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Arity Shape of Polyadic Algebraic Structures

Steven Duplij

Concrete two-set (module-like and algebra-like) algebraic structures are
investigated from the viewpoint that the initial arities of all operations are
arbitrary. Relations between operations arising from the structure defini-
tions, however, lead to the restrictions which determine their possible arity
shapes and lead us to formulate a partial arity freedom principle. Polyadic
vector spaces and algebras, dual vector spaces, direct sums, tensor products
and inner pairing spaces are reconsidered.

Elements of polyadic operator theory are outlined: multistars and
polyadic analogs of adjoints, operator norms, isometries and projections are
introduced, as well as polyadic C∗-algebras, Toeplitz algebras and Cuntz
algebras represented by polyadic operators.

It is shown that congruence classes are polyadic rings of a special kind.
Polyadic numbers are introduced (see Definition 7.17), and Diophantine
equations over these polyadic rings are then considered. Polyadic analogs of
the Lander–Parkin–Selfridge conjecture and Fermat’s Last Theorem are for-
mulated. For polyadic numbers neither of these statements holds. Polyadic
versions of Frolov’s theorem and the Tarry–Escott problem are presented.
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1. Introduction

The study of polyadic (higher arity) algebraic structures has a two-century
long history, commencing with works by Cayley, Sylvester, Kasner, Prüfer,
Dörnte, Lehmer, Post, etc. They took a single set, closed under one (main)
binary operation having special properties (the so-called group-like structure),
and “generalized” it by increasing the arity of that operation, which can then be
called a polyadic operation and the corresponding algebraic structure polyadic
as well. We use the term “polyadic” in this sense only, while there are other uses
extant in the literature (see, e.g., [28]). An “abstract way” to study polyadic
algebraic structures is via the use of universal algebras defined as sets with dif-
ferent axioms (equational laws) for polyadic operations [3,9,27]. However, in this
language some important algebraic structures cannot be described, e.g., ordered
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groups, fields, etc. [14]. Therefore, it is worthwhile also to pursue a “concrete
approach” which is to study examples of binary algebraic structures and then
to “polyadize” them properly. This has initiated the development of a corre-
sponding theory of n-ary quasigroups [2], n-ary semigroups [38, 45] and n-ary
groups [25, 41] (for a more recent review, see, e.g., [16] and a comprehensive list
of references therein). The binary algebraic structures with two operations (addi-
tion and multiplication) on one set (the so-called ring-like structures) were later
on generalized to (m,n)-rings [8, 10, 31] and (m,n)-fields [29] (for recent study,
see [18]), while these were studied mostly in a more restrictive manner by con-
sidering particular cases: ternary rings (or (2, 3)-rings) [33], (m, 2)-rings [4, 40],
as well as (3, 2)-fields [21].

In the case of one set, speaking informally, the “polyadization” of two opera-
tions’ “interaction” is straightforward, giving only polyadic distributivity which
does not connect or restrict their arities. However, when the number of sets be-
comes greater than one, the “polyadization” turns out to be non-trivial, leading
to special relations between the operation arities, and also introduces additional
(to the arities) parameters, allowing us to classify them. We call a selection of
such relations an arity shape and formulate the arity partial freedom principle
that not all arities of the operations that arise during “polyadization” of binary
operations are possible.

In this paper, we consider two-set algebraic structures in the “concrete way”
and provide the consequent “polyadization” of binary operations on them for
the so-called module-like structures (vector spaces) and algebra-like structures
(algebras and inner product spaces). The “polyadization” of binary scalar multi-
plication is defined in terms of the multiactions introduced in [16], having special
arity shapes parametrized by the number of intact elements (`id) in the corre-
sponding multiactions. We then “polyadize” related constructions, such as dual
vector spaces, direct sums and tensor products, and show that, as opposed to the
binary case, they can be implemented in spaces of different arity signatures. The
“polyadization” of inner product spaces and related norms gives us additional
arity shapes and restrictions. In the resulting Table 5.1 we present the arity
signatures and shapes of the polyadic algebraic structures under consideration.

As applications we note some starting points for polyadic operator theory by
introducing multistars and polyadic analogs of adjoints, operator norms, isome-
tries and projections. It is proved (Theorem 6.7) that if the polyadic inner pairing
(the analog of the inner product) is symmetric, then all multistars coincide and all
polyadic operators are self-adjoint (in contrast to the binary case). The polyadic
analogs of C∗-algebras, Toeplitz algebras and Cuntz algebras are presented in
terms of the polyadic operators introduced here, and a ternary example is given.

Another application is connected with number theory: we show that the
internal structure of congruence classes is described by a polyadic ring having a
special arity signature (Table 7.1), and these we will call the polyadic integers
(or numbers) Z(m,n) (Definition 7.17). They are classified by polyadic shape
invariants, and the relations between them which give the same arity signature
are established. Also, the limiting cases are analyzed, and it is shown that in one
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such case the polyadic rings can be embedded into polyadic fields with binary
multiplication, which leads to the so-called polyadic rational numbers [11].

We then consider Diophantine equations over these polyadic rings in a
straightforward manner: we change only the arities of the operations (“additions”
and “multiplications”), but save their mutual “interaction”. In this way we try
to “polyadize” the equal sums of like powers equation and formulate polyadic
analogs of the Lander–Parkin–Selfridge conjecture and of Fermat’s Last Theo-
rem [30]. It is shown that in the simplest case, when the polyadic “addition” and
“multiplication” are nonderived (e.g., for polyadic numbers), neither conjecture
is valid, and counterexamples are presented. Finally, we apply Frolov’s theorem
to the Tarry–Escott problem [15, 39] over polyadic rings to obtain new solutions
to the equal sums of like powers equation for fixed congruence classes.

2. One set polyadic “linear”structures

We use concise notations from our previous work on polyadic structures [16,
17]. Take a non-empty set A, then an n-tuple (or polyad) consisting of the
elements (a1, . . . , an), ai ∈ A, is denoted by a bold letter (a) taking its values
in the Cartesian product A×n . If the number of elements in the n-tuple is
important, we denote it as

(
a(n)

)
, and an n-tuple with equal elements is denoted

by (an). On the Cartesian product A×n one can define a polyadic operation µn :
A×n → A, and use the notation µn [a].

A polyadic structure A is a set A which is closed under polyadic operations,
and a polyadic signature is the selection of their arities. For formal definitions,
see, e.g., [9].

2.1. Polyadic distributivity. Let us consider a polyadic structure with
two operations on the same set A: the “chief” (multiplication) n-ary opera-
tion µn : An → A and the additional m-ary operation νm : Am → A, that is
〈A | µn, νm〉. If there are no relations between µn and νm, then nothing new,
as compared with the polyadic structures having a single operation 〈A | µn〉 or
〈A | νm〉, can be said. Informally, the “interaction” between operations can be
described using the important relation of distributivity (an analog of a · (b+ c) =
a · b+ a · c, a, b, c ∈ A in the binary case).

Definition 2.1. The polyadic distributivity for the operations µn and νm
(no additional properties are implied for now) consists of n relations:

µn [νm [a1, . . . , am], b2, b3, . . . , bn]

= νm[µn[a1, b2, b3, . . . , bn], µn[a2, b2, b3, . . . , bn], . . . , µn[am, b2, b3, . . . , bn]], (2.1)

µn [b1, νm [a1, . . . am], b3, . . . , bn]

= νm[µn[b1, a1, b3, . . . , bn], µn[b1, a2, b3, . . . , bn], . . . , µn[b1, am, b3, . . . , bn]], (2.2)

· · ·
µn [b1, b2, . . . , bn−1, νm [a1, . . . , am]]
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= νm[µn[b1, b2, . . . , bn−1, a1], µn[b1, b2, . . . , bn−1, a2], . . . , µn[b1, b2, . . . , bn−1, am]],
(2.3)

where ai, bj ∈ A.

It is seen that the operations µn and νm enter into (2.1)–(2.3) in a non-
symmetric way, which allows us to distinguish them: one of them (µn, the n-ary
multiplication) “distributes” over the other one νm, and therefore νm is called
the addition. If only some of the relations (2.1)–(2.3) hold, then such distribu-
tivity is partial (an analog of the left and right distributivity in the binary case).
Obviously, the operations µn and νm need have nothing to do with ordinary mul-
tiplication (in the binary case denoted by µ2 =⇒ (·)) and addition (in the binary
case denoted by ν2 =⇒ (+)) as in the example below.

Example 2.2. Let A = R, n = 2, m = 3, and µ2 [b1, b2] = bb21 , ν3 [a1, a2, a3] =

a1a2a3 (product in R). The partial distributivity now is (a1a2a3)b2 = ab21 a
b2
2 a

b2
3

(only the first relation (2.1) holds).

2.2. Polyadic rings and fields. Here we briefly remind the reader of one-
set (ring-like) polyadic structures (informally). Let both operations µn and νm
be (totally) associative, which (in our definition [16]) means independence of the
composition of two operations under placement of the internal operations (there
are n and m such placements and therefore (n+m) corresponding relations):

µn [a, µn [b] , c] = invariant, (2.4)

νm [d, νm [e] , f ] = invariant, (2.5)

where the polyads a, b, c, d, e, f have a corresponding length, and then both
〈A | µn | assoc〉 and 〈A | νm | assoc〉 are polyadic semigroups Sn and Sm. A com-
mutative semigroup 〈A | νm | assoc, comm〉 is defined by νm [a] = νm [σ ◦ a], for
all σ ∈ Sn, where Sn is the symmetry group. If the equation νm [a, x,b] = c is
solvable for any place of x, then 〈A | νm | assoc, solv〉 is a polyadic group Gm, and
such x = c̃ is called a (additive) querelement for c, which defines the (additive)
unary queroperation ν̃1 by ν̃1 [c] = c̃.

Definition 2.3. A polyadic (m,n)-ring Rm,n is a set A with two operations
µn : An → A and νm : Am → A, such that:

1) they are distributive (2.1)–(2.3);

2) 〈A | µn | assoc〉 is a polyadic semigroup;

3) 〈A | νm | assoc, comm, solv〉 is a commutative polyadic group.

It is obvious that a (2, 2)-ring R2,2 is an ordinary (binary) ring. Polyadic
rings have much richer structure and can have unusual properties [8,10,13,31]. If
the multiplicative semigroup 〈A | µn | assoc〉 is commutative, µn [a] = µn [σ ◦ a],
for all σ ∈ Sn, then Rm,n is called a commutative polyadic ring, and if it contains
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the identity, then Rm,n is a (polyadic) (m,n)-semiring. If the distributivity is
only partial, then Rm,n is called a polyadic near-ring.

Introduce in Rm,n the additive and multiplicative idempotent elements by
νm [am] = a and µn [bn] = b, respectively. A zero z of Rm,n is defined by
µn [z,a] = z for any a ∈ An−1, where z can be in any place. Evidently, a zero (if
it exists) is a multiplicative idempotent and is unique, and if a polyadic ring has
an additive idempotent, it is a zero [31]. Due to the distributivity (2.1)–(2.3),
there can be at most one zero in a polyadic ring. If a zero z exists, denote A∗ =
A\{z}, and observe that (in distinction to binary rings) 〈A∗ | µn | assoc〉 is not a
polyadic group, in general. In the case where 〈A∗ | µn | assoc〉 is a commutative
n-ary group, such a polyadic ring is called a (polyadic) (m,n)-field and Km,n
(“polyadic scalars”) (see [29,31]).

A multiplicative identity e in Rm,n is a distinguished element e such that

µn
[
a,
(
en−1

)]
= a (2.6)

for any a ∈ A and where a can be in any place. In binary rings the identity is
the only neutral element, while in polyadic rings there can exist many neutral
(n− 1)-polyads e satisfying

µn [a, e] = a, (2.7)

for any a ∈ A which can also be in any place. The neutral polyads e are not
determined uniquely. Obviously, the polyad

(
en−1

)
is neutral. There exist exotic

polyadic rings which have no zero, no identity, and no additive idempotents at
all (see, e.g., [10]), but if m = 2, then a zero always exists [31].

Example 2.4. Let us consider a polyadic ring R3,4, generated by 2 elements
a, b and the relations

µ4

[
a4
]

= a, µ4

[
a3, b

]
= b, µ4

[
a2, b2

]
= a, µ4

[
a, b3

]
= b, µ4

[
b4
]

= a, (2.8)

ν3

[
a3
]

= b, ν3

[
a2, b

]
= a, ν3

[
a, b2

]
= b, ν3

[
b3
]

= a, (2.9)

which has a multiplicative idempotent a only, but has no zero and no identity.

Proposition 2.5. In the case of polyadic structures with two operations on
one set there are no conditions between the arities of operations which could
follow from distributivity (2.1)–(2.3) or the other relations above, and therefore
they have no arity shape.

Such conditions will appear below, when we consider more complicated uni-
versal algebraic structures with two or more sets with operations and relations.

3. Two set polyadic structures

3.1. Polyadic vector spaces. Let us consider a polyadic field KmK ,nK =
〈K | σmK , κnK 〉 (“polyadic scalars”), having the mK-ary addition σmK : KmK →
K and nK-ary multiplication κnK : KnK → K, and the identity eK ∈ K, a

neutral element with respect to multiplication κnK

[
enK−1
K , λ

]
= λ for all λ ∈ K.
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In polyadic structures, one can introduce a neutral (nK − 1)-polyad (identity
polyad for “scalars”) eK ∈ KnK−1 by

κnK [eK , λ] = λ, (3.1)

where λ ∈ K can be in any place.
Next, take an mV -ary commutative (abelian) group 〈V | νmV 〉, which can be

treated as “polyadic vectors” with mV -ary addition νmV : VmV → V. Define in
〈V | νmV 〉 an additive neutral element (zero) zV ∈ V by

νmV

[
zmV −1
V , v

]
= v (3.2)

for any v ∈ V, and a “negative vector” v̄ ∈ V as its querelement

νmV [aV , v̄,bV ] = v, (3.3)

where v̄ can be in any place in the l.h.s., and aV , bV are polyads in V. Here,
instead of one neutral element we can also introduce the (mV − 1)-polyad zV
(which may not be unique), and so, for a zero polyad (for “vectors”), we have

νmV [zV , v] = v, ∀v ∈ V, (3.4)

where v ∈ V can be in any place. The “interaction” between “polyadic scalars”
and “polyadic vectors” (the analog of binary multiplication by a scalar λv) can
be defined as a multiaction (kρ-place action) introduced in [16],

ρkρ : Kkρ × V −→ V. (3.5)

The set of all multiactions forms an nρ-ary semigroup Sρ under composition. We
can “normalize” the multiactions in a similar way, as multiplace representations
[16], by (an analog of 1v = v, v ∈ V, 1 ∈ K)

ρkρ


eK
...
eK

∣∣∣∣∣∣∣ v

 = v, (3.6)

for all v ∈ V, where eK is the identity of KmK ,nK . In the case of an (ordinary)
1-place (left) action (as an external binary operation) ρ1 : K × V → V, its
consistency with the polyadic field multiplication κnK under composition of the
binary operations ρ1 {λ|a} gives a product of the same arity

nρ = nK ,

that is (a polyadic analog of λ (µv) = (λµ) v, v ∈ V, λ, µ ∈ K)

ρ1 {λ1|ρ1 {λ2| . . . |ρ1 {λnK |v}} . . .} = ρ1 {κnK [λ1, λ2, . . . λnK ] |v} ,
λ1, . . . , λn ∈ K, v ∈ V. (3.7)
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In the general case of kρ-place actions, the multiplication in the nρ-ary semi-
group Sρ can be defined by the arity changing formula [16] (schematically)

ρkρ

nρ︷ ︸︸ ︷
λ1
...
λkρ

∣∣∣∣∣∣∣ . . .
∣∣∣∣∣∣∣ ρkρ


λkρ(nρ−1)+1

...
λkρnρ

∣∣∣∣∣∣∣ v

 . . .



= ρkρ



κnK [λ1, . . . λnK ] ,
...

κnK
[
λnK(`µ−1), . . . λnK`µ

]
 `µ

λnK`µ+1,
...

λnK`µ+`id

 `id

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
v


, (3.8)

where `µ and `id are both integers. The associativity of (3.8) in each concrete
case can be achieved by applying the associativity quiver concept from [16].

