwf (Tem) g (re’?)do.

Set
(Jf)(2)=zf(z) for feH(=H xH).

Then, J maps H onto H_ and satisfies
J*=J, J =7’ and z2J=Jz.
Define a dual object of a closed subspace W of H by
W =Jwt.

For a closed subspace W € Gr(®) (the correct notation is W € Gr(?), however
we abuse the notation) the operator associating f, € H to a unique f_ € H_
such that f, + f_ € W is denoted by Aw .

Lemma 3.1. The following assertions hold.

(i) If W satisfies zW C W, then so does W.
(ii) If W satisfies the condition of (2.6), so does W, and

Ay = =12 J Ay J.

Proof. For f = Ju € W with u € W+
2f =zJu = J (Zu)

and for v e W
(Zu,v) = (u,2v) =0 — Zu € W+

hence J (Zu) € JW, and 2f € W, which proves (i).
It follows from W = {f + Aw f: f € H} that

Wt={u—Ajpu: ue H_}.

Hence -
W o Ju— JAjyu = Ju—r 2JAyJJu foruc H_.

Since J : H_ — H, (bijective), the above identity shows that W satisfies (2.6)
and simultaneously Ay, = —r2J Ay J holds. O
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1 0
81:<0>, 82:<1> €H+.

ew = Awer, Yy =Awers € H_,

Let
For W € Gr® set

and define a 2 x 2 matrix by

Ihw (2) = [e1 + ow (2), e2 + Yw (2)] = 1 + [pw (2), Yw (2)].

Proposition 3.2. For W € Gr® the matrices Iy (2), 1T (2) satisfy the
following properties:

(i) For f € H

Awzf = z2Aw f+r" (Jf, ) (e1+ ow)
+r (TF, ¥5) (e2 + Pw). (3.1)
(i) Ilw (z) is invertible for any z such that |z| > r and for a.e. z in OD,.

Moreover, every entry of Ilw (z), Ilw (z)_1 belongs to H,. Additionally
W e Gr® is valid and it holds that

Iy (2) "Il () = 1. (3.2)
Proof. For f € H,
W oaf +zAwf = (2f + pi2Aw f) + p-zAw f,
hence

Aw (2f +p12Aw f) = p2Aw f = 2 Aw f — p+zAW f,

thus
Awzf = zAw f — p+ZAwf - AWp+ZAwf (33)

Since, for u = Aw f € H_
u = Z Upz ™" =y (2u) = up =17 (zu,e1) er + 77 (2u, e3) €,

Y, zey) e + 1 (u,zes) es

(
YAw f,ze1) er +r 1 (Aw f, Ze2) eo
=3 (Jf, JAyJel) el + 13 (Jf, JAy Jes) es
—rt (Jf, Aﬁ,el) ep —r ! (Jf, Aﬁ,eg) e
="' (Jf, o) er — 7 (JF ) €2,

thus (3.1) follows from (3.3). Since W € Gr® follows from Lemma 3.1, we have
only to show (3.2). Applying (3.3) to f = 2"e; (n > 0) yields

py(zu) =7~
= 7"7

n+1

sz €]
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= zAwz"e1 + 17! (J2"er, o5 ) (e1 + ow) 17 (J2 e, ¥) (e2 + Pwy)

=zAwz"er + 17! (2" e, o) (e1 + ow) + 17 (" er, i) (€2 + ),
similarly

AWZ”+1e2

=zAwz"es + 17! (2" es, w) (e1+ow) + rt(Z" ey, Vi) (e2 + dwy)

hence, for j =1,2

sznej =" (Awej + (e1 + ow) ¢W/,j,n + (e2 + ¥Yw) EW,j,n) , (3.4)

holds, where

n n

P () =11 27 (‘PVT/= Ekej) g () =ty 2 (¢W75k€j> ;

k=1 k=1

and generally f (z) = f (Z). In a matrix form the identity (3.4) turns out to be

27" [Awz"e1, Awz"es] = Ilw (2) tHﬁ?,n (z)—1

for any n > 0, where

I, (2) =

1+ ‘PW,LN (Z) /l/)‘,}\[}J,n (Z)
Pion () 1HYw, (2)]

Noting
(Pf}[v/'ln<z) ¢W1n(z) i
™ — Y= (2), ” — Y5 (2) in H_
(sow,m () 7w g, m) 7w
as n — oo and
|Aw 2"er|| < [ Aw | |2 el = v/ | Aw ]|,

we see
Iy (2) tﬂﬁ; (2) —=I =0 for z such that |z| >,

by letting n — oo in (3.4), which completes the proof of (3.2) by letting |z| — 7.
O

The identities (3.1), (3.2) show that the operator Ay is uniquely determined
by {pw,¥w}, since Hy is generated by {z™e1,2"e2},, ,5o. This implies that

W e Gr®? is uniquely determined by ITyy, and we call Iy as the characteristic
matrix of W (or W).
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4. Group action on Gr® and 7-function

In this section we consider an commutative action on Gr(?). Set

I = {g = e . h holomorphic on D for some s > r and h(0) = O} . (40

Then I is commutative and we can consider a closed subspace gW for W e Gr®).
To investigate this action we define an operator Ry on H, for W € Gr® by

Rw (9) = 9" 'p+gAw.

Then, the 7-function is 7 (g) = det (I + Rw (g)). To define this determinant
the traceability of Ry (g) is required.

Lemma 4.1. Suppose g; € I' for j =1,2. Then

Hg;lergl - 951p+92‘}trace
<3 2 (ot = g2t (lgr = 1l + 72 ||t ]])
+ g5 (lgr — goll + 72 |97 — g5]])) -

Proof. For f € H_ and g; € H? (0D, let

F2)=) faz " gi(z) =) gima"

n>1 n>0
Then
Op (pr91f — p1g2f) (Tew)
=1 Z (n - m) et (gl,n - 92771,) fmei(nim)e
m>1,n—m>0
=1 Z fm Z ferke'k? (gl,k+m - gQ,k-i—m) s
m>1 k>0
hence

1(1+ 38) (P91 — P192) I35
2

27
T _ . 3
— Z 271'/ P12 E (1+ik) r"e™ (g1 km — g2h4m)| dO
m>1 0 k>0

= Z Z r2k (1 + (k — m)2> g1k — g2.i]* < Zr%k‘g |91,k — 92,k

m>1k>m k>1

2

9

since 251:1 (1 + (k- m)2) < k3 holds if k > 1. Note

> 1%k g1k — gonl
k>1
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2

<lrgia —rgaal? +2> K (k= 1% |rh g — o

k>2

<27 (llgy = g2l + 1 ot — g81I°) -

Since , )
-1 _ ) l
H(1+89) HHS—Z]1+2M <14+ <4<
k>0
thus
||p+gl - p+92Htrace
<[+ a | 10+ 06) (g1 = prge)ls
<2V2r 2 (llgr = gall + 72 ||t — g5 ]) -
Consequently
g g1 — 97 P92 ace
< Hgfl - 951‘} 19491l ¢race T HQ;H IP+91 — 192/l trace
<372 (|lont = g2 (llgn — 11+ 2 [|g7]])
+1lg2 | (lgr = gall +r* |97 — g5 1]))
which completes the proof. O

This Lemma shows that Ry (g) is of trace class and 7y (g) can be defined
if g € I'. This Ty (g) is called as 7-function and plays a crucial role in Sato’s
theory.

