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Arity Shape of Polyadic Algebraic Structures

Steven Duplij

Concrete two-set (module-like and algebra-like) algebraic structures are
investigated from the viewpoint that the initial arities of all operations are
arbitrary. Relations between operations arising from the structure defini-
tions, however, lead to the restrictions which determine their possible arity
shapes and lead us to formulate a partial arity freedom principle. Polyadic
vector spaces and algebras, dual vector spaces, direct sums, tensor products
and inner pairing spaces are reconsidered.

Elements of polyadic operator theory are outlined: multistars and
polyadic analogs of adjoints, operator norms, isometries and projections are
introduced, as well as polyadic C*-algebras, Toeplitz algebras and Cuntz
algebras represented by polyadic operators.

It is shown that congruence classes are polyadic rings of a special kind.
Polyadic numbers are introduced (see Definition 7.17), and Diophantine
equations over these polyadic rings are then considered. Polyadic analogs of
the Lander—Parkin—Selfridge conjecture and Fermat’s Last Theorem are for-
mulated. For polyadic numbers neither of these statements holds. Polyadic
versions of Frolov’s theorem and the Tarry—Escott problem are presented.
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1. Introduction

The study of polyadic (higher arity) algebraic structures has a two-century
long history, commencing with works by Cayley, Sylvester, Kasner, Priifer,
Dérnte, Lehmer, Post, etc. They took a single set, closed under one (main)
binary operation having special properties (the so-called group-like structure),
and “generalized” it by increasing the arity of that operation, which can then be
called a polyadic operation and the corresponding algebraic structure polyadic
as well. We use the term “polyadic” in this sense only, while there are other uses
extant in the literature (see, e.g., [28]). An “abstract way” to study polyadic
algebraic structures is via the use of universal algebras defined as sets with dif-
ferent axioms (equational laws) for polyadic operations [3,9,27]. However, in this
language some important algebraic structures cannot be described, e.g., ordered
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groups, fields, etc. [14]. Therefore, it is worthwhile also to pursue a “concrete
approach” which is to study examples of binary algebraic structures and then
to “polyadize” them properly. This has initiated the development of a corre-
sponding theory of n-ary quasigroups [2], n-ary semigroups [38,45] and n-ary
groups [25,41] (for a more recent review, see, e.g., [16] and a comprehensive list
of references therein). The binary algebraic structures with two operations (addi-
tion and multiplication) on one set (the so-called ring-like structures) were later
on generalized to (m,n)-rings [8,10,31] and (m,n)-fields [29] (for recent study,
see [18]), while these were studied mostly in a more restrictive manner by con-
sidering particular cases: ternary rings (or (2,3)-rings) [33], (m,2)-rings [4,40],
as well as (3, 2)-fields [21].

In the case of one set, speaking informally, the “polyadization” of two opera-

tions’ “interaction” is straightforward, giving only polyadic distributivity which
does not connect or restrict their arities. However, when the number of sets be-
comes greater than one, the “polyadization” turns out to be non-trivial, leading
to special relations between the operation arities, and also introduces additional
(to the arities) parameters, allowing us to classify them. We call a selection of
such relations an arity shape and formulate the arity partial freedom principle
that not all arities of the operations that arise during “polyadization” of binary
operations are possible.

In this paper, we consider two-set algebraic structures in the “concrete way”
and provide the consequent “polyadization” of binary operations on them for
the so-called module-like structures (vector spaces) and algebra-like structures
(algebras and inner product spaces). The “polyadization” of binary scalar multi-
plication is defined in terms of the multiactions introduced in [16], having special
arity shapes parametrized by the number of intact elements (¢iq) in the corre-
sponding multiactions. We then “polyadize” related constructions, such as dual
vector spaces, direct sums and tensor products, and show that, as opposed to the
binary case, they can be implemented in spaces of different arity signatures. The
“polyadization” of inner product spaces and related norms gives us additional
arity shapes and restrictions. In the resulting Table 5.1 we present the arity
signatures and shapes of the polyadic algebraic structures under consideration.

As applications we note some starting points for polyadic operator theory by
introducing multistars and polyadic analogs of adjoints, operator norms, isome-
tries and projections. It is proved (Theorem 6.7) that if the polyadic inner pairing
(the analog of the inner product) is symmetric, then all multistars coincide and all
polyadic operators are self-adjoint (in contrast to the binary case). The polyadic
analogs of C*-algebras, Toeplitz algebras and Cuntz algebras are presented in
terms of the polyadic operators introduced here, and a ternary example is given.

Another application is connected with number theory: we show that the
internal structure of congruence classes is described by a polyadic ring having a
special arity signature (Table 7.1), and these we will call the polyadic integers
(or numbers) Zy, ) (Definition 7.17). They are classified by polyadic shape
invariants, and the relations between them which give the same arity signature
are established. Also, the limiting cases are analyzed, and it is shown that in one
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such case the polyadic rings can be embedded into polyadic fields with binary
multiplication, which leads to the so-called polyadic rational numbers [11].

We then consider Diophantine equations over these polyadic rings in a
straightforward manner: we change only the arities of the operations (“additions”
and “multiplications”), but save their mutual “interaction”. In this way we try
to “polyadize” the equal sums of like powers equation and formulate polyadic
analogs of the Lander—Parkin—Selfridge conjecture and of Fermat’s Last Theo-
rem [30]. It is shown that in the simplest case, when the polyadic “addition” and
“multiplication” are nonderived (e.g., for polyadic numbers), neither conjecture
is valid, and counterexamples are presented. Finally, we apply Frolov’s theorem
to the Tarry—Escott problem [15,39] over polyadic rings to obtain new solutions
to the equal sums of like powers equation for fixed congruence classes.

2. One set polyadic “linear”structures

We use concise notations from our previous work on polyadic structures [16,
17]. Take a non-empty set A, then an n-tuple (or polyad) consisting of the
elements (a1,...,an), a; € A, is denoted by a bold letter (a) taking its values
in the Cartesian product A*™ . If the number of elements in the n-tuple is
important, we denote it as (a(")), and an n-tuple with equal elements is denoted
by (a™). On the Cartesian product A*™ one can define a polyadic operation ,, :
A*™ — A, and use the notation uy, [a].

A polyadic structure A is a set A which is closed under polyadic operations,
and a polyadic signature is the selection of their arities. For formal definitions,
see, e.g., [9].

2.1. Polyadic distributivity. Let us consider a polyadic structure with
two operations on the same set A: the “chief” (multiplication) n-ary opera-
tion py, @ A™ — A and the additional m-ary operation v, : A™ — A, that is
(A | iy V). If there are no relations between p, and v,, then nothing new,
as compared with the polyadic structures having a single operation (A | u,) or
(A | V), can be said. Informally, the “interaction” between operations can be
described using the important relation of distributivity (an analog of a-(b+ ¢) =
a-b+a-c, a,b,c€ Ain the binary case).

Definition 2.1. The polyadic distributivity for the operations p, and vy,
(no additional properties are implied for now) consists of n relations:

Hn [Vm [ala s 7am]>b27b37 - 7bn]
= Vm[,un[al, bz,b3, PN ,bn],un[ag,bg,bg, PN ,bn], PN ,,un[am,bg,bg, .. .,bn]], (21)
Hn [bl,l/m [ala . 'am}vb:ﬁa . abn]

- Vm[un[blvalvb?)u o 7bn]7un[b17a27b37 “ee 7bn]7 cee ,,U,n[bl,(lm,bg,. . 'abn]]7 (22)

Hn [b17b27 .. ‘7bn—171/’m [ah s 7am]]
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= l/m[lun[bl,bg, e ,bn,l,aﬂ,un[bl,bg, e ,bn,l,aﬂ, N ,,un[bl,bg, e ,bn,l,amﬂ,
(2.3)

where a;,b; € A.

It is seen that the operations u, and v, enter into (2.1)—(2.3) in a non-
symmetric way, which allows us to distinguish them: one of them (u,,, the n-ary
multiplication) “distributes” over the other one v,,, and therefore v, is called
the addition. If only some of the relations (2.1)-(2.3) hold, then such distribu-
tivity is partial (an analog of the left and right distributivity in the binary case).
Obviously, the operations pu, and v,, need have nothing to do with ordinary mul-
tiplication (in the binary case denoted by pe = (+)) and addition (in the binary
case denoted by vo = (+)) as in the example below.

Example 2.2. Let A=R, n =2, m =3, and us [b1,be] = bliz, v3lay,as,as) =

b2 ba by by
1

ajazas (product in R). The partial distributivity now is (ajazas) ay’as

(only the first relation (2.1) holds).

= a

2.2. Polyadic rings and fields. Here we briefly remind the reader of one-
set (ring-like) polyadic structures (informally). Let both operations pu, and vy,
be (totally) associative, which (in our definition [16]) means independence of the
composition of two operations under placement of the internal operations (there
are n and m such placements and therefore (n + m) corresponding relations):

n [a, pin, [b], €] = invariant, (2.4)

Um [d, v, €], f] = invariant, (2.5)

where the polyads a, b, c, d, e, f have a corresponding length, and then both
(A'| p | assoc) and (A | vy, | assoc) are polyadic semigroups S, and S,,,. A com-
mutative semigroup (A | vy, | assoc,comm) is defined by vy, [a] = vy, [0 0 a], for
all o € S,,, where S,, is the symmetry group. If the equation v, [a,z,b] = ¢ is
solvable for any place of x, then (A | vy, | assoc, solv) is a polyadic group G,,, and
such z = ¢ is called a (additive) querelement for ¢, which defines the (additive)
unary queroperation vy by v [c] = é.

Definition 2.3. A polyadic (m,n)-ring R, is a set A with two operations
fn : A" — A and v, : A™ — A, such that:

1) they are distributive (2.1)—(2.3);
2) (A uyn | assoc) is a polyadic semigroup;
3) (A v | assoc,comm,solv) is a commutative polyadic group.

It is obvious that a (2,2)-ring Ro2 is an ordinary (binary) ring. Polyadic
rings have much richer structure and can have unusual properties [8,10,13,31]. If
the multiplicative semigroup (A | u, | assoc) is commutative, py, [a] = py, [0 0 a],
for all 0 € S,,, then R, , is called a commutative polyadic ring, and if it contains
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the identity, then R, , is a (polyadic) (m,n)-semiring. If the distributivity is
only partial, then R,, , is called a polyadic near-ring.

Introduce in R,,, the additive and multiplicative idempotent elements by
Um [@™] = a and p, [b"] = b, respectively. A zero z of R, , is defined by
pin [2,a] = z for any a € A"~!, where z can be in any place. Evidently, a zero (if
it exists) is a multiplicative idempotent and is unique, and if a polyadic ring has
an additive idempotent, it is a zero [31]. Due to the distributivity (2.1)—(2.3),
there can be at most one zero in a polyadic ring. If a zero z exists, denote A* =
A\ {z}, and observe that (in distinction to binary rings) (A* | u, | assoc) is not a
polyadic group, in general. In the case where (A* | p, | assoc) is a commutative
n-ary group, such a polyadic ring is called a (polyadic) (m,n)-field and K, ,
(“polyadic scalars”) (see [29,31]).

A multiplicative identity e in R, is a distinguished element e such that

pn [a, (" )] =a (2.6)

for any a € A and where a can be in any place. In binary rings the identity is
the only neutral element, while in polyadic rings there can exist many neutral
(n — 1)-polyads e satisfying

Un |a, €] = a, (2.7)

for any a € A which can also be in any place. The neutral polyads e are not
determined uniquely. Obviously, the polyad (e”_l) is neutral. There exist exotic
polyadic rings which have no zero, no identity, and no additive idempotents at
all (see, e.g., [10]), but if m = 2, then a zero always exists [31].

Example 2.4. Let us consider a polyadic ring R34, generated by 2 elements
a, b and the relations

I [a4] =a, g4 [a3,b] =b, 4 [aQ,bZ] =a, fi4 [a, bg] =b, [b4] =a, (2.8)
V3 [aS] =b, 13 [a2,b} =a, U3 [a, bz] =, V3 [bg] =a, (2.9)

which has a multiplicative idempotent a only, but has no zero and no identity.

Proposition 2.5. In the case of polyadic structures with two operations on
one set there are no conditions between the arities of operations which could
follow from distributivity (2.1)—(2.3) or the other relations above, and therefore
they have no arity shape.

Such conditions will appear below, when we consider more complicated uni-
versal algebraic structures with two or more sets with operations and relations.

3. Two set polyadic structures

3.1. Polyadic vector spaces. Let us consider a polyadic field K, n, =
(K | 0mg, bng ) (“polyadic scalars”), having the mg-ary addition oy, : K™K —
K and ng-ary multiplication s, : K™ — K, and the identity ex € K, a

neutral element with respect to multiplication &y, , [e?(K -1 A} =Aforall A € K.
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In polyadic structures, one can introduce a neutral (nx —1)-polyad (identity
polyad for “scalars”) e € K"<~1 by

Kng (€K, A] = A, (3.1)

where A € K can be in any place.

Next, take an my-ary commutative (abelian) group (V | v, ), which can be
treated as “polyadic vectors” with my-ary addition v, : V"V — V. Define in
(V | U, ) an additive neutral element (zero) zy € V by

Viny {z?v_l,v} =v (3.2)
for any v € V, and a “negative vector” v € V as its querelement
Umy [av,V, by] = v, (3.3)

where Vv can be in any place in the lLh.s., and ay, by are polyads in V. Here,
instead of one neutral element we can also introduce the (my — 1)-polyad zy
(which may not be unique), and so, for a zero polyad (for “vectors”), we have

Umy lzZv,v] =V, WeV, (3.4)

where v € V can be in any place. The “interaction” between “polyadic scalars”
and “polyadic vectors” (the analog of binary multiplication by a scalar Av) can
be defined as a multiaction (k,-place action) introduced in [16],

p, t K" xV — V. (3.5)

The set of all multiactions forms an n,-ary semigroup S, under composition. We
can “normalize” the multiactions in a similar way, as multiplace representations
[16], by (an analog of Iv=v,veV, 1€ K)

Pk, |V =V, (3.6)

for all v € V, where eg is the identity of Ky, n,. In the case of an (ordinary)
1-place (left) action (as an external binary operation) p; : K x V. — V, its
consistency with the polyadic field multiplication x,, under composition of the
binary operations p; {A|a} gives a product of the same arity

Ny = Ng,

that is (a polyadic analog of A (uv) = (Au)v, ve V, A\, u € K)

pri{Alpr (o] lpr {ng IV} = o1 {n (A, Ao, Ang] V)
A, A €K, vEV. (3.7)
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In the general case of k,-place actions, the multiplication in the n,-ary semi-
group S, can be defined by the arity changing formula [16] (schematically)

p
A1 Akp(np—1)+1
Pk, P I Pkp : \Y;
)\kp )‘kpnp
( K,nK [Al,...AnK],
: Cy
! Angclu+1s ’
: liq
\ )‘anu-i-fid

where ¢, and /liq are both integers. The associativity of (3.8) in each concrete
case can be achieved by applying the associativity quiver concept from [16].