Definition 3.1. The `-shape is a pair (`µ, `id), where `µ is the number of
multiplications and `id is the number of intact elements in the composition of
operations.

It follows from (3.8),

Proposition 3.2. The arities of the polyadic field KmK ,nK , the arity nρ of
the multiaction semigroup Sρ and the `-shape of the composition satisfy

kρnρ = nK`µ + `id, (3.9)

kρ = `µ + `id. (3.10)

We can exclude `µ or `id and obtain

nρ = nK −
nK − 1

kρ
`id, nρ =

nK − 1

kρ
`µ + 1, (3.11)

respectively, where nK−1
kρ

`id ≥ 1 and nK−1
kρ

`µ ≥ 1 are integers. The following
inequalities hold:

1 ≤ `µ ≤ kρ, 0 ≤ `id ≤ kρ−1, `µ ≤ kρ ≤ (nK − 1) `µ, 2 ≤ nρ ≤ nK . (3.12)

Remark 3.3. The formulas (3.11) coincide with the arity changing formulas
for heteromorphisms [16] applied to (3.8).

It follows from (3.9) that the `-shape is determined by the arities and the
number of places kρ by

`µ =
kρ (nρ − 1)

nK − 1
, `id =

kρ (nK − nρ)
nK − 1

. (3.13)
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Because we have two polyadic “additions”νmV and σmK , we need to consider
how the multiaction ρkρ “distributes” between each of them. First, consider the
distributivity of the multiaction ρkρ with respect to “vector addition” νmV (a
polyadic analog of the binary λ (v + u) = λv + λu, v, u ∈ V, λ, µ ∈ K),

ρkρ


λ1
...
λkρ

∣∣∣∣∣∣∣ νmV [v1, . . . , vmV ]

 = νmV

ρkρ

λ1
...
λkρ

∣∣∣∣∣∣∣ v1

 , . . . , ρkρ


λ1
...
λkρ

∣∣∣∣∣∣∣ vmV


 .

(3.14)
Observe that here, in distinction to (3.8), there is no connection between the
arities mV and kρ.

Secondly, the distributivity of the multiaction ρkρ (“multiplication by scalar”)
with respect to the “field addition” (a polyadic analog of λv +µv = (λ+ µ) v, v ∈
A, λ, µ ∈ K) has a form similar to (3.8) (which can be obtained from the arity
changing formula [16]),

νmV

ρkρ

λ1
...
λkρ

∣∣∣∣∣∣∣ v

 , . . . , ρkρ


λkρ(mV −1)+1

...
λkρmV

∣∣∣∣∣∣∣ v




= ρkρ



σmK [λ1, . . . λmK ] ,
...

σmK

[
λmK(`′µ−1), . . . λmK`′µ

]
 `′µ

λmK`′µ+1,
...

λmK`′µ+`′id

 `′id

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
v


, (3.15)

where `′ρ and `′id are the numbers of multiplications and intact elements in the
resulting multiaction, respectively. Here the arities are not independent as in
(3.14), and so we have

Proposition 3.4. The arities of the polyadic field KmK ,nK , the arity nρ of
the multiaction semigroup Sρ and the `-shape of the distributivity satisfy

kρmV = mK`
′
µ + `′id, (3.16)

kρ = `′µ + `′id. (3.17)

It follows from (3.16), (3.17),

mV = mK −
mK − 1

kρ
`′id, mV =

mK − 1

kρ
`′µ + 1.

Here mK−1
kρ

`′id ≥ 1 and mK−1
kρ

`′µ ≥ 1 are integers, and we have the inequalities

1 ≤ `′µ ≤ kρ, 0 ≤ `′id ≤ kρ− 1, `′µ ≤ kρ ≤ (mK − 1) `′µ, 2 ≤ mV ≤ mK . (3.18)



Arity Shape of Polyadic Algebraic Structures 11

Now, the `-shape of the distributivity is fully determined from the arities and the
number of places kρ by the arity shape formulas

`′ρ =
kρ (mV − 1)

mK − 1
, `′id =

kρ (mK −mV )

mK − 1
. (3.19)

It follows from (3.18) that:

Corollary 3.5. The arity mV of the vector addition is less than or equal to
the arity mK of the field addition.

Definition 3.6. A polyadic (K)-vector (“linear”) space over a polyadic field
is the 2-set 4-operation algebraic structure

VmK ,nK ,mV ,kρ =
〈
K; V | σmK , κnK ; νmV | ρkρ

〉
(3.20)

such that the following axioms hold:

1) 〈K | σmK , κnK 〉 is a polyadic (mK , nK)-field KmK ,nK ;

2) 〈V | νmV 〉 is a commutative mV -ary group;

3)
〈
ρkρ | composition

〉
is an nρ-ary semigroup Sρ;

4) Distributivity of the multiaction ρkρ with respect to the “vector addition”
νmV (3.14);

5) Distributivity of ρkρ with respect to the “scalar addition” σmK (3.15);

6) Compatibility of ρkρ with the “scalar multiplication” κnK (3.8);

7) Normalization of the multiaction ρkρ (3.6).

All of the arities in (3.20) are independent and can be chosen arbitrarily, but
they fix the `-shape of the multiaction composition (3.8) and the distributivity
(3.15) by (3.13) and (3.19), respectively. Note that the main distinction from the
binary case is a possibility for the arity nρ of the multiaction semigroup Sρ to be
arbitrary.

Definition 3.7. A polyadic K-vector subspace is

Vsub
mK ,nK ,mV ,kρ

=
〈
K; Vsub | σmK , κnK ; νmV | ρkρ

〉
, (3.21)

where the subset Vsub ⊂ V is closed under all operations σmK , κnK , νmV , ρkρ and
the axioms 1)–7).

Let us consider a subset S = {v1, . . . , vdV } ⊆ V (of dV “vectors”), then a
polyadic span of S is (a “linear combination”)

Spanλpol (v1, . . . , vdV ) = {w} , (3.22)
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w = ν`νmV

ρkρ

λ1
...
λkρ

∣∣∣∣∣∣∣ v1

 , . . . , ρkρ


λ(dV −1)kρ

...
λdV kρ

∣∣∣∣∣∣∣ vs


 , (3.23)

where (dV · kρ) “scalars” play the role of coefficients (or coordinates as columns
consisting of kρ elements from the polyadic field KmK ,nK ), and the number of
“vectors” s is connected with the “number of mV -ary additions” `ν by

dV = `ν (mV − 1) + 1,

while Spanλpol S is the set of all “vectors” of this form (3.22) (we consider here
only finite “sums”).

Definition 3.8. A polyadic span S = {v1, . . . , vdV } ⊆ V is nontrivial if at
least one multiaction ρkρ in (3.22) is nonzero.

Since polyadic fields and groups do not contain zeroes, we need to redefine
the basic notions of equivalences. Let us take two different spans of the set S.

Definition 3.9. A set {v1, . . . , vdV } is called “linear” polyadic indepen-
dent if from the equality of nontrivial spans, as Spanλpol (v1, . . . , vdV ) =

Spanλ
′

pol (v1, . . . , vdV ), it follows that all λi = λ′i, i = 1, . . . , dV kρ.

Definition 3.10. A set {v1, . . . , vdV } is called a polyadic basis of a polyadic
vector space VmKnKmV kρ if it spans the whole space Spanλpol (v1, . . . , vdV ) = V.

In other words, any element of V can be uniquely presented in the form of
the polyadic “linear combination”(3.22). If a polyadic vector space VmKnKmV kρ
has a finite basis {v1, . . . , vdV }, then any other basis

{
v′1, . . . , v

′
dV

}
has the same

number of elements.

Definition 3.11. The number of elements in the polyadic basis {v1, . . . , vdV }
is called the polyadic dimension of VmK ,nK ,mV ,kρ .

Remark 3.12. The so-called 3-vector space, introduced and studied in [21],
corresponds to VmK=3,nK=2,mV =3,kρ=1.

3.2. One-set polyadic vector space. A particular polyadic vector space
is important: consider V = K, νmV = σmK and mV = mK , which gives the
following one-set “linear” algebraic structure (we call it a one-set polyadic vector
space):

KmK ,nK ,kρ =
〈
K | σmK , κnK | ρ

λ
kρ

〉
,

where now the multiaction

ρλkρ


λ1
...
λkρ

∣∣∣∣∣∣∣λ
 , λ, λi ∈ K,
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acts on K itself (in some special way), and therefore can be called a regu-
lar multiaction. In the binary case nK = mK = 2, the only possibility for
the regular action is the multiplication (by “scalars”) in the field ρλ1 {λ1|λ} =
κ2 [λ1λ] (≡ λ1λ), which obviously satisfies the axioms 4)–7) of a vector space in
Definition 3.6. In this way we arrive at the definition of the binary field K ≡
K2,2 = 〈K | σ2, κ2〉, and so a one-set binary vector space coincides with the un-
derlying field KmK=2,nK=2,kρ=1 = K, or as it is said “a field is a (one-dimensional)
vector space over itself”.

Remark 3.13. In the polyadic case, the regular multiaction ρλkρ can be chosen,

as any (additional to σmK , κnK ) function satisfying axioms 4)–7) of a polyadic
vector space and the number of places kρ and the arity of the semigroup of
multiactions Sρ can be arbitrary, in general. Also, ρλkρ can be taken as some

nontrivial combination of σmK , κnK satisfying axioms 4)–7) (which admits a
nontrivial “multiplication by scalars”).

In the simplest regular (similar to the binary) case,

ρλkρ


λ1
...
λkρ

∣∣∣∣∣∣∣λ
 = κ`κnK

[
λ1, . . . , λkρ , λ

]
, (3.24)

where `κ is the number of multiplications κnK , and the number of places kρ is
now fixed by

kρ = `κ (nK − 1) , (3.25)

while λ in (3.24) can be in any place due to the commutativity of the field
multiplication κnK .

Remark 3.14. In general, the one-set polyadic vector space need not to coin-
cide with the underlying polyadic field, KmK ,nK ,kρ 6= KnKmK (as opposed to the
binary case), but can have a more complicated structure which is determined by
an additional multiplace function, the multiaction ρλkρ .

3.3. Polyadic algebras. By analogy with the binary case, introducing an
additional operation on vectors, a multiplication which is distributive and “linear”
with respect to “scalars”, leads to a polyadic generalization of the (associative)
algebra notion [7]. Here, we denote the second (except for the ’scalars’ K) set
by A (instead of V as above), on which we define two operations: the mA-ary
“addition” νmA : A×mA → A and the nA-ary “multiplication” µnA : A×nA → A.
To interpret the nA-ary operation as a true multiplication, the operations µnA
and νmA should satisfy polyadic distributivity (2.1)–(2.3) (an analog of (a + b) ·
c = a · c + b · c, with a, b, c ∈ A). Then we should consider the “interaction” of
this new operation µnA with the multiaction ρkρ (an analog of the “compatibility
with scalars” (λa) · (µb) = (λµ) a · b, a, b ∈ A, λ, µ ∈ K). In the most general
case, when all arities are arbitrary, we have the polyadic compatibility of µnA
with the field multiplication κnK as follows:
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µnA

ρkρ

λ1
...
λkρ

∣∣∣∣∣∣∣ a1

 , . . . , ρkρ


λkρ(nA−1)

...
λkρnA

∣∣∣∣∣∣∣ anA




= ρkρ



κnK [λ1, . . . , λnK ] ,
...

κnK

[
λnK(`′′µ−1), . . . , λnK`′′µ

]
 `′′µ

λnK`′′µ+1,
...

λnK`′′µ+`′′id

 `′′id

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
µnA [a1 . . . anA ]


, (3.26)

where `′′µ and `′′id are the numbers of multiplications and intact elements in the
resulting multiaction, respectively.

Proposition 3.15. The arities of the polyadic field KmK ,nK , the arity nρ of
the multiaction semigroup Sρ and the `-shape of the polyadic compatibility (3.26)
satisfy

kρnA = nK`
′′
µ + `′′id, kρ = `′′µ + `′′id. (3.27)

We can exclude from (3.27) `′′ρ or `′′id and obtain

nA = nK −
nK − 1

kρ
`′′id, nA =

nK − 1

kρ
`′′µ + 1,

where nK−1
kρ

`′′id ≥ 1 and nK−1
kρ

`′′µ ≥ 1 are integers, and the inequalities hold

1 ≤ `′′µ ≤ kρ, 0 ≤ `′′id ≤ kρ − 1, `′′µ ≤ kρ ≤ (nK − 1) `′′µ, 2 ≤ nA ≤ nK . (3.28)

It follows from (3.27), that the `-shape is determined by the arities and the
number of places kρ as

`′′µ =
kρ (nA − 1)

nK − 1
, `′′id =

kρ (nK − nA)

nK − 1
. (3.29)

Definition 3.16. A polyadic (“linear”) algebra over a polyadic field is the
2-set 5-operation algebraic structure,

AmK ,nK ,mA,nA,kρ =
〈
K; A | σmK , κnK ; νmA , µnA | ρkρ

〉
, (3.30)

such that the following axioms hold:

1)
〈
K; A | σmK , κnK ; νmA | ρkρ

〉
is a polyadic vector space over a polyadic field

KmK ,nK ;

2) The algebra multiplication µnA and the algebra addition νmA satisfy the
polyadic distributivity (2.1)–(2.3);

3) The multiplications in the algebra µnA and in the field κnK are compatible
by (3.26).



Arity Shape of Polyadic Algebraic Structures 15

If the algebra multiplication µnA is associative (2.4), then AmK ,nK ,mA,nA,kρ
is an associative polyadic algebra (for kρ = 1 see [7]). If µnA is commutative,
µnA [aA] = µnA [σ ◦ aA], for any polyad in algebra aA ∈ A×nA for all permuta-
tions σ ∈ Sn, where Sn is the symmetry group, then AmK ,nK ,mA,nA,kρ is called a
commutative polyadic algebra. As in the n-ary (semi)group theory, for polyadic
algebras one can introduce special kinds of associativity and partial commutativ-
ity. If the multiplication µnA contains the identity eA (2.6) or a neutral polyad
for any element, then a polyadic algebra is called unital or neutral-unital, respec-
tively. It follows from (3.28) that:

Corollary 3.17. In a polyadic (“linear”) algebra the arity of the algebra
multiplication nA is less than or equal to the arity of the field multiplication nK .

Proposition 3.18. If all the operation `-shapes in (3.8), (3.15), and (3.26)
coincide

`′′µ = `′µ = `µ, `′′id = `′id = `id,

then we obtain the conditions for the arities

nK = mK , nρ = nA, (3.31)

while mA and kρ are not connected.

Proof. Use (3.13) and (3.29).

Proposition 3.19. In the case of equal `-shapes the multiplication and addi-
tion of the polyadic ground field (“scalars”) should coincide, while the arity nρ of
the multiaction semigroup Sρ should be the same as of the algebra multiplication
nA, while the arity of the algebra addition mA and the number of places kρ remain
arbitrary.

Remark 3.20. The above `-shapes (3.13), (3.19), and (3.29) are defined by a
pair of integers, and therefore the arities in them are not arbitrary, but should
be “quantized” in the same manner as the arities of heteromorphisms in [16].

Therefore, numerically the “quantization”rules for the `-shapes (3.13), (3.19),
and (3.29) coincide and are given in Table 3.1.

Thus, we arrive at the following

Theorem 3.21 (The arity partial freedom principle). The basic two-set
polyadic algebraic structures have non-free underlying operation arities which are
“quantized” in such a way that their `-shape is given by integers.

The above definitions can be generalized, as in the binary case, by considering
a polyadic ringRmK ,nK instead of a polyadic fieldKmK ,nK . In this way, a polyadic
vector space becomes a polyadic module over a ring or polyadic R-module, while
a polyadic algebra over a polyadic field becomes a polyadic algebra over a ring or a
polyadic R-algebra. All the axioms and relations between arities in Definition 3.6
and Definition 3.16 remain the same. However, one should take into account that
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Table 3.1: “Quantization” of arity `-shapes

.

kρ `µ | `′µ | `′′µ `id | `′id | `′′id
nK
nρ
| mK

nρ
| nK
nA

2 1 1
3, 5, 7, . . .
2, 3, 4, . . .

