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In this paper, we study translation invariant function spaces and spectral
analysis on KPC-hypergroups and describe a correspondence between ideals
in the algebra of compactly supported measures and varieties of continuous
functions on a KPC-hypergroup.
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1. Introduction and preliminaries

Hypergroups, as extensions of locally compact groups, were introduced in a
series of papers by Dunkl [3], Jewett [4], and Spector [6] in 70’s (we refer to
this concept as DJS-hypergroup). For more details about DJS-hypergroups refer
to [1]. In 2010, Kalyuzhnyi, Podkolzin, and Chapovsky introduced new axioms
for hypergroups which are extensions of DJS-hypergroups and also generalized
normal hypercomplex systems [5] (see also [13–15]). We refer to this notion as
a KPC-hypergroup. They studied harmonic analysis on KPC-hypergroups and
showed that there is an example of a compact KPC-hypergroup related to the gen-
eralized Tchebycheff polynomials, which is not a DJS-hypergroup [5]. In this pa-
per, we initiate spectral analysis on KPC-hypergroups and give a correspondence
between ideals and invariant subspaces of C(Q), where Q is a KPC-hypergroup.
Spectral analysis and spectral synthesis were studied on locally compact groups
and DJS-hypergroups by Székelyhidi in [7–9, 11]. As the main result, we give a
necessary and sufficient condition for the presence of spectral analysis of a given
variety. Spectral synthesis problems on KPC-hypergroups will be treated in a
subsequent paper.

Let Q be a locally compact Hausdorff space. We denote by C(Q) the space
of all continuous complex-valued functions on Q, and by Mc(Q) the space of all
compactly supported complex Radon measures on Q. For the sake of simplicity,
functions in C(Q) will be called functions, and measures inMc(Q) will be called
measures.

Let ∆ be a function from C(Q) into C(Q × Q), f, g ∈ C(Q) and p, q, r ∈ Q.
We write

[(∆× id) ◦∆](f)(p, q, r) := ∆(∆f(p, ·))(q, r),
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[(id×∆) ◦∆](f)(p, q, r) := ∆(∆f(·, q))(p, r)

and

(f ⊗ g)(p, q) := f(p)g(q).

Definition 1.1. Let Q be a locally compact Hausdorff space with an involu-
tive homeomorphism ? : Q −→ Q satisfying the following conditions:

(H1) there exists an element e ∈ Q such that e? = e;

(H2) there exists a C-linear mapping ∆ : C(Q)→ C(Q×Q) such that

(i) ∆ is coassociative, that is,

(∆× id) ◦∆ = (id×∆) ◦∆; (1.1)

(ii) ∆ is positive, that is, for each non-negative function f, the function ∆f
is non-negative;

(iii) ∆ preserves the identity, that is, (∆1)(p, q) = 1 for all p, q ∈ Q;

(iv) for all compactly supported functions f, g, the functions (1⊗ f) · (∆g)
and (f ⊗ 1) · (∆g) are compactly supported;

(H3) we have (∆f)(e, p) = (∆f)(p, e) = f(p), for all f ∈ C(Q) and p in Q;

(H4) the function f̌ defined by f̌(q) = f(q?) for each function f satisfies

(∆f̌)(p, q) = (∆f)(q?, p?); (1.2)

(H5) there exists a non-zero positive Radon measure λ with support Q such that∫
Q

(∆f)(p, q)g(q)dλ(q) =

∫
Q
f(q)(∆g)(p?, q)dλ(q) (1.3)

for each p in Q, whenever f, g are functions and at least one of them is
compactly supported; the measure λ will be called a left Haar measure on Q.

Then (Q, ?, e,∆,m), or simply Q, is called a locally compact KPC-hypergroup.

A KPC-hypergroup Q is called cocommutative if for all f ∈ C(Q) and all
p, q ∈ Q, ∆f(p, q) = ∆f(q, p). Throughout this paper Q always denotes a locally
compact cocommutative KPC-hypergroup.

Definition 1.2. For measures µ, ν, the convolution µ ∗ ν is defined by

(µ ∗ ν)(f) =

∫
Q

∫
Q

(∆f)(p, q)dµ(p)dν(q), (1.4)

whenever f is a function in C(Q).
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2. Varieties and ideals

In the sequel, the space C(Q) is equipped with the topology of compact con-
vergence. This topology is defined by the family of seminorms (pC), where C
runs through the family of all compact subsets of Q, and for each f ∈ C(Q),
pC(f) is the uniform norm of the restriction of f to C. This family of seminorms
is separating (by Tietze’s Extension Theorem [2, p. 87]), and so the generated
topology is a Hausdorff topology on C(Q), hence the latter is a locally convex
topological vector space. In the topology of compact convergence, the topologi-
cal dual of C(Q) (equipped with this topology) is the spaceMc(Q), and ifMc(Q)
is equipped with the weak*-topology (the topology induced by C(Q)), then its
topological dual identifies with C(Q).

