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We study the Cauchy problem for the inhomogeneous two-dimensional
wave equation with variable coefficients and zero initial data. The right-
hand side is assumed to be localized in space and time. The equation is
considered in a domain with a boundary (shore). The velocity is assumed
to vanish on the shore as a square root of the distance to the shore, that is,
the wave equation has a singularity on the curve. This curve determines the
boundary of the domain where the problem is studied. The main result of
the paper is efficient asymptotic formulas for the solution of this problem,
including the neighborhood of the shore.
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1. Introduction

In a finite domain Ω ⊂ R2 with smooth boundary ∂Ω, consider the Cauchy
problem for the wave equation degenerating on ∂Ω:

ηtt −
〈
∇, c2(x)∇

〉
η = F (x, t), η|t=0 = 0, ηt|t=0 = 0, (1.1)

F (x, t) = λ2g′(λt)
(
eV
)(x− x0

µ

)
, t ∈ [0, T ], (1.2)

where c2(x) ∈ C∞(Ω) is a given function such that

c2(x) > 0, x ∈ Ω, and c2(x) = 0, ∇c2(x) 6= 0, x ∈ ∂Ω, (1.3)

µ and λ−1 are positive small parameters such that

λµ > const > 0, (1.4)

c© Anatoly Anikin, Sergey Dobrokhotov, and Vladimir Nazaikinskii, 2018

https://doi.org/10.15407/mag14.04.393


394 Anatoly Anikin, Sergey Dobrokhotov, and Vladimir Nazaikinskii

V (y) and g(τ) are smooth functions decaying as |y| → ∞ and τ →∞, g(0) = 0,
and e(z) is a smooth cutoff function; e(z) = 1 for |z| ≤ z0 and e(z) = 0 for |z| ≥
z1 > z0 > 0. Actually, the choice of the cutoff function e is not important, and
we introduce it only for mathematical rigor. We assume also that∫ ∞

0
g(τ)dτ = 1,

this gives λ2g′(λt) → δ(t − (+0)) as λ → ∞. Then it is easy to show that in
the limit case λ → ∞, the solution to (1.1), (1.2) becomes the solution to the
homogenous equation (1.1)

ηtt −
〈
∇, c2(x)∇

〉
η = 0, x ∈ Ω, t ∈ [0, T ], (1.5)

η|t=0 =
(
eV
)(x− x0

µ

)
, ηt|t=0 = 0. (1.6)

Later on, we will choose the functions V and g more specifically. Typical forms
of the graphs of these functions are shown in Fig. 1.1.

This problem describes in the linear approximation the propagation of long
waves (tsunami waves) created by a localized source and their run-up on the
shore [18,23,26,27]. In this case, in dimensional variables one has c2(x) = gD(x),
where D(x) is the basin depth, g is the free fall acceleration, and the right-hand

side of the wave equation can be represented in the form f
(
x−x0
l , tt0

)
, where l is

the characteristic size of the source and t0 is the characteristic time of the source
action. Let L be the characteristic size of the basin, and let D0 = D(x0) be the
characteristic depth in a neighborhood of the point x0. We can pass from the
dimensional variables x, t, x0 to the dimensionless variables x′, t′, x′0 by setting
x = Lx′, t = Tt′, x0 = Lx′0, where T = L√

gD0
. Then the dimensionless velocity

takes the form c′ =
√

D
D0

, and the right-hand side becomes f
(
x′−x′0
µ , λt

)
, µ =

l
L , λ = T

t0
. Consider the case where L ≈ 2000 km, l ≈ 100 km, D0 ≈ 4 km, and

t0 ≈ 10 min = 600 sec; then µ ≈ 1/20 = 0.05 and λ−1 ≈ 0.06 (because g ≈
0.01 km/sec2). We see that the parameters µ and λ−1 are close to each other,
and hence assumption (1.4) holds in a typical physical situation. In tsunami wave
theory, problem (1.5), (1.6) is known as the “piston model” (see [23]). Thus, the
analysis of solutions of equation (1.1) permits one to understand how the source
duration affects the shape of the generated wave.

According to [22], to fix a unique solution of (1.1), (1.2), one cannot set
standard boundary conditions on ∂Ω; instead, one needs to choose a self-adjoint
extension of the corresponding operator. In water wave theory, it is natural to
use the Friedrichs extension; this means that the energy integral

J2(t) =
1

2

((
∇η, c2(x)∇η

)
L2(Ω)

+ ‖ηt‖2L2(Ω)

)
is finite.