3 1 2
4, 7, 10, . . .
2, 3, 4, . . .

3 2 1
4, 7, 10, . . .
3, 5, 7, . . .

4 1 3
5, 9, 13, . . .
2, 3, 4, . . .

4 2 2
3, 5, 7, . . .
2, 3, 4, . . .

4 3 1
5, 9, 13, . . .
4, 7, 10, . . .

the ring multiplication κnK can be noncommutative, and therefore for polyadic
R-modules and R-algebras it is necessary to consider many different kinds of
multiactions ρkρ (all of them are described in (3.8)). For instance, in the ternary
case this corresponds to trimodules [6] or ternary module structure [35].

4. Mappings between polyadic algebraic structures

Let us consider DV different polyadic vector spaces over the same polyadic
field KmK ,nK , as

V(i)

mK ,nK ,m
(i)
V ,k

(i)
ρ

=

〈
K; V(i) | σmK , κnK ; ν

(i)

m
(i)
V

| ρ(i)

k
(i)
ρ

〉
, i = 1, . . . , DV <∞.

Here we define a polyadic analog of a “linear” mapping for polyadic vector
spaces which “commutes“ with the “vector addition” and the “multiplication by
scalar” (an analog of the additivity F (v + u) = F (v)+F (u), and the homogeneity
of degree one F (λv) = λF (v), v, u ∈ V, λ ∈ K).

Definition 4.1. A 1-place (“K-linear”) mapping between the polyadic vec-
tor spaces VmK ,nK ,mV ,kρ =

〈
K; V | σmK , κnK ; νmV | ρkρ

〉
and VmK ,nK ,mV ,kρ =〈

K; V′ | σmK , κnK ; ν ′mV | ρ
′
kρ

〉
over the same polyadic field KmK ,nK =

〈K | σmK , κnK 〉 is F1 : V→ V′ such that

F1 (νmV [v1, . . . , vmV ]) = ν ′mV [F1 (v1) , . . . ,F1 (vmV )] , (4.1)

F1

ρkρ

λ1
...
λkρ

∣∣∣∣∣∣∣ v


 = ρ′kρ


λ1
...
λkρ

∣∣∣∣∣∣∣F1 (v)

 , (4.2)
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where v1, . . . , vmV , v ∈ V, λ1, . . . , λkρ ∈ K.

If zV is a “zero vector” in V and zV ′ is a “zero vector” in V′ (see (3.2)), then
it follows from (4.1), (4.2) that F1 (zV ) = zV ′ .

The initial and final arities of νmV (“vector addition”) and the multiaction ρkρ
(“multiplication by scalar”) coincide because F1 is a 1-place mapping (a linear ho-
momorphism). In [16] multiplace mappings and corresponding heteromorphisms
were introduced. The latter allows us to change the arrities mV → m′V , kρ →
k′ρ), which is the main difference between the binary and polyadic mappings.

Definition 4.2. A kF -place (“K-linear”) mapping between two polyadic vec-
tor spaces VmK ,nK ,mV ,kρ =

〈
K; V | σmK , κnK ; νmV | ρkρ

〉
and VmK ,nK ,mV ,kρ =〈

K; V′ | σmK , κnK ; ν ′m′V
| ρ′k′ρ

〉
over the same polyadic field KmK ,nK =

〈K | σmK , κnK 〉 is defined if there exists FkF : V×kF → V′ such that

FkF



νmV [v1, . . . , vmV ]
...

νmV

[
vmV (`kµ−1), . . . vmV `kµ

]
 `kµ

vmV `kµ+1,
...

vmV `kµ+`kid

 `kid



= ν ′m′V

FkF

 v1
...

vkF

 , . . . ,FkF

vkF (m′V −1)
...

vkFm′V


 , (4.3)

FkF



ρkρ


λ1
...
λkρ

∣∣∣∣∣∣∣ v1


...

ρkρ


λ
kρ

(
`fµ−1

)
...

λ
kρ`

f
µ

∣∣∣∣∣∣∣∣ v
`fµ




`fµ

v
`fµ+1
...

vkF

 `fid



= ρ′k′ρ


λ1
...
λk′ρ

∣∣∣∣∣∣∣FkF

 v1
...

vkF


 , (4.4)

where v1, . . . , vmV , v ∈ V, λ1, . . . , λkρ ∈ K, and the four integers `kρ, `
k
id, `fρ , `fid

define the `-shape of the mapping.

It follows from (4.3), (4.4) that the arities satisfy

kFm
′
V = mV `

k
µ + `kid, kF = `kµ + `kid, kF = `fµ + `fid, k′µ = kρ`

f
µ.
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The following inequalities hold:

1 ≤ `kµ ≤ kF , 0 ≤ `kid ≤ kF − 1,

`kµ ≤ kF ≤ (mV − 1) `kµ, 2 ≤ m′V ≤ mV , 2 ≤ kρ ≤ k′ρ.

Thus, the `-shape of the kF -place mapping between polyadic vector spaces is
determined by

`kµ =
kF (mV − 1)

mV − 1
, `kid =

kF (mV −m′V )

mV − 1
, `fµ =

kρ
k′ρ
, `fid = kF −

kρ
k′ρ
.

4.1. Polyadic functionals and dual polyadic vector spaces. An im-
portant particular case of the kF -place mapping can be considered, where the
final polyadic vector space coincides with the underlying field (an analog of a
“linear functional”).

Definition 4.3. A “linear” polyadic functional (or polyadic dual vec-
tor, polyadic covector) is a kL-place mapping of a polyadic vector space
VmK ,nK ,mV ,kρ =

〈
K; V | σmK , κnK ; νmV | ρkρ

〉
into its polyadic field KmK ,nK =

〈K | σmK , κnK 〉 such that there exists LkL : V×kL → K, and

LkL



νmV [v1, . . . , vmV ]
...

νmV

[
vmV (`kν−1), . . . vmV `kν

]
 `kν

vmV `kν+1,
...

vnK`kν+`νid

 `νid


= σmK

LkL

 v1
...

vkL

 , . . . ,LkL

vkL(mK−1)
...

vkLmK


 , (4.5)

LkL



ρkρ


λ1
...
λkρ

∣∣∣∣∣∣∣ v1


...

ρkρ


λkρ(`Lµ−1)

...
λkρ`Lµ

∣∣∣∣∣∣∣∣ v`Lµ




`Lµ

v`Lµ+1

...
vkL

 `Lid



= κnK

λ1, . . . , λnK−1,LkL

 v1
...

vkL


 , (4.6)

where v1, . . . , vmV , v ∈ V , λ1, . . . , λnK ∈ K, and the integers `kν , `νid, `Lµ , `Lid define
the `-shape of LkL .
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It follows from (4.3), (4.4) that the arities satisfy

kLmK = mV `
k
ν + `νid, kL = `kν + `νid, kL = `hµ + `hid, nK − 1 = kρ`

h
µ,

and for them

1 ≤ `kν ≤ kL, 0 ≤ `νid ≤ kL − 1, `kν ≤ kL ≤ (mV − 1) `kν ,

2 ≤ mK ≤ mV , 2 ≤ kρ ≤ nK − 1.

Thus, the `-shape of the polyadic functional is determined by

`kν =
kL (mK − 1)

mV − 1
, `νid =

kL (mV −mK)

mV − 1
, `hµ =

kρ
nK − 1

, `hid = kL −
kρ

nK − 1
.

In the binary case, because the dual vectors (linear functionals) take their
values in the underlying field, new operations between them, such that the dual
vector “addition” (+∗) and the “multiplication by a scalar” (•∗) can be naturally
introduced by

(
L(1) +∗ L(2)

)
(v) = L(1) (v)+L(2) (v), (λ •∗ L) (v) = λ•L (v), which

leads to another vector space structure, called a dual vector space. Note that the
operations +∗ and +, •∗ and • are different, because + and • are the operations
in the underlying field K. In the polyadic case, we have more complicated arity
changing formulas, and here we consider only finite-dimensional spaces. The
arities of operations between dual vectors can differ from those in the underlying
polyadic field KmKnK , in general. In this way, we arrive at the following

Definition 4.4. A polyadic dual vector space over a polyadic field KmK ,nK
is

V∗mK ,nK ,m∗V ,k∗ρ =
〈
K;
{

L
(i)
kL

}
| σmK , κnK ; ν∗mL | ρ

∗
kL

〉
,

and the axioms are:

1) 〈K | σmK , κnK 〉 is a polyadic (mK , nK)-field KmK ,nK ;

2)
〈{

L
(i)
kL

}
| ν∗mL , i = 1, . . . , DL

〉
is a commutative mL-ary group (which is finite

if DL <∞);

3) The “dual vector addition” ν∗mL is compatible with the polyadic field addition
σmK by

ν∗mL

[
L

(1)
kL
, . . . ,L

(mL)
kL

] (
a(kL)

)
= σmK

[
L

(1)
kL

(
a(kL)

)
, . . . ,L

(mK)
kL

(
v(kL)

)]
,

where v(kL) =

 v1
...

vkL

, v1, . . . , vkL ∈ V, and it follows that

mL = mK ;
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4) The compatibility of ρ∗kL with the “multiplication by a scalar” in the under-
lying polyadic field

ρ∗kL


λ1
...
λkL

∣∣∣∣∣∣∣LkL

(
v(kL)

)
= κnK

[
λ1, . . . , λnK−1,LkL

(
v(kL)

)]
, (4.7)

and then

kL = nK − 1; (4.8)

5)
〈{
ρ∗kL

}
| composition

〉
is an nL-ary semigroup SL (similar to (3.8))

ρ∗kL

nL︷ ︸︸ ︷
λ1
...
λkL

∣∣∣∣∣∣∣ . . .
∣∣∣∣∣∣ ρ∗kL


λkL(nL−1)

...
λkLnL

∣∣∣∣∣∣∣LkL
 . . .


(
v(kL)

)

= ρ∗kL



κnK [λ1, . . . λnK ] ,
...

κnK

[
λnK(`Lµ−1), . . . λnK`Lµ

]
 `Lµ

λnK`Lµ+1,
...

λnK`Lµ+`Lid

 `Lid

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
LkL



(
v(kL)

)
,

where the `-shape is determined by the system

kLnL = nK`
L
µ + `Lid, kL = `Lµ + `Lid. (4.9)

Using (4.8) and (4.9), we obtain the `-shape as

`Lµ = nL − 1, `Lid = nK − nL. (4.10)

Corollary 4.5. The arity nL of the semigroup SL is less than or equal to the
arity nK of the underlying polyadic field nL ≤ nK .

4.2. Polyadic direct sum and tensor product. The Cartesian product

of DV polyadic vector spaces ×ΠmV
i=1V

(i)

mKnKm
(i)
V k

(i)
ρ

(sometimes we use the concise

notation ×ΠV(i)), i = 1, . . . , DV is given by the DV -ples (an analog of the Carte-
sian pair (v, u), v ∈ V(1), u ∈ V(2)) v(1)

...

v(DV )

 ≡ (v(DV )
)
∈ V×DV . (4.11)
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We introduce polyadic generalizations of the direct sum and tensor product
of vector spaces by considering “linear” operations on the DV -ples (4.11).

In the first case, to endow ×ΠV(i) with the structure of a vector space we
need to define a new operation between the DV -ples (4.11) (this is similar to
the vector addition, but between the elements from different spaces) and a rule,
specifying how they are “multiplied by scalars” (analogs of (v1, v2) + (u1, u2) =
(v1 + u1, v2 + u2) and λ (v1, v2) = (λv1, λv2) ). In the binary case, a formal sum-
mation is used, but it can differ from the addition in the initial vector spaces.
Therefore, we can define on the set of the DV -ples (4.11) new operations χmV
(“addition of vectors from different spaces”) and “multiplication by a scalar” τkρ ,

which does not need to coincide with the corresponding operations ν
(i)

m
(i)
V

and ρ
(i)

k
(i)
ρ

of the initial polyadic vector spaces V(i)

mK ,nK ,m
(i)
V ,k

(i)
ρ

.

If all DV -ples (4.11) are of fixed length, then we can define their “addition”

χmV in the standard way when all the arities m
(i)
V coincide and equal the arity of

the resulting vector space

mV = m
(1)
V = . . . = m

(DV )
V , (4.12)

while the operations (“additions”) themselves ν
(i)
mV between vectors in different

spaces can be still different. Thus, a new commutative mV -ary operation (“ad-
dition”) χmV of the DV -ples of the same length is defined by

χmV


 v

(1)
1
...

v
(DV )
1

 , . . . ,

 v
(1)
mV
...

v
(DV )
mV


 =


ν

(1)
mV

[
v

(1)
1 , . . . , v

(1)
mV

]
...

ν
(DV )
mV

[
v

(DV )
1 , . . . , v

(DV )
mV

]
 , (4.13)

where DV 6= mV , in general. However, it is also possible to add DV -ples of

different length such that the operation (4.13) is compatible with all arities m
(i)
V ,

i = 1, . . . ,mV . For instance, if mV = 3, m
(1)
V = m

(2)
V = 3, m

(3)
V = 2, then

χ3


v

(1)
1

v
(2)
1

v
(3)
1

 ,

v
(1)
2

v
(2)
2

v
(3)
2

 ,

v
(1)
3

v
(2)
3


 =


ν

(1)
3

[
v

(1)
1 , v

(1)
2 , v

(1)
3

]
ν

(2)
3

[
v

(2)
1 , v

(2)
2 , v

(2)
3

]
ν

(3)
2

[
v

(3)
1 , v

(3)
2

]
 . (4.14)

Assertion 4.6. In the polyadic case, a direct sum of polyadic vector spaces

having different arities of “vector addition” m
(i)
V can be defined.

Let us introduce the multiaction τkρ (“multiplication by a scalar”) acting on
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DV -ple
(
v(mV )

)
. Then

τkρ


λ1
...
λkρ

∣∣∣∣∣∣∣
 v(1)

...

v(DV )


 =



ρ
(1)

k
(1)
ρ


λ1
...

λ
k
(1)
ρ

∣∣∣∣∣∣∣ v(1)


...

ρ
(mV )

k
(DV )
ρ


λ
k
(1)
ρ +...+k

(DV −1)
ρ +1

...
λ
k
(1)
ρ +...+k

(DV )
ρ

∣∣∣∣∣∣∣∣ v(DV )




, (4.15)

where

k(1)
ρ + . . .+ k(DV )

ρ = kρ. (4.16)

Definition 4.7. A polyadic direct sum of mV polyadic vector spaces is their
Cartesian product equipped with the mV -ary addition χmV and the kρ-place
multiaction τkρ , satisfying (4.13) and (4.15) respectively

⊕ΠDV
i=1V

(i)

mK ,nK ,m
(i)
V ,k

(i)
ρ

=

{
×ΠDV

i=1V
(i)

mK ,nK ,m
(i)
V ,k

(i)
ρ

| χmV , τkρ
}
.

Let us consider another way to define a vector space structure on the DV -
ples from the Cartesian product ×ΠV(i). Remember that in the binary case, the
concept of bilinearity is used, which means “distributivity” and “multiplicativity
by scalars” on each place separately in the Cartesian pair (v1, v2) ∈ V(1)×V(2) (as
opposed to the direct sum, where these relations hold on all places simultaneously,
see (4.13) and (4.15)) such that

(v1 + u1, v2) = (v1, v2) + (u1, v2) , (v1, v2 + u2) = (v1, v2) + (v1, u2) , (4.17)

λ (v1, v2) = (λv1, v2) = (v1, λv2) , (4.18)

respectively. If we denote the ideal corresponding to the relations (4.17), (4.18) by
B2, then the binary tensor product of the vector spaces can be defined from their

Cartesian product by factoring out this ideal as V(1) ⊗ V(2) def= V(1) × V(2)�B2.
Note first that the additions and multiplications by a scalar on both sides of
(4.17), (4.18) “work” in different spaces, which sometimes can be concealed by
adding the word “formal” to them. Second, all these operations have the same
arity (binary ones), which need not to be the case when considering polyadic
structures.