Lemma 4.2. gIW € Gr® holds if and only if ker (I + Ry (g)) = {0} is valid.
In this case, the A-operator corresponding to gW is given by

Agw =p_g "Aw (I + Rw (9)) ' g.

Proof. Since Ry (g) is a compact operator, ker (I + Ry (g)) = {0} implies
the existence of (I + Ry (g)) " as a bounded operator on H . Set

B=p_g "Aw (I+Rw (9) ' g.
For f € H., an identity
g (f+Bf) =g f+9 'v-gAw (I+Rw (9)) ' g 'f
=g ' f+Aw I +Rw(9) ‘g 'f—Rw(9) I +Rw(9) 'g7'f
= (I +Rw(9) g f+Aw (I +Rw(9) g 'f (4.2)

is valid, hence g~ (f + Bf) € W and gW D {f +Bf: f & H;} holds. Con-
versely, f = g(I + Ry (g9))u € Hy for u € H, satisfies g~ (f + Bf) = u +
Awu € W due to (4.2). Hence we have

gW ={f+Bf; feH},
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which implies gW € Gr® and B = Agw.
Now suppose f € ker (I + Ry (g)), then, from an identity gf +p+ (gAw f) =
0 it follows that

p— (gAwf) = gAw [ — v+ (gAwf) = g (f + Aw [) € gWV.

Therefore gW € Gr® implies p_ (gAw f) = 0. Hence, f + Ay f =0 and f =0
holds, which completes the proof.
O

Proposition 4.3. 7w (g) satisfies the following properties.
(i) gW € Gr® holds for g € I' and W € Gr® if and only if Tw(g) # 0.

(ii) For g1, go € I', W € Gr® suppose gW € Gr® (equivalently mw (g1) #
0). Then

w (9192) = Tw (91) Tqyw (g2)  (cocycle property). (4.3)
(iii) If g = €' € T, and g1(z) = e"(=*) | go(2) = €2"o(=*) | then
™w (9) = Tw (91) Tw (92) -

(iv) Tw (g) is continuous on I' with Sobolev H*-norm.

Proof. Since Ty (g) = 0 if and only if ker (I + Rw (g)) = {0}, (i) is valid by
Lemma 4.2. To show (ii) note

(9192) Aw = g2p+ g1 Aw + g2p—g1 Aw
= g2g1Rw (91) + 9245, w91 (I + Rw (1)),

and
p+ ((9192) Aw) = g291Rw (91) + p+ (9245 w91 (I + Rw (91))),

hence

I+ Rw (9192) = I+ Rw (q1) + 91 '95 P+ (92Aqwa1 (I + Rw (91)))
=1+ Rw (91) + 91 'Rgyw(92)g1 (I + Rw (91))
=97 (I + Ryyw(92)) 91 (I + Rw (1)) -

Consequently, if g;W € Gr®), then we have (ii). (iii) follows immediately from
(ii) if we notice g1W = W. (iv) is a direct consequence of Lemma 4.1. O

The entries of characteristic matrices can be obtained from 7y (g) by choosing
g appropriately. Let

ow = Awl, Yw =Awz € H_, (then @y ="(pe,00), thw =" (e, o).
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An element g¢ of I'" defined by

g (z)=(1—=Y)

for ¢ € C such that || > r plays a crucial role in the ['-action, since any g € I’
can be expressed as a limit of g¢,q¢, - - - q¢,,- For f € H_ we have a decomposition
of g¢ f into H_ & H

()= (1- C) o= (1- C) re - @+ (1 C) £0),

which yields

(o) 0= (1-2) (1-3) r0=110)

Hence, if W € Gr(®), then for f € H,
(" pracAw ) (2) = (Aw ) () = (Aw ) ()1

holds, which implies that qglerqCAW is a linear operator of rank 1. Thus

i (g¢) = det (I+ g7 pracAw) =1+ (Awl) () = 1+ew (O (44)

follows. Further calculations on 7-functions can be found in the Appendix.

The next role of the T-function is to express a potential of Schrédinger oper-
ator for a given W € Gr®. Let {ex} cc be a one parameter group of elements
of I' defined by

ex(z) = €.

Lemma 4.4. Suppose Ty (e;) # 0 for x in a domain D of C. Then, the
function

fw(x.Q) = ™™ (L4 pe,w (C)) = € *e,w (qc) €W (as a function of ¢) (4.5)
satisfies
— fl(x,2) + qw (@) fw (2, 2) = =22 fur (2, 2), (4.6)

namely fw is a Baker—Akhiezer function for the Schrédinger operator L, in D.
Moreover, if {an(x)},~q is defined as coefficients of an expansion

ai(z)  az(x)

fw(l‘,-)ze_zz <1+z+22+"‘>,
then

ay(x) = Oy log T (ez) , (4.7)

and qw 1s given by
qw () = —202log Tw (ez) . (4.8)
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Proof. Since e,W € Gr® for z € D, there exists uniquely u € e, W such that
piu = 1. Set fw(z,2) = e;'u € W. Then, the calculation in the Introduction
shows that fiy satisfies the equation (4.6). The formula (4.7) is verified as follows.
Since
™ (e;L’QC)

echw(az, C) =1+ (Aezwl) (C) = Te, W (qC) = - (ez)

is valid, we see

w (exqc) — Tw (ex)
™ (ex)

which yields (4.7). O

Since Ty (ez) is an entire function of x, we see that gy (x) is meromorphic on
C, and it has poles of degree 2 on {z € C: 7y (e;) = 0}. Proposition 4.3 and
Lemma 4.4 are rearrangement of the corresponding results obtained by [14].

The formula (4.8) defines a map from W € Gr® to a space of potentials,
however this map is not injective. Later we will see a quantity of W, which will
be called as m-function, determines gy .