Definition 3.1. The ¢-shape is a pair (¢, {q), where £, is the number of
multiplications and ¢;q is the number of intact elements in the composition of
operations.

It follows from (3.8),

Proposition 3.2. The arities of the polyadic field Ky ny ,» the arity n, of
the multiaction semigroup &, and the £-shape of the composition satisfy
k:pnp = "I”LKEM + g, (3.9)
ky =10, + lq. (3.10)
We can exclude £, or /;q and obtain

—1 —1
n,=ng — nKT&d, n, = nKTKM +1, (3.11)
2 P

respectively, where ”Iff;lﬁid > 1 and m]gp_lﬁu > 1 are integers. The following
inequalities hold:

1<6, <k, 0<bg<k,—1, £,<k,<(ng—1)0, 2<n,<ng. (3.12)

Remark 3.3. The formulas (3.11) coincide with the arity changing formulas
for heteromorphisms [16] applied to (3.8).

It follows from (3.9) that the ¢-shape is determined by the arities and the
number of places k, by

E# — kﬂ (np_ 1)

kp (ni —ny)
nK — 1 '

b =
) id nK—l

(3.13)
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Because we have two polyadic “additions” vy, and oy, , we need to consider
how the multiaction p, “distributes” between each of them. First, consider the
distributivity of the multiaction pj, with respect to “vector addition” vy, (a
polyadic analog of the binary A (v+u) = Av+ Au, v,ue V, \,u € K),

pkp va [Vla"'uvmv] :va pkp Vl )"'JPkp VmV

>\k: )\k )\k

p P p

(3.14)
Observe that here, in distinction to (3.8), there is no connection between the
arities my and k,.

Secondly, the distributivity of the multiaction py, (“multiplication by scalar”)
with respect to the “field addition” (a polyadic analog of Av+puv = (A+ p)v, v €
A, \,pp € K) has a form similar to (3.8) (which can be obtained from the arity
changing formula [16]),

A1 Akop(my —1)+1
va pkp \ 7"'7pkp \
)\kp )\kpmv
( Omg (M- Amg] s
. /
Eu
_ pk O'mK [)\mK(g‘,u_l), e Ame‘/u] v (3 15)
: Amicll,+15
b
Amctl,+€, )

where Efo and £/ are the numbers of multiplications and intact elements in the
resulting multiaction, respectively. Here the arities are not independent as in
(3.14), and so we have

Proposition 3.4. The arities of the polyadic field Ko,y n,, the arity n, of
the multiaction semigroup S, and the {-shape of the distributivity satisfy

komy = mgl), + b, (3.16)
kp =10, + by (3.17)

It follows from (3.16), (3.17),

mg—1, mV—mK_l
id» -
k, k,

my = mpg — 0, + 1.

Here mflgpflﬂgd >1 and mféi;l% > 1 are integers, and we have the inequalities

1<, <kp, 0<ly<k,—1, £,<k,<(mg—1), 2<my <mg. (3.18)
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Now, the /-shape of the distributivity is fully determined from the arities and the
number of places k, by the arity shape formulas

kp(my —1) , _ kp(mkx —my)

[ = 3.19
’ id myg — 1 ( )

=
P mK—l

It follows from (3.18) that:

Corollary 3.5. The arity my of the vector addition is less than or equal to
the arity mg of the field addition.

Definition 3.6. A polyadic (K)-vector (“linear”) space over a polyadic field
is the 2-set 4-operation algebraic structure

Vingeniemv by = GV | O s Vi | iy (3.20)
such that the following axioms hold:
1) (K | 0my, kng) 1s a polyadic (mg, ng)-field Ky, o nps
2) (V| Vm, ) is a commutative my-ary group;

3) <pkp ] composition> is an n,-ary semigroup &,;

[4

4) Distributivity of the multiaction py, with respect to the “vector addition”

Uy (3.14);
5) Distributivity of py, with respect to the “scalar addition” oy, (3.15);
6) Compatibility of pi, with the “scalar multiplication” ry, (3.8);
7) Normalization of the multiaction py, (3.6).

All of the arities in (3.20) are independent and can be chosen arbitrarily, but
they fix the ¢-shape of the multiaction composition (3.8) and the distributivity
(3.15) by (3.13) and (3.19), respectively. Note that the main distinction from the
binary case is a possibility for the arity n, of the multiaction semigroup S, to be
arbitrary.

Definition 3.7. A polyadic K-vector subspace is
b b
V:;K,RK,mv,kp = <K’ Vsu | Ompg s Kng s va | pkp> ) (321)
where the subset V5" C V is closed under all operations Omigcs Bngs Vmy s Pk, and
the axioms 1)-7).

Let us consider a subset S = {vi,...,vq,} C V (of dy “vectors”), then a
polyadic span of S is (a “linear combination”)

Spang‘ol (Vi,...,vq,) = {w}, (3.22)
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A Aldy —1)k,
w = Vﬁgv Pk, ¢ [VIgs-eesPk, : Vs o |, (3.23)

Ak, Adyk,

where (dy - k,) “scalars” play the role of coeflicients (or coordinates as columns
consisting of k, elements from the polyadic field K, n, ), and the number of
“vectors” s is connected with the “number of my-ary additions” ¢, by

dy =0, (my — 1) + 1,

while Spang‘ols is the set of all “vectors” of this form (3.22) (we consider here
only finite “sums”).

Definition 3.8. A polyadic span S = {vi,...,vg, } € V is nontrivial if at
least one multiaction py, in (3.22) is nonzero.

Since polyadic fields and groups do not contain zeroes, we need to redefine
the basic notions of equivalences. Let us take two different spans of the set S.

Definition 3.9. A set {vi,...,vg, } is called “linear” polyadic indepen-

dent if from the equality of nontrivial spans, as Spangol (Vi,...,Vay)
Span,) (v, ..., Vay ), it follows that all \; = A}, i = 1,...,dyk,.

Definition 3.10. A set {v1,...,vq, } is called a polyadic basis of a polyadic

vector space Vi ngmyk, if it spans the whole space Spanf)‘ol (Vi,...,va,) = V.

In other words, any element of V can be uniquely presented in the form of
the polyadic “linear combination”(3.22). If a polyadic vector space Vin enxmyk,
has a finite basis {vi,...,vq, }, then any other basis {v’l, . ’Vélv} has the same

number of elements.

Definition 3.11. The number of elements in the polyadic basis {vi,...,vq, }

is called the polyadic dimension of Vi n my k,-

Remark 3.12. The so-called 3-vector space, introduced and studied in [21],
corresponds t0 Vi =3 ny=2my =3,k,=1-

3.2. One-set polyadic vector space. A particular polyadic vector space
is important: consider V = K, v,,, = 0p, and my = my, which gives the
following one-set “linear” algebraic structure (we call it a one-set polyadic vector
space):

ICmK,nK,k‘p = <K ’ Ompg s Bng ’ p2p> )

where now the multiaction

A1
PR A AN EK,
Ak

P
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acts on K itself (in some special way), and therefore can be called a regu-
lar multiaction. In the binary case ng = mg = 2, the only possibility for
the regular action is the multiplication (by “scalars”) in the field p? {\1| A} =
ko [AM1A] (= A1A), which obviously satisfies the axioms 4)-7) of a vector space in
Definition 3.6. In this way we arrive at the definition of the binary field K =
Ko9 = (K | 09, k2), and so a one-set binary vector space coincides with the un-
derlying field KCpp, o =2 n e =2,k,=1 = K, or as it is said “a field is a (one-dimensional)
vector space over itself”.

Remark 3.13. In the polyadic case, the regular multiaction pgp can be chosen,
as any (additional to oy, kn,) function satisfying axioms 4)-7) of a polyadic
vector space and the number of places k, and the arity of the semigroup of
multiactions S, can be arbitrary, in general. Also, pgp can be taken as some
nontrivial combination of o, ., kn, satisfying axioms 4)-7) (which admits a
nontrivial “multiplication by scalars”).

In the simplest regular (similar to the binary) case,

A1
pgp Ap = K‘fLKK [Alv"'a)\kpa)\] 5 (324)
Ak

P

where /,; is the number of multiplications &, , and the number of places k, is

now fixed by
ky=4; (ng —1), (3.25)

while A in (3.24) can be in any place due to the commutativity of the field
multiplication Ky, .

Remark 3.14. In general, the one-set polyadic vector space need not to coin-
cide with the underlying polyadic field, Kpy ny .k, 7 Kngmy (as opposed to the
binary case), but can have a more complicated structure which is determined by
an additional multiplace function, the multiaction pﬁp.

3.3. Polyadic algebras. By analogy with the binary case, introducing an
additional operation on vectors, a multiplication which is distributive and “linear”
with respect to “scalars”, leads to a polyadic generalization of the (associative)
algebra notion [7]. Here, we denote the second (except for the ’scalars’ K) set
by A (instead of V as above), on which we define two operations: the m4-ary
“addition” vy, , : A*™4 — A and the ng-ary “multiplication” p,, : A*"4 — A.
To interpret the ng-ary operation as a true multiplication, the operations f, ,
and v, should satisfy polyadic distributivity (2.1)-(2.3) (an analog of (a +b) -
c=a-c+b-c, with a,b,c € A). Then we should consider the “interaction” of
this new operation i, , with the multiaction py, (an analog of the “compatibility
with scalars” (Aa) - (ub) = (Ap)a-b, a,b € A, \,p € K). In the most general
case, when all arities are arbitrary, we have the polyadic compatibility of p,,
with the field multiplication &, as follows:
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A Mep(na—1)
Hna [Pk, Cla1 e Pk Any
)\kp )\kpnA |
( )
Rn g [)\17 sy )‘nK] )
: "
b
s P (1) > At
— Dy (t=) Do a1 an] by (3.26)
Angc 415
/!
£q
A+,

where £, and £ are the numbers of multiplications and intact elements in the
resulting multiaction, respectively.

Proposition 3.15. The arities of the polyadic field Ky, ., the arity n, of
the multiaction semigroup &, and the {-shape of the polyadic compatibility (3.26)
satisfy

kona =ngl; + by, k, =€)+l (3.27)

We can exclude from (3.27) £ or £{; and obtain

nK—l,, nA—nK_l
id>» -
kP kﬂ

nAg =ng — €Z—|—1,

where ’”lgip_lﬁﬁi > 1 and ”’lgip_lﬁz > 1 are integers, and the inequalities hold
1<l <kp, 0<lig<k,—1, € <k,<(ng—-1)€;, 2<ns<ng. (3.28)

It follows from (3.27), that the ¢-shape is determined by the arities and the
number of places k, as

kp(na—1) n _ kp (nk —na)

A 3.29

"o
b, =

Definition 3.16. A polyadic (“linear”) algebra over a polyadic field is the
2-set b-operation algebraic structure,

AmK7nK,mA,nA7kp = <K§A ‘ OmpgsBngisVmas Mng | pkp>> (3'30)

such that the following axioms hold:

1) <K;A | Omgs Bng s Vmoa | pkp> is a polyadic vector space over a polyadic field
K

mK,nK;
2) The algebra multiplication p,, and the algebra addition v,,, satisfy the
polyadic distributivity (2.1)—(2.3);

3) The multiplications in the algebra p,, and in the field &, , are compatible
by (3.26).
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If the algebra multiplication p,, is associative (2.4), then Ay ngmamnak,
is an associative polyadic algebra (for k, = 1 see [7]). If p,, is commutative,
tn, [@A] = pn, [0 0@y, for any polyad in algebra ay € A*™4 for all permuta-
tions o € Sy, where S, is the symmetry group, then Ay, ny manak, is called a
commutative polyadic algebra. As in the n-ary (semi)group theory, for polyadic
algebras one can introduce special kinds of associativity and partial commutativ-
ity. If the multiplication p,, contains the identity e4 (2.6) or a neutral polyad
for any element, then a polyadic algebra is called unital or neutral-unital, respec-
tively. It follows from (3.28) that:

Corollary 3.17. In a polyadic (“linear”) algebra the arity of the algebra
multiplication na is less than or equal to the arity of the field multiplication ny .

Proposition 3.18. If all the operation £-shapes in (3.8), (3.15), and (3.26)
coincide
=10, =10, =1~ ="lq,

then we obtain the conditions for the arities
nKg =MmK, nNp,=na, (3.31)
while m and k, are not connected.
Proof. Use (3.13) and (3.29). O

Proposition 3.19. In the case of equal £-shapes the multiplication and addi-
tion of the polyadic ground field (“scalars”) should coincide, while the arity n, of
the multiaction semigroup S, should be the same as of the algebra multiplication
na, while the arity of the algebra addition my and the number of places k, remain
arbitrary.

Remark 3.20. The above (-shapes (3.13), (3.19), and (3.29) are defined by a
pair of integers, and therefore the arities in them are not arbitrary, but should
be “quantized” in the same manner as the arities of heteromorphisms in [16].

Therefore, numerically the “quantization”rules for the ¢-shapes (3.13), (3.19),
and (3.29) coincide and are given in Table 3.1.
Thus, we arrive at the following

Theorem 3.21 (The arity partial freedom principle). The basic two-set
polyadic algebraic structures have non-free underlying operation arities which are
“quantized” in such a way that their £-shape is given by integers.

The above definitions can be generalized, as in the binary case, by considering
a polyadic ring R ny instead of a polyadic field Ky, . ., . In this way, a polyadic
vector space becomes a polyadic module over a ring or polyadic R-module, while
a polyadic algebra over a polyadic field becomes a polyadic algebra over a ring or a
polyadic R-algebra. All the axioms and relations between arities in Definition 3.6
and Definition 3.16 remain the same. However, one should take into account that
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Table 3.1: “Quantization” of arity /-shapes

AT AR T el Rl Dk
ol e
il 2 |5y
3 2 1 ;l: g: 1707,
ol DY
ol 2 5o
ol PR

the ring multiplication k., can be noncommutative, and therefore for polyadic
R-modules and R-algebras it is necessary to consider many different kinds of
multiactions py, (all of them are described in (3.8)). For instance, in the ternary
case this corresponds to trimodules [6] or ternary module structure [35].