Our goal is to construct an efficient asymptotic formula for the solution to
problem (1.1), (1.2) as µ → 0 in a neighborhood of ∂Ω. By “efficient” we mean
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that this formula can be used as a fast algorithm suitable for the computer im-
plementation using software like Wolfram Mathematica or MatLab. Taking into
account this goal, we choose the functions V and g as follows:

V (y) = W0(Tψ0y), (1.7)

g(τ) = e−τPn(τ), Pn =
n∑
j=1

ajτ
j

j!
,

n∑
j=1

aj = 1, aj ∈ R, (1.8)

where

W0(y) =
A

[1 + (y1/b1)2 + (y2/b2)2]3/2
, b1 ≥ b2 > 0, Tψ0 =

(
cosψ0 sinψ0

− sinψ0 cosψ0

)
.

The simplest two cases are g(τ) = τe−τ and g(τ) = ((1 − a)τ + a
2τ

2)e−τ , where
a is a real parameter.

2 4 6 8 10

-0.5

0.5

Fig. 1.1: Left: possible functions g(τ); right: a possible function V .

The source (1.7), which we call the simple source, was used in [13,25,30], and
its use leads to a significant simplification of formulas. The reason is that its
Fourier transform is very simple,

Ṽ (ρn(ψ)) = Ab1b2e
−ρβ(ψ), β(ψ) =

√
b21 cos2(ψ − ψ0) + b22 sin2(ψ − ψ0). (1.9)

Needless to say, the real problem on the run-up of long waves on the shore
is nonlinear and extremely complicated. The linear problem under consideration
here is only a step towards its complete investigation. Until recently, analyt-
ical studies were carried out only in one-dimensional situation and for linear
dependence of the bottom of the variable x. Here we should mention the funda-
mental work [2, 24], where some formulas were obtained for important solutions
and the relationship between the solutions of linear and nonlinear problems (in
the shallow water approximation) was actually established (see also [5, 6, 28]).
Two-dimensional problems, of course, are more complicated: even in the linear
situation it is clear that they have a nonstandard formulation: they lack the usual
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boundary conditions, which, in particular, leads to big difficulties in their numer-
ical analysis. (One can find the latest achievements got in the field of numerical
analysis in [17].) To the authors’ knowledge, analytical studies in this area af-
ter paper [22] have appeared only recently in the works of the authors of this
paper [1, 7–10]. At the same time, it turned out that objects and constructions
that seemed to be very far from the considered problem appear in problems with
degenerate velocity.

The asymptotics as µ→ 0 for the solution of (1.5), (1.6) was studied in several
papers [1, 7–10, 29] using a far-reaching generalization of the Maslov’s canonical
operator [14]. Owing to the degeneracy of c(x) on ∂Ω (see (1.3)), the boundary
becomes a caustic, and the characteristics intersecting it are nonstandard. Tra-
jectories of the Hamiltonian system with the Hamiltonian function H = c(x)|p|
should be studied not in the “standard” phase space Φ = T ∗Ω, but in the ex-
tended one, Φ = T ∗Ω ∪Φ∞, where, informally speaking, Φ∞ is a hypersurface
consisting of points with infinite momentum over ∂Ω. The idea of the extended
phase space was suggested in [20].

Further, one needs to use the modified Maslov’s canonical operator [21] on
the invariant Lagrangian manifold considered in the extended phase space. The
modified canonical operator is a generalization of the standard canonical operator
[14] based on Fock’s procedure of quantized canonical transformations [15].

To write out the asymptotics, one should represent (following [12, 19]) the
initial data as some parametric integral of the standard canonical operator. Then
the asymptotics of the solution is expressed as a similar parametric integral of
the modified canonical operator. This general formula can be found in [7]. Inside
the domain Ω, this formula can be expressed in terms of the standard Maslov’s
canonical operator, which leads to a formula obtained earlier in [11]. The form of
the solution on the boundary was studied in [7], and then in a neighborhood of the
boundary in [1]. Under the additional assumption that the source is simple (1.7)
and outside strong focal points on ∂Ω (which we define below) the asymptotic
formula becomes very simple (free of any integrations).

The solution of the inhomogeneous problem was studied in detail in [4] (but
outside the shore). It was shown there that problem (1.1), (1.2) can be reduced
to the homogeneous problem (1.5), (1.6) with some special source called the
equivalent source. In the present paper, we combine the results from [1] and [4]
to obtain the asymptotic solution of problem (1.1), (1.2) in a neighborhood of ∂Ω
outside strong focal points. The formula contains integration of Bessel functions
and Fourier transforms of the functions V and g. Using the argument from [3],
we approximate this integral by a finite formula, which provides a good working
algorithm for computer implementation valid in a neighborhood of ∂Ω. We also
provide numerics showing that this approximation is plausible.