5. m-~function

In this section we define a crucial quantity of W € Gr(?) which determines gy .
Let fw(x, z) be the function introduced in Lemma 4.4 and define the m-function
for W € Gr® by

fiv(0,2)

mw (2) = T (0.2) (5.1)

my can be described by the elements of the characteristic matrix as follows.
Setting

o= (1420 20 Y e

22
we have

a1£0)+a2(20)+...—1+¢w(2)7

fI,/V(Ov Z) = —z— al(()) + M

= —z— Yw (Z) — al(O) (1 + ow (Z))7

fw(0,2) =1+

due to fi (0, 2), f;;(0,2) € W, hence

() = z+ 1w (2)

= 1x ow (2) +a; (W), (5.2)
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where we have defined

a1 (W) =a1(0) = lim zpw (2). (5.3)
Z—>00
One of the importance of m-functions lies in its close relationship with 7-
functions. Namely, one can decompose 7y (g) into the two factors, one of which
is a group homomorphism from I" to C and the other part depends only on myy.
Since

a1(0 as (0
1()+ 2Z(2)

L+ow(z) =1+ +e
there exists ry > r such that 1 + ow (2) # 0 on {|z]| > rw}. Let
log (1 + ow (2)) = bzt 4oz 4
Set
I'y = {g = ¢"; h holomorphic on {|z| < rw + ¢}  for some € > 0} . (5.4)

and define

ow (") = exp (; k:bkhk> — exp <21m /|er 1 (2)log (1 + o (z))> dz

(5.5)
for h(z) = 3.3, hiz*. Then, (5.5) is convergent for g € I'y. If g = g¢ with [¢] >
rw, then, in view of log g¢(2) = Y poy (TF2*/k

pw (q¢c) = exp (Z C_kbk> =1+ pw (¢) (5.6)
k=1
holds. For a holomorphic function m on {|z| > r} and ¢ € {|z| > r} define
2 2
(dem) (2) = — s = m Q).

One can see easily that d¢, d¢, = d¢,de,. Then, (8.4) in the Appendix implies
that mg. gc, ., w (2) for (x| > 7, k=1,2,...,n is generated from mw by

Mae aeyaca W (2) = (deydey -+ - dg,mw) (2).

For g = q¢,q¢, -+ - q¢,, with |G| >, k =1,2,...,n define 7,, (g) inductively by

Tm (qC1> =1,

1
Tm (quqC2 e QCn) Tm (QCl UG qcn—l) (57)
(dC1dC2 T an—k—lm) (Cn) - (dCl dC2 T an—k—1m) (Cn—k)
Cn - gnfk '
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Proposition 5.1. py satisfies

pw (9192) = pw (91)pw (g2), (5.8)

for any g1, g2 € I'yy. Moreover, 1, (g) is extendable to I'yy if m = my so that

™w(9) = pw (9) Tmy (9) (5.9)

holds, and T, (g) depends on W only through my,, namely if mw, = mw, for
Wi, Wy € Gr®,| then Tmw, (9) = Tmuw, (9) holds.

Proof. (5.8) follows easily from the definition. We show (5.9) for g =
96.9¢ - - de, with x| > mw, & = 1,2,...,n. If n = 2, then, from (8.5) in
the Appendix

mw (G1) —mw (&)

W (969:) = (1 +ew () (1 +ew (G))

G — ¢ ’
so that in this case
™w (9c9c.)  mw (C1) — mw (C2)
g = T, q q .
pw (dc 4c,) G — G (461 4cz)

Assume

T™W (qC1qC2 o an—l) = pW(QCquQ T an—l)TmW (qC1qC2 e an—l) .
Then, from (4.3) and (4.4)
™ (q§1 q¢, - an—qun)
=W (qC1 4¢y * - an—1) Tacyacy ¢, W (an)
= pW(QClQC2 e anfl)TmW (qC1qC2 T anfl) <1 + Pac ey e, W (Cn))

follows. On the other hand, iterated use of (8.1) shows

1+ Pacyacyac, W (Gn)
n—1

= (L+ow () ]

k=1

qu1qC2'“an_k_1W (C”) - mQ<1qC2"‘Q<n_k_1W (gn—k)

Cn - Cn—k

Thus, for g = q¢,q¢, -+~ qc¢,, (5.9) is valid. At each step g¢,q¢, -~ qc¢, W € Gr®
should be examined. However, the final identity (5.9) implies that we have only
to take some limit if necessary. For general g = e € I'y let hy,(2) = > _je hi2®,

and {qlin) } 1<k<m

because 1 — hy,(2)/n — 1 as n — co. Since

be the all zeros of 1 — h,;,(z)/n. One can assume ‘C,gn)‘ > Ty,

n

6= (1= 225 7 (g (g ()0 1)

n

the identity (5.9) is valid for g,(qm) € I'yy. Then, the continuity of 7y and py
show that 7,,, is extendable by letting n — oo and m — oco. O
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Corollary below shows that the non-vanishing property of 7y (g) on I is
determined by the m-function.

Corollary 5.2. For Wy, Wy € Gr?) assume my, (2) = mw, (2). Then, for
g € I' it holds that Tw, (g) # 0 is valid if and only if Tw, (g) # 0.

Proof. Assume 1y, (g) # 0. Then, 1y, (eh") = (0 for every sufficiently large
n, where hy,(2) = Y_p_, hx2*, and Proposition 5.1 implies

~ h
~ B pw, (9) pwy (e n) ~ h
(5] = D) 0
’ pwy (9) pw, (efm) 1
for any § € FWI N FWQ' Since T™wy (geh”)y TWy (gehn) — T, (gg)v TW, (gg) re-
spectively, there exists a ¢ € C such that py, (eh") /pw, (eh") — ¢, and

PWy (91)
pwy (91)
holds. Suppose ¢ = 0. Then, 7y, (g9) = 0 for any g € I'w, N I'y,, which

contradicts Ty, (1) = 1, if we choose § = e "». Therefore, we have ¢ # 0, which
shows 1y, (g) # 0. O

TWo (gg) =cC TWh (gg)

Corollary 5.3. For W € Gr® it holds that
qw (z) = —202log Ty (€x) -
Proof. Since pyy (e;) = e*1, Proposition 5.1 completes the proof. O

To show the continuity of mgy with respect to g we need a representation of
my by the 7-functions.

Lemma 5.4. For W € Gr®) we have
1 0 w

270 Jw|=r mw (qc)
for any R > r and ¢ such that Tw (q¢c) = 1+ ¢w (¢) # 0.
Proof. (8.3) reads

mw () = ¢+ ar(W) — a1 (g W)

with a1 (W) the first coefficient of the expansion for ¢y, hence

1
W)= — w) dw.
ai ( ) o =R ow ( )

Since pw (¢) = Tw (¢¢) — 1, we have
1

mw (¢) = ¢+ i wl=F (TW (qu) — TqW (qu})) dw
— rw (qo) — W)
= o lw|=R ( w (2) w (qc) ) s
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Proposition 5.5. Suppose g, g € I' and 7w (gn) # 0, 7w (9) #0. If g, — g
in H% (0D,), then mg,w (¢) = mgw () for any ¢ such that |¢| > r, Tw (qcg) # 0.