As in the case of the polyadic direct sum, we first define a new operation
χ̃mV (“addition”) of the DV -ples of fixed length (different from χmV in (4.13)),

when all the arities m
(i)
V coincide and are equal to mV (4.12). Then, a straight-

forward generalization of (4.17) can be defined for mV -ples similar to polyadic
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distributivity (2.1)–(2.3), as in the following mV relations:
ν

(1)
mV

[
v

(1)
1 , . . . , v

(1)
mV

]
u2
...

uDV

 = χ̃mV




v
(1)
1

u2
...

uDV

 , . . . ,


v

(1)
mV

u2
...

uDV


 , (4.19)


u1

ν
(2)
mV

[
v

(2)
1 , . . . , v

(2)
mV

]
...

umV

 = χ̃mV




u1

v
(2)
1
...

umV

 , . . . ,


u1

v
(2)
mV
...

umV


 , (4.20)

· · ·
u1

u2
...

ν
(mV )
mV

[
v

(DV )
1 , . . . , v

(DV )
mV

]
 = χ̃mV




u1

u2
...

v
(DV )
1

 , . . . ,


u1

u2
...

v
(DV )
mV


 . (4.21)

By analogy, if all k
(i)
ρ are equal, we can define a new multiaction τ̃kρ (different

from τkρ (4.15)) but with the same number of places

kρ = k(1)
ρ = . . . = k(DV )

ρ (4.22)

as the DV relations (an analog of (4.18))

τ̃kρ


λ1
...
λkρ

∣∣∣∣∣∣∣
 v(1)

...

v(DV )


 =


ρ

(1)
kρ


λ1
...
λkρ

∣∣∣∣∣∣∣ v(1)


v(2)

...

v(DV )


=



v(1)

ρ
(2)
kρ


λ1
...
λkρ

∣∣∣∣∣∣∣ v(2)


...

v(DV )



· · · =



v(1)

v(2)

...

ρ
(DV )
kρ


λ1
...
λkρ

∣∣∣∣∣∣∣ v(DV )




. (4.23)

Let us denote the ideal corresponding to the relations (4.19)–(4.21), (4.23) by
BDV .

Definition 4.8. A polyadic tensor product of DV polyadic vector spaces

V(i)

mK ,nK ,m
(i)
V ,k

(i)
ρ

is obtained from their Cartesian product equipped with the mV -
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ary addition χ̃mV (of DV -ples) and the kρ-place multiaction τ̃kρ , satisfying (4.19)–
(4.21) and (4.23), respectively, by factoring out the ideal BDV

⊗ΠmV
i=1V

(i)

mK ,nK ,m
(i)
V ,k

(i)
ρ

=

{
×ΠmV

i=1V
(i)

mK ,nK ,m
(i)
V ,k

(i)
ρ

| χ̃mV , τ̃kρ
}
�BDV .

As in the case of the polyadic direct sum, we can consider distributivity for

DV -ples of different length. In a similar example (4.14), if mV = 3, m
(1)
V =

m
(2)
V = 3, m

(3)
V = 2, we haveν(1)

3

[
v

(1)
1 , v

(1)
2 , v

(1)
3

]
u2

u3

 = χ̃3

v
(1)
1

u2

u3

 ,

v
(1)
2

u2

u3

 ,

v
(1)
3

u2

 ,
 u1

ν
(2)
3

[
v

(2)
1 , v

(2)
2 , v

(2)
3

]
u3

 = χ̃3

 u1

v
(2)
1

u3

 ,

 u1

v
(2)
2

u3

 ,

 u1

v
(2)
3

 ,
 u1

u2

ν
(3)
2

[
v

(3)
1 , v

(3)
2

]
 = χ̃3

 u1

u2

v
(3)
1

 ,

 u1

u2

v
(3)
2

 ,

u1

u2

 .
Assertion 4.9. A tensor product of polyadic vector spaces having different

arities of the “vector addition” m
(i)
V can be defined.

In the case of modules over a polyadic ring, the formulas connecting arities
and `-shapes similar to those above hold, while their concrete properties (non-
commutativity, mediality, etc.) should be taken into account.

5. Polyadic inner pairing spaces and norms

Here we introduce the next important operation: a polyadic analog of the
inner product for polyadic vector spaces - a polyadic inner pairing. However, this
concept differs from the n-inner product spaces considered, e.g., in [37].

Let VmK ,nK ,mV ,kρ =
〈
K; V | σmK , κnK ; νmV | ρkρ

〉
be a polyadic vector space

over the polyadic field KmK ,nK (3.20). By analogy with the binary inner product,
we next introduce its polyadic counterpart and study its arity shape.

Definition 5.1. A polyadic N -place inner pairing (an analog of the inner
product) is a mapping

N︷ ︸︸ ︷
〈〈•|•| . . . |•〉〉 : V×N → K, (5.1)

satisfying the following conditions:

1) Polyadic “linearity” (3.8) (for first argument):〈〈
ρkρ


λ1
...
λkρ

∣∣∣∣∣∣∣ v1

 |v2| . . . |vN

〉〉
= κnK

[
λ1, . . . , λkρ , 〈〈v1|v2| . . . |vN 〉〉

]
. (5.2)
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2) Polyadic “distributivity” (2.1)–(2.3) (on each place):

〈〈νmV [v1, u1, . . . umV −1] |v2| . . . |vN 〉〉
= σmK [〈〈v1|v2| . . . |vN 〉〉 , 〈〈u1|v2| . . . |vN 〉〉 . . . 〈〈umV −1|v2| . . . |vN 〉〉] . (5.3)

If the polyadic field KmK ,nK contains the zero zK and 〈V | mV 〉 has the
zero “vector” zV (which is not always true in the polyadic case), we have the
additional axiom:

3) The polyadic inner pairing vanishes 〈〈v1|v2| . . . |vN 〉〉 = zK iff any of the “vec-
tors” vanishes, ∃i ∈ 1, . . . , N , such that vi = zV .

If the standard binary ordering on KmK ,nK can be defined, then the polyadic
inner pairing satisfies:

4) The positivity condition
N︷ ︸︸ ︷

〈〈v|v| . . . |v〉〉 ≥ zK ,

5) The polyadic Cauchy–Schwarz inequality (“triangle” inequality)

κnK
[

nK︷ ︸︸ ︷
N︷ ︸︸ ︷

〈〈v1|v1| . . . |v1〉〉,
N︷ ︸︸ ︷

〈〈v2|v2| . . . |v2〉〉 . . .
N︷ ︸︸ ︷

〈〈vnK |vnK | . . . |vnK 〉〉
]

≥ κnK
[ nK︷ ︸︸ ︷
〈〈v1|v2| . . . |vN 〉〉 , 〈〈v1|v2| . . . |vN 〉〉 . . . , 〈〈v1|v2| . . . |vN 〉〉

]
. (5.4)

To make the above relations consistent, the arity shapes should be fixed.

Definition 5.2. If the inner pairing is fully symmetric under permutations
it is called a polyadic inner product.

Proposition 5.3. The number of places in the multiaction ρkρ differs by 1
from the multiplication arity of the polyadic field

nK − kρ = 1. (5.5)

Proof. It follows from the polyadic “linearity”(5.2).

Proposition 5.4. The arities of “vector addition” and “field addition” co-
incide

mV = mK . (5.6)

Proof. Implied by the polyadic “distributivity”(5.3).

Proposition 5.5. The arity of the “field multiplication” is equal to the arity
of the polyadic inner pairing space

nK = N. (5.7)
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Proof. The proof follows from the polyadic Cauchy-Schwarz inequality (5.4).

Definition 5.6. The polyadic vector space VmK ,nK ,mV ,kρ equipped with the

polyadic inner pairing

N︷ ︸︸ ︷
〈〈•|•| . . . |•〉〉 : V×N → K is called a polyadic inner pairing

space HmK ,nK ,mV ,kρ,N .

A polyadic analog of the binary norm ‖•‖ : V → K can be induced by the
inner pairing similarly to the binary case for the inner product (we use the form
‖v‖2 = 〈〈v|v〉〉).

Definition 5.7. A polyadic norm of a “vector” v in the polyadic inner pairing
space HmK ,nK ,mV ,kρ,N is a mapping ‖•‖N : V→ K, such that

κnK
[ nK︷ ︸︸ ︷
‖v‖N , ‖v‖N , . . . , ‖v‖N

]
=

N︷ ︸︸ ︷
〈〈v|v| . . . |v〉〉, nK = N, (5.8)

and the following axioms apply:

1) The polyadic “linearity”∥∥∥∥∥∥∥ρkρ

λ1
...
λkρ

∣∣∣∣∣∣∣ v


∥∥∥∥∥∥∥
N

= κnK
[
λ1, . . . , λkρ , ‖v‖N

]
, (5.9)

nK − kρ = 1. (5.10)

If the polyadic field KmK ,nK contains the zero zK and 〈V | mV 〉 has a zero
“vector” zV , then:

2) The polyadic norm vanishes ‖v‖N = zK iff v = zV .

If the binary ordering on 〈V | mV 〉 can be defined, then:

3) The polyadic norm is positive ‖v‖N ≥ zK .

4) The polyadic“triangle” inequality holds

σmK
[ mK︷ ︸︸ ︷
‖v1‖N , ‖v2‖N , . . . , ‖vN‖N

]
≥
∥∥νmV [

mV︷ ︸︸ ︷
‖v1‖N , ‖v2‖N , . . . , ‖vN‖N

]∥∥,
mK = mV = N.

Definition 5.8. The polyadic inner pairing space HmK ,nK ,mV ,kρ,N equipped
with the polyadic norm ‖v‖N is called a polyadic normed space.

Recall that in the binary vector space V over the field K equipped with the
inner product 〈〈•|•〉〉 and the norm ‖•‖, one can introduce the angle between
the vectors ‖v1‖ ‖v2‖ cos θ = 〈〈v1|v2〉〉, where in the l.h.s. there are two binary
multiplications (·).
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Definition 5.9. A polyadic angle between N vectors v1, v2, . . . , vnK of the
polyadic inner pairing space HmK ,nK ,mV ,kρ,N is defined as a set of angles ϑ =
{{θi} | i = 1, 2, . . . , nK − 1} satisfying

κ(2)
nK

[
‖v1‖N , ‖v2‖N , . . . , ‖vnK‖N , cos θ1, cos θ2, . . . , cos θnK−1

]
= 〈〈v1|v2| . . . |vnK 〉〉 ,

where κ
(2)
nK is a long product of two nK-ary multiplications, which consists of

2 (nK − 1) + 1 terms.

We will not consider the completion with respect to the above norm (to obtain
a polyadic analog of the Hilbert space) and corresponding limits and boundedness
questions, because this will not give us additional arity shapes in which we are
mostly interested here. Instead, we turn below to some applications and new
general constructions which appear from the above polyadic structures.

Table 5.1: The arity signature and arity shape of polyadic algebraic structures.

Structures
Sets Operations and arities Arity

N Name N Multiplications Additions Multiactions shape

Group-like polyadic algebraic structures

n-ary magma
(or groupoid)

1 M 1
µn :

Mn→M
n-ary semigroup

(and monoid)
1 S 1

µn :
Sn→ S

n-ary quasigroup
(and loop)

1 Q 1
µn :

Qn→ Q

n-ary group 1 G 1
µn :

Gn→ G

Ring-like polyadic algebraic structures

(m,n)-ary ring 1 R 2
µn :

Rn→ R
νm :

Rm→ R

(m,n)-ary field 1 K 2
µn :

Kn→ K
νm :

Km→ K

Module-like polyadic algebraic structures

Module
over

(m,n) -ring
2 R,M 4

σn :
Rn→ R

κm :
Rm→ R

νmM :
MmM → M

ρkρ :

Rkρ ×M→ M

Vector space
over

(mK, nK) -field
2 K,V 4

σnK :
KnK → K

κmK :
KmK → K

νmV :
VmV → V

ρkρ :

Kkρ × V→ V

(3.13)
(3.19)

Algebra-like polyadic algebraic structures

Inner pairing space
over

(mK, nK) -field
2 K,V 5

σnK :
KnK → K

N -Form
〈〈•..•〉〉 :

VN → K

κmK :
KmK → K

νmV :
VmV → V

ρkρ :

Kkρ × V→ V

(5.5)
(5.6)
(5.7)

(mA, nA) -algebra
over

(mK, nK) -field
2 K,A 5

σnK :
KnK → K

µnA :
An→ A

κmK :
KmK → K

νmA :
AmM → A

ρkρ :

Kkρ × A→ A
(3.29)

To conclude, we present the resulting Table 5.1 in which the polyadic algebraic
structures are listed together with their arity shapes.
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Applications

6. Elements of polyadic operator theory

Here we consider the 1-place polyadic operators T = FkF=1 (the case kF =
1 of the mapping FkF in Definition 4.2) on polyadic inner pairing spaces and
structurally generalize the concepts of adjointness and involution.

Remark 6.1. A polyadic operator is a complicated mapping between polyadic
vector spaces having nontrivial arity shapes (4.3) which is actually an action on
a set of “vectors”. However, only for kF = 1 it can be written in a formal way
multiplicatively, as is always done in the binary case.

Recall (to fix notations and observe analogies) the informal standard intro-
duction of the operator algebra and the adjoint operator on a binary pre-Hilbert
space H (≡ HmK=2,nK=2,mV =2,kρ=1,N=2) over a binary field K (≡ KmK=2,nK=2)
(having the underlying set {K; V}). For the operator norm ‖•‖T : {T} → K, we
use (among many others) the definition

‖T‖T = inf {M ∈ K | ∀v ∈ V ‖Tv‖ ≤M ‖v‖} , (6.1)

which is convenient for further polyadic generalization. Bounded operators have
M <∞. If on the set of operators {T} (as 1-place mappings V→ V) one defines
the addition (+T ), product (◦T ) and scalar multiplication (·T ) in the standard
way:

(T1 +T T2) (v) = T1v + T2v,

(T1 ◦T T2) (v) = T1 (T2v) ,

(λ ·T T) (v) = λ (Tv) , λ ∈ K, v ∈ V,

then 〈{T} | +T , ◦T |·T 〉 becomes an operator algebra AT (associativity and dis-
tributivity are obvious). The unity I and zero Z of AT (if they exist) satisfy

Iv = v, (6.2)

Zv = zV , v ∈ V, (6.3)

respectively, where zV ∈ V is the polyadic “zero-vector”.
The connection between operators, linear functionals and inner products is

given by the Riesz representation theorem. Informally, it states that in a binary
pre-Hilbert space H = {K; V} a (bounded) linear functional (sesquilinear form)
L : V × V→ K can be uniquely represented as

L (v1, v2) = 〈〈Tv1|v2〉〉sym , v1, v2 ∈ V, (6.4)

where 〈〈•|•〉〉sym : V×V→ K is a (binary) inner product with standard properties
and T : V → V is a bounded linear operator such that the norms of L and T
coincide. Because the linear functionals form a dual space (see Subsection 4.1),
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the relation (6.4) fixes the shape of its elements. The main consequence of the
Riesz representation theorem is the existence of the adjoint: for any (bounded)
linear operator T : V→ V there exists a (unique bounded) adjoint operator T∗ :
V→ V satisfying

L (v1, v2) = 〈〈Tv1|v2〉〉sym = 〈〈v1|T∗v2〉〉sym , v1, v2 ∈ V, (6.5)

and the norms of T and T∗ are equal. It follows from the conjugation symmetry
of the standard binary inner product that (6.5) coincides with

〈〈v1|Tv2〉〉sym = 〈〈T∗v1|v2〉〉sym , v1, v2 ∈ V. (6.6)

However, when 〈〈•|•〉〉 has no symmetry (permutation, conjugation, etc., see,
e.g., [36]), it becomes the binary (N = 2) inner pairing (5.1), the binary adjoint
consists of 2 operators (T?12) 6= (T?21), T?ij : V → V, which should be defined
by 2 equations

〈〈Tv1|v2〉〉 = 〈〈v1|T?12v2〉〉 ,
〈〈v1|Tv2〉〉 = 〈〈T?21v1|v2〉〉 ,

where (?12) 6= (?21) are 2 different star operations satisfying 2 relations

T?12?21 = T, (6.7)

T?21?12 = T. (6.8)

If 〈〈•|•〉〉 = 〈〈•|•〉〉sym is symmetric, it becomes the inner product in the pre-Hilbert
space H and equations (6.7), (6.8) coincide, while the operation (∗) = (?12) =
(?21) stands for the standard involution

T∗∗ = T. (6.9)

6.1. Multistars and polyadic adjoints. Consider now a special case of
the polyadic inner pairing space (see Definition 5.6)

HmK ,nK ,mV ,kρ=1,N =
〈
K; V | σmK , κnK ; νmV | ρkρ=1 |

N︷ ︸︸ ︷
〈〈•| . . . |•〉〉

〉
with a 1-place multiaction ρkρ=1.