4. Mappings between polyadic algebraic structures

Let us consider Dy different polyadic vector spaces over the same polyadic
field Koo g @S

vt () () = <K;V(i) \ O-mKuﬁnK;V(i)(i) | o) > , i=1,...,Dy < oo,
% v

7
ME,NK My, ", m kl(7 )

Here we define a polyadic analog of a “linear” mapping for polyadic vector
spaces which “commutes“ with the “vector addition” and the “multiplication by
scalar” (an analog of the additivity F (v + u) = F (v)+F (u), and the homogeneity
of degree one F (Av) = A\F (v), vyue V, A € K).

Definition 4.1. A I-place (“K-linear”) mapping between the polyadic vec-
tor spaces Vi ngmy ik, = V| Omges bingei Vmy | k) a0 Voo npemy ik, =
<K;V' | Omges Fnges Vingy | p2p> over the same polyadic field Kpn, =
(K | ompey Fing) is F1: V. — V' such that

F1 (Umy V155 Viny ) = vy [F1 (V1) -0 F1 (Vi )] (4.1)
A1 A1

Filpe,{ P |ve|=rq @ |F1(V), (4.2)

Ak Ak

P P
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where vi,..., Vi, VEV, A, A, € K.

If zy is a “zero vector” in V and zy- is a “zero vector” in V' (see (3.2)), then
it follows from (4.1), (4.2) that Fy (zy) = zy-.

The initial and final arities of v, (“vector addition”) and the multiaction py,
(“multiplication by scalar”) coincide because F is a 1-place mapping (a linear ho-
momorphism). In [16] multiplace mappings and corresponding heteromorphisms
were introduced. The latter allows us to change the arrities my — my,, k, —
k‘;), which is the main difference between the binary and polyadic mappings.

Definition 4.2. A kp-place (“K-linear”) mapping between two polyadic vec-
tor spaces Vi ngmy .k, = V| Omges bingi Vmy | k) a0d Voo npemy ik, =
<K;V’ | O B Vi ]pz,,> over the same polyadic field K =

v P

MK ,NK
(K | Opmger King) is defined if there exists Fy, : V**F — V/ such that

Uiy V1, -5 Viny |
: k
by
Vmy [va(él’ifl)’ .. .vagﬁ}
Fy,.
vaﬁﬁ;ﬁ»l’
k
Gy
Vme;kfi'e?d
Vi Vip(m),—1)
/ .
= Vm@ ka , . ,FkF : ; (4 3)
Vip VkaQ/
Al )
Pk, 1 [V1
Ak,
. of
H )\1 Vi
kp<z,fﬁl) , ) ]
Fp ok ) v, = Pk, D Frp : ) (4.4)
p \ : 4, /\k:;) Vip
kptl,
Vel +1 ;
: g
Vip
where vi,..., v, v € V, A,..., A, € K, and the four integers €’;, Z{“d, E}j, K{;

define the ¢-shape of the mapping.

It follows from (4.3), (4.4) that the arities satisfy

kpmy = my s + 05, kp =08+l kp =0l el K, =k
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The following inequalities hold:

1<l <kp, 0<fy<kp—1,
0 <kp<(my—1€, 2<my<my, 2<k, <k,

Thus, the ¢-shape of the kp-place mapping between polyadic vector spaces is
determined by

k k
, =Ll =kp -2

ek _ kF (mv — 1)
K K

ko _
o my — 1 ’ eid -

4.1. Polyadic functionals and dual polyadic vector spaces. An im-
portant particular case of the kp-place mapping can be considered, where the
final polyadic vector space coincides with the underlying field (an analog of a
“linear functional”).

Definition 4.3. A “linear” polyadic functional (or polyadic dual vec-
tor, polyadic covector) is a kp-place mapping of a polyadic vector space
Vingemzemy ky = (K3 V| Omes fnge; Vg | pr,) into its polyadic field Ky nye =
(K | Oy, Fing ) such that there exists Ly, : V** — K, and

Uiy V1,5 Viny |

k
Eu
Vmy [va(fﬁfl)’ ‘e vafﬁ]

L
va@,’f+l7

v
Eid

Vi g bk +02,

Vi VL (mx—1)
= Omg LkL ,...,LkL , (4.5)
VEkr Vipmg
A1

Pk, @ |1
Ak

P

A "

kp(fL—1 .
Ly, /J<.M ) = Kng | Aseos Ang—1, Lk, : , (4.6)
pkp : VoL

7 Vi,

Akt
\)
L1
L
tig

VEr,

where vi,...,Vmy, vV €V, A1, ..., Any € K, and the integers (X, R Kﬁ, KiLd define
the ¢-shape of Ly, .
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It follows from (4.3), (4.4) that the arities satisfy
kLmK vagﬁ-i-f;/d, kL =€§+£iyd, ]CLZEZ-FE%, nK—lszEZ,
and for them

1<tk <kp, 0< ety <kp—1, 0 <kp < (my —1)¢,
2 <mg < my, 2<k,<ng-—1.
Thus, the ¢-shape of the polyadic functional is determined by

kp
n}(—17

kﬂ
nK—l'

oo ke(me =1) -, kp(my —mi)
v mv—l ’ id mv—l ’

" o =ky, —

In the binary case, because the dual vectors (linear functionals) take their
values in the underlying field, new operations between them, such that the dual
vector “addition” (4*) and the “multiplication by a scalar” (e*) can be naturally
introduced by (LM +* L®?)) (v) = LW (v)+L® (v), (A e* L) (v) = AeL (v), which
leads to another vector space structure, called a dual vector space. Note that the
operations +* and +, " and e are different, because + and e are the operations
in the underlying field K. In the polyadic case, we have more complicated arity
changing formulas, and here we consider only finite-dimensional spaces. The
arities of operations between dual vectors can differ from those in the underlying
polyadic field K, ., in general. In this way, we arrive at the following

Definition 4.4. A polyadic dual vector space over a polyadic field K

MK ,NK
is

mg nK,my ki T <K’ {LkL} ‘ Omgs Fng s Vmyp, | pkL>7
and the axioms are:

1) (K | 0mg, kng) 1s a polyadic (mg, n)-field Ky, o nys

2) <{L,(;L)} Vi =1, DL> is a commutative mp-ary group (which is finite
if Dy < OO);

3) The “dual vector addition” vy, is compatible with the polyadic field addition
Omg DY

Vi, [ L] (a%0)) = e [L) (a00) ) (w0

where v(FL) = |, vi,...,vk, €V, and it follows that

mp =mg;
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4) The compatibility of pZL with the “multiplication by a scalar” in the under-
lying polyadic field
A1

P4t | Ly (v(’m):%{ [Al,...,)\nK_l,LkL (v(kL))], (4.7)
Ak

L

and then
kr =ng —1; (4.8)

5) <{sz} | compositi0n> is an nr-ary semigroup Sz, (similar to (3.8))

nr
A1 Akp(nz—1)
* . * . L (k;L)
Pk ol PR : kp (-~ v
. Mepng,
( /inK [/\1,...)\,”(],
: I
£y
s Mo (et-1)5 - Mt |
= pt SN g L (v(kL)) ,
Pk, AnK£ﬁ+1’ kr
4
)\TLKfflfFeil&

where the ¢-shape is determined by the system

kpnp =ngl), + 0, kp = + 05 (4.9)

Using (4.8) and (4.9), we obtain the ¢-shape as

eﬁan—l, gllé =NKg —Nyg,. (4.10)
Corollary 4.5. The arity ny, of the semigroup Sy, is less than or equal to the
arity nx of the underlying polyadic field ny < ng.

4.2. Polyadic direct sum and tensor product. The Cartesian product

of Dy polyadic vector spaces XH;E{V(Z) (@)
mrngmy kpy

notation XHV(i)), i=1,..., Dy is given by the Dy-ples (an analog of the Carte-
sian pair (v,u), ve V), u e V)

(sometimes we use the concise

v

— (DV) ><DV
i)E (v ) e vxDv. (4.11)
Vv 1%
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We introduce polyadic generalizations of the direct sum and tensor product
of vector spaces by considering “linear” operations on the Dy -ples (4.11).

In the first case, to endow xITV® with the structure of a vector space we
need to define a new operation between the Dy-ples (4.11) (this is similar to
the vector addition, but between the elements from different spaces) and a rule,
specifying how they are “multiplied by scalars” (analogs of (vi,va) + (ui,u2) =
(vi + ug,va + ug2) and A (vi,va) = (Avy, Avg) ). In the binary case, a formal sum-
mation is used, but it can differ from the addition in the initial vector spaces.
Therefore, we can define on the set of the Dy-ples (4.11) new operations xm,,
(“addition of vectors from different spaces”) and “multiplication by a scalar” 7y ,
(4) (@)

@ and p, g
\4 P

which does not need to coincide with the corresponding operations v

m
of the initial polyadic vector spaces VT()? @) ()"
KoMK My 5K
If all Dy-ples (4.11) are of fixed length, then we can define their “addition”
Xmy i the standard way when all the arities mg) coincide and equal the arity of
the resulting vector space

my =m{P = ... =m{P"), (4.12)

while the operations (“additions”) themselves VT(,ZL)V between vectors in different
spaces can be still different. Thus, a new commutative my-ary operation (“ad-

dition”) X, of the Dy-ples of the same length is defined by

1 1 1
Vgl) ng/ y,(nz, {v§ ), . ,v,(nz,}
VEDV) V££VV) Vr(nlz/‘/) [VgDv)’ o 7V£nDVV):|

where Dy # my, in general. However, it is also possible to add Dy -ples Qf
different length such that the operation (4.13) is compatible with all arities mg),
(1) (2) _ (3)

i =1,...,my. For instance, if my = 3, my,” = my,’ = 3, my,” = 2, then
V§1) Vél) VD u§1) v§1>,vg”,v§}>
3
X3 VEQ) ) v§2) ) v§2) = V§2) VEQ), V§2)a ng) . (4.14)
3 3
VAW o) [V§3>7V§3>}

Assertion 4.6. In the polyadic case, a direct sum of polyadic vector spaces
having different arities of “vector addition” mg) can be defined.

Let us introduce the multiaction 74, (“multiplication by a scalar”) acting on
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Dy-ple (v(mV)). Then

A
1 .
piﬁ) v
P
M| [ v At
o : _ : , (415)
)\kp v(DV) - kgl>+...+k£DV71)+1
pk(DVv) vev)
P
KD 4 k(P
where
kD + .+ EPY) =k, (4.16)

Definition 4.7. A polyadic direct sum of my polyadic vector spaces is their
Cartesian product equipped with the my-ary addition x;,, and the k,-place
multiaction 7y, satisfying (4.13) and (4.15) respectively

Dy +,(9) _ Dy +,(?)
eILY Y @ g = {XHi:‘/lv ® ) | va’Tkp} :

MESNK MY, MESNEK My,

Let us consider another way to define a vector space structure on the Dy -
ples from the Cartesian product xIIV(#). Remember that in the binary case, the
concept of bilinearity is used, which means “distributivity” and “multiplicativity
by scalars” on each place separately in the Cartesian pair (vi,vs) € V() x V() (as
opposed to the direct sum, where these relations hold on all places simultaneously,
see (4.13) and (4.15)) such that

(V1 + U1,V2) = (Vl,Vz) + (ul,v2) , (V1,V2 + UQ) = (V1,V2) + (Vl, U2) , (417)
A(vi,v2) = (Avi,va) = (vi, Ava), (4.18)

respectively. If we denote the ideal corresponding to the relations (4.17), (4.18) by

B, then the binary tensor product of the vector spaces can be defined from their

Cartesian product by factoring out this ideal as V) @ Y@ el V) 5 Y@ 95,

Note first that the additions and multiplications by a scalar on both sides of
(4.17), (4.18) “work” in different spaces, which sometimes can be concealed by
adding the word “formal” to them. Second, all these operations have the same
arity (binary ones), which need not to be the case when considering polyadic
structures.

As in the case of the polyadic direct sum, we first define a new operation
Xmy (“addition”) of the Dy-ples of fixed length (different from x,, in (4.13)),
when all the arities mg) coincide and are equal to my (4.12). Then, a straight-
forward generalization of (4.17) can be defined for my-ples similar to polyadic
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distributivity (2.1)—(2.3), as in the following my relations:

0 Y]
u - uz uz
2 = Xy . e ) , (4.19)
UDV L UDV UDV i
ui M/ uy up \ |
(2) [ (2) (2) (2) (2)
v, Vil v v v
v "I = ™M (4.20)
Umv L umV Umv _
ujg uj uj
uz _ us uo
V) [PV D) (D) JPv)

By analogy, if all kf,i) are equal, we can define a new multiaction 7, (different

from 73, (4.15)) but with the same number of places

kp =k = ... = k) (4.22)

as the Dy relations (an analog of (4.18))

A\ v
(1) 1) A
A V(l) pk’p DY (2) .1 (2)
~ . . _ )\k _ pkp |V
T, : = VP = "
Ay | A\WPV) S
v(Pv) v(Dv)
v
e
o= A; . (4.23)
P ey
Ak

Let us denote the ideal corresponding to the relations (4.19)—(4.21), (4.23) by
Bp, -

Definition 4.8. A polyadic tensor product of Dy polyadic vector spaces

y® (3) (D) is obtained from their Cartesian product equipped with the my -
MEK,NK,My, ,Rp
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ary addition Y, (of Dy-ples) and the k,-place multiaction 7, satisfying (4.19)-
(4.21) and (4.23), respectively, by factoring out the ideal Bp,,

(@) _ my 4 ,(%) - ~
QI VY 0 40 = {xr[i:vlv i 0 4 | va,rkp} /Bp, .

MK, My, MEK,NEK My,

As in the case of the polyadic direct sum, we can consider distributivity for
Dy-ples of different length. In a similar example (4.14), if my = 3, m%}) =

mg) =3, mg) = 2, we have

R A PN,
us = X3 ug |- Uz |»| U2 )
us L us us i
uy A ug ur \ |

M| = | () () ()]
us L us us J
ui [/ uy uq up
Yz =Xxs || vz |, u],u

Vés) [Vg?,)’vg?))} I V§3) vg’)

Assertion 4.9. A tensor product of polyadic vector spaces having different
arities of the “vector addition” mg) can be defined.

In the case of modules over a polyadic ring, the formulas connecting arities
and f-shapes similar to those above hold, while their concrete properties (non-
commutativity, mediality, etc.) should be taken into account.

5. Polyadic inner pairing spaces and norms

Here we introduce the next important operation: a polyadic analog of the
inner product for polyadic vector spaces - a polyadic inner pairing. However, this
concept differs from the n-inner product spaces considered, e.g., in [37].

Let Vi ng,my k, = <K;V | O s Bnges Vmy | pkp> be a polyadic vector space
over the polyadic field Ky, . n, (3.20). By analogy with the binary inner product,
we next introduce its polyadic counterpart and study its arity shape.