Proof. The integral representation of Lemma 5.4 completes the proof. ]
The following proposition says that gy is determined by myy.

Proposition 5.6. For Wy, Wy € Gr? we have aw, = qw, if and only if
myy, = mw,. Moreover, assume my, = mw,. Then, it holds that

mgwy (2) = mgw, (2) (5.10)
for any g € I' such that Tw, (g) # 0 (hence Tw, (g) # 0).

Proof. Set

M — T2 51(1‘) aQ(m)
T (0.2) <1+ . + 2 + >

Then, (1.2) implies

{ aw () = —2d, () (since @1(z) = a1(z) — a1(0)),
2a;, ., (x) —ay (x) — 207 (x)a (¢) =0, k=1,2,....

fW(sz)

Due to ai (0) = 0 for any k = 1,2, ... we see that gy determines P (02)

this in mind, suppose qw, = qw,. Then

. Keeping

fW1 ($’Z) _ fW2(.T,Z)
fW1 (07 Z) fWQ (07 Z)

holds, which implies
S (0,2)  fiy, (0, 2)
fW1(0aZ) fVVz(Oaz)

and myy, (2) = mw, (2) follows. Conversely, if myy, (2) = mw, (2), then Corollary

5.3 shows qw, = qw,.

To show the identity (5.10) assume my;, (2) = muw, (). Then, (8.4) shows
that mgw = dc¢,de, - - - d¢, mw for g = q¢,q¢, - - - ¢, , hence Proposition 5.5 shows
mgw, (2) = mgw, (2) for general g € I'. O

6. KdV flow

Let I' be a commutative group and Q be a set. Suppose there exists a set of
maps {K(g)},cp on Q satisfying K(g1g2) = K(g1)K(g2) for any g1, g2 € I', we
call {K(g)},er as a flow on Q. The purpose of this section is to construct such
a flow on a certain set of potentials @ and a subgroup of the previous I'.
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6.1. m-function and Weyl functions. In the last section we defined the
m~function my, for any W € Gr?. On the other hand, for W € Gr(? a potential
gqw was introduced by (4.8), and if gy takes real values, then one can define the
Weyl functions m.. If the Baker—Akhiezer function fi belongs to L? (R,), then
we have m(z) = —my (—22). In this subsection we investigate this identity by
imposing an additional condition on W € Gr®), namely my (g) # 0 for any real
gelrl.

Recall f(2) = f(z) for f € H=L*(0D,), and set W = {f e H: fe W}
for W € Gr®. Then, clearly W € Gr® holds and an identity Iy = Iy is
straightforward. W e Gr is called real if W = W, and this is the case if and
only if Iy, = Iy is valid. Define

Frealz{gep: g:?}’
Gr? {Wear@): W:W},

real —

G'I”f) — {W c GT‘(Z) D Tw (g) > 0 for any g € Freal} .

real *

Itw e Grfil and g € I'eal, then 7y (9) € R. Recall g¢ (2) = (1 — 2/¢)" " and

define a dual object
pe(2)=1+2/C=q (=)7L,

Lemma 6.1. The followings are valid.

(i) If Tw (g) > 0 holds for any g of a form g =[[;_, 4.9z, with (i, € {|z| > r}
and Im (x # 0, then W € Grf) 1s valid.

(ii) Suppose Ty (ngz> > 0 for any ¢ € {|z| > 71} for a W € Gr . Then

real”
W <chz) > 0 holds for any ¢ € {|z|] > r}.

(iii) Assume W € Grf). Then, 1w (g) > 0 holds for any g € I'yeal such that
9(2) =11, 4,0z, or 9(z) = szlpgkpzk with ¢, € {|z| > r} and Im ¢}, # 0.

Proof. To show (i) let g = e € Iea, h(2) = Y00, hg2* and hy(z) =
o he2 Set gn(2) = (1= hu(2)/n)™™. Then, g(2) = limy, 00 gn(z) holds.
We have only to show 7y (g,,) > 0 for sufficiently large n due to the continuity of
. One can assume hg,, # 0 and 1 — hy, (2) /n has no real zeros, since, otherwise
we have only to deform slightly h. Then, there exist (; € {|z| > r} and Im ( #
0 for k=1,2,...,n such that

hn(2)

(@) = (1-222) 7 (M (g ) (6.1)

holds, which proves (i).
To prove (ii) note that

det Iy (z2) = (1 + Owe (22)) (1 + Ywo (22)) — $Wo (22) YW,e (22)
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(L+ew (=2)) z+¥w (2)) — (L+ ow (2)) (=2 + ¥w (=2))
2z

is valid, hence 1 4+ ¢w (2) and z + ¥ (z) do not vanish simultaneously due to
det Iy (2) # 0. Suppose

W (qgqul) =0 and 14+ ¢w ((1) #0 for ¢; such that Im{; > 0.

From (8.5) . ”
2 Tmmy (¢)

W (qéqf) =1+ ow (O] Tm C

holds, hence Immyy (¢) > 0 is valid if Im¢ > 0. Therefore, if Ty (qc1 q&) =
0, then Immy (¢) = 0 identically due to the fact that Immy (¢) is harmonic
and Immyy (¢1) = 0. However, as ( — oo, Tw (qgcﬁq) — 1 holds, which leads
us to contradiction. The case (1 + ¥w ((1) # 0 can be treated similarly. Thus
T (qu qzl) > 0 should hold for any ¢;.

We prove (iii) by induction. For n = 1 (ii) implies the strict positivity of
W <q<qE). Assume 7y (g1) > 0 is valid for g1 = HZ;% 4. 9z, - For any h € I'yeal

w (91h)

>0
w (91)

Tgw (h) = =
holds, hence gi1W € GriIr and the argument above shows 74w (anqf ) > 0.

Now, for g = 914¢, 9z an identity

™w(9) = Taw (Ckann) ™w (91)

shows 1y (¢g) > 0. For g(z) = [[;_; p¢pg, the identity (8.7) in the Appendix
implies

—1
™w (P Pe  pe) = (Tw (re) Tw (re) - mw (1¢,)) ™ Tw (46, 4cs ~ - 4c,) -

Since Ty (r¢) # 0, the proof is complete. O

Proof of Theorem 1.1. Assume W € GT(Z;L] satisfies gW € Gr® for any ¢ €

re

Iea. Then, 7y (qzqg> # 0 holds for any ¢ € {|z| > r}. Since Ty (qzqg) takes

real values and approaches to 1 as ( — oo, we have Ty (qzqg> > 0. Inductively
one can see Ty (g) > 0 for any g = [[;_, q¢.qz, With G € {|z| > r}, which shows

W e Grf) due to (i) of Lemma 6.1.