Definition 6.2. The set of 1-place operators T : V → V together
with the set of “scalars” K becomes a polyadic operator algebra AT =
〈K; {T} | σmK , κnK ; ηmT , ωnT | θkF=1〉 if the operations ηmT , ωnT , θkF=1 are de-
fined by

ηmT [T1,T2, . . . ,TmT ] (v) = νmV [T1v,T2v, . . . ,TmT v] , (6.10)

ωnT [T1,T2, . . . ,TnT ] (v) = T1 (T2 . . . (TnT v)) , (6.11)

θkF=1 {λ | T} (v) = ρkρ=1 {λ | Tv} , λ ∈ K, v ∈ V. (6.12)
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The arity shape is fixed by

Proposition 6.3. In the polyadic algebra AT the arity of the operator ad-
dition mT coincides with the “vector” addition of the inner pairing space mV ,
i.e.,

mT = mV . (6.13)

Proof. The proof follows from (6.10).

To get relations between operators we assume (as in the binary case) the
uniqueness: for any T1,T2 : V→ V it follows from

〈〈v1|v2| . . . |T1vi| . . . vN−1|vN 〉〉 = 〈〈v1|v2| . . . |T2vi| . . . vN−1|vN 〉〉 (6.14)

that T1 = T2 in any place i = 1, . . . , N .
First, by analogy with the binary adjoint (6.5), we define N different adjoints

for each operator T.

Definition 6.4. Given a polyadic operator T : V→ V on the polyadic inner
pairing space HmK ,nK ,mV ,kρ=1,N , we define a polyadic adjoint as the set {T?ij}
of N operators T?ij satisfying the following N equations:

〈〈Tv1|v2|v3| . . . |vN 〉〉 = 〈〈v1|T?12v2|v3| . . . |vN 〉〉 ,
〈〈v1|Tv2|v3| . . . |vN 〉〉 = 〈〈v1|v2|T?23v3| . . . |vN 〉〉 ,

· · ·
〈〈v1|v2|v3| . . .TvN−1|vN 〉〉 = 〈〈v1|v2|v3| . . . |T?N−1,N vN 〉〉 ,
〈〈v1|v2|v3| . . . vN−1|TvN 〉〉 = 〈〈T?N,1v1|v2|v3| . . . |vN 〉〉 , vi ∈ V. (6.15)

In what follows, for the composition we will use the notation (T?ij )?kl... ≡
T?ij?kl.... From (6.15), we have the N relations:

T?12?23?34...?N−1,N?N,1 = T,

T?23?34...?N−1,N?N,1?12 = T,

· · ·
T?N,1?12?23?34...?N−1,N = T, (6.16)

which are called multistar cycles.

Definition 6.5. We call the set of adjoint mappings (•?ij ) : T → T?ij a
polyadic involution if they satisfy the multistar cycles (6.16).

If the inner pairing 〈〈•| . . . |•〉〉 has more than two places N ≥ 3, we have some
additional structural issues which do not exist in the binary case.

First, we observe that the set of the adjointness relations (6.15) can be de-
scribed in the framework of the associativity quiver approach introduced in [16]
for polyadic representations. That is, for general N ≥ 3 in addition to (6.15)
which corresponds to the so called Post-like associativity quiver (they will be
called the Post-like adjointness relations), there also exist other sets. It is cum-
bersome to write additional general formulas like (6.15) for other non-Post-like
cases, so instead we give a clear example for N = 4.
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Example 6.6. The polyadic adjointness relations for N = 4 consist of the sets
corresponding to different associativity quivers:

1) Post-like adjointness relations 2) Non-Post-like adjointness relations

〈〈Tv1|v2|v3|v4〉〉 = 〈〈v1|T?12v2|v3|v4〉〉 , 〈〈Tv1|v2|v3|v4〉〉 = 〈〈v1|v2|v3|T?14v4〉〉 ,
〈〈v1|Tv2|v3|v4〉〉 = 〈〈v1|v2|T?23v3|v4〉〉 , 〈〈v1|v2|v3|Tv4〉〉 = 〈〈v1|v2|T?43v3|v4〉〉 ,
〈〈v1|v2|Tv3|v4〉〉 = 〈〈v1|v2|v3|T?34v4〉〉 , 〈〈v1|v2|Tv3|v4〉〉 = 〈〈v1|T?32v2|v3|v4〉〉 ,
〈〈v1|v2|v3|Tv4〉〉 = 〈〈T?41v1|v2|v3|v4〉〉 , 〈〈v1|Tv2|v3|v4〉〉 = 〈〈T?21v1|v2|v3|v4〉〉

and the corresponding multistar cycles:

1) Post-like multistar cycles 2) Non-Post-like multistar cycles

T?12?23?34?41 = T, T?14?43?32?21 = T,

T?23?34?41?12 = T, T?43?32?21?14 = T,

T?34?41?12?23 = T, T?32?21?14?43 = T,

T?41?12?23?34 = T, T?21?14?43?32 = T.

Thus, if the inner pairing has no symmetry, then both the Post-like and non-
Post-like adjoints and corresponding multistar involutions are different.

Second, in the case of N ≥ 3, any symmetry of the multiplace inner pairing
restricts the polyadic adjoint sets and multistar involutions considerably.

Theorem 6.7. If the inner pairing with N ≥ 3 has the full permutation
symmetry

〈〈v1|v2| . . . |vN 〉〉 = 〈〈σv1|σv2| . . . |σvN 〉〉 , σ ∈ SN ,

where SN is the symmetric group of N elements, then:

1. All the multistars coincide (?ij) = (?kl) := (∗) for any allowed i, j, k, l =
1, . . . , N ;

2. All the operators are self-adjoint T = T∗.

Proof. 1. In each adjointness relation from (6.15), we place the operator T
in the l.h.s. to the first position and its multistar adjoint T?ij to the second
position, using the full permutation symmetry, which together with (6.14) gives
the equality of all multistar operations.

2. We place the operator T in the l.h.s. to the first position and apply the
derivation of the involution in the binary case to increasing cycles of size i ≤ N
recursively, that is:

For i = 2,

〈〈Tv1|v2|v3| . . . |vN 〉〉 = 〈〈v1|T∗v2|v3| . . . |vN 〉〉 = 〈〈T∗v2|v1|v3| . . . |vN 〉〉
= 〈〈v2|T∗∗v1|v3| . . . |vN 〉〉 = 〈〈T∗∗v1|v2|v3| . . . |vN 〉〉 ,

then, using (6.14), we get
T = T∗∗, (6.17)
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as in the standard binary case. However, for N ≥ 3 we have N higher cycles in
addition.

For i = 3,

〈〈Tv1|v2|v3| . . . |vN 〉〉 = 〈〈v1|T∗v2|v3| . . . |vN 〉〉 = 〈〈T∗v2|v3|v1| . . . |vN 〉〉
= 〈〈v2|T∗∗v3|v1| . . . |vN 〉〉 = 〈〈T∗∗v3|v1|v2| . . . |vN 〉〉
= 〈〈v3|T∗∗∗v1|v2| . . . |vN 〉〉 = 〈〈T∗∗∗v1|v2|v3| . . . |vN 〉〉 ,

which together with (6.14) gives

T = T∗∗∗,

and after using (6.17),
T = T∗. (6.18)

Similarly, for an arbitrary length of the cycle i we obtain T = T

i︷ ︸︸ ︷
∗ ∗ . . . ∗,

which should be valid for each cycle recursively with i = 2, 3, . . . , N . Therefore,
for any N ≥ 3 all the operators T are self-adjoint (6.18), while N = 2 is an
exceptional case when we have T = T∗∗ (6.17) only.

Now we show that imposing a partial symmetry on the polyadic inner pairing
will give more interesting properties to the adjoint operators. Recall that one of
the possible binary commutativity generalizations of (semi)groups to the polyadic
case is the semicommutativity concept, when in the multiplication only the first
and last elements are exchanged. Similarly, we introduce

Definition 6.8. The polyadic inner pairing is called semicommutative if

〈〈v1|v2|v3| . . . |vN 〉〉 = 〈〈vN |v2|v3| . . . |v1〉〉 , vi ∈ V. (6.19)

Proposition 6.9. If the polyadic inner pairing is semicommutative, then
for any operator T (satisfying Post-like adjointness (6.15)) the last multistar
operation (?N,1) is a binary involution and is a composition of all the previous
multistars

T?N,1 = T?12?23?34...?N−1,N , (6.20)

T?N,1?N,1 = T. (6.21)

Proof. It follows from (6.15) and (6.19), that

〈〈v1|v2|v3| . . . |TvN 〉〉 = 〈〈TvN |v2|v3| . . . |v1〉〉
= 〈〈vN |v2|v3| . . . |T?12?23?34...?N−1,N v1〉〉
= 〈〈T?12?23?34...?N−1,N v1|v2|v3| . . . |vN 〉〉
= 〈〈T?N,1v1|v2|v3| . . . |vN 〉〉 ,

which after using (6.14) gives (6.20), (6.21) follows from the first multistar cocycle
in (6.16).
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The adjointness relations (6.15) (of all kinds) together with (6.12) and (6.13)
allow us to fix the arity shape of the polyadic operator algebra AT . We will
assume that the arity of the operator multiplication in AT coincides with the
number of places of the inner pairing N (5.1),

nT = N, (6.22)

because it is in agreement with (6.15). Thus, the arity shape of the polyadic
operator algebra becomes

AT =
〈
K; {T} | σmK , κnK ; ηmT=mV , ωnT=N | θkF=kρ=1

〉
.

Definition 6.10. We call the operator algebra AT , which has the arity nT =
N , a nonderived polyadic operator algebra.

Let us investigate some structural properties of AT and types of polyadic
operators.

Remark 6.11. We can only define, but not derive as in the binary case, the ac-
tion of any multistar (?ij) on the product of operators, because in the nonderived
nT -ary algebra we have a fixed number of operators in a product and sum, that
is, `′ (nT − 1) + 1 and `′′ (mT − 1) + 1, correspondingly, where `′ is the number of
nT -ary multiplications and `′ is the number of mT -ary additions. Therefore, we
cannot transfer (one at a time) all the polyadic operators from one place in the
inner pairing to another place, as in the standard proof for the binary case.

Taking this into account, as well as consistency under the multistar cycles
(6.16), we arrive at the following definition

Definition 6.12. The fixed multistar operation acts on the ` = 1 product
of nT polyadic operators, depending on the sequential number of the multistar
(?ij) (for the Post-like adjointness relations (6.15))

sij :=


i+ j − 1

2
if 3 ≤ i+ j ≤ 2N − 1

N if i j = N
, sij = 1, 2, . . . , N − 1, N, (6.23)

in the following way:

(ωnT [T1,T2, . . . ,TnT−1,TnT ])?ij

=

{
ωnT

[
T
?ij
nT ,T

?ij
nT−1, . . . ,T

?ij
2 ,T

?ij
1

]
, sij odd,

ωnT
[
T
?ij
1 ,T

?ij
2 , . . . ,T

?ij
nT−1,T

?ij
nT

]
, sij even.

(6.24)

A rule similar to (6.24) holds also for non-Post-like adjointness relations,
but their concrete form depends on the corresponding non-Post-like associative
quiver.

Sometimes, to shorten notation, it is more convenient to mark a multistar by
the sequential number (6.23) such that (?ij)⇒

(
?sij
)
, e.g. (?23)⇒ (?2), (?N,1)⇒

(?N ), etc. Also, in the examples, for the ternary multiplication we will use the
square brackets without the name of operation if it is clear from the context, e.g.,
ω3 [T1,T2,T3]⇒ [T1,T2,T3], etc.
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Example 6.13. In the lowest ternary case, N = 3, we have:

1) Post-like adjointness relations 2) Non-Post-like adjointness relations

〈〈Tv1|v2|v3〉〉 = 〈〈v1|T?1v2|v3〉〉 , 〈〈Tv1|v2|v3〉〉 = 〈〈v1|v2|T?3v3〉〉 ,
〈〈v1|Tv2|v3〉〉 = 〈〈v1|v2|T?2v3〉〉 , 〈〈v1|v2|Tv3〉〉 = 〈〈v1|T?2v2|v3〉〉 ,
〈〈v1|v2|Tv3〉〉 = 〈〈T?3v1|v2|v3〉〉 , 〈〈v1|Tv2|v3〉〉 = 〈〈T?1v1|v2|v3〉〉 ,

and the corresponding multistar cycles:

1) Post-like multistar cycles 2) Non-Post-like multistar cycles

T?1?2?3 = T, T?3?2?1 = T,

T?2?3?1 = T, T?2?1?3 = T,

T?3?1?2 = T, T?1?3?2 = T.

Using (6.24), we obtain the ternary conjugation rules:

([T1,T2,T3])?1 = [T?1
3 ,T

?1
2 ,T

?1
1 ] ,

([T1,T2,T3])?2 = [T?2
1 ,T

?2
2 ,T

?2
3 ] ,

([T1,T2,T3])?3 = [T?3
3 ,T

?3
2 ,T

?3
1 ] ,

which are common for both Post-like and non-Post-like adjointness relations
1), 2).

Definition 6.14. A polyadic operator T is called self-adjoint if all multistar
operations are identities, i.e., (?ij) = id for all i, j.

6.2. Polyadic isometry and projection. Now we introduce polyadic
analogs for the following important types of operator: isometry, unitary, and
(orthogonal) projection. Taking into account Remark 6.11, we again cannot
move operators singly, and instead of proving the operator relations, as is usually
done in the binary case, we can only exploit some mnemonic rules to define the
corresponding relations between polyadic operators.

If the polyadic operator algebra AT contains a unit I and zero Z (see (6.2),
(6.3)), we define the conditions of polyadic isometry and orthogonality:

Definition 6.15. A polyadic operator T is called a polyadic isometry if it
preserves the polyadic inner pairing

〈〈Tv1|Tv2|Tv3| . . . |TvN 〉〉 = 〈〈v1|v2|v3| . . . |vN 〉〉 , (6.25)

and satisfies

ωnT [T?N−1,N ,T?N−2,N−1?N−1,N , . . .

T?23?34...?N−2,N−1?N−1,N ,T?12?23?34...?N−2,N−1?N−1,N ,T] = I,

+ (N − 1) cycle permutations of multistars in the first (N − 1) terms. (6.26)
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Remark 6.16. If the multiplication in AT is derived and all multistars are
equal, then the polyadic isometry operators satisfy some kind of N -regularity [20]
or regular N -cocycle condition [19].

Proposition 6.17. The polyadic isometry operator T preserves the polyadic
norm

‖Tv‖N = ‖v‖N , v ∈ V. (6.27)

Proof. It follows from (5.8) and (6.25) that

κnK
[ nK︷ ︸︸ ︷
‖Tv‖N , ‖Tv‖N , . . . , ‖Tv‖N

]
= κnK

[ nK︷ ︸︸ ︷
‖v‖N , ‖v‖N , . . . , ‖v‖N

]
,

which gives (6.27) when nK = N .

Definition 6.18. If for N polyadic operators Ti we have

〈〈T1v1|T2v2|T3v3| . . . |TNvN 〉〉 = zK , vi ∈ V,

where zK ∈ V is the zero of the underlying polyadic field KmK ,nK , then we say
that Ti are (polyadically) orthogonal, and they satisfy

ωnT
[
T
?N−1,N

1 ,T
?N−2,N−1?N−1,N

2 , . . .