Definition 2.1. For each x, y in Q, the translate of a function f by y is
defined by (τyf)(x) := ∆f(x, y).

By Definition 1.1, we have τef(x) = ∆f(x, e) = f(x). So, τe = I, the identity
operator on C(Q).

Definition 2.2. Let Q be a KPC-hypergroup. For each measure µ and
function f , we define

(µ ∗ f)(x) :=

∫
Q

∆f(x, y?)dµ(y) (2.1)

where x is in Q. Clearly, µ ∗ f and f ∗ µ are functions. In particular, we have
τyf(x) = (δy? ∗ f)(x).

It is easy to check thatMc(Q) is a (topological) unital algebra and C(Q) is a
(topological) vector module over Mc(Q).

Definition 2.3. A closed linear subspace E of C(Q) is called a variety on Q if
for all f in E and y in Q the translate τyf is in E. The smallest variety containing
a given function f is denoted by τ(f), and it is called the variety generated by f
or the variety of f . Clearly, the functions which are non-zero scalar multiples, or
translates of each other generate the same variety.

For any set V in C(Q), its orthogonal complement V ⊥ in Mc(Q) is the set of
all measures inMc(Q) which vanish on V . Clearly, V ⊥ is a closed linear subspace
of Mc(Q). We have also the dual correspondence: the orthogonal complement
of any subset I of Mc(Q) is I⊥, the set of all functions in C(Q), which belong
to the kernel of all linear functionals in I. Clearly, it is a closed linear subspace
of C(Q). By the Hahn–Banach theorem, we have the obvious relations V = V ⊥⊥

and also I = I⊥⊥ for any closed linear subspace V of C(Q) and for any closed
linear subspace I of Mc(Q). In the case of varieties, the annihilators can be
characterized.

Proposition 2.4. Let Q be a cocommutative KPC-hypergroup, V be a variety
in C(Q) and I be a closed ideal in Mc(Q). Then V ⊥ is a closed ideal in Mc(Q)
and I⊥ is a variety in C(Q).
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Proof. Let V be a variety in C(Q), f ∈ V , µ ∈ V ⊥, and ν ∈Mc(Q). Then

(µ ∗ ν)(f) =

∫
Q

∫
Q

∆f(x, y)dµ(x)dν(y) =

∫
Q

(∫
Q
τyf(x)dµ(x)

)
dν(y) = 0.

Hence, µ ∗ ν ∈ V ⊥, and V ⊥ is a closed ideal in Mc(Q). Now, let I be a closed
ideal in Mc(Q). Then for any µ ∈ I, f ∈ I⊥ and ν ∈Mc(Q), we have

0 =

∫
Q
fd(µ ∗ ν) =

∫
Q

∫
Q

∆f(x, y)dµ(x)dν(y)

=

∫
Q
µ(τyf)dν(y),

that is, the function y 7→ µ(τyf) annihilatesMc(Q). Therefore, by Hahn-Banach
theorem, for all y ∈ Q, τyf is in I⊥ and so I⊥ is a variety in C(Q).

In particular, we have a one-to-one correspondence between the closed ideals
of Mc(Q) and the closed translation invariant subspaces of C(Q).

Another important concept is the annihilator.

Definition 2.5. Given a subset V in C(Q), its annihilator AnnV is the set
of all measures in Mc(Q) satisfying µ ∗ f = 0 for each f in V . The dual concept
is the annihilator Ann I of a subset I in Mc(Q), which is the set of all functions
f satisfying µ ∗ f = 0 for each µ in I.

It is obvious that AnnV is a closed linear subspace inMc(Q) and Ann I is a
closed linear subspace in C(Q). With the notation

V̌ = {f̌ : f ∈ V }, Ǐ = {µ̌ : µ ∈ I}

we have AnnV = (V̌ )⊥ and Ann I = (Ǐ)⊥. Here µ̌ is the measure defined by
µ̌(f) = µ(f̌) whenever µ is a measure and f is a function.

Proposition 2.6. For each variety V in C(Q), its annihilator AnnV is a
closed ideal inMc(Q), and AnnV = (V̌ )⊥. Similarly, for each ideal I inMc(Q),
its annihilator Ann I is a variety in C(Q), and Ann I = (Ǐ)⊥.