To show the converse direction let g be in I}, and g, be the function defined
in (6.1) by replacing g with ¢g—!, hence g, — g~! in this case. Then, Lemma 6.1
shows 7y (g) > 0. On the other hand, since Ty is continuous and 7y (1) = 1,
we see

w (9gn) > 0
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for sufficiently large n. Since gg,W € Grf) is valid (see the argument in the
proof of (iii) of Lemma 6.1), from Lemma 6.1 it follows that 744, w (p) > 0 for

any p of the form [[;_, PP - Therefore

™w (99nP) = Tgguw (P) Tw (ggn) >0

is valid. Now, taking p = g, 1, we see 1y (g) > 0, which shows gW € Grf). This
completes the proof. O

Corollary 6.2. Suppose W € Grf). Then, the followings are valid.

D) a1+ ew(2)) + b(z+9Yw(2)) has no zeros in {|z| > r} N (C\R) for any
a,b € R such that |a| + |b] # 0. Moreover, 1 + ow(x) > 0 holds for any x €
R such that |z| > r.

(ii) mw (2) is holomorphic on {|z| > r} and has no zeros in {|z| > r} N (C\R).
Moreover, myy satisfies

Im myy (2)
Imz
mw (z) — mw (—z)
2x

>0 forze{|z| >r} with Imz #0,

>0, my(x) >0 onR\[-rr7].

Proof. For ¢ € {|z| > r} N (C\R)

ic (€ + 2w () (T+ow @ +5C+dw ©))

— (CF 9w (@) L+ pw (O +b(C+ 1w ()

) -

is valid. Hence, if 1+ ow (¢) + b (C +¥w (¢)) = 0, then <chz) — 0, which
contradicts Theorem 1.1. Similarly we have a (1 + ¢ow (¢)) + ¢+ vYw () # 0. On
the other hand, since ¢, € Iyea for z € R and |z| > r, Theorem 1.1 implies

I+ ow (.%') = TwW (%:) > 0,

which shows (i). The first inequality of (ii) follows from

mw (acaz) = 11+ w (O Tmomuy (¢) / Tm ¢,
The second two inequalities are shown by (8.6) and

2
mw (¢3) = (1 + ow (@) mw (@) H
Theorem 1.1 shows that the group e, acts on Grf). Corollary 5.2 implies
that the non-vanishing property of 7y (g) for g € e can be stated only by
my, hence the next task is to find some concrete criterion in terms of myy for

W € Gr®? to be an element of Grf).
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To proceed further we prepare some results from the spectral theory of one
dimensional Schrodinger operators. For a real valued q € L} (R) let Ly be a
Schrédinger operator defined by

(Lof) () = —f"(2) + q(2) f (2),

and for A € C consider a time independent Schrédinger equation

(Lef) () = Af (). (6.2)

Lemma 6.3 (see [1]). There occur two cases on the behavior of solutions to
(6.2) at +oo.

(i) Limit circle type: dim {f €L*(Ry): Lyf = )\f} =2 for any A € C.
(ii) Limit point type: dim {f €L*(Ry): Lyf = Af} =1 for any A € C\spL.

The boundary —oo has also the same classification. If the boundary +oo is of
limit point type, the operator L is uniquely extendable as a self-adjoint operator
in L? (Ry), where L is the Schrédinger operator L, restricted to L? (R) with
Dirichlet boundary condition at 0.

Lemma 6.4. Suppose the boundaries +o0o are of limit point type. If there
exists a positive solution f to (6.2), then, A < infsp L, holds.

Proof. Although this is widely known in a more general framework, for com-
pleteness sake we give a proof. For a fixed a > 0 let Ay be the minimum eigenvalue
for the operator L restricted to an interval (—a, a) with Dirichlet boundary con-
dition at the boundaries £a, and u be the eigenfunction. One can assume u takes
positive value in (—a,a). An integration by parts shows

a

A _af(:r)u(ac)dl‘:/ Lyf (x)u(z)dx

—a

= fla)(a) = F(-ap(~a) + %o [ f(@)u(a)do.

Since u/(—a) > 0, v/(a) < 0, we have A < X\g, which leads us to A\ < infsp L, by
letting a — oo. O

Denote by f+ (x,) the solutions to (6.2) belonging to L? (Ry) respectively
when the boundary +oo are of limit point type, and define

Fi(0,0)

my () = ——=.
These two functions my are known to be of Herglotz (a holomorphic function
m on C\R satisfying m (z) = m (Z) and Imm(z) > 0 on C;), and called Weyl

functions (or Weyl-Titchmarsh function). my are holomorphic on C\sp Ly re-
spectively. The following proposition identifies my, with the Weyl functions.
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Proposition 6.5. Suppose W € Grf). Then, the associated qw has no

singularities on R and qw is real valued there. Assume {me,w(2)},cp forms a
normal family on C\D,. Then, +oo are of limit point type for the associated
Ly, and —r2 <infsp Ly, - The m-function myy is related to the Weyl functions

mx of qw by

) -my (—22) , for Rez >0,
m (2) = { m_ (—22) , for Rez <O. (6.3)

Consequently, my known to be holomorphic on C\ ([—r,r| Ui [—r,r]) and have a

property
Immuy (2) >0 on C\(RUiR).
Im 2
Proof. qw has no singularity on R due to Theorem 1.1, since e; € [yeq if
x € R. The first assertion is The Baker—Akhiezer function fy (z,z2) satisfies
Schrédinger equation with potential gy and A = —z2. On the other hand, (4.5)

implies
fw(@+y,¢) = e ™ Yo w(g) = €™ reye,w (g¢) = € feuw (1, Q).
This together with (5.1) yields

o (¢) = —Jew 09 Sy (@)

fezW(()aC) fW(l',C)’

from which an identity
o6 = w0 esp (= [ (©) ) (64)

follows. Since W € Grsr), Theorem 1.1 implies e, W € GTEL). Therefore, Corol-
lary 6.2 shows me,w (2) is holomorphic on C\D..