Definition 5.1. A polyadic N-place inner pairing (an analog of the inner

product) is a mapping
N

N
Telsl. o) : VN = K, (5.1)
satisfying the following conditions:

1) Polyadic “linearity” (3.8) (for first argument):

A
<<Pkp AV ’V2|...’VN>> = Kng [)\1,...,)\]%,«V1‘V2’...’VN»]. (52)
Ak

P
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2) Polyadic “distributivity” (2.1)—(2.3) (on each place):

(Vmy [Visuts - Umy—1] [va| ... [va)

= Oy [(valval . fvw)) s Qualval - fvav)) - Cumy —afval v (5.3)

If the polyadic field K, n, contains the zero zx and (V | my) has the
zero “vector” zy (which is not always true in the polyadic case), we have the
additional axiom:

3) The polyadic inner pairing vanishes ((vi|va|...|vn)) = zx iff any of the “vec-
tors” vanishes, 3i € 1,..., N, such that v; = zy.
If the standard binary ordering on K, . », can be defined, then the polyadic

inner pairing satisfies:

4) The positivity condition
N

—_—
(vivl-. V) = 2k,

5) The polyadic Cauchy—Schwarz inequality (“triangle” inequality)

N N y
e | Qutlval-o Vi) Qalval o el W e - g

nK

> Ky [ vilval .o v, (vafval oo V) <oy (v fve| .o v )) ] (5.4)

To make the above relations consistent, the arity shapes should be fixed.

Definition 5.2. If the inner pairing is fully symmetric under permutations
it is called a polyadic inner product.

Proposition 5.3. The number of places in the multiaction py, differs by 1
from the multiplication arity of the polyadic field

ng —k, =1. (5.5)

Proof. 1t follows from the polyadic “linearity” (5.2). O

Proposition 5.4. The arities of “vector addition” and “field addition” co-
incide

my = mg. (5.6)

Proof. Implied by the polyadic “distributivity”(5.3). O

Proposition 5.5. The arity of the “field multiplication” is equal to the arity
of the polyadic inner pairing space
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Proof. The proof follows from the polyadic Cauchy-Schwarz inequality (5.4).
O

Definition 5.6. The polyadic vector space Vi ng my k, €quipped with the
N

——
polyadic inner pairing ((ee|...|e)) : V¥ — K is called a polyadic inner pairing

space %mK K ,my,kp, N -

A polyadic analog of the binary norm |[e|| : V — K can be induced by the
inner pairing similarly to the binary case for the inner product (we use the form

VI = (lv))-

Definition 5.7. A polyadic norm of a “vector” v in the polyadic inner pairing
space Hy ny,my ko, N i @ mapping ||e|| 5 : V — K, such that

Nk N
Fonge LIVl s IV s s VI ] = Gvlv] - [v)s ng = N, (5.8)

and the following axioms apply:

1) The polyadic “linearity”

A1
Pk, Y = Ky [Al,...,/\kp,HvHN} , (5.9)
Mol )y
n —ky = 1. (5.10)

If the polyadic field Ky, n, contains the zero zx and (V | my) has a zero
“vector” zy, then:

2) The polyadic norm vanishes ||v|| N = zx iff v = zy.
If the binary ordering on (V | my) can be defined, then:
3) The polyadic norm is positive ||v||y > zk.

4) The polyadic“triangle” inequality holds

mKg my

Y

O [Ivillw s Ivall s IVl ] = (lpmy [lvall s lvall - lvavll ]
mg = my — N.

Definition 5.8. The polyadic inner pairing space Hp . ny my k,,N €quipped
with the polyadic norm ||v||y is called a polyadic normed space.

Recall that in the binary vector space V over the field K equipped with the
inner product ((e|e)) and the norm |/e|, one can introduce the angle between
the vectors ||v1||||ve||cos@ = {(vi|v2)), where in the L.h.s. there are two binary
multiplications (-).
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Definition 5.9. A polyadic angle between N vectors vi,va,...,vy, of the
polyadic inner pairing space H, . nymy k N 18 defined as a set of angles ¥ =
{{6:} |i=1,2,...,ng — 1} satisfying

K Vil V2l s - <o Vg ||y » cOS 01, cos Ba, . .., cos By 1]
= (valva| - Vg ) s

(2)

where Ky, is a long product of two ng-ary multiplications, which consists of
2(ng — 1) + 1 terms.

We will not consider the completion with respect to the above norm (to obtain
a polyadic analog of the Hilbert space) and corresponding limits and boundedness
questions, because this will not give us additional arity shapes in which we are
mostly interested here. Instead, we turn below to some applications and new
general constructions which appear from the above polyadic structures.

Table 5.1: The arity signature and arity shape of polyadic algebraic structures.

Structures Sets Operations and arities Arity
N ‘ Name N‘ Multiplications ‘ Additions ‘ Multiactions |shape
Group-like polyadic algebraic structures
n-ary magma y Hn :
(or groupoid) 1) Mo M" — M
n-ary semigroup || o |y #n :
(and monoid) ST — S
n-ary quasigroup L
and loo —
(mdloop) || @ |M gnoq
n-ary group 1, G |1 G#: a
Ring-like polyadic algebraic structures
R, Hn - Um :
(m,n)-aryring |1| R |2 R R R R
(m,n)-ary field |1| K |2 K,f"n_; % K,,l;m_; %
Module-like polyadic algebraic structures
Module o o o ok
o 4 n: m: mas - P
(m O:l(;r-rinv 2| M R"— R R"™ — R [M™M — M|RFo x M — M
Vector space o1
ovcrp 2l KV la Oy Kmp - Uy Pk, (3.13)
’ K"K - K K™K - K| V™W V| Kk x v 5 V| (3.19)

(mp,ng)-field
Algebra-like polyadic algebraic structures

Inner pairing space o N-Form o S P (5.5)
over 2K,V 5| K | {e.e): MK - my - o (5.6)

’ LI . m; my k
(my,ng)-field K= K vV 5 K KT = K VIV =V KR x V=V (5.7)

(mg,n4)-algebra

or Ing - Hn g Fmp Vmy - Phy - ‘
over 2| K,A|5 KK s K| A" s A K s KL A s A | i s A s A (3.29)
(mp, ng)-field K
ME,NK) -

To conclude, we present the resulting Table 5.1 in which the polyadic algebraic
structures are listed together with their arity shapes.
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Applications

6. Elements of polyadic operator theory

Here we consider the 1-place polyadic operators T = Fy,—; (the case kp =
1 of the mapping Fj, in Definition 4.2) on polyadic inner pairing spaces and
structurally generalize the concepts of adjointness and involution.

Remark 6.1. A polyadic operator is a complicated mapping between polyadic
vector spaces having nontrivial arity shapes (4.3) which is actually an action on
a set of “vectors”. However, only for kr = 1 it can be written in a formal way
multiplicatively, as is always done in the binary case.

Recall (to fix notations and observe analogies) the informal standard intro-
duction of the operator algebra and the adjoint operator on a binary pre-Hilbert
space H (= Hmp=2nx=2,my=2,k,=1,N=2) over a binary field K (= Ky ;o=2 nyx=2)
(having the underlying set {K;V}). For the operator norm |[e||, : {T} — K, we
use (among many others) the definition

[Tl = inf{M € K [vv eV [Tv] <M ][}, (6.1)

which is convenient for further polyadic generalization. Bounded operators have
M < co. If on the set of operators {T} (as 1-place mappings V — V) one defines
the addition (+7), product (or) and scalar multiplication (-7) in the standard
way:

(T1 471 T2) (v) = T1v + Tav,
(T1 or TQ) (V) = T1 (TQV) s
A7T)(v) =A(Tv), AeK, veV,

then ({T} | +7,o0r|1) becomes an operator algebra Az (associativity and dis-
tributivity are obvious). The unity I and zero Z of A (if they exist) satisfy

Iv=yv, (6.2)
Zv=zy, VveEV,

“zero-vector”.

respectively, where zy € V is the polyadic

The connection between operators, linear functionals and inner products is
given by the Riesz representation theorem. Informally, it states that in a binary
pre-Hilbert space H ={K;V} a (bounded) linear functional (sesquilinear form)

L:V xV — K can be uniquely represented as
L (vi,v2) = (Tvi[va) gy » V1,V2 €V, (6.4)

where ((e[e)). : VxV — K is a (binary) inner product with standard properties
and T : V — V is a bounded linear operator such that the norms of L and T
coincide. Because the linear functionals form a dual space (see Subsection 4.1),
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the relation (6.4) fixes the shape of its elements. The main consequence of the
Riesz representation theorem is the existence of the adjoint: for any (bounded)
linear operator T : V — V there exists a (unique bounded) adjoint operator T* :
V — V satisfying

L (Vl, V2) = <<TV1 |V2>>sym = <<V1 ‘T*V2>>sym y Vi,Vg € V, (65)

and the norms of T and T* are equal. It follows from the conjugation symmetry
of the standard binary inner product that (6.5) coincides with

<<V1|TV2>>sym = <<T*V1|V2>>sym , Vi,vg € V. (66)

However, when ((e|e)) has no symmetry (permutation, conjugation, etc., see,
e.g., [36]), it becomes the binary (N = 2) inner pairing (5.1), the binary adjoint
consists of 2 operators (T*12) # (T*2), T*J : V — V, which should be defined
by 2 equations

(Tvilva)) = (v1|T**?va)),
{(v1|Tva)) = (T*'vy|va)),

where (x12) # (x21) are 2 different star operations satisfying 2 relations

T*12*21 = T (6.7)
T** 12 = T (6.8)
If ((o]@)) = ((o]|e)) sym 1S symmetric, it becomes the inner product in the pre-Hilbert

space ‘H and equations (6.7), (6.8) coincide, while the operation (%) = (*12) =
(*21) stands for the standard involution

T =T. (6.9)

6.1. Multistars and polyadic adjoints. Consider now a special case of
the polyadic inner pairing space (see Definition 5.6)

N

——
Honsenscomy ot N = {5V | O, i Viny | pr=t | ol o))
with a 1-place multiaction pg,—1.

Definition 6.2. The set of 1-place operators T : V — V together
with the set of “scalars” K becomes a polyadic operator algebra Ap =
(KGATY | 0mges Bnge s Mg s Wnyp | Okp=1) if the operations 7y, wn,, Ok.—1 are de-
fined by

Dmp [T1, T2, .o, Tyl (V) = vy [Ty, Tov, ..., Ty V], (6.10)
wny [T1,To, ..., Tyl (v) = T1 (Ta. .. (Th,v)), (6.11)
Okp=1 AN | T} (V) = pp,=1 {A | TV}, Ne€ K, veV. (6.12)
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The arity shape is fixed by

Proposition 6.3. In the polyadic algebra Ar the arity of the operator ad-
dition mr coincides with the “vector” addition of the inner pairing space my,
i.€.,

mr =my. (6.13)

Proof. The proof follows from (6.10). O

To get relations between operators we assume (as in the binary case) the
uniqueness: for any Ty, Ts : V — V it follows from

<<V1|V2‘ PN |T1Vi| PN VNfl‘VN» == <<V1|V2| e |T2Vi| e VN,1|VN>> (614)

that Ty = Ts in any placet =1,..., N.
First, by analogy with the binary adjoint (6.5), we define N different adjoints
for each operator T.

Definition 6.4. Given a polyadic operator T : V — V on the polyadic inner
pairing space Hy g my k,—1,8, We define a polyadic adjoint as the set {T*i}
of N operators T*i satisfying the following N equations:

(Tvi|valvs|...lva) = ((vi|T*2va|vs|...|vN)),
{vi|Tvalvs|...|lva) = (vi|vo| T*#vs3|... lvN)),
{(vilva|vs|... TvN_1|vN) = (vi|va|vs| ... |T*N-LNvn ),
(vilvavs] ... vn_1|Tvy) = (T*Ntvy|va|vs] ... vy, v; € V. (6.15)

In what follows, for the composition we will use the notation (T*i ) =

T*ii*kt From (6.15), we have the N relations:
M
*12%23%34.. kN1, N*N,1 __
T =T,

T*23*34-~-*N—1,N*N,1*12 — T,

T*N,1*12*23*34~~~*N71,N =T

) (6.16)
which are called multistar cycles.

Definition 6.5. We call the set of adjoint mappings (e*i) : T — T*i a
polyadic involution if they satisfy the multistar cycles (6.16).

If the inner pairing ((e|...|e)) has more than two places N > 3, we have some
additional structural issues which do not exist in the binary case.

First, we observe that the set of the adjointness relations (6.15) can be de-
scribed in the framework of the associativity quiver approach introduced in [16]
for polyadic representations. That is, for general N > 3 in addition to (6.15)
which corresponds to the so called Post-like associativity quiver (they will be
called the Post-like adjointness relations), there also exist other sets. It is cum-
bersome to write additional general formulas like (6.15) for other non-Post-like
cases, so instead we give a clear example for N = 4.
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Example 6.6. The polyadic adjointness relations for NV = 4 consist of the sets
corresponding to different associativity quivers:

1) Post-like adjointness relations 2) Non-Post-like adjointness relations
{Tvilvalvs|va)) = (vi|T***va|vs|va)),  (Tvi|va|valva)) = {vi|valvs| T va)) ,
{(vi|Tvalvs|va)) = (vilve| T vs|va)), = ((vi|va| T*vs|vy)) ,
{(vilva|Tvslva)) = (vilva|vs|T**va)),  (vilve|Tvs|va)) = (vi|T**valvs|va))

{valvalvs|Tva)) = (T™'va|valvslva)),  (vi|Tvalvslva)) = (T*'v1|valvs|va)

V1 ‘VQ’V3|TV4>>

and the corresponding multistar cycles:

1) Post-like multistar cycles 2) Non-Post-like multistar cycles
T*12%23%34%41 T, TX14%43%32%21 — T,
Tr2s*sa*xa1%12 — T, T*43*32%21%14 T,
T*3axa1x12%23 T, T 32%21%14%43 T,
T*41%¥12%23%34 T, T 21%14%43%32 _— .

Thus, if the inner pairing has no symmetry, then both the Post-like and non-
Post-like adjoints and corresponding multistar involutions are different.

Second, in the case of N > 3, any symmetry of the multiplace inner pairing
restricts the polyadic adjoint sets and multistar involutions considerably.

Theorem 6.7. If the inner pairing with N > 3 has the full permutation
symmetry
(vilve|...|vn) = (ovi|ova|...|lovn)), o € G,

where Sy is the symmetric group of N elements, then:

1. All the multistars coincide (x;5) = (xp) = (%) for any allowed i, j, k,l =
1,...,N;

2. All the operators are self-adjoint T = T*.

Proof. 1. In each adjointness relation from (6.15), we place the operator T
in the Lh.s. to the first position and its multistar adjoint T*¥ to the second
position, using the full permutation symmetry, which together with (6.14) gives
the equality of all multistar operations.