Proof. Let ν ∈ Mc(Q) and µ ∈ AnnV . Then for each f ∈ V , (µ ∗ ν) ∗ f =
ν ∗ (µ ∗ f) = 0. Hence, AnnV is a closed ideal of Mc(Q). Let µ ∈ AnnV . For
each f ∈ V , we have

µ(f̌) =

∫
Q
f̌(x)dµ(x) =

∫
Q

∆f(x?, e)dµ(x) =

∫
Q

∆f(e, x?)dµ(x) = (µ∗f)(e) = 0,

and so µ ∈ (V̌ )⊥. Conversely, let µ ∈ (V̌ )⊥, f ∈ V and x ∈ Q. Then

(µ ∗ f)(x) =

∫
Q

∆f(x, y?)dµ(y) =

∫
Q

(τxf )̌(y)dµ(y) = µ((τxf )̌) = 0

since τxf ∈ V . The second part is proved in a similar way.
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Proposition 2.7. For each variety V ⊆ W in C(Q) we have AnnV ⊇
AnnW , and for each ideal I ⊆ J in Mc(Q) we have Ann I ⊇ Ann J . In ad-
dition, we have Ann(AnnV ) = V and Ann(Ann I) ⊇ I. In particular, V 6= W
implies AnnV 6= AnnW .

Proof. The proof is straightforward.

Corollary 2.8. The varieties in C(Q) are exactly the closed vector submod-
ules of the vector module C(Q).

Proof. Clearly, every closed vector submodule is a variety. Conversely, we
have to show that if f is in V , then µ ∗ f is in V = Ann AnnV for each µ in
Mc(Q), that is, µ∗f is annihilated by any element of AnnV . Let ν be in AnnV .
As AnnV is an ideal, we have ν ∗ µ is in AnnV , hence

ν ∗ (µ ∗ f) = (ν ∗ µ) ∗ f = 0,

that is, µ ∗ f is in Ann AnnV .

Proposition 2.9. Let (Vi)i∈I be a family of varieties in C(Q), and (Ii)i∈I be
a family of closed ideals in Mc(Q). Then(∑

i∈I
Vi

)⊥
=
⋂
i∈I

V ⊥i ,

(∑
i∈I

Ii

)⊥
=
⋂
i∈I

I⊥i .

Proof. Let µ ∈
(∑

i∈I Vi
)⊥

. Then for each i ∈ I we have µ ∈ V ⊥i since
Vi ⊆

∑
i∈I Vi, and so µ ∈

⋂
i∈I V

⊥
i . Conversely, let µ ∈

⋂
i∈I V

⊥
i . Then µ

annihilates any finite sum of the elements in
⋃

i∈I Vi. So, by continuity, we have

µ ∈
(∑

i∈I Vi
)⊥

.

Now let f be in
(∑

i∈I Ii
)⊥

. Then f is annihilated by finite sums of measures
taken from the Ii’s. Hence, in particular, f is annihilated by each Ii, hence f
is in I⊥i for each i and thus f is in

⋂
i∈I I

⊥
i . The reverse inclusion is equally

obvious.

Proposition 2.10. Let (Vi)i∈I be a family of varieties in C(Q), and (Ii)i∈I
be a family of closed ideals in Mc(Q). Then(⋂

i∈I
Vi

)⊥
=
∑
i∈I

V ⊥i ,

(⋂
i∈I

Ii

)⊥
=
∑
i∈I

I⊥i .

Proof. The statements are immediate consequences of the previous result and
of the relations V ⊥⊥ = V and I⊥⊥ = I for each variety V and closed ideal I.

We note that, by the relations AnnV = (V̌ )⊥ and Ann I = (Ǐ)⊥, we have
similar statements about the annihilators of sums and intersections.
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Definition 2.11. A variety V ⊆ C(Q) is called decomposable if there are
two proper subvarieties whose algebraic sum is dense in V . Otherwise it is called
indecomposable.

We recall that an ideal in a commutative ring is called irreducible if it is not
the intersection of two ideals different from it.

Corollary 2.12. A variety V is indecomposable if and only if V ⊥ is irre-
ducible.

Proof. This is a consequence of Proposition 2.9.

3. Exponentials and spectral analysis

Definition 3.1. A non-zero function f is called an exponential (on Q) if for
all p, q ∈ Q we have

∆f(p, q) = f(p)f(q).