T
?23?34...?N−2,N−1?N−1,N

3 ,T
?12?23?34...?N−2,N−1?N−1,N

N−1 ,TN

]
= Z,

+ (N − 1) cycle permutations of multistars in the first (N − 1) terms. (6.28)

The polyadic analog of projection is given by

Definition 6.19. If a polyadic operator P ∈ AT satisfies the polyadic idem-
potency condition

ωnT
[ nT︷ ︸︸ ︷
P,P, . . .P

]
= P, (6.29)

then it is called a polyadic projection.

By analogy with the binary case, polyadic projections can be constructed
from polyadic isometry operators in a natural way.

Proposition 6.20. If T ∈ AT is a polyadic isometry, then

P
(1)
T = ωnT [T,T?N−1,N ,T?N−2,N−1?N−1,N , . . .

T?23?34...?N−2,N−1?N−1,N ,T?12?23?34...?N−2,N−1?N−1,N ] ,

+ (N − 1) cycle permutations of multistars in the last (N − 1) terms, (6.30)

are the corresponding polyadic projections P
(k)
T , k = 1, . . . , N satisfying (6.29).
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Definition 6.21. A polyadic operator T ∈ AT is called normal if

ωnT [T?N−1,N ,T?N−2,N−1?N−1,N , . . .

T?23?34...?N−2,N−1?N−1,N ,T?12?23?34...?N−2,N−1?N−1,N ,T] =

ωnT [T,T?N−1,N ,T?N−2,N−1?N−1,N , . . .

T?23?34...?N−2,N−1?N−1,N ,T?12?23?34...?N−2,N−1?N−1,N ] ,

+ (N − 1) cycle permutations of multistars in the (N − 1) terms.

Proof. Insert (6.30) into (6.29) and use (6.26) together with nT -ary associa-
tivity.

Definition 6.22. If all the polyadic projections (6.30) are equal to unity

P
(k)
T = I, then the corresponding polyadic isometry operator T is called a polyadic

unitary operator.

It can be shown that each polyadic unitary operator is querable (“polyadically
invertible”) such that it has a querelement in AT .

6.3. Towards a polyadic analog of C∗-algebras. Let us, first, generalize
the operator binary norm (6.1) to the polyadic case. This can be done provided
that a binary ordering on the underlying polyadic field KmK ,nK can be introduced.

Definition 6.23. The polyadic operator norm ‖•‖T : {T} → K is defined
by

‖T‖T = inf
{
M ∈ K | ‖v‖N ‖Tv‖N ≤ µnK

[ nK−1︷ ︸︸ ︷
M, . . . ,M

]
, ∀v ∈ V

}
, (6.31)

where ‖•‖N is the polyadic norm in the inner pairing space HmK ,nK ,mV ,kρ=1,N

and µnK is the nK-ary multiplication in KmK ,nK .

Definition 6.24. The polyadic operator norm is called submultiplicative if

‖ωnT [T1,T2, . . . ,TnT ]‖T ≤ µnK
[
‖T1‖T , ‖T2‖T , . . . , ‖TnK‖T

]
,

nT = nK .

Definition 6.25. The polyadic operator norm is called subadditive if

‖ηmT [T1,T2, . . . ,TnT ]‖T ≤ νmK
[
‖T1‖T , ‖T2‖T , . . . , ‖TmK‖T

]
,

mT = mK .

By analogy with the binary case, we have

Definition 6.26. The polyadic operator algebra AT equipped with the sub-
multiplicative norm ‖•‖T is a polyadic Banach algebra of operators BT .

The connection between the polyadic norms of operators and their polyadic
adjoints is given by
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Proposition 6.27. For polyadic operators in the inner pairing space
HmK ,nK ,mV ,kρ=1,N :

1. The following N multi-C∗-relations

‖ωnT [T?N−1,N ,T?N−2,N−1?N−1,N , . . .

T?23?34...?N−2,N−1?N−1,N ,T?12?23?34...?N−2,N−1?N−1,N ,TN ] ‖

= µnK
[ nK︷ ︸︸ ︷
‖T‖T , ‖T‖T , . . . , ‖T‖T

]
,

+ (N − 1) cycle permutations of (N − 1) terms with multistars, (6.32)

take place if nT = nK .

2. The polyadic norms of operator and its all adjoints coincide

‖T?i,j‖T = ‖T‖T , i, j ∈ 1, . . . , N.

Proof. Both statements follow from (6.15) and the definition of the polyadic
operator norm (6.31).

Therefore, we arrive at

Definition 6.28. The operator Banach algebra BT satisfying the multi-C∗-
relations is called a polyadic operator multi-C∗-algebra.

The first example of a multi-C∗-algebra (as in the binary case) can be con-
structed from one isometry operator (see Definition 6.15).

Definition 6.29. A polyadic algebra generated by one isometry operator
T satisfying (6.26) on the inner pairing space HmK ,nK ,mV ,kρ=1,N represents a
polyadic Toeplitz algebra TmT ,nT and has the arity shape mT = mV , nT = N .

Example 6.30. The ternary Toeplitz algebra T3,3 is represented by the oper-
ator T and the relations:

[T?1 ,T?3?1 ,T] = I,

[T?2 ,T?1?2 ,T] = I,

[T?3 ,T?2?3 ,T] = I.

Example 6.31. If the inner pairing is semicommutative (6.19), then (?3) can
be eliminated by

T?3 = T?1?2 , (6.33)

T?3?3 = T, (6.34)

and the corresponding relations representing T3,3 become

[T?1 ,T?1 ,T] = I,

[T?2 ,T?1?2 ,T] = I,

[T?1?2 ,T?2 ,T] = I.
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Let us consider M polyadic operators T1T2 . . .TM ∈ BT and the related
partial (in the usual sense) isometries (6.29) which are mutually orthogonal (6.28).
In the binary case, the algebra generated by M operators, such that the sum of
the related orthogonal partial projections is unity, represents the Cuntz algebra
OM [12].

Definition 6.32. A polyadic algebra generated by M polyadic isometric
operators T1T2 . . .TM ∈ BT satisfying

η(`a)
mT

[
P

(k)
T1
,P

(k)
T2
. . .P

(k)
TM

]
= I, k = 1, . . . , N,

where P
(k)
Ti

are given by (6.30) and η
(`a)
mT is a “long polyadic addition” (6.10),

represents a polyadic Cuntz algebra pOM |mT ,nT , which has the arity shape

M = `a (mT − 1) + 1,

where `a is the number of “mT -ary additions”.

Below we will use the same notations as in Example 6.13, also the ternary
addition will be denoted by (+3) as follows: η3 [T1,T2,T3] ≡ T1 +3 T2 +3 T3.

Example 6.33. In the ternary case mT = nT = 3 and one ternary addition
`a = 1, we have M = 3 mutually orthogonal isometries T1,T2,T3 ∈ BT and
N = 3 multistars (?i). In the case of the Post-like multistar cocycles 1), 2), they
satisfy:

Isometry conditions Orthogonality conditions

[T?1
i ,T

?3?1
i ,Ti] = I,

[
T?1
i ,T

?3?1
j ,Tk

]
= Z,

[T?2
i ,T

?1?2
i ,Ti] = I,

[
T?2
i ,T

?1?2
j ,Tk

]
= Z,

[T?3
i ,T

?2?3
i ,Ti] = I,

[
T?3
i ,T

?2?3
j ,Tk

]
= Z,

i = 1, 2, 3, i, j, k = 1, 2, 3, i 6= j 6= k,

and the (sum of projections) relations:

[T1,T
?1
1 ,T

?3?1
1 ] +3 [T2,T

?1
2 ,T

?3?1
2 ] +3 [T3,T

?1
3 ,T

?3?1
3 ] = I,

[T1,T
?2
1 ,T

?1?2
1 ] +3 [T2,T

?2
2 ,T

?1?2
2 ] +3 [T3,T

?2
3 ,T

?1?2
3 ] = I,

[T1,T
?3
1 ,T

?2?3
1 ] +3 [T2,T

?3
2 ,T

?2?3
2 ] +3 [T3,T

?3
3 ,T

?2?3
3 ] = I,

which represent the ternary Cuntz algebra pO3|3,3.

Example 6.34. In the case where the inner pairing is semicommutative (6.19),
we can eliminate the multistar (?3) by (6.33) and represent the two-multistar
ternary analog of the Cuntz algebra pO3|3,3 by

[T?1
i ,T

?2
i ,Ti] = I,

[
T?1
i ,T

?2
j ,Tk

]
= Z,

[T?2
i ,T

?1?2
i ,Ti] = I,

[
T?1
i ,T

?1?2
j ,Tk

]
= Z,
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[T?1?2
i ,T?2

i ,Ti] = I,
[
T?1?2
i ,T?2

j ,Tk

]
= Z,

i = 1, 2, 3, i, j, k = 1, 2, 3, i 6= j 6= k,

and

[T1,T
?1
1 ,T

?1
1 ] +3 [T2,T

?1
2 ,T

?1
2 ] +3 [T3,T

?1
3 ,T

?1
3 ] = I,

[T1,T
?2
1 ,T

?1?2
1 ] +3 [T2,T

?2
2 ,T

?1?2
2 ] +3 [T3,T

?2
3 ,T

?1?2
3 ] = I,

[T1,T
?1?2
1 ,T?2

1 ] +3 [T2,T
?1?2
2 ,T?2

2 ] +3 [T3,T
?1?2
3 ,T?2

3 ] = I.

7. Congruence classes as polyadic rings

Here we will show that the inner structure of the residue classes (congruence
classes) over integers is naturally described by polyadic rings [8,10,31], and then
study some special properties of them.

Denote a residue class (congruence class) of an integer a, modulo b by

[[a]]b = {{a+ bk} | k ∈ Z, a ∈ Z+, b ∈ N, 0 ≤ a ≤ b− 1} . (7.1)

For the residue class, we use the notation [[a]]b, because the standard notations
by one square bracket [a]b or āb are already used for n-ary operations and querele-
ments, respectively. A representative element of the class [[a]]b will be denoted

by xk = x
(a,b)
k = a+ bk. Here we do not consider the addition and multiplication

of the residue classes (congruence classes). Instead, we consider the fixed congru-
ence class [[a]]b, and note that for arbitrary a and b, it is not closed under binary
operations. However, it can be closed with respect to polyadic operations.

7.1. Polyadic ring of integers. Let us introduce the m-ary addition and
n-ary multiplication of representatives of the fixed congruence class [[a]]b by

νm [xk1 , xk2 , . . . , xkm ] = xk1 + xk2 + · · ·+ xkm , (7.2)

µn [xk1 , xk2 , . . . , xkn ] = xk1xk2 · · ·xkn , xki ∈ [[a]]b , ki ∈ Z, (7.3)

where in the r.h.s. the operations are the ordinary binary addition and the binary
multiplication in Z.

Remark 7.1. The polyadic operations (7.2), (7.3) are not derived (see, e.g.,
[26,34]), because on the set {xki} one cannot define the binary semigroup struc-
ture with respect to ordinary addition and multiplication. Derived polyadic rings
which consist of the repeated binary sums and binary products were considered
in [31].

Lemma 7.2. In the case

(m− 1)
a

b
= I(m) (a, b) = I = integer, (7.4)

the algebraic structure 〈[[a]]b | νm〉 is a commutative m-ary group.
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Proof. The closure of the operation (7.2) can be written as xk1 + xk2 + . . .+
xkm = xk0 , or ma+b (k1 + k2 + . . .+ km) = a+bk0, and then k0 = (m− 1) a/b+
(k1 + k2 + . . .+ km) from (7.4). The (total) associativity and commutativity of
νm follows from those of the addition in the binary Z. Each element xk has its
unique querelement x̃ = xk̃ determined by the equation (m− 1)xk + xk̃ = xk,
which (uniquely, for any k ∈ Z) gives

k̃ = bk (2−m)− (m− 1)
a

b
.

Thus, each element is “querable” (polyadic invertible), and so 〈[[a]]b | νm〉 is an
m-ary group.

Example 7.3. For a = 2, b = 7, we have an 8-ary group, and the querelement
of xk is x̃ = x(−2−12k).

Proposition 7.4. The m-ary commutative group 〈[[a]]b | νm〉:
1) has an infinite number of neutral sequences for each element;

2) if a 6= 0, it has no “unit” (which is actually zero, because νm plays the role
of “addition”);

3) in the case of the zero congruence class [[0]]b, the zero is xk = 0.

Proof. 1) The (additive) neutral sequence ñm−1 of the length (m− 1) is de-
fined by νm [ñm−1, xk] = xk. Using (7.2), we take ñm−1 = xk1 + xk2 + . . . +
xkm−1 = 0 and obtain the equation

(m− 1) a+ b (k1 + k2 + . . .+ km−1) = 0. (7.5)

Because of (7.4), we obtain

k1 + k2 + . . .+ km−1 = −I(m) (a, b) , (7.6)

and so there is an infinite number of sums satisfying this condition.

2) The polyadic “unit”/zero z = xk0 = a + bk0 satisfies νm[

m−1︷ ︸︸ ︷
z, z, . . . , z, xk] =

xk for all xk ∈ [[a]]b (the neutral sequence ñm−1 consists of one element z only),
which gives (m− 1) (a+ bk0) = 0 having no solutions with a 6= 0 since a < b.

3) In the case of a = 0, the only solution is z = xk=0 = 0.

Example 7.5. For the case a = 1, b = 2, we have m = 3 and I(3) (1, 2) =
1, and so from (7.5) we get k1 + k2 = −1, thus the infinite number of neutral
sequences consists of 2 elements ñ2 = xk + x−1−k, with arbitrary k ∈ Z.

Lemma 7.6. If

an − a
b

= J (n) (a, b) = J = integer, (7.7)

then 〈[[a]]b | µn〉 is a commutative n-ary semigroup.
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Proof. It follows from (7.3) that the closeness of the operation µn is
xk1xk2 . . . xkn = xk0 , which can be written as an + b (integer) = a + bk0 lead-
ing to (7.7). The (total) associativity and commutativity of µn follows from
those of the multiplication in Z.

Definition 7.7. A unique pair of integers (I, J) is called a (polyadic) shape
invariants of the congruence class [[a]]b.

Theorem 7.8. The algebraic structure of the fixed congruence class [[a]]b is
a polyadic (m,n)-ring

R[a,b]
m,n = 〈[[a]]b | νm, µn〉 , (7.8)

where the arities m and n are minimal positive integers (more than or equal to 2),
for which the congruences

ma ≡ a (mod b) , (7.9)

an ≡ a (mod b) (7.10)

take place simultaneously, fixating its polyadic shape invariants (I, J).

Proof. By Lemmas 7.2, 7.6, the set [[a]]b is an m-ary group with respect to
“m-ary addition” νm and an n-ary semigroup with respect to “n-ary multiplica-
tion” µn, while the polyadic distributivity (2.1)–(2.3) follows from (7.2) and (7.3)
and the binary distributivity in Z.

Remark 7.9. For a fixed b ≥ 2, there are b congruence classes [[a]]b, 0 ≤ a ≤
b− 1, and therefore exactly b corresponding polyadic (m,n)-rings R[a,b]

m,n, each of
them is infinite-dimensional.

Corollary 7.10. For the case gcd (a, b) = 1 and b is prime, there exists the
solution n = b.

Proof. The proof follows from (7.10) and Fermat’s little theorem.

Remark 7.11. We exclude from consideration the zero congruence class [[0]]b,
because the arities of operations νm and µn cannot be fixed up by (7.9), (7.10)
becoming identities for anym and n. Since the arities are uncertain, their minimal
values can be chosen m = n = 2, and therefore, it follows from (7.2) and (7.3)

that R[0,b]
2,2 = Z. Thus, in what follows we always imply that a 6= 0 (without using

a special notation, e.g., R∗, etc.).

In Table 7.1, we present the allowed (by (7.9), (7.10)) arities of the polyadic

ring R[a,b]
m,n and the corresponding polyadic shape invariants (I, J) for b ≤ 10.

Let us study the properties of R[a,b]
m,n in more detail. First, we consider equal

arity polyadic rings and find the relation between the corresponding congruence
classes.
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Proposition 7.12. The residue (congruence) classes [[a]]b and [[a′]]b′ which

are described by the polyadic rings of the same arities R[a,b]
m,n and R[a′,b′]

m,n are related
by

b′I ′

a′
=
bI

a
, (7.11)

a′ + b′J ′ = (a+ bJ)loga a
′
. (7.12)

Proof. Follows from (7.4) and (7.7).