2. We place the operator T in the Lh.s. to the first position and apply the
derivation of the involution in the binary case to increasing cycles of size ¢+ < N
recursively, that is:

For ¢ = 2,

(Tt valval .. o) = (it T™valva] .- lvr) = (T"valvivs] . Jvw)
= ((vo|T* v1|vs| ... |vN) = (T vi|va|vs|...|vN ),

then, using (6.14), we get
T = T, (6.17)
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as in the standard binary case. However, for N > 3 we have N higher cycles in
addition.

For ¢ = 3,
(Tvi|valvs| ... |va) = (vi| T valvs| ... |va) = (THva|vs|vi]...|vN))
= ((va|T* v3|v1]| ... [va) = (T v3lvi|va| ... |va))
= <<V3’T***V1‘V2’ e ‘VN>> = <<T***V1‘V2’V3| e ’VN» y

which together with (6.14) gives
T — T***7

and after using (6.17),
T = T*, (6.18)

*
’

Similarly, for an arbitrary length of the cycle i we obtain T = T**---
which should be valid for each cycle recursively with ¢ = 2,3,..., N. Therefore,
for any N > 3 all the operators T are self-adjoint (6.18), while N = 2 is an
exceptional case when we have T = T** (6.17) only. O

Now we show that imposing a partial symmetry on the polyadic inner pairing
will give more interesting properties to the adjoint operators. Recall that one of
the possible binary commutativity generalizations of (semi)groups to the polyadic
case is the semicommutativity concept, when in the multiplication only the first
and last elements are exchanged. Similarly, we introduce

Definition 6.8. The polyadic inner pairing is called semicommutative if
<<V1‘V2’V3| c. |VN>> = <<VN‘V2’V3| . ’Vl» , V; €V. (619)

Proposition 6.9. If the polyadic inner pairing is semicommutative, then
for any operator T (satisfying Post-like adjointness (6.15)) the last multistar
operation (xn.1) is a binary involution and is a composition of all the previous
multistars

T*N.1 — T*12*23*34-~-*N—1,N7 6.20)

T*N.*N1 = T, (6.21)

Proof. 1t follows from (6.15) and (6.19), that

<<V1|V2‘V3’ e ‘TVN» = <<TVN’V2|V3| . |V1>>
= <<VN‘V2’V3| S ’T*12*23*34~--*N—1,NV1>>
= <<T*12*23*34M*N_1’NV1’V2|V3‘ . |VN>>
= <<T*N,1V1‘V2’V3| . ’VN» ,

which after using (6.14) gives (6.20), (6.21) follows from the first multistar cocycle
in (6.16). O
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The adjointness relations (6.15) (of all kinds) together with (6.12) and (6.13)
allow us to fix the arity shape of the polyadic operator algebra Ap. We will
assume that the arity of the operator multiplication in Ap coincides with the
number of places of the inner pairing N (5.1),

np = N, (6.22)

=

because it is in agreement with (6.15). Thus, the arity shape of the polyadic
operator algebra becomes

Ap = <K7 {T} | Omp s Bng s Imr=my s Wnr=N | 9kp:k:,;:1>-

Definition 6.10. We call the operator algebra A, which has the arity np =
N, a nonderived polyadic operator algebra.

Let us investigate some structural properties of Apr and types of polyadic
operators.

Remark 6.11. We can only define, but not derive as in the binary case, the ac-
tion of any multistar (%;;) on the product of operators, because in the nonderived
np-ary algebra we have a fixed number of operators in a product and sum, that
is, ¢ (np — 1)+ 1 and ¢” (mp — 1) 4+ 1, correspondingly, where ¢’ is the number of
np-ary multiplications and ¢ is the number of mp-ary additions. Therefore, we
cannot transfer (one at a time) all the polyadic operators from one place in the
inner pairing to another place, as in the standard proof for the binary case.

Taking this into account, as well as consistency under the multistar cycles
(6.16), we arrive at the following definition

Definition 6.12. The fixed multistar operation acts on the ¢ = 1 product
of np polyadic operators, depending on the sequential number of the multistar
(%45) (for the Post-like adjointness relations (6.15))

i+5—-1 L
— if3 < <2N —1
sij 1= 2 oSty s . sy=12...,N—1,N, (623
N ifij=N
in the following way:

(WnT [Tla T27 o 7TTLT—17 TnT])*ij

*ij *ij *ij *ij .
~Jwng [Tof, T2, TS, T7] sy 0dd, (6.24)
- *ij rpkij *ij *ij - )
Whp [T1 , Ty 7...,TnT_l,TnT] ,  Sij even.

A rule similar to (6.24) holds also for non-Post-like adjointness relations,
but their concrete form depends on the corresponding non-Post-like associative
quiver.

Sometimes, to shorten notation, it is more convenient to mark a multistar by
the sequential number (6.23) such that (%) = (%s,;), €-8- (*23) = (*2), (<n1) =
(*n), etc. Also, in the examples, for the ternary multiplication we will use the
square brackets without the name of operation if it is clear from the context, e.g.,
w3 [Tl, Ty, Tg] = [Tl, Ty, Tg], etc.
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Example 6.13. In the lowest ternary case, N = 3, we have:

1) Post-like adjointness relations  2) Non-Post-like adjointness relations
{(Tvilva|vs)) = {(v1|T" va|vs)) (Tvi|valvs)) = (vi|va|T™vs)),
{(vi|Tv2|vs) = ((vi|v2|T*vs)) {(vilva| Tvz)) = ((v1|T*va|vs)) ,
{(vilv2|Tvs)) = (T*vi|va|vs)) (Vi Tvalvs)) = (T* vi|va|vs))

and the corresponding multistar cycles:

1) Post-like multistar cycles 2) Non-Post-like multistar cycles
T*1*e*s — T, Trs*ex1 — T,
T*2*3*1 = T, T*2*1*s = T,
T*s*1*2 — T, T*1*3%2 — .

Using (6.24), we obtain the ternary conjugation rules:

([T1, T2, T3))™
([T1, To, T3])*
([T, T2, T3])*

T3, T3, Ty
[Ty?, T5*, T37].
[ngv T;S’ T‘{g] ’

which are common for both Post-like and non-Post-like adjointness relations
1), 2).

Definition 6.14. A polyadic operator T is called self-adjoint if all multistar
operations are identities, i.e., (%;;) = id for all 4, j.

6.2. Polyadic isometry and projection. Now we introduce polyadic
analogs for the following important types of operator: isometry, unitary, and
(orthogonal) projection. Taking into account Remark 6.11, we again cannot
move operators singly, and instead of proving the operator relations, as is usually
done in the binary case, we can only exploit some mnemonic rules to define the
corresponding relations between polyadic operators.

If the polyadic operator algebra Az contains a unit I and zero Z (see (6.2),
(6.3)), we define the conditions of polyadic isometry and orthogonality:

Definition 6.15. A polyadic operator T is called a polyadic isometry if it
preserves the polyadic inner pairing

<<TV1’TV2‘TV3| . |TVN>> = <<V1’V2|V3‘ ‘e |VN>> s (625)
and satisfies

*N—1,N *N—-2,N—1*N—1,N
Whyp [THN-1N T*N-2,

T*23*34~~~*N—2,N—1*N71,N7T*12*23*34--~*N72,N71*N71,N’T] — I,

+ (N — 1) cycle permutations of multistars in the first (N — 1) terms. (6.26)
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Remark 6.16. If the multiplication in Ap is derived and all multistars are
equal, then the polyadic isometry operators satisfy some kind of N-regularity [20]
or regular N-cocycle condition [19].

Proposition 6.17. The polyadic isometry operator T preserves the polyadic
norm

ITvly = lIvlly, veV. (6.27)

Proof. 1t follows from (5.8) and (6.25) that

nNkK nKg
fnge 1TVl 1TVl s VI | = g [V VI s VI ]
which gives (6.27) when ng = N. O

Definition 6.18. If for NV polyadic operators T; we have
<<T1V1‘T2V2’T3V3| C. |TNVN>> =ZzKg, V;€E V,

where zx € V is the zero of the underlying polyadic field K then we say

that T; are (polyadically) orthogonal, and they satisfy

ME,NK

*N—1,N *N—2 N—1*N—1,N
wny [T] , T, .

T*23*34~--*N—2,N—1*N71,N T*12*23*34-~~*N72,N71*N—1,N T -7
3 » tTN—1 » EN| = A

+ (N — 1) cycle permutations of multistars in the first (N — 1) terms. (6.28)
The polyadic analog of projection is given by
Definition 6.19. If a polyadic operator P € Ar satisfies the polyadic idem-

potency condition
nr

wn, [P, P, P] =P, (6.29)

then it is called a polyadic projection.

By analogy with the binary case, polyadic projections can be constructed
from polyadic isometry operators in a natural way.

Proposition 6.20. If T € A7 is a polyadic isometry, then

1 * N KN N—1*N—
Pr(I‘):WnT[TaTN 1,N’TN 2,N—1*N l,N’“.

T*23*34---*N72,N—1*N71,N T*12*23*34---*N—2,N71*N—1,N]
) )

+ (N —1) cycle permutations of multistars in the last (N — 1) terms, (6.30)

are the corresponding polyadic projections P%‘), k=1,...,N satisfying (6.29).
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Definition 6.21. A polyadic operator T € Arp is called normal if

*N—1,N *N—-2,N—-1*N—-1,N
Why [THN-LN T*N-2, N

*23%34... %k N—2 N—1*N—-1,N *12%23%34... kN2 N—1*N—-1,N
T . T , T

*N—1,N *N—-2,N—1*N—-1,N
Whyp [T, TAN-LN T*N-2, N

T*23*34~~*N—2,N—1*N71,N T*12*23*34--~*N72,N71*N71,N]
) b

+ (N — 1) cycle permutations of multistars in the (N —1) terms.

Proof. Insert (6.30) into (6.29) and use (6.26) together with np-ary associa-
tivity. O

Definition 6.22. If all the polyadic projections (6.30) are equal to unity

PSI"€ ) = I, then the corresponding polyadic isometry operator T is called a polyadic
unitary operator.

It can be shown that each polyadic unitary operator is querable (“polyadically
invertible”) such that it has a querelement in Arp.

6.3. Towards a polyadic analog of C*-algebras. Let us, first, generalize
the operator binary norm (6.1) to the polyadic case. This can be done provided
that a binary ordering on the underlying polyadic field K can be introduced.

MK MK

Definition 6.23. The polyadic operator norm |[e||, : {T} — K is defined
by

’l’lK—l

T = inf {M €K [Ny ITVx < ping [M, ..., M],Wv e v}, (6.31)

where ||o]| 5 is the polyadic norm in the inner pairing space Hpmy nymy k,=1,8
and fin, is the ng-ary multiplication in K, -

Definition 6.24. The polyadic operator norm is called submultiplicative if
lewnr [T1, T2, oo, Tl < ptnse [ITall s T2l [T ]
nry =ng.

Definition 6.25. The polyadic operator norm is called subadditive if

”an [T17 T, ..., THT]HT < Vmg [HT1HT7 HT2||T PR ||TmKHT] )
mr =mg.

By analogy with the binary case, we have

Definition 6.26. The polyadic operator algebra Ar equipped with the sub-
multiplicative norm ||e||, is a polyadic Banach algebra of operators Br.

The connection between the polyadic norms of operators and their polyadic
adjoints is given by
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Proposition 6.27. For polyadic operators in the inner pairing space

HmKJLK’mV’kp:l’N:
1. The following N multi-C*-relations

HWNT [T*Nfl,N’ T*N72,N71*N71,N7 .

T*23*34-~~*N—2,N—1*N—1,N’ T*12*23*34~~-*N—2,N—l*N—l,N7 TN] ”
ng
= ting [Tl I Tl 1Tl ]
+ (N —1) cycle permutations of (N — 1) terms with multistars, (6.32)

take place if np = ng.
2. The polyadic norms of operator and its all adjoints coincide

|T*|p = |T|lp, ij5€1,...,N.

Proof. Both statements follow from (6.15) and the definition of the polyadic
operator norm (6.31). O

Therefore, we arrive at

Definition 6.28. The operator Banach algebra Br satisfying the multi-C*-
relations is called a polyadic operator multi-C*-algebra.

The first example of a multi-C*-algebra (as in the binary case) can be con-
structed from one isometry operator (see Definition 6.15).

Definition 6.29. A polyadic algebra generated by one isometry operator
T satisfying (6.26) on the inner pairing space Hpy ny my k,=1,N Tepresents a
polyadic Toeplitz algebra T, n, and has the arity shape my = my, np = N.

Example 6.30. The ternary Toeplitz algebra 733 is represented by the oper-
ator T and the relations:
[T*, T T] =1,
[T*2, T**2 T| =1,
[T*3, T2 T| = 1.
Example 6.31. If the inner pairing is semicommutative (6.19), then (x3) can
be eliminated by
T = T**2 (6.33)
T =T, (6.34)

and the corresponding relations representing 733 become
[T, T*, T] =1,
[T*2, T2 T] =1,
[T**2, T*2 T] =1L
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Let us consider M polyadic operators T1To...T); € Br and the related
partial (in the usual sense) isometries (6.29) which are mutually orthogonal (6.28).
In the binary case, the algebra generated by M operators, such that the sum of
the related orthogonal partial projections is unity, represents the Cuntz algebra
O [12].

Definition 6.32. A polyadic algebra generated by M polyadic isometric
operators T1 Ty ... Ty € By satisfying
) [P(k) PP PP =1 k=1..,N

mr T+ To

where ngi) are given by (6.30) and 177(5‘}) is a “long polyadic addition” (6.10),

represents a polyadic Cuntz algebra pO |y, np» Which has the arity shape
M:Ea(mT—l)—i-l,
where £, is the number of “mp-ary additions”.

Below we will use the same notations as in Example 6.13, also the ternary
addition will be denoted by (+3) as follows: 53 [T, Ty, T3] = T +3 T2 +3 T3.

Example 6.33. In the ternary case mr = ny = 3 and one ternary addition
Ly = 1, we have M = 3 mutually orthogonal isometries Ty, Ty, T3 € Br and
N = 3 multistars (x;). In the case of the Post-like multistar cocycles 1), 2), they
satisfy:

Isometry conditions Orthogonality conditions
[T, T, Ty =1, [T}, T, Ty] = Z,
(T3, T3, T = 1, (T2, T2, Ty] = Z,
(T3, T3, T = 1, (T3, T, Ty = Z,
1=1,2,3, i,j,k=1,2,3, i # j #k,

and the (sum of projections) relations:

[Ty, T}, T1**] 43 [T, T5', T5**'] 43 [T3, T3, T5*"]
[Ty, T7?, T1'*?] 43 [T, T5?, T5'**] 43 [T3, T3>, T3]
[Ty, TP, T1***] 43 [T, T5?, T5***] 43 [T3, T3, T5>™]

I
L
I

I

which represent the ternary Cuntz algebra pOss 3.