The main result of this paper is the asymptotic formulas for the solutions of
the inhomogeneous problem (1.1), (1.2); they are presented in Subsections 4.2–
4.4: in Subsection 4.2, we write out a new general formula for the solution of the
inhomogeneous problem, in Subsection 4.3 we discuss the approximation argu-
ment, and in Subsection 4.4 we show numerically that the approximation is valid.
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For completeness and better understanding our new results, we briefly recall some
definitions and geometric constructions from [1,6–10,20,21] in Section 2 and the
asymptotic formula for the homogeneous problem from the above-mentioned pa-
pers, in Section 3. In Subsection 4.1, we recall the construction of the equivalent
source from [3,4, 6].

Finally, we point out that due to a good choice of the functions, defining the
source generating waves, a significant part of complicated mathematical struc-
tures disappears in the obtained asymptotics, and the resulting formulas can be
used by specialists without special mathematical education.

2. Necessary constructions

Let x = (x1, x2) be Cartesian coordinates in Ω, and p = (p1, p2) be canonically
conjugate momenta. The extended phase space Φ introduced in [21] is defined
as follows. Let x∗ ∈ ∂Ω be arbitrary. Denote by πΦ : Φ→ Ω the projection onto
the closure of Ω. Let us describe Φ and πΦ. Without loss of generality, we may
assume that the domain Ω near x∗ is determined by the inequality x1 > f(x2)
for some smooth function f(x2). Then in a neighborhood of the set π−1

Φ (x∗) one
can introduce local coordinates (q, y, θ, ξ) on Φ such that the set Φ∞ ≡ π−1

Φ ∂Ω
is given by the equality q = 0, and for q 6= 0 (i.e., on Φ \ Φ∞) the introduced
coordinates are expressed via (x, p) by the formulas:

x1 = f(y) + q2θ, x2 = y, p1 = q−1, p2 = ξ − q−1f ′(y).

The manifold Φ is symplectic with the closed (and, in fact, exact) 2-form ω2 =
dω1:

ω2 = dp ∧ dx = dθ ∧ dq + dξ ∧ dy, ω1 = p dx = 2θ dq + q dθ + ξ dy.

The Lagrangian manifold Λ2 associated with problem (1.5), (1.6) is con-
structed as follows. Let Λ1 be a smooth curve given by the equalities: x =
x0, |p| = 1. The set Λ2 consists of all trajectories of the Hamiltonian system with
the Hamiltonian function H = c(x)|p| issued from Λ1. Since the Hamiltonian
vector field is nowhere tangent to Λ1, the set Λ2 forms (at least locally) the 2-
dimensional smooth manifold. Let us introduce the coordinates α = (τ, ψ) on
Λ2. Here ψ singles out a trajectory by the initial value of the momentum p|t=0 =
n(ψ) = (cosψ, sinψ), and τ = c0t is a parameter along the trajectory (where c0 =
c(x0)). Actually, (τ, ψ) are the eikonal coordinates, and τ is the action (eikonal).

The manifold Λ2 is given in the coordinates x, p or q, y, θ, ξ by the equalities:

x = X(α), p = P (α), (2.1)

q = Q(α), y = Y (α), θ = Θ(α), ξ = Ξ(α). (2.2)

The representation (2.1) works everywhere on Λ2 except for the set Λ∞ = Λ2 ∩
Φ∞, while (2.2) works in a neighborhood of Λ∞.

A point α ∈ Λ2 is called focal, if

J(α) := det
∂X

∂α
(α) = 0
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(actually this definition does not depend on the specific choice of local coordinates
α on Λ2).

Any point α ∈ Λ∞ is focal, since in a neighborhood of Λ∞, one has

J(α) = 2Q(α)Θ(α) det
∂(Q,Y )

∂α
(α) +Q2(α)Jξy(α) det

∂(Θ, Y )

∂α
(α).

It follows from this equality that J(α)/Q(α) can be continued onto Λ∞ as a
smooth function. A focal point α ∈ Λ∞ is called regular if J(α)/Q(α) 6= 0 and
strong if J(α)/Q(α) = 0.