For instance, in Table 7.1 the congruence classes [[2]]5, [[3]]5, [[2]]10, and [[8]]10

are (6, 5)-rings. If, in addition, a = a′, then the polyadic shapes satisfy

I

J
=
I ′

J ′
. (7.13)

7.2. Limiting cases. The limiting cases a ≡ ±1 (mod b) are described by

Corollary 7.13. The polyadic ring of the fixed congruence class [[a]]b is:

1) multiplicative binary if a = 1;

2) multiplicative ternary if a = b− 1;

3) additive (b+ 1)-ary in both cases.

That is, the limiting cases contain the rings R[1,b]
b+1,2 and R[b−1,b]

b+1,3 . They correspond
to the first row and the main diagonal of Table 7.1. Their intersection consists

of the (3, 2)-ring R[1,2]
3,2 .

Definition 7.14. The congruence classes [[1]]b and [[b− 1]]b are called the
limiting classes, and the corresponding polyadic rings are named the limiting
polyadic rings of a fixed congruence class.

Proposition 7.15. In the limiting cases a = 1 and a = b − 1, the n-ary
semigroup 〈[[a]]b | µn〉:
1) has the neutral sequences of the form n̄n−1 = xk1xk2 . . . xkn−1 = 1, where

xki = ±1;

2) has

a)the unit e = xk=1 = 1 for the limiting class [[1]]b,

b)the unit e− = xk=−1 = −1, if n is odd, for [[b− 1]]b,

c)the class [[1]]2 contains both polyadic units e and e−;

3) has the set of “querable” (polyadic invertible) elements which consists of x̄ =
xk̄ = ±1;

4) has in the “intersecting” case a = 1, b = 2 and n = 2 the binary subgroup
Z2 = {1,−1}, while other elements have no inverses.
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Proof. 1) The (multiplicative) neutral sequence n̄n−1 of length (n− 1) is de-
fined by µn [n̄n−1, xk] = xk. It follows from (7.3) and cancellativity in Z that
n̄n−1 = xk1xk2 . . . xkn−1 = 1, which is

(a+ bk1) (a+ bk2) . . . (a+ bkn−1) = 1. (7.14)

The solution of this equation in integers is the following: a) all multipliers are
a+ bki = 1, i = 1, . . . , n− 1; b) an even number of multipliers can be a+ bki =
−1, while the others are 1.

2) If the polyadic unit e = xk1 = a + bk1 exists, it should satisfy

µm[

n−1︷ ︸︸ ︷
e, e, . . . , e, xk] = xk ∀xk ∈ 〈[[a]]b | µn〉, such that the neutral sequence n̄n−1

consists of one element e only, and this leads to (a+ bk1)n−1 = 1. For any n, this
equation has the solution a+bk1 = 1, which uniquely gives a = 1 and k1 = 0, thus
e = xk1=0 = 1. If n is odd, then there exists a “negative unit” e− = xk1=−1 =
−1, such that a + bk1 = −1, which can be uniquely solved by k1 = −1 and a =

b− 1. The neutral sequence becomes n̄n−1 =

n−1︷ ︸︸ ︷
e−, e−, . . . , e− = 1 as a product of

an even number of e− = −1. The intersection of limiting classes consists of a
single class [[1]]2, and therefore it contains both polyadic units e and e−.

3) An element xk in 〈[[a]]b | µn〉 is “querable”if there exists its querelement

x̄ = xk̄ such that µn[

n−1︷ ︸︸ ︷
xk, xk, . . . , xk, x̄] = xk. Using (7.3) and the cancellativity

in Z, we obtain the equation (a+ bk)n−2 (a+ bk̄
)

= 1, which in integers has 2

solutions: a) (a+ bk)n−2 = 1 and
(
a+ bk̄

)
= 1, the last relation fixes up the

class [[1]]b, and the arity of multiplication n = 2, and therefore the first relation
is valid for all elements in the class, each of them has the same querelement x̄ =
1. This means that all elements in [[1]]b are “querable”, but only one element x =
1 has an inverse which is also 1; b) (a+ bk)n−2 = −1 and

(
a+ bk̄

)
= −1. The

second relation fixes the class [[b− 1]]b, and from the first relation we conclude
that the arity n should be odd. In this case, only one element −1 is “querable”,
which has x̄ = −1 as a querelement.

4) The “intersecting” class [[1]]2 contains 2 “querable” elements ±1 coinciding
with their inverses, which means that {+1,−1} is a binary subgroup (that is Z2)
of the binary semigroup 〈[[1]]2 | µ2〉.

Corollary 7.16. In the non-limiting cases a 6= 1, b− 1, the n-ary semigroup
〈[[a]]b | µn〉 contains no “querable” (polyadic invertible) elements at all.

Proof. It follows from (a+ bk) 6= ±1 for any k ∈ Z or a 6= ±1 (mod b).

Basing on the above statements, consider the properties of the polyadic rings

R[a,b]
m,n (a 6= 0) describing non-zero congruence classes (see Remark 7.11).

Definition 7.17. The infinite set of representatives of the congruence

(residue) class [[a]]b having fixed arities and forming the (m,n)-ring R[a,b]
m,n is

called the set of (polyadic) (m,n)-integers (numbers) and denoted by Z(m,n).
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Table 7.1: The polyadic ring RZ(a,b)
m,n of the fixed residue class [[a]]b: arity shape.

@
@

@
@

@
@

a
b

2 3 4 5 6 7 8 9 10

1

m = 3
n = 2
I = 1
J = 0

m = 4
n = 2
I = 1
J = 0

m = 5
n = 2
I = 1
J = 0

m = 6
n = 2
I = 1
J = 0

m = 7
n = 2
I = 1
J = 0

m = 8
n = 2
I = 1
J = 0

m = 9
n = 2
I = 1
J = 0

m = 10
n = 2
I = 1
J = 0

m = 11
n = 2
I = 1
J = 0

2

m = 4
n = 3
I = 2
J = 2

m = 6
n = 5
I = 2
J = 6

m = 4
n = 3
I = 1
J = 1

m = 8
n = 4
I = 2
J = 2

m = 10
n = 7
I = 2
J = 14

m = 6
n = 5
I = 1
J = 3

3

m = 5
n = 3
I = 3
J = 6

m = 6
n = 5
I = 3
J = 48

m = 3
n = 2
I = 1
J = 1

m = 8
n = 7
I = 3
J = 312

m = 9
n = 3
I = 3
J = 3

m = 11
n = 5
I = 3
J = 24

4

m = 6
n = 3
I = 4
J = 12

m = 4
n = 2
I = 2
J = 2

m = 8
n = 4
I = 4
J = 36

m = 10
n = 4
I = 4
J = 28

m = 6
n = 3
I = 2
J = 6

5

m = 7
n = 3
I = 5
J = 20

m = 8
n = 7
I = 5

J = 11160

m = 9
n = 3
I = 5
J = 15

m = 10
n = 7
I = 5

J = 8680

m = 3
n = 2
I = 1
J = 2

6

m = 8
n = 3
I = 6
J = 30

m = 6
n = 2
I = 3
J = 3

7

m = 9
n = 3
I = 7
J = 42

m = 10
n = 4
I = 7
J = 266

m = 11
n = 5
I = 7

J = 1680

8

m = 10
n = 3
I = 8
J = 56

m = 6
n = 5
I = 4

J = 3276

9

m = 11
n = 3
I = 9
J = 72

Obviously, for ordinary integers Z = Z(2,2), and they form the binary ring

R[0,1]
2,2 .

Proposition 7.18. The polyadic ring R[a,b]
m,n is an (m,n)-integral domain.
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Proof. The proof follows from the definitions (7.2), (7.3), the condition a 6=
0, and the commutativity and cancellativity in Z.

Lemma 7.19. There are no such congruence classes which can be described
by polyadic (m,n)-field.

Proof. Follows from Proposition 7.15 and Corollary 7.16.

This statement for the limiting case [[1]]2 appeared in [21] while studying the
ideal structure of the corresponding (3, 2)-ring.

Proposition 7.20. In the limiting case a = 1, the polyadic ring R[1,b]
b+1,2 can

be embedded into a (b+ 1, 2)-ary field.

Proof. Because the polyadic ring R[1,b]
b+1,2 of the congruence class [[1]]b is an

(b+ 1, 2)-integral domain by Proposition 7.18, we can construct in a standard
way the corresponding (b+ 1, 2)-quotient ring, which is a (b+ 1, 2)-ary field up
to isomorphism as was shown in [11]. By analogy, it can be called the field of
polyadic rational numbers which has the form

x =
1 + bk1

1 + bk2
, ki ∈ Z.

Indeed, they form a (b+ 1, 2)-field, because each element has an inverse under
multiplication (which is obvious) and is additively “querable”, such that the

equation for the querelement x̄ becomes νb+1[

b︷ ︸︸ ︷
x, x, . . . , x, x̄] = x, which can be

solved for any x, giving uniquely x̄ = − (b− 1)
1 + bk1

1 + bk2
.

The introduced polyadic inner structure of the residue (congruence) classes
allows us to extend various number theoretic problems by considering the polyadic
(m,n)-integers Z(m,n) instead of Z.

8. Equal sums of like powers Diophantine equation over
polyadic integers

First, recall the standard binary version of the equal sums of like powers
Diophantine equation [22, 30]. Take the fixed non-negative integers p, q, l ∈ N0,
p ≤ q, and the positive integer unknowns ui, vj ∈ Z+, i = 1, . . . p + 1, j =
1, 1, . . . q + 1, then the Diophantine equation is

p+1∑
i=1

ul+1
i =

q+1∑
j=1

vl+1
j . (8.1)

The trivial case, when ui = 0, vj = 0 for all i, j, is not considered. In the
binary case, the solutions of (8.1) are usually denoted by (l + 1 | p+ 1, q + 1)r,
which shows the number of summands on both sides and the powers of elements
[30]. But in the polyadic case (see below), the number of summands and powers
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do not coincide with l + 1, p + 1, q + 1. We mark the solutions of (8.1) by the
triple (l | p, q)r showing the quantity of operations, where r (if it is used) is the
order of the solution (ranked by the value of the sum) and the unknowns ui, vj
are placed in ascending order ui ≤ ui+1, vj ≤ vj+1.

Let us recall the Tarry–Escott problem (or multigrades problem) [15]: to find
the solutions to (8.1) for an equal number of summands on both sides of p = q
and s equations simultaneously, such that l = 0, . . . , s. Known solutions exist for
powers until s = 10, which are bounded such that s ≤ p (in our notations), see
also [39]. The solutions with highest powers s = p are the most interesting and
called the ideal solutions [5].

Theorem 8.1 (Frolov [24]). If the set of s Diophantine equations (8.1) with
p = q for l = 0, . . . , s has a solution {ui, vi, i = 1, . . . p+ 1}, then it has the
solution {a+ bui, a+ bvi, i = 1, . . . p+ 1}, where a, b ∈ Z are arbitrary and fixed.

In the simplest case (1 | 0, 1), one term in the l.h.s., one addition in the r.h.s.
and one multiplication, the (coprime) positive numbers satisfying (8.1) are called
a (primitive) Pythagorean triple. For Fermat’s triple (l | 0, 1) with one addition
in the r.h.s. and more than one multiplication l ≥ 2, there are no solutions of
(8.1), which is known as Fermat’s Last Theorem proved in [44]. There are many
solutions known with more than one addition on both sides, where the highest
number of multiplications till now is 31 (S. Chase, 2012).

Before generalizing (8.1) to the polyadic case we note the following.

Remark 8.2. The notations in (8.1) are chosen in such a way that p and q are
the numbers of binary additions on both sides, while l is the number of binary
multiplications in each term, which is natural for using polyadic powers [16].

8.1. Polyadic analog of the Lander–Parkin–Selfridge conjecture. In
[30], a generalization of Fermat’s Last Theorem was conjectured that the solutions
of (8.1) exist for small powers only, which can be formulated in terms of the
numbers of operations as

Conjecture 8.3 (Lander–Parkin–Selfridge [30]). There exist solutions of
(8.1) in positive integers if the number of multiplications is less than or equal
to the total number of additions plus one

3 ≤ l ≤ lLSP = p+ q + 1,

where p+ q ≥ 2.

Remark 8.4. If equation (8.1) is considered over the binary ring of integers Z
such that ui, vj ∈ Z, it leads to a straightforward reformulation: for even powers
it is obvious, but for odd powers all negative terms can be rearranged and placed
on the other side.

Let us consider the Diophantine equation (8.1) over polyadic integers Z(m,n)

(i.e., over the polyadic (m,n)-ary ring RZm,n) such that ui, vj ∈ RZm,n. We use
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the “long products” µ
(l)
n and ν

(l)
m containing l operations and also the “polyadic

power” for an element x ∈ RZm,n with respect to the n-ary multiplication [16],

x〈l〉n = µ(l)
n [

l(n−1)+1︷ ︸︸ ︷
x, x, . . . , x]. (8.2)

In the binary case (n = 2), the polyadic power coincides with (l + 1) power of an
element x〈l〉2 = xl+1, which explains Remark 8.2. In this notation the polyadic
analog of the equal sums of like powers Diophantine equation has the form

ν(p)
m

[
u
〈l〉n
1 , u

〈l〉n
2 , . . . , u

〈l〉n
p(m−1)+1

]
= ν(q)

m

[
v
〈l〉n
1 , v

〈l〉n
2 , . . . , v

〈l〉n
q(m−1)+1

]
, (8.3)

where p and q are the numbers of m-ary additions in the l.h.s.
and r.h.s., respectively. The solutions of (8.3) will be denoted by{
u1, u2, . . . , up(m−1)+1; v1, v2, . . . , vq(m−1)+1

}
. In the binary case m = 2, n =

2, (8.3) reduces to (8.1). Analogously, we mark the solutions of (8.3) by the

polyadic triple (l | p, q)(m,n)
r . Now the polyadic Pythagorean triple (1 | 0, 1)(m,n),

having one term in the l.h.s., one m-ary addition in the r.h.s. and one n-ary
multiplication (elements are in the first polyadic power 〈1〉n), becomes

u
〈1〉n
1 = νm

[
v
〈1〉n
1 , v

〈1〉n
2 , . . . , v

〈1〉n
m

]
. (8.4)

Definition 8.5. Equation (8.4) solved by minimal u1, vi ∈ Z, i = 1, . . . ,m
can be named the polyadic Pythagorean theorem.

The polyadic Fermat’s triple (l | 0, 1)(m,n) has one term in the l.h.s., one m-ary
addition in the r.h.s. and l (n-ary) multiplications

u
〈l〉n
1 = νm

[
v
〈l〉n
1 , v

〈l〉n
2 , . . . , v

〈l〉n
m

]
. (8.5)

One may be interested in whether the polyadic analog of Fermat’s Last The-
orem is valid, and if not, in which cases the analogy with the binary case can be
sustained.

Conjecture 8.6 (Polyadic analog of Fermat’s Last Theorem). The polyadic
Fermat triple (8.5) has no solutions over the polyadic (m,n)-ary ring RZm,n if l ≥
2, i.e., there is more than one n-ary multiplication.

Its straightforward generalization leads to the polyadic version of the Lander–
Parkin–Selfridge conjecture.

Conjecture 8.7 (Polyadic Lander–Parkin–Selfridge conjecture). There exist
solutions of the polyadic analog of the equal sums of like powers Diophantine
equation (8.3) in integers if the number of n-ary multiplications is less than or
equal to the total number of m-ary additions plus one

3 ≤ l ≤ lpLPS = p+ q + 1. (8.6)
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Below we will see a counterexample to both of the above conjectures.