Example 6.34. In the case where the inner pairing is semicommutative (6.19),
we can eliminate the multistar (x3) by (6.33) and represent the two-multistar
ternary analog of the Cuntz algebra pOg3 3 by

T3 T T =1 T TR T =2,

[T;Q ) T:I*Qv TZ] = I’ {le ’ T;I*Qa Tk} = Za
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[T:I*Q’ T;(Q’ Tl] = I’ T;1*27T;27 Tk = Z,
1=1,2,3, i,J,k=1,2,3, i #j #k,
and
[Tla TT17TT1] +3 [T2> T*2(1’T*2(1] +3 [T3>T§17T§1]

[Ty, TP, T77°] +3 [T2, T3?, T3] +3 [T, T3, T3]
[Tla TT1*2) TIQ] +3 [T27 Tgl*Qa T;Q] +3 [T37 T§1*27 T§2]

9

I
L
I

7. Congruence classes as polyadic rings

Here we will show that the inner structure of the residue classes (congruence
classes) over integers is naturally described by polyadic rings [8,10,31], and then
study some special properties of them.

Denote a residue class (congruence class) of an integer a, modulo b by

la]l, ={{a+ bk} |k€Z, acZi, beN, 0<a<b-—1}. (7.1)

For the residue class, we use the notation [[a]],, because the standard notations
by one square bracket [a], or @, are already used for n-ary operations and querele-
ments, respectively. A representative element of the class [[a]], will be denoted
by zp = 2@ — ¢ + bk. Here we do not consider the addition and multiplication
of the residue classes (congruence classes). Instead, we consider the fixed congru-
ence class [[a]],, and note that for arbitrary a and b, it is not closed under binary

operations. However, it can be closed with respect to polyadic operations.

7.1. Polyadic ring of integers. Let us introduce the m-ary addition and
n-ary multiplication of representatives of the fixed congruence class [[a]], by
Um [Thys Thys« - oy T ] = Ty + Thy + +++ + Tk, (7.2)

Hn [xk17mk27 S 7xkn] = Tpy Thy * Thyy  Thy € Hanbv ki € Z, (7'3)

where in the r.h.s. the operations are the ordinary binary addition and the binary
multiplication in Z.

Remark 7.1. The polyadic operations (7.2), (7.3) are not derived (see, e.g.,
[26,34]), because on the set {z, } one cannot define the binary semigroup struc-
ture with respect to ordinary addition and multiplication. Derived polyadic rings
which consist of the repeated binary sums and binary products were considered
in [31].

Lemma 7.2. In the case

(m—1) % = I™) (a,b) = I = integer, (7.4)

the algebraic structure ([[al], | vm) is a commutative m-ary group.
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Proof. The closure of the operation (7.2) can be written as zy, + o, + ...+
Tk, = Tky, Or ma+0b (ki + ks + ...+ k) = a+bko, and then ko = (m — 1) a/b+
(k1 +ka+ ...+ ky,) from (7.4). The (total) associativity and commutativity of
Vp, follows from those of the addition in the binary Z. Each element xj; has its
unique querelement ¥ = r; determined by the equation (m — 1)z + 2, = xy,
which (uniquely, for any k € Z) gives
a

%:bk@—nw—on—nb

Thus, each element is “querable” (polyadic invertible), and so ([[al]], | vm) is an
m-ary group. ]

Example 7.3. For a = 2, b =7, we have an 8-ary group, and the querelement
of Tk 1IST = .’I,'(_2_12k).

Proposition 7.4. The m-ary commutative group ([[al], | Vm):

1) has an infinite number of neutral sequences for each element;

2) ifa #0, it has no “unit” (which is actually zero, because vy, plays the role
of “addition”);

3) in the case of the zero congruence class [[0]],, the zero is xj, = 0.

Proof. 1) The (additive) neutral sequence n,,_; of the length (m — 1) is de-
fined by vy, [pm—1,2k] = zk. Using (7.2), we take Ny—1 = Tpy + Thy + ... +
Tk = 0 and obtain the equation

m—1
(m—1)a+b(ky+ke+ ...+ kn-1)=0. (7.5)

Because of (7.4), we obtain

k14 ka4 ...+ kpoy = =10 (a,b), (7.6)

and so there is an infinite number of sums satisfying this condition.
m—1

2) The polyadic “unit”/zero z = x, = a + bk satisfies vy, [m, xR =
zy, for all z;, € [[a]], (the neutral sequence N, consists of one element z only),
which gives (m — 1) (a + bko) = 0 having no solutions with a # 0 since a < b.

3) In the case of a = 0, the only solution is z = zj—g = 0. ]

Example 7.5. For the case a = 1, b = 2, we have m = 3 and 1) (1,2) =
1, and so from (7.5) we get k1 + ko2 = —1, thus the infinite number of neutral
sequences consists of 2 elements ny = x + x_1_k, with arbitrary k € Z.

Lemma 7.6. If

n

a’ —a

b

= J™ (a,b) = J = integer, (7.7)

then ([[al], | pn) s a commutative n-ary semigroup.
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Proof. Tt follows from (7.3) that the closeness of the operation pu, is
Ty Ty - - - Thy, = Thy, Which can be written as a” + b (integer) = a + bko lead-
ing to (7.7). The (total) associativity and commutativity of u, follows from
those of the multiplication in Z. ]

Definition 7.7. A unique pair of integers (I, J) is called a (polyadic) shape
invariants of the congruence class [[al],.

Theorem 7.8. The algebraic structure of the fixed congruence class [[a]], is
a polyadic (m,n)-ring

R'I[’?L:l:’l], = <[[a“b | Vs fin) (7.8)

where the arities m and n are minimal positive integers (more than or equal to 2),
for which the congruences

ma = a (modb) (7.9)
a" = a (mod b) (7.10)

take place simultaneously, fixating its polyadic shape invariants (I,J).

Proof. By Lemmas 7.2, 7.6, the set [[a]], is an m-ary group with respect to
“m~ary addition” v, and an n-ary semigroup with respect to “n-ary multiplica-
tion” i, while the polyadic distributivity (2.1)—(2.3) follows from (7.2) and (7.3)
and the binary distributivity in Z. O

Remark 7.9. For a fixed b > 2, there are b congruence classes [[a]],, 0 < a <
b — 1, and therefore exactly b corresponding polyadic (m,n)-rings R%’ﬂ, each of

them 1is infinite-dimensional.

Corollary 7.10. For the case ged (a,b) = 1 and b is prime, there exists the
solution n = b.

Proof. The proof follows from (7.10) and Fermat’s little theorem. O

Remark 7.11. We exclude from consideration the zero congruence class [[0]],,
because the arities of operations vy, and u, cannot be fixed up by (7.9), (7.10)
becoming identities for any m and n. Since the arities are uncertain, their minimal
values can be chosen m = n = 2, and therefore, it follows from (7.2) and (7.3)

that R[Q%b] = Z. Thus, in what follows we always imply that a # 0 (without using
a special notation, e.g., R*, etc.).

In Table 7.1, we present the allowed (by (7.9), (7.10)) arities of the polyadic

ring RL?L’,Z;% and the corresponding polyadic shape invariants (I, .J) for b < 10.

Let us study the properties of R[T?L’f;l in more detail. First, we consider equal
arity polyadic rings and find the relation between the corresponding congruence

classes.
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Proposition 7.12. The residue (congruence) classes [[a]], and [[a']],, which

are described by the polyadic rings of the same arities R%ﬂ and R%;IZI] are related

by

br bl
a +J = (a+bJ)s? (7.12)
Proof. Follows from (7.4) and (7.7). O

For instance, in Table 7.1 the congruence classes [[2]]5, [[3]]5, [[2]]19, and [[8]];,
are (6,5)-rings. If, in addition, a = o/, then the polyadic shapes satisfy
I

L_r 1
J T (7.13)

7.2. Limiting cases. The limiting cases a = 1 (mod b) are described by

Corollary 7.13. The polyadic ring of the fixed congruence class [[a]], is:

1)  multiplicative binary if a = 1;
2) multiplicative ternary if a = b—1;

3) additive (b+ 1)-ary in both cases.

That is, the limiting cases contain the rings Rl[aibl] 5 and Rg:lléb]. They correspond

to the first row and the main diagonal of Table 7.1. Their intersection consists
of the (3,2)-ring Rg{ﬁ.

Definition 7.14. The congruence classes [[1]], and [[b — 1]], are called the
limiting classes, and the corresponding polyadic rings are named the limiting
polyadic rings of a fixed congruence class.

Proposition 7.15. In the limiting cases a = 1 and a = b — 1, the n-ary
semigroup ([[all, | pn):

1) has the neutral sequences of the form fp,_1 = xp, Tk, ... Tk, , = 1, where
Tk, = :tl,‘
2) has

a)the unit e = xp—1 = 1 for the limiting class [[1]],,
b)the unit e~ = xp——1 = —1, if n is odd, for [[b— 1]],,

c)the class [[1]], contains both polyadic units e and e~ ;

3) has the set of “querable” (polyadic invertible) elements which consists of & =
xry = £1;

4) has in the “intersecting” case a = 1, b = 2 and n = 2 the binary subgroup
Zs = {1,—1}, while other elements have no inverses.



Arity Shape of Polyadic Algebraic Structures 43

Proof. 1) The (multiplicative) neutral sequence ni,,_1 of length (n — 1) is de-
fined by py, -1, 2k = z. It follows from (7.3) and cancellativity in Z that
n,—1 =K Tk, .- - Tk, _, = 1, which is

(a+ bky1) (a + bks2) ... (a+ bky—1) = 1. (7.14)
The solution of this equation in integers is the following: a) all multipliers are
a+bk;=1,9i=1,...,n— 1; b) an even number of multipliers can be a + bk; =
—1, while the others are 1.
2) If the polyadic unit e = =z, = a + bk; exists, it should satisfy
n—1
tmle e, ..., e x| = xp Vo € ([[a]], | tn), such that the neutral sequence f,_;

consists of one element e only, and this leads to (a + bkzl)n_1 = 1. For any n, this
equation has the solution a+bk; = 1, which uniquely gives a = 1 and k; = 0, thus
e = T,—0 = 1. If n is odd, then there exists a “negative unit” e~ = -1 =
—1, such that a + bk; = —1, which can be uniquely solved by k; = —1 and a =

n—1
—_—~
b — 1. The neutral sequence becomes n,_1 =¢ ,e ,...,e =1 as a product of

an even number of e~ = —1. The intersection of limiting classes consists of a
single class [[1]],, and therefore it contains both polyadic units e and e™.

3) An element z in ([[a]], | #n) is “querable”if there exists its querelement

n—1

Z = xj, such that ,un[m, Z] = x. Using (7.3) and the cancellativity
in Z, we obtain the equation (a + bk:)"_2 (a + bE) = 1, which in integers has 2
solutions: a) (a +bk)" 2 = 1 and (a+bk) = 1, the last relation fixes up the
class [[1]],, and the arity of multiplication n = 2, and therefore the first relation
is valid for all elements in the class, each of them has the same querelement = =
1. This means that all elements in [[1]], are “querable”, but only one element x =
1 has an inverse which is also 1; b) (a + bk)" 2 = —1 and (a+bk) = —1. The
second relation fixes the class [[b — 1]],, and from the first relation we conclude
that the arity n should be odd. In this case, only one element —1 is “querable”,
which has £ = —1 as a querelement.

4) The “intersecting” class [[1]], contains 2 “querable” elements 1 coinciding
with their inverses, which means that {+1, —1} is a binary subgroup (that is Zs)
of the binary semigroup ([[1]]5 | p2)- O

Corollary 7.16. In the non-limiting cases a # 1,b — 1, the n-ary semigroup
([[a]ly | pn) contains no “querable” (polyadic invertible) elements at all.

Proof. 1t follows from (a + bk) # £1 for any k € Z or a # +1 (mod b). O

Basing on the above statements, consider the properties of the polyadic rings

L?{ffa]b (a # 0) describing non-zero congruence classes (see Remark 7.11).

Definition 7.17. The infinite set of representatives of the congruence

(residue) class [[a]], having fixed arities and forming the (m,n)-ring RLZ’,%] is

called the set of (polyadic) (m,n)-integers (numbers) and denoted by Z, ,,)-
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Table 7.1: The polyadic ring R%ﬁ{b) of the fixed residue class [[a]],: arity shape.
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[a,b]

Z(32), and they form the binary ring
Proposition 7.18. The polyadic ring Rym)n is an (m,n)-integral domain.

Obviously, for ordinary integers Z

0,1
Ry
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Proof. The proof follows from the definitions (7.2), (7.3), the condition a #
0, and the commutativity and cancellativity in Z. O

Lemma 7.19. There are no such congruence classes which can be described
by polyadic (m,n)-field.

Proof. Follows from Proposition 7.15 and Corollary 7.16. O

This statement for the limiting case [[1]], appeared in [21] while studying the
ideal structure of the corresponding (3, 2)-ring.

Proposition 7.20. In the limiting case a = 1, the polyadic ring Rl[)ljrbl} 5 can

be embedded into a (b+ 1,2)-ary field.

Proof. Because the polyadic ring Rl[jl_;l)l] , of the congruence class [[1]], is an

(b+ 1,2)-integral domain by Proposition 7.18, we can construct in a standard
way the corresponding (b + 1, 2)-quotient ring, which is a (b+ 1,2)-ary field up
to isomorphism as was shown in [11]. By analogy, it can be called the field of
polyadic rational numbers which has the form

1+ bky
Tl Foky

k; € Z.

Indeed, they form a (b + 1, 2)-field, because each element has an inverse under

multiplication (which is obvious) and is additively “querable”, such that the
b

equation for the querelement T becomes vy1[Z,,...,2,Z] = x, which can be
1+ bk

solved for any x, giving uniquely z = — (b — 1) + L O
1+ bko

The introduced polyadic inner structure of the residue (congruence) classes
allows us to extend various number theoretic problems by considering the polyadic
(m,n)-integers Z,, » instead of Z.