It can be shown that in a neighborhood of each point α ∈ Λ∞ one can choose
either (q, y) or (q, ξ) as local coordinates. In other words at each point α one of the

Jacobians: Jqy = det ∂(Q,Y )
∂α (α) and Jqξ = det ∂(Q,Ξ)

∂α (α) does not vanish. Points
where Jq y(α) vanishes are exactly strong focal points. Thus in a neighborhood
of regular focal points one can always choose local coordinates (q, y).

3. Localized solution for homogeneous equation

In this section we write out the asymptotics for the solution of the Cauchy
problem (1.5), (1.6) in a neighborhood of a regular focal point on ∂Ω.

Now let α∗ ∈ Λ∞ be a regular focal point, and U 3 α∗ be a sufficiently small
canonical chart on Λ with coordinates (q, y). Then the functions

Σ(α) = 2Q(α)
√

Θ(α) (3.1)

and Y (α) define local coordinates in U , since the Jacobian Jσy(α) = det ∂(Σ,Y )
∂µ (α)

does not vanish at α∗. Now recall that α = (τ, ψ), and let us express τ =
τ(σ, y), ψ = ψ(σ, y) from the equalities σ = Σ(τ, ψ), y = Y (τ, ψ). Define also

τodd(σ, y) =
τ(σ, y)− τ(−σ, y)

2
, τev(σ, y) =

τ(σ, y) + τ(−σ, y)

2
.

Let m be the index of the canonical chart (U, (q, y)) defined in [1, 7, 10, 21]. Let
e(τ) be a compactly supported function equal to 1 in a neighborhood of zero, and
let

Ṽ (k) =
1

2π

∫
R2

e−i〈k,z〉V (z) dz

be the Fourier transform of the function V (z). Finally, the following linear com-
bination

J(v) = J0(v) + iJ1(v) (3.2)

of Bessel’s functions of the first kind J0(v) and J1(v) will play an important
role below. Note that they naturally appear in theory of wave run-up on the
shore [2, 16,28].

Theorem 3.1 ([1]). The leading term ηUhom(x, t) as µ→ 0 of the asymptotic
solution of problem (1.5), (1.6) in a canonical chart (U, (q, y)) reads as follows:

ηUhom(x, t) = η̃hom

(
2
√
x1 − f(x2), x2, t

)
+ η̃hom

(
−2
√
x1 − f(x2), x2, t

)
,
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where

η̃hom(σ, y, t) =

{(
τodd

2σ|Jσy(τ, ψ)|

)1/2

e(τ − c0t)

× Re

[
e−

iπm
2

∫ ∞
0

e
iρ
µ (τev−c0t)J

(
ρτodd

µ

)
Ṽ (ρn(ψ))ρ dρ

]}∣∣∣∣∣τodd=τodd(σ,y)
τev=τev(σ,y)
τ=τ(σ,y)
ψ=ψ(σ,y)

. (3.3)

Notice that the function τodd(σ, y)/σ has no singularity on ∂Ω (where σ =
0). In fact, this function is smooth and strictly positive in U . The same is true
about the square root of it.

Now we additionally assume that the source is simple.

Theorem 3.2. If V has the form (1.7), then the leading term of the asymp-
totic solution of problem (1.5), (1.6) in a canonical chart U reads as follows:

η̃Usim(x, t) = η̃sim

(
2
√
x1 − f(x2), x2, t

)
+ η̃sim

(
−2
√
x1 − f(x2), x2, t

)
,

η̃sim(σ, y, t) = Ab1b2

(
τodd(σ, y)

2σ|Jσy(τ(σ, y), ψ(σ, y))|

)1/2

e(τ(σ, y)− c0t)

× Re

e− iπm2 β(ψ(σ, y)) + i
µ (−τ(−σ, y) + c0t)((

−β(ψ(σ, y)) + i
µ (τev(σ, y)− c0t)

)2
+ (τodd(σ,y))2

µ2

)3/2

 . (3.4)

In (3.4), let us set σ = 0 and get the formula on the boundary (obtained

earlier in [7]). We will use the fact that ∂τ(σ,y)
∂σ =

√
Θ(τ(σ, y), ψ(σ, y)) (see [1]).

For simplicity, Θ(τ(0, y), ψ(0, y)) will be replaced by Θ(y). Then

η̃Usim(0, x2, t) = η̃sim(0, y, t)

=
Ab1b2Θ1/4(y)

|Jσy(τ, ψ)|1/2
e(τ − c0t) Re

 e−
iπm

2

γ2(τ, ψ, t)

∣∣∣∣∣∣ τ=τ(0,y)
ψ=ψ(0,y)

, (3.5)

where γ(τ, ψ, t) = −β(ψ) + i(τ−c0t)
µ .