Set ¢, (2) = 2me,w(271). Then, ¢, is holomorphic on D, 1 satisfying gf)x( ) =
1, and {¢2(2)},cg forms a normal family on ID,—1. Denote by z(z) € (—r~*,r7!)
a zero of ¢, if it exists. If there exists a sequence {x,},~,; C R such that z(mn) —
0e (—7"*1, 7"*1), then, one can assume ¢,, — ¢, and ¢ (0) = 0, which contradicts
¢ (0) = 1. Therefore, |z(x)| > r;" holds uniformly for some ro > r, which means
that m.,w(z) has no zero on |z| > r¢ for any x € R. For ( = a > ro in (6.4) we
see

fw (z,a) = fi (0,a) exp ( / Me, W )dy> decreasing,

fw (z,—a) = fw (0, —a exp( / Me, W )dy> increasing,
and Lemma 6.3 implies the boundaries oo are of limit point type, which shows

fW(SC,CL):er (IL',*CL2), fw(SC,fCL):f, ([L‘,*CLZ).
These identities are valid for any a > 7r¢, therefore fy (x,2) = f+( —z )
fw (x,—2) = f- (w, —z ) hold for any z € C\D,, Wthh implies m (—z ) =
—mw (2), m— (—2?) = mw(—z). Lemma 6.4 implies —r* < infsp L. O
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In the above proof the normality of {m., w(2)},cr Was crucial. It should be
2

remarked that the converse statement holds. Namely, for W € Gr{” assume my,
is connected with the Weyl functions my as in (6.3). Then, Lemma 8.2 implies
that there exists a measure o, on [—\/57“, \/ir] such that

2r d
e, w(z) = z2+rz+/f — \/% (6.5)

hence
V2r 1
Me,w () — Me,w(—1) = 2V/ 22 4 12 <1 + /\/ir m(jy (df)> .
On the other hand, Corollary 6.2 shows for z > r
Me,w () — me,w(—2) > 0,

which means

V2r 1
/\/i m@'y (dE) <1 fOI' any x >,

Consequently, letting x — r, we have

V2r 1
/ g 52 oy (d€) <1 for any y € R,

which implies the normality of {me,w (2)} cr-
Proposition 6.5 asserts that the m-function is directly related to the Weyl
functions. Set

H = {m : m is holomorphic on C\ (R UiR) satisfying
m(z) =m(z) and Imm(z) > 0 on (C+\iR} .
We introduce a subclass M, of H in view of the property of Proposition 6.5.
Denote by M, the set of all functions m satisfying the following conditions: Let
I, =[—r, r] for r > 0.0
(i) meH.
(ii) m is holomorphic on C\ (I, Uil,), continuous on 0D, 6.6
and satisfies m(r) > m(—r). (6:6)

(iii) m has a pole at oo of a form m(z) =2+ 0 (z71).

The next goal is to show the converse statement. For that purpose recall
transformation

22 _CQ
and define I
(Dem) (2) = m —m((). (6.7)

Then, without difficulty one can show D¢, D¢, = D¢, Dy, de,d¢, = d¢,de, .
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Lemma 6.6. It holds that dzdcm € H for ¢ € C\ (RUiR) and m € H.
Proof. For m € H define
mi(z) = m (V2) (63)

where /z is defined on C\R_ so that /1 = 1. Then, m, turns out to be an
irrational Herglotz function, and Lemma 8.1 in the Appendix implies DEDCm+

is of Herglotz, hence for ¢, z satisfying ¢(?> € C\R and Rez > 0, Im z > 0 we see
I (dzdem) (2) = Tm (D2 Dz ) (%) > 0,
because 22 € C,. To obtain the result for z satisfying Rez < 0, Imz > 0 we
define
m_(z) = —m (—V/z).
Then, m_ is again of Herglotz, hence
Im (dzdgm) (z) = —Im (DZQD@m_) (z2) >0
due to z? € C_ and m(z) = —m_ (2?), which completes the proof. O
Proposition 6.7. Let m € M, and s > r. Set
W = {go (22) + (22) m(z): o, € Hy ((9]1)5)} .

Then, Wy, € GTS_Z) (Ds) and mw = m, Tw (g9) = Tm(g) hold. Moreover, mgw €
M is valid for any g € Iea (Ds).

Proof. Since

vae{oto (3 ) (0): weemms)

Applying Lemma 2.1 to a(z) = m, (z) on Dy shows T' (m,) is invertible on H,
hence W, € Gr® (D), and W € Gr?) (D). In this case

ewn (2) =0, Yw,, (2) =m(z) -2
hold, hence myy,, = m, Tw,, (9) = Tm (g) follow. Then, the rest of the proof is
to show the property mw,, (9) > 0 for g = [[;_; 4 qe, with (g € {|]z| > s} and
Im (i, # 0. We show 7y, (g) > 0 by induction. For n =1 (8.5) implies

m(Q-m) _m@Q-m@Q
(¢ (¢

which is a posmve quantity because of m E M,.. Suppose Ty (gn—1) > 0 for
gn_1 = szl 4.9z, - Then, g,—1Wy, € Gr® (D) and is real, hence

)

i, (4caz) = 11+ pw,, (OF

2 Mg, 1 W, (Cn) — Mg, W (Cn) ‘

Cn _Zn

Tgnflwm (anqzn) = ‘1 + Sognflwm (Cn)l
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Since (8.4) implies mq.w,, (2) = (d¢m) (2), we have

My (2) = (g de, -+ d deym) (2). (6.9)

Therefore, Lemma 6.6 implies mgy, _,w,, € H due to m € H, hence mg, ,w,, (2) €

Cy for any z € C;\ (RUR). Consequently, we see 74, 1w, (QCnQZ ) > 0 for
any G, € C4\ (I; Uily), and 74, w,, (QCnQZ ) > 0 there from (ii) of Lemma 6.1.

This completes the induction and we have

W (9) = Wi (9n-1) Ty (06,2, ) > O

The last statement is easily verified by starting from g = g,, and noting mg,w,, €
‘H. The property (ii) in (6.6) follows from Corollary 6.2, since gW,, € Gr(f). O

6.2. Reflectionless property of underlying potentials. Reflectionless
property was originally introduced for decaying potentials with vanishing reflec-
tion coefficients. However, for our purpose it is better to define this property for
more general potentials.

For a real valued ¢ € L} (R) with 0o boundaries of limit point type let m.y
be the Weyl functions. Let F' be a Borel set in R with positive Lebesgue measure.
Then, ¢ is called reflectionless on F' if

my (£410) = —m_ (£ +1i0) forae £€F

holds. It can be shown without difficulty that F' C sp L,, where L, is the
Schrodinger operator with potential ¢. In particular, any periodic potential is
reflectionless on the spectrum.

Define
m(z) = —my (—z%) for Rez >0, (6.10)
m_ (—22) for Rez < 0. '

If FF € B(R4), then g is reflectionless on F if and only if
m (i€ +0) =m (i€ —0) for ae. £ € VF (6.11)

holds.
Define
9, = {q =qw: We€ Grf) (D,) and my € MT}.