8. Equal sums of like powers Diophantine equation over
polyadic integers

First, recall the standard binary version of the equal sums of like powers
Diophantine equation [22,30]. Take the fixed non-negative integers p,q,1 € N,
p < ¢, and the positive integer unknowns w;,v; € Zy, i = 1,...p+ 1, j =
1,1,...qg+ 1, then the Diophantine equation is

p+1 g+1

I+l _ 1+1
g u =) vl (8.1)
i=1 j=1

The trivial case, when u; = 0, v; = 0 for all 7, j, is not considered. In the
binary case, the solutions of (8.1) are usually denoted by (I+1|p+1,¢+1),,
which shows the number of summands on both sides and the powers of elements
[30]. But in the polyadic case (see below), the number of summands and powers
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do not coincide with I + 1, p+ 1, ¢ + 1. We mark the solutions of (8.1) by the
triple (I | p, ¢), showing the quantity of operations, where r (if it is used) is the
order of the solution (ranked by the value of the sum) and the unknowns w;,v;
are placed in ascending order u; < u;y1,vj < vj41.

Let us recall the Tarry—Escott problem (or multigrades problem) [15]: to find
the solutions to (8.1) for an equal number of summands on both sides of p = ¢
and s equations simultaneously, such that [ =0, ...,s. Known solutions exist for
powers until s = 10, which are bounded such that s < p (in our notations), see
also [39]. The solutions with highest powers s = p are the most interesting and
called the ideal solutions [5].

Theorem 8.1 (Frolov [24]). If the set of s Diophantine equations (8.1) with
p = q forl = 0,...,s has a solution {u;,v;,i=1,...p+ 1}, then it has the
solution {a + bu;,a +bv;,i =1,...p+ 1}, where a,b € Z are arbitrary and fized.

In the simplest case (1| 0,1), one term in the Lh.s., one addition in the r.h.s.
and one multiplication, the (coprime) positive numbers satisfying (8.1) are called
a (primitive) Pythagorean triple. For Fermat’s triple (I | 0,1) with one addition
in the r.h.s. and more than one multiplication [ > 2, there are no solutions of
(8.1), which is known as Fermat’s Last Theorem proved in [44]. There are many
solutions known with more than one addition on both sides, where the highest
number of multiplications till now is 31 (S. Chase, 2012).

Before generalizing (8.1) to the polyadic case we note the following.

Remark 8.2. The notations in (8.1) are chosen in such a way that p and ¢ are
the numbers of binary additions on both sides, while [ is the number of binary
multiplications in each term, which is natural for using polyadic powers [16].

8.1. Polyadic analog of the Lander—Parkin—Selfridge conjecture. In
[30], a generalization of Fermat’s Last Theorem was conjectured that the solutions
of (8.1) exist for small powers only, which can be formulated in terms of the
numbers of operations as

Conjecture 8.3 (Lander—Parkin—Selfridge [30]). There exist solutions of
(8.1) in positive integers if the number of multiplications is less than or equal
to the total number of additions plus one

3<Ii<lpsp=p+q+1,
where p+q > 2.

Remark 8.4. If equation (8.1) is considered over the binary ring of integers Z
such that u;,v; € Z, it leads to a straightforward reformulation: for even powers
it is obvious, but for odd powers all negative terms can be rearranged and placed
on the other side.

Let us consider the Diophantine equation (8.1) over polyadic integers Lim,n)
(i.e., over the polyadic (m,n)-ary ring R,Znn) such that w;,v; € R,an. We use
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the “long products” ug) and w(,? containing [ operations and also the “polyadic

power” for an element z € R%%n with respect to the n-ary multiplication [16],

l(n—1)+1

2 = Oz z, T2

(8.2)
In the binary case (n = 2), the polyadic power coincides with (I 4+ 1) power of an
element 22 = 21 which explains Remark 8.2. In this notation the polyadic
analog of the equal sums of like powers Diophantine equation has the form

O, Dy D On ) Dn (UM
A [y = [l ] 89
where p and ¢ are the numbers of m-ary additions in the Lh.s.
and r.h.s., respectively. The solutions of (8.3) will be denoted by
{ul,ug,...,up(m,l)ﬂ;vl,vg,...,fuq(m,l)ﬂ}. In the binary case m = 2,n =
2, (8.3) reduces to (8.1). Analogously, we mark the solutions of (8.3) by the
polyadic triple (1| p, q)fnm’”). Now the polyadic Pythagorean triple (1| 0, 1)(m’"),
having one term in the lLh.s., one m-ary addition in the r.h.s. and one n-ary
multiplication (elements are in the first polyadic power (1),), becomes

Dn Oy Dy (1), ) (8.4)

Uy :Vm[vl yU T, Um

Definition 8.5. Equation (8.4) solved by minimal uj,v; € Z, i = 1,...,m
can be named the polyadic Pythagorean theorem.

The polyadic Fermat’s triple (1 | 0, 1)(m’n) has one term in the Lh.s., one m-ary
addition in the r.h.s. and [ (n-ary) multiplications

= i [ ool 5

One may be interested in whether the polyadic analog of Fermat’s Last The-
orem is valid, and if not, in which cases the analogy with the binary case can be
sustained.

Conjecture 8.6 (Polyadic analog of Fermat’s Last Theorem). The polyadic
Fermat triple (8.5) has no solutions over the polyadic (m,n)-ary ring Rﬁ,n if 1 >
2, i.e., there is more than one n-ary multiplication.

Its straightforward generalization leads to the polyadic version of the Lander—
Parkin—Selfridge conjecture.

Conjecture 8.7 (Polyadic Lander—Parkin—Selfridge conjecture). There exist
solutions of the polyadic analog of the equal sums of like powers Diophantine
equation (8.3) in integers if the number of n-ary multiplications is less than or
equal to the total number of m-ary additions plus one

3<I<lpyrps=p+q+1 (8.6)
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Below we will see a counterexample to both of the above conjectures.

Example 8.8. Let us consider the (3,2)-ring R%Q = (Z | vg, p2), where

vslz,y, 2z =x+y+2+2, (8.7)
p2 [z, y] =zy +x+y. (8.8)

Note that this exotic polyadic ring is commutative and cancellative, having unit
0, no multiplicative inverses, and for any = € 72?2 its additive querelement T =
—x—2, therefore (Z | v5) is a ternary group (as it should be). The polyadic power
of any element is

W2 = (z+ 1) — 1. (8.9)

1) For R%Q, the polyadic Pythagorean triple (1|0, 1)(3’2) in (8.4) now is
ullz = 1 [93<1>2’y<1>27z<1>2 :

which, using (8.2), (8.8) and (8.9), becomes the (shifted) Pythagorean quadruple
[42],
(u+1)?=(+ 1"+ (y+1)° + (e +1)°,

and it has infinite number of solutions, among which two minimal ones
{fu=22=0,y=z2=1}and {u=14;2 =1,y =9,z = 10} give 32 = 12 422 +
22 and 152 = 22 + 102 + 112, respectively.

2) For this (3,2)-ring 7?,%,2, the polyadic Fermat triple (I | 0, 1)(3’2) becomes

w+ )" =@+ D)+ y+ D+ + D (8.10)

If the polyadic analog of Fermat’s Last Theorem 8.6 holds, then there are no
solutions to (8.10) for more than one n-ary multiplication [ > 2. But this is the
particular case, p = 0, ¢ = 2, of the binary Lander—Parkin—Selfridge Conjecture
8.3 which now takes the form: the solutions to (8.10) exist if [ < 3. Thus, as a
counterexample to the polyadic analog of Fermat’s Last Theorem, we have two
possible solutions with numbers of multiplications: [ = 2,3. In the case of [ =
2, there exist two solutions: one well-known solution {u = 5;x =2,y =3,z = 4}
giving 63 = 3% 4- 43 + 53 and another one giving 709% = 1933 4 4613 + 6313 (J.-C.
Meyrignac, 2000), while for [ = 3 there exists an infinite number of solutions, and
one of them (minimal) gives 422481% = 95800* + 217519* + 414560* [23].

3) The general polyadic triple (I | p, q)(3’2), using (8.3), can be presented in
the standard binary form (as (8.1)),

2p+1 2g+1
Z (wi + 1)l+1 = (v + 1)l+1 . UV € L. (8.11)
i=1 j=1

Let us apply the polyadic Lander—Parkin—Selfridge Conjecture 8.7 for this case:
the solutions to (8.11) exist if 3 < I < l,rsp = p+ ¢+ 1. But the binary
Lander—Parkin—Selfridge Conjecture 8.3, applied directly, gives 3 < [ < lpgp =



Arity Shape of Polyadic Algebraic Structures 49

2p + 2q + 1. So, we should have counterexamples to the polyadic Lander—
Parkin—Selfridge conjecture when l,rsp < | < lpsp. For instance, for p =
q = 1, we have [,rsp = 3, while the (minimal) counterexample with [ = 5 is
{ug = 3,up = 18, ug = 21,v; = 9, vy = 14, v3 = 22} giving 3% + 19 + 226 = 106 +-
156 4 236 [43].

As can be observed from Example 8.8, the arity shape of the polyadic ring
Z . . . . . .
R is crucial in constructing polyadic analogs of the equal sums of like powers
conjectures. We can make some general estimations assuming a special (more or
less natural) form of its operations over integers.

Definition 8.9. We call R%w the standard polyadic ring if the “leading
terms” of its m-ary addition and n-ary multiplication are

m

Um|Z,x,. .., 2] ~ mz, (8.12)
n

pnl,x, ... 2] ~x", x € Z. (8.13)

The polyadic ring RgQ from Example 8.8 and the congruence class polyadic

ring R%ﬂ (7.8) are both standard.

Using (8.2), we obtain approximate behavior of the polyadic power in the
standard polyadic ring

2'n ~ :L‘l(”_l)"’l, r€e€Z,leN, n>2. (8.14)

So, the increasing of the arity of multiplication leads to higher powers, while the
increasing of the arity of addition gives more terms in sums. Thus, the estimation
for the polyadic analog of the equal sums of like powers Diophantine equation
(8.3) becomes

(p(m—1)+ 12D L (g(m—1)+1) D+ ez (8.15)

Now we can apply the binary Lander—Parkin—Selfridge Conjecture 8.3 in the
form: the solutions to (8.15) can exist if 3 <1 <lppg, where Ippg is an integer
solution of

(n—1)lps=(@+q)(m—1)+1 (8.16)

On the other hand, the polyadic Lander-Parkin—Selfridge Conjecture 8.7 gives:
the solutions to (8.15) can exist if 3 <[ < [,r,pg = p+q+ 1. Note that (p + ¢q) >
2 now.

An interesting question arises: which arities give the same limit, that is, when

lppps = lps?

Proposition 8.10. For any fixred number of additions in both sizes of the
polyadic analog of the equal sums of like powers Diophantine equation (8.3) p+q >
2, there exist limiting arities mgy and ngy (excluding the trivial binary case, mgy =
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no = 2), for which the binary and polyadic Lander—Parkin—Selfridge conjectures
coincide lprps = lpps such that

mo=3+p+q+(p+qg+1)k, (8.17)
no=2+p+q+@@+qk, ke N°, (8.18)
Proof. To equate lpps = lprps = p+q+1, we use (8.16) and solve in integers

the equation
(no—1)(p+q+1)=(p+q)(mo—1)+1
In the trivial case, mg = ng = 2, this is an identity, while the other solutions can

be found from ng (p+ ¢+ 1) = (p + q) mg + 2, which gives (8.17), (8.18). O

Corollary 8.11. In the limiting case, l,1.ps = lpps, the arity of multiplica-
tion always exceeds the arity of addition

mo—ng=k+1, kGNO,
and they start from mg > 5, ng > 4.

The first allowed arities mg and ng are presented in Table 8.1. Their meaning
is the following.

Corollary 8.12. For the polyadic analog of the equal sums of like powers
equation over the standard polyadic Ting ern,n (with fixed p+ q > 2) the polyadic
Lander—Parkin-Selfridge conjecture becomes weaker than the binary one lyrps >
ILps if:

1) the arity of multiplication exceeds its limiting value ng with the fized arity of
addition;

2) the arity of addition is lower than its limiting value mg with the fized arity
of multiplication.

Table 8.1: The limiting arities mg and ng which give l,r,ps =l pg in (8.15).

lpt+g=2]p+q=3[p+tqg=4]
mo no mo no mo no
5 4 6 5 7 6
8 6 10 8 12 10
11 8 14 11 17 14
14 10 18 14 22 18

Example 8.13. Consider the standard polyadic ring R%i,n and fix the arity

of addition mg = 12, then take in (8.15) the total number of additions p + ¢ =
4 (the last column in Table 8.1). We observe that the arity of multiplication



Arity Shape of Polyadic Algebraic Structures 51

n = 16, which exceeds the limiting arity ng = 10 (corresponding to mg). Thus,
we obtain l,,ps = 5 and I ps = 3 by solving (8.16) in integers, and therefore
the polyadic Lander—Parkin—Selfridge conjecture becomes now weaker than the
binary one, and we do not obtain counterexamples to it as in Example 8.8 (where
the situation was opposite, l,r,ps = 3 and l;,pg = 5, and they could not be equal).

A concrete example of the standard polyadic ring (Definition 8.9) is the
[a,b]

polyadic ring of the fixed congruence class Ry, considered in Section 7, be-
cause its operations (7.2), (7.3) have the same straightforward behavior (8.12),
(8.13). Let us formulate the polyadic analog of equal sums of like powers Dio-
phantine equation (8.3) over Ryf{ﬂ in terms of operations in Z. Using (7.2), (7.3)
and (8.14), for (8.3) we obtain

p(m—1)+1 g(m—1)+1
S (a+bk) T = N (a+ b)Y ab ki€ Z. (8.19)
i=1 j=1

It is seen that the leading power behavior of both sides in (8.19) coincides
with the general estimation (8.15). But now the arity shape (m,n) is fixed by
(7.9), (7.10) and given in Table 7.1. Nevertheless, we can consider for (8.19)
the polyadic analog of Fermat’s Last Theorem 8.6, the Lander—Parkin—Selfridge
Conjecture 8.3 (solutions exist for [ <[y pg) and its polyadic version (Conjecture
8.7, solutions exist for [ < lprs) as in the estimations above. Let us consider
some examples of solutions to (8.19).

Example 8.14. Let [[2]]; be the congruence class, which is described by
4, 3)-ring RL J (see Table 7.1), and we consider the polyadic Fermat’s triple

(
(110,5)*3) (8.5). Now the powers are I;pg = 8, lprps = 6 and, for instance, if
[ = 2, we have solutions, because | < l,1,ps < lpg, and one of them is

14° =4 (=1)° +7-5° + 8 +2.11°,

8.2. Frolov’s theorem and the Tarry—Escott problem. A special set
of solutions to the polyadic Lander—Parkin—Selfridge Conjecture 8.7 can be gen-
erated if we put p = ¢ in (8.19), which we call equal-summand solutions (the
term “symmetric solution” is already taken and widely used [5]), by exploiting
the Tarry—Escott problem approach [15] and Frolov’s theorem 8.1.