4. Localized solution for inhomogeneous equation

4.1. Equivalent source. Consider inhomogeneous problem (1.1), (1.2).
Let us set Λ = λµ

c0
. It is shown in [4] that the solution η(x, t) can be split into the

propagating and the transient parts: η = ηprop + ηtrans. The transient part ηtrans

is localized near x = x0, and it decays exponentially with time (for details, see
Theorem 3.1 from [4]). So the asymptotic behavior of the solution sufficiently far
from x0 is close to that of the propagating part.
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As to ηprop, it turns out to be close to the solution of the Cauchy problem for
(1.2) with the special initial data called “the equivalent source”. Consider the
function η̃prop = η1 + ∂η2

∂t , where

ηj |t=0 = Uj

(
x− x0

µ

)
,

∂ηj
∂t

∣∣∣∣
t=0

= 0, j = 1, 2, (4.1)

and the Fourier transforms of Uj((x− x0)/µ) are

Ũ1(p) =
√

2π Re

[
g̃

(
|p|
Λ

)]
Ṽ (p), Ũ2(p) =

√
2π

λ|p|
Im

[
g̃

(
|p|
Λ

)]
Ṽ (p). (4.2)

It turns out that ηprop − η̃prop is O(µ) in the energy norm (see Theorem 3.4 and
Remark 3.6 in [4]).

Strictly speaking, the results from [4] work for the domain Ω = R2. However,
they still can be used for computing the asymptotics near the shore if the source
is located at a finite distance from it.

In what follows, by η we will always mean η̃prop.

4.2. General formula for solution. After reducing the inhomogeneous
problem to the homogeneous one, we can apply Theorem 3.1 to the problem (1.5),
(4.1), (4.2) which immediately yields

Theorem 4.1. The leading term ηUinh(x, t) of the asymptotic solution of prob-
lem (1.1), (1.2) in a canonical chart (U, (q, y)) reads as follows:

ηUinh(x, t) = η̃inh

(
2
√
x1 − f(x2), x2, t

)
+ η̃inh

(
−2
√
x1 − f(x2), x2, t

)
,

where

η̃inh(σ, y, t) =

{(
πτodd

σ|Jσy(τ, ψ)|

)1/2

e(τ − c0t) Re

[
e−

iπm
2

×
∫ ∞

0
e
iρ
µ (τev−c0t)J

(
ρτodd

µ

)
g̃
( ρ

Λ

)
Ṽ (ρn(ψ))ρ dρ

]}∣∣∣∣∣τodd=τodd(σ,y)
τev=τev(σ,y)
τ=τ(σ,y)
ψ=ψ(σ,y)

. (4.3)

Here the bar stands for the complex conjugation.

The Fourier transform of g(τ) given by (1.8) is

g̃(ξ) = P

(
i
∂

∂ξ

)
1

1 + iξ
=

n∑
j=1

aj
(1 + iξ)j+1

.

Inserting this into (4.3), we arrive at a rather complicated integral. However, it
can be simplified if we study the solution only on the boundary σ = 0.

Let us restrict ourselves with the case n = 2. Then
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η̃inh(0, y, t) =

{
Ab1b2Θ1/4(y)

|Jσy(τ, ψ)|1/2
e(τ − c0t) Re

[
e−

iπm
2

∫ ∞
0

eργ(τ,ψ,t)

×
(

a1

(1− iρ/Λ)2
+

1− a1

(1− iρ/Λ)3

)
ρ dρ

]}∣∣∣∣∣ τ=τ(0,y)
ψ=ψ(0,y)

.

By using integration by parts, this integral can be reduced to the special function
Ei(z). Namely, we obtain

η̃inh(0, y, t) =
Ab1b2Θ1/4(y)

|Jσy(τ, ψ)|1/2
e(τ − c0t) Re

[
e−

iπm
2

(
3a1 − 1

2
Λ2 − (a1 − 1)Λ3γi

2

+

(
a1Λ2 + i(1− 2a1)Λ3γ − (a1 − 1)Λ4γ2

2

)
e−iγΛ Ei(iγΛ)

)]∣∣∣∣τev=τev(0,y)
τ=τ(0,y)
ψ=ψ(0,y)

. (4.4)

4.3. Polynomial approximation. Thus, we have obtained an explicit
formula (4.4) for the solution on the boundary. Unfortunately, it is not very
good for numerical computations. It contains unbounded terms as µ → 0, but
the singularities cancel out each other.