Example 8.8. Let us consider the (3, 2)-ring RZ3,2 = 〈Z | ν3, µ2〉, where

ν3 [x, y, z] = x+ y + z + 2, (8.7)

µ2 [x, y] = xy + x+ y. (8.8)

Note that this exotic polyadic ring is commutative and cancellative, having unit
0, no multiplicative inverses, and for any x ∈ RZ3,2 its additive querelement x̃ =
−x−2, therefore 〈Z | ν3〉 is a ternary group (as it should be). The polyadic power
of any element is

x〈l〉2 = (x+ 1)l+1 − 1. (8.9)

1) For RZ3,2, the polyadic Pythagorean triple (1 | 0, 1)(3,2) in (8.4) now is

u〈1〉2 = ν3

[
x〈1〉2 , y〈1〉2 , z〈1〉2

]
,

which, using (8.2), (8.8) and (8.9), becomes the (shifted) Pythagorean quadruple
[42],

(u+ 1)2 = (x+ 1)2 + (y + 1)2 + (z + 1)2 ,

and it has infinite number of solutions, among which two minimal ones
{u = 2;x = 0, y = z = 1} and {u = 14;x = 1, y = 9, z = 10} give 32 = 12 + 22 +
22 and 152 = 22 + 102 + 112, respectively.

2) For this (3, 2)-ring RZ3,2, the polyadic Fermat triple (l | 0, 1)(3,2) becomes

(u+ 1)l+1 = (x+ 1)l+1 + (y + 1)l+1 + (z + 1)l+1 . (8.10)

If the polyadic analog of Fermat’s Last Theorem 8.6 holds, then there are no
solutions to (8.10) for more than one n-ary multiplication l ≥ 2. But this is the
particular case, p = 0, q = 2, of the binary Lander–Parkin–Selfridge Conjecture
8.3 which now takes the form: the solutions to (8.10) exist if l ≤ 3. Thus, as a
counterexample to the polyadic analog of Fermat’s Last Theorem, we have two
possible solutions with numbers of multiplications: l = 2, 3. In the case of l =
2, there exist two solutions: one well-known solution {u = 5;x = 2, y = 3, z = 4}
giving 63 = 33 + 43 + 53 and another one giving 7093 = 1933 + 4613 + 6313 (J.-C.
Meyrignac, 2000), while for l = 3 there exists an infinite number of solutions, and
one of them (minimal) gives 4224814 = 958004 + 2175194 + 4145604 [23].

3) The general polyadic triple (l | p, q)(3,2), using (8.3), can be presented in
the standard binary form (as (8.1)),

2p+1∑
i=1

(ui + 1)l+1 =

2q+1∑
j=1

(vi + 1)l+1 , ui, vj ∈ Z. (8.11)

Let us apply the polyadic Lander–Parkin–Selfridge Conjecture 8.7 for this case:
the solutions to (8.11) exist if 3 ≤ l ≤ lpLSP = p + q + 1. But the binary
Lander–Parkin–Selfridge Conjecture 8.3, applied directly, gives 3 ≤ l ≤ lLSP =



Arity Shape of Polyadic Algebraic Structures 49

2p + 2q + 1. So, we should have counterexamples to the polyadic Lander–
Parkin–Selfridge conjecture when lpLSP < l ≤ lLSP . For instance, for p =
q = 1, we have lpLSP = 3, while the (minimal) counterexample with l = 5 is
{u1 = 3, u2 = 18, u3 = 21, v1 = 9, v2 = 14, v3 = 22} giving 36 + 196 + 226 = 106 +
156 + 236 [43].

As can be observed from Example 8.8, the arity shape of the polyadic ring
RZm,n is crucial in constructing polyadic analogs of the equal sums of like powers
conjectures. We can make some general estimations assuming a special (more or
less natural) form of its operations over integers.

Definition 8.9. We call RZm,n the standard polyadic ring if the “leading
terms” of its m-ary addition and n-ary multiplication are

νm[

m︷ ︸︸ ︷
x, x, . . . , x] ∼ mx, (8.12)

µn[

n︷ ︸︸ ︷
x, x, . . . , x] ∼ xn, x ∈ Z. (8.13)

The polyadic ring RZ3,2 from Example 8.8 and the congruence class polyadic

ring R[a,b]
m,n (7.8) are both standard.

Using (8.2), we obtain approximate behavior of the polyadic power in the
standard polyadic ring

x〈l〉n ∼ xl(n−1)+1, x ∈ Z, l ∈ N, n ≥ 2. (8.14)

So, the increasing of the arity of multiplication leads to higher powers, while the
increasing of the arity of addition gives more terms in sums. Thus, the estimation
for the polyadic analog of the equal sums of like powers Diophantine equation
(8.3) becomes

(p (m− 1) + 1)xl(n−1)+1 ∼ (q (m− 1) + 1)xl(n−1)+1, x ∈ Z. (8.15)

Now we can apply the binary Lander–Parkin–Selfridge Conjecture 8.3 in the
form: the solutions to (8.15) can exist if 3 ≤ l ≤ lLPS , where lLPS is an integer
solution of

(n− 1) lLPS = (p+ q) (m− 1) + 1. (8.16)

On the other hand, the polyadic Lander–Parkin–Selfridge Conjecture 8.7 gives:
the solutions to (8.15) can exist if 3 ≤ l ≤ lpLPS = p+ q+ 1. Note that (p+ q) ≥
2 now.

An interesting question arises: which arities give the same limit, that is, when
lpLPS = lLPS?

Proposition 8.10. For any fixed number of additions in both sizes of the
polyadic analog of the equal sums of like powers Diophantine equation (8.3) p+q ≥
2, there exist limiting arities m0 and n0 (excluding the trivial binary case, m0 =
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n0 = 2), for which the binary and polyadic Lander–Parkin–Selfridge conjectures
coincide lpLPS = lLPS such that

m0 = 3 + p+ q + (p+ q + 1) k, (8.17)

n0 = 2 + p+ q + (p+ q) k, k ∈ N0. (8.18)

Proof. To equate lLPS = lpLPS = p+q+1, we use (8.16) and solve in integers
the equation

(n0 − 1) (p+ q + 1) = (p+ q) (m0 − 1) + 1.

In the trivial case, m0 = n0 = 2, this is an identity, while the other solutions can
be found from n0 (p+ q + 1) = (p+ q)m0 + 2, which gives (8.17), (8.18).

Corollary 8.11. In the limiting case, lpLPS = lLPS, the arity of multiplica-
tion always exceeds the arity of addition

m0 − n0 = k + 1, k ∈ N0,

and they start from m0 ≥ 5, n0 ≥ 4.

The first allowed arities m0 and n0 are presented in Table 8.1. Their meaning
is the following.

Corollary 8.12. For the polyadic analog of the equal sums of like powers
equation over the standard polyadic ring RZm,n (with fixed p+ q ≥ 2) the polyadic
Lander–Parkin–Selfridge conjecture becomes weaker than the binary one lpLPS ≥
lLPS if:

1) the arity of multiplication exceeds its limiting value n0 with the fixed arity of
addition;

2) the arity of addition is lower than its limiting value m0 with the fixed arity
of multiplication.

Table 8.1: The limiting arities m0 and n0 which give lpLPS = lLPS in (8.15).

p+ q = 2 p+ q = 3 p+ q = 4

m0 n0 m0 n0 m0 n0

5 4 6 5 7 6
8 6 10 8 12 10
11 8 14 11 17 14
14 10 18 14 22 18

Example 8.13. Consider the standard polyadic ring RZm,n and fix the arity
of addition m0 = 12, then take in (8.15) the total number of additions p + q =
4 (the last column in Table 8.1). We observe that the arity of multiplication
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n = 16, which exceeds the limiting arity n0 = 10 (corresponding to m0). Thus,
we obtain lpLPS = 5 and lLPS = 3 by solving (8.16) in integers, and therefore
the polyadic Lander–Parkin–Selfridge conjecture becomes now weaker than the
binary one, and we do not obtain counterexamples to it as in Example 8.8 (where
the situation was opposite, lpLPS = 3 and lLPS = 5, and they could not be equal).

A concrete example of the standard polyadic ring (Definition 8.9) is the

polyadic ring of the fixed congruence class R[a,b]
m,n considered in Section 7, be-

cause its operations (7.2), (7.3) have the same straightforward behavior (8.12),
(8.13). Let us formulate the polyadic analog of equal sums of like powers Dio-

phantine equation (8.3) over R[a,b]
m,n in terms of operations in Z. Using (7.2), (7.3)

and (8.14), for (8.3) we obtain

p(m−1)+1∑
i=1

(a+ bki)
l(n−1)+1 =

q(m−1)+1∑
j=1

(a+ bkj)
l(n−1)+1 , a, b, ki ∈ Z. (8.19)

It is seen that the leading power behavior of both sides in (8.19) coincides
with the general estimation (8.15). But now the arity shape (m,n) is fixed by
(7.9), (7.10) and given in Table 7.1. Nevertheless, we can consider for (8.19)
the polyadic analog of Fermat’s Last Theorem 8.6, the Lander–Parkin–Selfridge
Conjecture 8.3 (solutions exist for l ≤ lLPS) and its polyadic version (Conjecture
8.7, solutions exist for l ≤ lpLPS) as in the estimations above. Let us consider
some examples of solutions to (8.19).

Example 8.14. Let [[2]]3 be the congruence class, which is described by

(4, 3)-ring R[2,3]
4,3 (see Table 7.1), and we consider the polyadic Fermat’s triple

(l | 0, 5)(4,3) (8.5). Now the powers are lLPS = 8, lpLPS = 6 and, for instance, if
l = 2, we have solutions, because l < lpLPS < lLPS , and one of them is

145 = 4 · (−1)5 + 7 · 55 + 85 + 2 · 115.

8.2. Frolov’s theorem and the Tarry–Escott problem. A special set
of solutions to the polyadic Lander–Parkin–Selfridge Conjecture 8.7 can be gen-
erated if we put p = q in (8.19), which we call equal-summand solutions (the
term “symmetric solution” is already taken and widely used [5]), by exploiting
the Tarry–Escott problem approach [15] and Frolov’s theorem 8.1.

Theorem 8.15. If the set of integers ki ∈ Z solves the Tarry–Escott problem

p(m−1)+1∑
i=1

kri =

p(m−1)+1∑
j=1

krj , r = 1, . . . , s = l (n− 1) + 1, (8.20)

then the polyadic equal sums of like powers equation with equal summands (8.3)

has a solution over the polyadic (m,n)-ring R[a,b]
m,n having the arity shape given by

the following relations:
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1. Inequality

l (n− 1) + 1 ≤ p (m− 1) ; (8.21)

2. Equality

p (m− 1) = 2l(n−1)+1. (8.22)

Proof. Using Frolov’s theorem 8.1 applied to (8.20), we state that

p(m−1)+1∑
i=1

(a+ bki)
r =

p(m−1)+1∑
j=1

(a+ bkj)
r , r = 1, . . . , s = l (n− 1) + 1, (8.23)

for any fixed integers a, b ∈ Z. This means that (8.23) with ki (satisfying (8.20))
corresponds to a solution to the polyadic equal sums of like powers equation (8.3)
for any congruence class [[a]]b. Nevertheless, the values a and b are fixed by the
restrictions on the arity shape and the relations (7.4) and (7.7).

1. It is known that the Tarry–Escott problem can have a solution only
when the powers are strongly less than the number of summands [5, 15], that
is (l (n− 1) + 1) + 1 ≤ p (m− 1) + 1, which gives (8.21).

2. A special kind of solutions, when the number of summands is equal to 2
into the number of powers, was found using the Thue–Morse sequence [1], which
always satisfies the bound (8.21), and in our notation it is (8.22).

In both cases the relations (8.21) and (8.22) should be solved in positive
integers and with m ≥ 2 and n ≥ 2, which can lead to non-unique solutions.

Let us consider some examples which give solutions to the polyadic equal

sums of like powers equation (8.3) with p = q over the polyadic (m,n)-ring R[a,b]
m,n

of the fixed congruence class [[a]]b.

Example 8.16. 1) One of the first ideal (non-symmetric) solutions to the
Tarry–Escott problem has 6 summands and 5 powers (A. Golden, 1944),

0r + 19r + 25r + 57r + 62r + 86r

= 2r + 11r + 40r + 42r + 69r + 85r, r = 1, . . . , 5. (8.24)

By comparing it with (8.20), we obtain

p (m− 1) = 5, l (n− 1) = 4.

After ignoring binary arities, we get m = 6, p = 1 and n = 3, l = 2. From
Theorem 7.8 and Table 7.1, we observe the minimal choice a = 4 and b = 5.
It follows from Frolov’s theorem 8.1 that all equations in (8.24) have symmetry
ki → a+ bki = 4 + 5ki. Thus, we obtain the solution of the polyadic equal sums
of like powers equation (8.3) for the fixed congruence class [[4]]5 in the form

45 + 995 + 1295 + 2895 + 3145 + 4345 = 145 + 595 + 2045 + 2145 + 3495 + 4295.



Arity Shape of Polyadic Algebraic Structures 53

It is seen from Table 7.1 that the arity shape (m = 6, n = 3) corresponds, e.g.,
to the congruence class [[4]]10 as well. Using Frolov’s theorem, we substitute in
(8.24) ki → 4 + 10ki to obtain the solution in the congruence class [[4]]10,

45 + 1945 + 2545 + 5745 + 6245 + 8645 = 245 + 1145 + 4045 + 4245 + 6945 + 8545.

2) To obtain the special kind of solutions to the Tarry–Escott problem, we
start with the known one with 8 summands and 3 powers (see, e.g., [32]),

0r + 3r + 5r + 6r + 9r + 10r + 12r + 15r

= 1r + 2r + 4r + 7r + 8r + 11r + 13r + 14r, r = 1, 2, 3. (8.25)

Thus we have the concrete solution to the system (8.20) with the condition (8.22)
which now takes the form 8 = 23, and therefore

p (m− 1) = 7, l (n− 1) = 2.

Excluding the trivial case containing binary arities, we have m = 8, p = 1 and
n = 3, l = 1. It follows from Theorem 7.8 and Table 7.1 that a = 6 and b = 7,

and so the polyadic ring is R[6,7]
8,3 . Using Frolov’s theorem 8.1, we can substitute

the entries in (8.25) as ki → a+ bki = 6 + 7ki in the equation with highest power
r = 3 (which is relevant to our task) and obtain the solution of (8.3) for [[6]]7 as
follows:

63 + 273 + 413 + 483 + 693 + 763 + 903 + 1113

= 133 + 203 + 343 + 553 + 623 + 833 + 973 + 1043.

We conclude that consideration of the Tarry–Escott problem and Frolov’s
theorem over polyadic rings gives us the possibility to obtain many nontrivial
solutions to the polyadic equal sums of like powers equation for fixed congruence
classes.
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Форма арностi полiадичних алгебраїчних структур
Steven Duplij

Конкретнi двомножиннi (модуль-подiбнi i алгебра-подiбнi) алгебраї-
чнi структури дослiджено з точки зору початкових арностей операцiй,
якi вважаються довiльними. Однак спiввiдношення мiж операцiями, якi
є наслiдками структури означень, призводять до обмежень, що визна-
чаються формою можливих арностей i дозволяють нам сформулювати
принцип свободи часткових арностей. Розглядаються полiадичнi вектор-
нi простори та алгебри, двоїстi векторнi простори, прямi суми, тензор-
нi добутки, спарювання внутрiшнiх просторiв. Окреслено елементи по-
лiадичної теорiї операторiв: уведено мультизiрки i полiадичнi аналоги
спряжених, операторних норм, iзометрiй i проекцiй, а також полiади-
чнi C∗-алгебри, алгебри Теплiца i алгебри Кунца, представленi полiа-
дичними операторами. Показано, що класи конгруенцiї є полiадичними
кiльцями спецiального виду. Уведено полiадичнi числа (див. означення
7.17) та дiофантовi рiвняння над полiадичними кiльцями. Сформульова-
но полiадичнi аналоги гiпотези Ландера–Паркiна–Селфрiджа i останню
теорему Ферма. Доведено, що для полiадичних чисел жодне iз згаданих
тверджень не виконується. Сформульовано полiадичнi версiї теореми
Фролова та проблеми Таррi–Ескотта.

Ключовi слова: полiадичне кiльце, полiадичний векторний простiр,
мультидiя, мультизiрка, дiофантове рiвняння, остання теорема Ферма,
гiпотеза Ландера–Паркiна–Селфрiджа.
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