Proposition 6.8. If ¢ € Q,, then, q is reflectionless on (1"2, oo) and sp Lq C

[—72, 00). Conwversely, if q is reflectionless on (7“2, oo) and sp Ly C [-12, o),
then q € Q,.

Proof. The first assertion follows from Lemma 6.4 and Proposition 6.5. Due
to Proposition 6.7 it is sufficient to show m € M, for the proof of the second
assertion. Since (6.11) for (r,o0) implies m is holomorphic outside of [—r, 7] U
i[—r,r], and the other properties of M, are clearly satisfied by m, we have
m € M,. O
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6.3. Proof of Theorem 1.2. Now we construct the KdV flow. Set

Mo = U M., > {g —¢e": his an entire function with h = h} .

real —
r>0

Then, Proposition 6.8 shows

Qoo = UQT?

r>0

where the definition of Q. is given (1.7). On the other hand, Proposition 6.7
shows M, corresponds to Q. through (6.10) one to one. For ¢ € Q. define

m € Moo by (6.10). Then, gW,, € Grf) for g € I'%%, holds for some r > 0 due
to Proposition 6.7. Then, one can define ¢(x) = —202log Tyw,, (€z) € Qoo. The
property of Ty and Proposition 6.7 show

TgWo (€2) = Tw,, (9€2) /TW,, (9) = T (9€2) /Tm (9) ,
hence
q(z) = _265 log 7, (g€2)
which is denoted by (K (g)q) (z). The flow property of K(g) is verified as follows.
Since the potential K (g2) q is associated with goW,, € Grf), we see

(K (9192) @) () = —20 10g g, g, W, (€2)
= —202 108 74, (o) (€x) = (K(91) K (92) q) () .

7. Proof of Theorem 1.3

In this section we give a more concrete representation of 7,,,(g) = mw,, (9).
For m € M, set

1 m
Hm:<0 mZ), W =1,H,.

Then, W,, € Gr (Ds) for s > r and its characteristic matrix is I1,,. Since
g 'pLgAw,, is unitarily equivalent to G~'p, G Ay, , where

_ (9e(2)  290(2)
o= () o).
Aw, w = I, T (II,,) " u — u,

its 7-function is

W, (9) = det (I + G 'p.GAw,,) .

In this case everything is discussed in the Hilbert space H = L? (9D;) and H =
H x H. As we have seen in the first section, T' (II,;,) is invertible if and only if so
is T'(m,). The present m, satisfies the condition of Lemma 2.1, hence we have

I =T (me)T (my?')

vt = )

o
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Therefore, for u = uje; + useo € H

Aw, u = (u1 —T (me)T (mo_l) ug +meT (mo_l) uz) e +m,T (m;l) Uges — U

=p_m.T (mgl) ugey + p_myl’ (mgl) uses,
thus

G, GAw, u
=G p, Gp_m.T (mgl) use; + G lp Gp_m,T (mgl) uges. (7.1)

Then, denoting by 71, m9 the projections
mu = (u-e1)ey, mu=(u-ez)ey,
from (7.1) we see G~ 1pyGAw, m =0 and

I 7T1G71P+GAW7T2 >

1 _
[+ G GAw, = <0 I + G p . GAwmy

hence
W, (9) = det (I2 + 772G71P+GAw7T2) .

On the other hand, (7.1) implies also

7T2G71]J+GAw7T2
= ((GoP+9e + GeP+9o) P—me + (GoP+ 290 + Geb+9e) p-mo) T (m )
= ((GoP+9e + GeP+9o) Me + (GoP+290 + Geb+ge) mo) T (m, 1)
— ((Gob+e + Geb+90) T (me) + (Gob+29o + Geb1-ge) T (mo)) T (my )
= ((Gob+9e + GeP+ 9o) Me + (Gob 1290 + Geb1ge) mo) T (my ') — 1
= (GoT ((gm).) + G T ((gm),) — T (mo)) T (m, ")

with § = g~'. Therefore, we have

W, (9) = det (I + (GoT ((gm),) + 3T ((gm),) = T (mo)) T (my 1)) . (7:2)

Recall r < s and m € M,. Let C, C’ be simple closed curves of Fig. 1.1 in the
introduction surrounding the interval [—r, r| and contained in Dg. Then, it holds
that for f € H; and z located inside of C’

n—1 /
T (my') f(2) = 2% . Mo (i\,)_zf(/\)d)\,

f— i mo ()\/)_1 f ()\/) d)\/
21 c’ N —z

=Tf(2),

and for z satisfying |z| < s

(9T ((gm).) +geT ((gm),) = T (mo)) [ (2)
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L L[ B m) )45 () om)y ) = me )
271 IX=s A—z

L BB @me ) ) m W) = me ()
2m Jo A=z

= S£(2).

It should be noted that .S does not change if we replace m by m in the integration
on the curve C' defined by

m(z) =m(z) =0 (z),

where ., d, are holomorphic in a simply connected domain containing C'. We
can regard S and T as operators from L? (C) to Hy (= Hy (D)) and from H
to L? (C) respectively. Now (7.2) implies

mw,,(g) = det (I + ST) = det (I +TS).
The operator TS : L? (C) — L? (C) is

_ 1 Mo (X)_l ;1 /

where \
Lg (2,A) = M, (2, \) — mo (N

-z
Refer to (1.8) for the definition of M,. Note

i Mo ()‘/)_1 mo (A) AV =0
2mi Jor N —z A=N

for z, A located inside of C’. Consequently, we obtain

(T'Su) (2) = (Nm(g9)u) (2),

which completes the proof of Theorem 1.3 in the Introduction.
This formula for the 7-functions makes it possible to establish a theory in a
more general framework, which will be realized in the second paper.

8. Appendix

8.1. Calculation of typical I'-actions. (4.4) connects the 7-function
with pp, namely

w (gc) =1+ pw (C)

for ¢ such that || > 7, where ¢¢ (2) = (1 — z/¢)~ L. To calculate Ty for other g €
I" we compute g w, Yq.w. Let
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Since (1 — 2/¢) + (1 = 2/C) pgw (2) € W due to 1+ g (2) € g¢W, the decom-
position

(1-3)+ (1= e @ = (1-2) = (2 + 54) +ouw

()
shows

(1-5)+ (1= onw @ = (1= %) o ow () =+ vw ().