To get a more useful formula, we can use a trick suggested in [3]. Let
us approximate g̃(ρ/Λ) by some polynomial GN (ρ) of degree N such that
ρg̃(ρ/Λ)Ṽ (ρn(ψ)) and ρG̃N (ρ)Ṽ (ρn(ψ)) are close to each other for all ψ and
ρ ∈ [0,∞). Taking into account (1.9), it is natural to take G̃N as a linear combi-
nation of Laguerre polynomials of degree ≤ N . Let us denote by η̃inh, N(σ,y,t) the

right-hand side of (4.3) where g̃(ρ/Λ) is replaced with G̃N (ρ).

Since the inverse Fourier transform of G̃N is a linear combination of derivatives
of δ(τ), η̃inh, N can be expressed as follows. Assume that G̃N (ρ) =

∑N
m=0 smρ

m.
Then

η̃inh,N =

N∑
m=0

sm

(
iΛ

λ

)m ∂mη̃hom

∂tm
=

N∑
m=0

sm

(
iµ

c0

)m ∂mη̃hom

∂tm
. (4.5)

Inserting (3.4) here, we get the final approximate formula for the solution valid
in a neighborhood of the boundary.

This formula can be further simplified on the boundary. Let us exclude the
factor e(τ − c0t) from (3.5) and consider the solution only near the wave front
(i.e., when τ − c0t is sufficiently close to zero):

η̃inh,N (0, y, t) =
Ab1b2Θ1/4(y)

|Jσy(τ, ψ)|1/2

× Re

[
e−

iπm
2

N∑
m=0

(−1)m(m+ 1)!sm
γm+2(τ, ψ, t)

]∣∣∣∣∣ τ=τ(0,y)
ψ=ψ(0,y)

. (4.6)
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4.4. Numerical comparison. Our numerical computations show that
the asymptotic solution (4.6) approximates the “exact” asymptotic solution (4.4)
quite well. We have set the following values of the parameters:

N = 10, µ = 0.1, b1 = b2 = 1, Λ = 1.5, a1 =
1

2
, m = 0.

Define t̃ = c0t − τ , then γ ≡ γ(t̃) = − it̃
µ − 1. Let η1(t̃) and η2(t̃) be the

expressions in square brackets in (4.4) and (4.6), respectively. The functions
ρg̃(ρ/Λ)Ṽ (ρn(ψ)) and ρG̃N (ρ)Ṽ (ρn(ψ)) are compared in Fig. 4.1, and the func-
tions η1(t̃) and η2(t̃) are compared in Fig. 4.2. We see that the polynomial
approximation is satisfactory on the boundary.

On the other hand, as numerical computations in [3] show, the polynomial
approximation for the asymptotic solution is also satisfactory inside the domain
Ω. Combining these results, we may expect that formulas (4.5), (3.4) provide a
good approximation for the solution in a neighborhood of the boundary.
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Fig. 4.1: Comparison of ρg̃(ρ/Λ)Ṽ (ρn(ψ)) (bold) and ρG̃N (ρ)Ṽ (ρn(ψ)) (plain).
(Solid line for the real part, dashed line for the imaginary part.)
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Fig. 4.2: Comparison of η1(t̃) (bold) and η2(t̃) (plain). (Solid line for the real
part, dashed line for the imaginary part.)
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Асимптотичнi розв’язки хвильового рiвняння зi
швидкiстю, що вироджується, i з правою стороною,

яка локалiзована в просторi та часi
Anatoly Anikin, Sergey Dobrokhotov, and Vladimir Nazaikinskii

Вивчається задача Кошi для неоднорiдного двовимiрного хвильового
рiвняння зi змiнними коефiцiєнтами та нульовими початковими даними.
Вважається, що права частина локалiзована в просторi та часi. Рiвняння
розглядається в областi з межею (берегом). Вважається, що швидкiсть
на березi зникає як квадратний корiнь вiдстанi до берега, тобто хвильове
рiвняння має задану на кривiй особливiсть. Ця крива i визначає межу
областi, в якiй вивчається задача. Основний результат роботи — ефек-
тивнi асимптотичнi формули для розв’язку зазначеної задачi, включа-
ючи окiл берега.

Ключовi слова: хвильове рiвняння, асимптотичний розв’язок, кано-
нiчний оператор Маслова.
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