Theorem 8.15. If the set of integers k; € 7Z solves the Tarry—FEscott problem

p(m—1)+1 p(m—1)+1
o k=Y K, r=1..,s=Iln-1)+1, (8.20)
i=1 j=1

then the polyadic equal sums of like powers equation with equal summands (8.3)

[a,0]

has a solution over the polyadic (m,n)-ring Ri'n having the arity shape given by
the following relations:
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1. Inequality
In=1)+1<p(m—1); (8.21)

2. FEquality
p(m—1) =2+ (8.22)

Proof. Using Frolov’s theorem 8.1 applied to (8.20), we state that

p(m—1)+1 p(m—1)+1
Z (a+ bk;)" = Z (a+bk;)", r=1,....,s=1(n—-1)+1, (8.23)
i—1 j=1

for any fixed integers a,b € Z. This means that (8.23) with k; (satisfying (8.20))
corresponds to a solution to the polyadic equal sums of like powers equation (8.3)
for any congruence class [[a]],. Nevertheless, the values a and b are fixed by the
restrictions on the arity shape and the relations (7.4) and (7.7).

1. It is known that the Tarry—Escott problem can have a solution only
when the powers are strongly less than the number of summands [5, 15], that
is(l(n—1)+1)+1<p(m—1)+1, which gives (8.21).

2. A special kind of solutions, when the number of summands is equal to 2
into the number of powers, was found using the Thue-Morse sequence [1], which
always satisfies the bound (8.21), and in our notation it is (8.22).

In both cases the relations (8.21) and (8.22) should be solved in positive
integers and with m > 2 and n > 2, which can lead to non-unique solutions. [J

Let us consider some examples which give solutions to the polyadic equal
sums of like powers equation (8.3) with p = ¢ over the polyadic (m, n)-ring R,[fbl;l

of the fixed congruence class [[a]],.

Example 8.16. 1) One of the first ideal (non-symmetric) solutions to the
Tarry—Escott problem has 6 summands and 5 powers (A. Golden, 1944),

0"+ 19" + 25" + 57" + 62" + 86"
= 2" 4 117 440" + 42" + 69" + 85", r=1,...,5. (8.24)
By comparing it with (8.20), we obtain
p(m—1) =5, I(n—1)=4.

After ignoring binary arities, we get m = 6, p = 1 and n = 3, [ = 2. From
Theorem 7.8 and Table 7.1, we observe the minimal choice a = 4 and b = 5.
It follows from Frolov’s theorem 8.1 that all equations in (8.24) have symmetry
ki — a + bk; = 4 4+ 5k;. Thus, we obtain the solution of the polyadic equal sums
of like powers equation (8.3) for the fixed congruence class [[4]]; in the form

4% 4+ 99° + 1295 + 2895 + 314° + 434° = 14° + 59° + 2045 + 214° + 349° + 429°.
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It is seen from Table 7.1 that the arity shape (m = 6,n = 3) corresponds, e.g.,
to the congruence class [[4]];, as well. Using Frolov’s theorem, we substitute in
(8.24) k; — 4 + 10k; to obtain the solution in the congruence class [[4]],,,

45 £ 1945 4+ 2545 + 574° + 6245 + 8645 = 245 4 114° + 404° + 4245 + 6945 + 854°.

2) To obtain the special kind of solutions to the Tarry—Escott problem, we
start with the known one with 8 summands and 3 powers (see, e.g., [32]),

0" +3" +5"+6"+9" +10" +12" + 15"
=1"4+2"+4" 47 +8" +11"4+ 13"+ 14", r=1,2,3. (8.25)

Thus we have the concrete solution to the system (8.20) with the condition (8.22)
which now takes the form 8 = 23, and therefore

p(m—1)=T1, I(n—1)=2.

Excluding the trivial case containing binary arities, we have m = 8, p = 1 and
n =3, =1. It follows from Theorem 7.8 and Table 7.1 that a = 6 and b = 7,
and so the polyadic ring is Rgﬁg]. Using Frolov’s theorem 8.1, we can substitute
the entries in (8.25) as k; — a+ bk; = 6 + 7Tk; in the equation with highest power
r = 3 (which is relevant to our task) and obtain the solution of (8.3) for [[6]], as

follows:

6% + 273 4+ 412 + 483 + 692 + 763 + 90 + 1113
=133 + 203 + 343 4+ 55% + 623 + 832 + 973 + 1043.

We conclude that consideration of the Tarry—Escott problem and Frolov’s
theorem over polyadic rings gives us the possibility to obtain many nontrivial
solutions to the polyadic equal sums of like powers equation for fixed congruence
classes.

Acknowledgment. The author would like to express his deep gratitude and
sincere thankfulness to Joachim Cuntz, Christopher Deninger, Grigorij Kurinnoj,
Mike Hewitt, Jim Stasheff, Alexander Voronov, and Wend Werner for discussions,
and to Dara Shayda for Mathematica programming help.

References

[1] J.-P. Allouche and J. Shallit, The ubiquitous Prouhet—Thue—Morse sequence, Se-
quences and their Applications. Proceedings of the International Conference, SETA
'98, Singapore, December, 1998, Springer, London, 1999, 1-16.

[2] V.D. Belousov, n-Ary Quasigroups, Shtintsa, Kishinev, 1972.

[3] C. Bergman, Universal Algebra: Fundamentals and Selected Topics, CRC Press,
New York, 2012.

[4] D. Boccioni, Caratterizzazione di una classe di anelli generalizzati, Rend. Semin.
Mat. Univ. Padova 35 (1965), 116-127.



o4

Steven Duplij

[5] P. Borwein, The Prouhet—Tarry—Escott problem, Computational Excursions in

[10]
[11]

[12]

T T o

[\V}
w

[\
>

[\V)
ot

Analysis and Number Theory, CMS books in mathematics: 10, Springer-Verlag,
New York, 2002, 85-95.

R. Carlsson, Cohomology of associative triple systems, Proc. Amer. Math. Soc. 60
(1976), 1-7.

R. Carlsson, N-ary algebras, Nagoya Math. J. 78 (1980), 45-56.

N. Celakoski, On (F, G)-rings, Prirod.-Mat. Fak. Univ. Kiril Metodij Skopje Godisen
Zb. 28 (1977), 5-15.

P.M. Cohn, Universal Algebra, Harper & Row, New York, 1965.
G. Crombez, On (n,m)-rings, Abh. Math. Semin. Univ. Hamb. 37 (1972), 180-199.

G. Crombez and J. Timm, On (n,m)-quotient rings, Abh. Math. Semin. Univ.
Hamb. 37 (1972), 200-203.

J. Cuntz, Simple C*-algebras generated by isometries, Comm. Math. Phys. 57
(1977), 173-185.

G. Cupona, On [m, n]-rings, Bull. Soc. Math. Phys. Macedoine 16 (1965), 5-9.

K. Denecke and S.L. Wismath, Universal Algebra and Coalgebra, World Scientific,
Singapore, 2009.

H.L. Dorwart and O.E. Brown, The Tarry—FEscott problem, Amer. Math. Monthly
44 (1937), 613-626.

S. Duplij, Polyadic systems, representations and quantum groups, Visn. Kharkiv.
Nats. Univ. 1017 (2012), No. 3(55), Yadra, Chastynky, Polya, 28-59. Expanded
version available from: arXiv: 1308.4060.

S. Duplij, A “g-deformed” generalization of the Hosszi-Gluskin theorem, Filomat
30 (2016), 2985-3005.

S. Duplij, Polyadic integer numbers and finite (m,n)-fields, p-Adic Numbers, Ultra-
metric Analysis and Appl. 9 (2017), 257-281. Available from: arXiv: 1707.00719.

S. Duplij and W. Marcinek, Semisupermanifolds and regularization of categories,
modules, algebras and Yang-Baxter equation, Nucl. Phys. Proc. Suppl. 102 (2001),
293-297.

S. Duplij and W. Marcinek, Regular obstructed categories and topological quantum
field theory, J. Math. Phys. 43 (2002), 3329-3341.

S. Duplij and W. Werner, Structure of unital 3-fields, preprint, arXiv: 1505.04393.

R.L. Ekl, New results in equal sums of like powers, Math. Comp. 67 (1998), 1309-
1315.

N.D. Elkies, On A* + B* + C* = D* Math. Comp. 51 (1988), 825-835.
M. Frolov, Egalités a deux degrés, Bull. Soc. Math. Fr. 17 (1889), 69-83.
A.M. Gal’'mak, n-Ary Groups, Part 1, Gomel University, Gomel, 2003.

K. Glazek and J. Michalski, On polyadic groups which are term-derived from groups,
Stud. Sci. Math. Hung. 19 (1984), 307-315.

[27] G. Grétser, Universal Algebra, D. Van Nostrand Co., Inc., New York—Toronto, 1968.


https://arxiv.org/abs/1308.4060
https://arxiv.org/abs/1707.00719
https://arxiv.org/abs/1505.04393

Arity Shape of Polyadic Algebraic Structures 55

[28]
[29]

[30]

[31]

32]
[33]
[34]

[35]

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

P. Halmos, Algebraic Logic, Chelsea Publishing, New York, 1962.

L. Iancu and M. S. Pop, A Post type theorem for (m,n) fields, Proceedings of the
Scientific Communications Meeting of “Aurel Vlaicu” University, Arad, Romania,
May 16-17, 1996, Edition III, 14A, “Aurel Vlaicu” Univ. of Arad Publishing Centre,
Arad, 1997, 13-18.

L. Lander, T. Parkin, and J. Selfridge, A survey of equal sums of like powers, Math.
Comput. 21 (1967), 446-459.

J.J. Leeson and A.T. Butson, On the general theory of (m,n) rings., Algebra
Univers. 11 (1980), 42-76.

D.H. Lehmer, The Tarry—Escott problem, Scripta Math. 13 (1947), 37—41.
W.G. Lister, Ternary rings, Trans. Amer. Math. Soc. 154 (1971), 37-55.

J. Michalski, On J-derived polyadic groups, Mathematica (Cluj) 30 (53) (1988),
149-155.

P.W. Michor and A.M. Vinogradov, n-ary Lie and associative algebras, Rend. Sem.
Mat. Univ. Pol. Torino 54 (1996), 373-392.

F. Mignot, Controle dans les inéquations variationelles elliptiques, J. Funct. Anal.
22 (1976), 130-185.

A. Misiak, n-Inner product spaces, Math. Nachr. 140 (1989), 299-319.

J.D. Monk and F. Sioson, m-semigroups, semigroups and function representations,
Fundam. Math. 59 (1966), 233-241.

H.D. Nguyen, A new proof of the Prouhet—Tarry—Escott problem, Integers 16
(2016), A01, 1-9.

A. Pop and M.S. Pop, Some embeddings theorems for (n,2)-rings, Bul. Stiint. Univ.
Baia Mare, Ser. B, Fasc. Mat.-Inform. 18 (2002), 311-316.

S.A. Rusakov, Some Applications of n-ary Group Theory, Belaruskaya Navuka,
Minsk, 1998.

R. Spira, The Diophantine equation x +y? + 22 = m?, Am. Math. Mon. 69 (1962),
360-365.

K. Subba Rao, On sums of sixth powers, J. London Math. Soc. 9 (1934), No. 3,
172-173.

A. Wiles, Modular elliptic curves and Fermat’s Last Theorem, Ann. Math. 141
(1995), 443-551.

D. Zupnik, Polyadic semigroups, Publ. Math. (Debrecen) 14 (1967), 273-279.

Received July 10, 2017, revised April 19, 2018.

Steven Duplij,

Mathematisches Institut, Universitdt Miinster, Einsteinstrasse 62, D-48149 Miinster,
Deutschland,
E-mail: doupliiQuni-muenster.de, sduplij@gmail.com


mailto:douplii@uni-muenster.de, sduplij@gmail.com

o6

Steven Duplij

®opma apHOCTi HOJMIATUIHUX AJITeOPATIHUX CTPYKTYP

Steven Duplij

Koukperni gomuoxKuuni (MOLy/Ib-1101i0HI 1 anrebpa-mionibui) aarebpai-
9HI CTPYKTYPH JIOCTIIZKEHO 3 TOYKH 30pYy ITOYATKOBUX apHOCTEHN omepariii,
sIKi BBaxKaroThbCsl JoBlabHUME. OIHAK CIIIBBIIHOIIEHHS MiXK OlepallisiMu, sKi
€ HaC/TiAKaMU CTPYKTYPH O3HAYEHb, IPU3BOJATH JI0 OOMEXKEHb, 1[0 BU3HA-
JaroThCsi (POPMOKO MOYKJIMBUX APHOCTEN 1 JI03BOJISIIOTH HAM C(OPMYIIIOBATH
IpUHIAI ¢BOOOIN YaCTKOBUX apHOCTeN. Po3riistarorhes moJia sl BEKTOp-
Hi IpocTopu Ta aJredpu, ABOICTI BEKTOPHI MPOCTOPHU, IPSAMi CyMHU, T€H30D-
Hi JOOYTKH, ClIapiOBaHHs BHYTPINIHIX mpocTopiB. OKpPeCIeHo eJleMeHTH 110~
JIIQTMYHOI Teopil onepaTopiB: yBeJEHO MYJIbTU3IPKHU 1 MOJa/IMYHI aHAJIOTU
CIIPSI?KEHUX, OIIEPATOPHUX HOPM, 130MeTPiil 1 IMPOEKINiil, a TaKOXK I0JIia/In-
qui C*-ayrebpu, aiarebpu Terrina i anredpu Kyhia, npemcrasieni mosiia-
guaHEME onieparopamvu. [lokazaHo, 1Mo KJjacu KOHI'PYEHII] € Toia uIHuMI
KUIbLSMU CIeIiaIbHOrO BUy. YBeJIEHO HoJiaandni ducia (IuB. O3HAYEHHS
7.17) ra niodanTosi piBHAHHS HaJ nomiaauaHuMu Kiibigmu. ChopmynboBa-
HO ToJiiauyHi anajoru rinore3u Jlangepa—Ilapkina—Cendpimka i ocraHHO
Teopemy Pepma. JloBesieHo, 110 I8 MO IUTHAX YUCEN YKOJTHE 13 3rajlaHux
TBEPKEeHb He BUKOHYEeThCsi. ChopMysiboBaHO moJiajuani Bepcil TeopeMu
®posoBa Ta nmpodsiemu Tappi-EckorTa.

KirrouoBi csroBa: moiagutne Kijblie, MO InIHuil BEKTOPHUHN MPOCTIp,
MYJIBTH/IisI, MyJIbTU3IpKA, /1iohaHTOBEe piBHsIHHSI, OcTaHHsI Teopema Pepma,
rinoresa Jlanmepa—Ilapkina—Cendpimxka.
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