We have used here the bijectivity of p; : W — H,. Setting z = (, we see

1

(1-%) asow(@) -

which yields
¢ +dw (¢

O

hence

¢+ Yw ()

m(l‘i‘@W (2)) — = (2 +Yw ()

1+ PgcW (2) =

(—=z

:(1+gow(z

Similarly, for ¢g.w (2) = b1/z + ba/2* + - --

(e ot

- ‘bcl (1+gw (2)) + (2 + v (2) — i (> + Aw="),

hence, setting z = (, we have

D o () + (€ uw (0)) —

c (¢ + (Awz?) (¢) =0,

Tl

and ) 5

(+ow (@) ¢+ (Awz?) (O

L+ ow (€) L+ ow (¢)

To compute Ay 22 we note the identity Ay 2% = p_22Aw - —Awp,22Aw-, and
set - = 1. Then, expanding @y (2) = a1/z + az/2% + - - - yields

by =¢

22 + AWz2 =22 + p_ZQAwl — AWp+22Awl
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=22+ p_2ow — Awp 2 ow
= (1+ow (2)) (2> — az — aymw (2) + ai) .

Therefore

U ow () + (2w () z (2 + Aw=?)

— (1 + ow (z)) <_b1 +mW(Z) Car 22 _ as — a1myy (z) + a%)

; ¢
- ”*"CW” ((¢ + ar) (muw () — mw(O) + € — %),

which shows

z+ Ygw (2) _ é ((¢+ a1) (mw(2) = mw () + ¢* — 2?)

1+ ow (2) 1— %
_ (€4 a1) (mw (2) — mw(Q))
— = T (8.2)
On the other hand, from (8.1)
ar (qcW) = lim zpg.w (2) = —mw (¢) + ¢ + az, (8.3)

hence, from (8.2), (8.3)

m (2) = z+ quW (2)
LW 1+ PgcW (2)

(¢ +a) (mw(2) =mw(©) |
(—=z

- i (©) —mw () —mw (o

22 o CZ C o
S —mw o

+ a1 (g¢W)

In the next step we compute mw (q¢, qc,). From (4.3) it follows that

w (e dc) = Tw (4¢) Tae, w (acz) = (1 + ow (G1)) (1 + Pge, W (Cz)) ;
hence, from (8.1)

(C1) —mw (&)
1 — G '

T (e dcs) = (1+ ow (G1)) (1+ ow (G2) (8.5)

In the last step we calculate Ty (p¢) where

pe(z)=1+2/¢=q-¢ ()"
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with ¢ such that || > r. The key observation is

- -1
re(2) = ac () pc ()7 = e () a—¢ (2) = (1= 2°/¢%)
and (iii) of Proposition 4.3 implies

mw (acper) = rw (acacrst) = mw (re) ™ 7w (acacr) -

We have only to apply (8.5) to ¢ = gcq—¢ to compute 1y (r¢). Thus

(1) = (14w () 1+ i (-¢)) oL (20

= det IIy (¢?). (8.6)

Hence, letting ¢ — oo, we have

w (per) = 1w (re) ™ 7w (q0')
2¢" (1 + ow (¢'))
(14w (¢") (1 +ow (=¢) (mw (¢") —mw (=¢'))

Similarly
™ (qC1QC2 B[ X< (e 'p%)
1,1 -1

-1,_.-1 -1

-1
(TW (Tci) ™w (7“45) W (7”4;)) ™w (%% TG e ey "qca) - (8.7)

holds.

8.2. Herglotz function. As we have defined it in the previous section, a
holomorphic function m on C\R is called a Herglotz function if m satisfies

Imm(z)

m(z) =m(Z) and >0 for any z € C\R.

mz

A necessary and sufficient condition for m to be a Herglotz function is that m
has a representation

m(z):a+6z+/oo <€1Z—€2i1>a(d§) (8.8)

— 00

with a real o, non-negative 8 and measure ¢ on R satisfying

© 1
/mgzﬂa(df)<oo.
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Lemma 8.1. Suppose m is an irrational Herglotz function. Then, so is
DeD¢m for any ¢ € C\R (refer to (6.7) for the definition of D¢ ).

Proof. Assume m has a representation (8.8). Then

mE) -m(Q) = -+ (-0 [ S,

& —2
with o¢ (d§) = |§ — ¢|7% o (d€). Note o¢ # 0 since m is irrational. Hence
z—C B 1 1

m (2) = m(¢) “ffooog_i%(df) 7+(Z<)f°°oogg(_d§)

where v = 8+ [%_o¢ (d). Then

and

(Dchm) (2) + (Dem) (C) = (Dem) (2) — (Dem) ()
2

_ v y
 eo 0c(df) BLARS
- =

Since the first term of the right side is a Herglotz function, let its representation

be

72 N (1 £

— g e (et n e
RO

Then

N T R S

2500 e oc(df) [T oc(dE) =B
RO

hence 1 — v =72 (y — 5)_1 —y=08(y— B)_l > 0. On the other hand,

Im (v¢ = (D¢m) (€)) = Im (¢ +m (¢)) = (8 =) Im¢ +yIm¢ = fIm ¢ > 0,

which completes the proof. ]
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Lemma 8.2. For r > 0 assume m is holomorphic on C\ ([—r,r]Ui[—r,7])
and satisfies

I“;m””‘iz) >0 onC\(RUIR), m(z)=m(),

and

m(z) =2z+0 (271

as z — 00. Then, there exists a measure o on [—\/ir, \/?7”] such that

o)
m(z) = 22+T2+/ o )
) —var £ — V22 +r?

Proof. Set

ﬁ@(z)zm(ﬁ).

Then, m is holomorphic on C\ [—ﬂr, \/ir] and satisfies

hnlzbz(z) >0, m(z)=m(z), and m(z)= 2_1_0(271).

Therefore, there exists a measure o on [— \/ir, ﬂr] such that

Vor o od
m(z):z+/_ﬂ Z(_i)

which gives the representation for m. O
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IlobynoBa nmoroky Ka® I. Ilomanusa 7-dbyHKIIT yepe3
dyukitiro Beiisis
Shinichi Kotani

J1st oniucy po3B’sI3KiB MIPOKOTO KJIACY IHJIKOM iHTErpOBHUX Tu(EPEHITi-
aspHuX oneparopiB Caro 3amnpoBaus T-yHKIo. [1izuine Cerasn ta Bijgcon
300pa3m/in 11 B TepMiHAX BiJIIOBITHUX IHTErPAJIbHIX OIIEpATOPIB Ha TPOCTOPI
Xapai Ha OJUHUYIHOMY JWCKY. ¥ Iiii pobOTi maHO iHIE TOJAHHS T-(DYHKIT
qepe3 GyHkKItil Beitnsa g ognosumipanx onepatopis Ilpeainrepa 3 mificum-
MU [TOTEHIAJIAMY, SKe Ja€ MOXKJIUBICTh PO3IIUPUTHU KJIAC TOYATKOBAX JAHUX
piBuguusa Ka® o 6ipmr 3arajpHOrO KJtacy.

Kirouosi ciosa: piBasiaas Kn®, teopis Caro, omeparop lllpexninrepa.
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