Proposition 3.2. A variety on a KPC-hypergroup is one-dimensional if and
only if it is generated by an exponential.

Proof. If u is an exponential function, then, by definition, every τyu is a
constant multiple of u, Hence, all τyu’s form a one-dimensional vector space in
C(Q) and thus τ(u) is one-dimensional. Conversely, by assumption, every τyu is
a constant multiple of u, that is, for each y in Q there is a complex number α(y)
such that

∆u(x, y) = α(y)u(x)

for each x in Q. It follows that u(y) = ∆u(e, y) = u(e)α(y). Hence,

∆α(x, y) = α(y)α(x),

and thus α 6= 0 is an exponential. On the other hand, α and u generate the same
variety, hence τ(u) is generated by the exponential α.

Definition 3.3. Let f be a function, and let y be in Q. Then the modified
difference Df ;y is defined by

Df ;y := δy? − f(y)δe.

For any positive integer n and y1, y2, . . . , yn ∈ Q, we write

Df ;y1,y2,...,yn =
n∏

i=1

[δy?i − f(yi)δe].

Theorem 3.4. Let f be a function on Q, and Mf denote the closed ideal
generated by all modified differences Df ;y where y ∈ Q. Then the followings are
equivalent:

(1) f is an exponential,
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(2) the ideal Mf is proper and f(e) = 1,

(3) the ideal Mf is maximal and f(e) = 1,

(4) Mf = Ann τ(f) and f(e) = 1.

Proof. (1) ⇒ (2): Let f be an exponential. Then f(e)f(e) = ∆f(e, e) =
f(e). Since f 6= 0, we have f(e) = 1. For each y ∈ Q,

(Df ;y ∗ f)(x) = ∆f(x, y)− f(y)f(x) = 0.

It follows that f is in AnnMf , hence AnnMf 6= 0, and, by Mf = Ann AnnMf ,
Mf is proper.

(2) ⇒ (3): Let Mf be a proper ideal and f(e) = 1. Then there is g 6= 0 in
AnnMf , and we have

∆g(x, y)− f(y)g(x) = Df ;y ∗ g(x) = 0,

where x, y ∈ Q. By Definition 1.1, g = g(e)f . It follows that AnnMf is one-
dimensional, hence Mf = Ann AnnMf is a maximal ideal.

(3) ⇒ (4): Let Mf be a maximal ideal and f(e) = 1. If g 6= 0 is in AnnMf ,
then, in the same way as above, we have g = g(e)f . In particular, g(e) 6= 0, hence
f ∈ AnnMf . Therefore τ(f) ⊆ AnnMf , and Mf = Ann AnnMf ⊆ Ann τ(f).
But Ann τ(f) is a proper ideal and, by the maximality of Mf , we have Mf =
Ann τ(f).

(4) ⇒ (1): Let Mf = Ann τ(f) and f(e) = 1. We have f ∈ τ(f) = AnnMf .
Then for each x, y ∈ Q,

0 = Df ;y ∗ f(x) = ∆f(x, y)− f(y)f(x),

that is, f is an exponential.

Definition 3.5. The maximal ideal M in Mc(Q) is called an exponential
maximal ideal if M = Mm for some exponential m : Q→ C.

Theorem 3.6. The maximal ideal M in Mc(Q) is exponential if and only if
the residue ring Mc(Q)/M is topologically isomorphic to the complex field.

Proof. Suppose that M is a maximal ideal in Mc(Q), and Φ :Mc(Q)/M →
C is a topological isomorphism. Then the mapping Ψ : Mc(Q) → C, defined
by Ψ(µ) := Φ(µ + M) for µ ∈ Mc(Q), is a multiplicative linear functional on
Mc(Q). Since Mc(Q)∗ = C(Q), there exists a function f ∈ C(Q) such that for
all µ ∈ Mc(Q), Ψ(µ) = µ(f̌). In particular, for each x ∈ Q, we have Ψ(δx?) =
f(x). Hence f(e) = Ψ(δe) = 1 and for each x, y ∈ Q,

∆f(x, y) = Ψ((δx ∗ δy )̌) = Ψ(δy∗ ∗ δx∗) = Ψ(δy∗)Ψ(δx∗) = f(y)f(x).

This implies that f is an exponential. For each y ∈ Q, we have

Ψ(δy∗ − f(y)δe) = Ψ(δy∗) + f(y)Ψ(δe) = f(y)− f(y) = 0.
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Thus, for each y ∈ Q, Df ;y is in ker Ψ = M . Therefore, Mf ⊆ M , and since M
is a maximal ideal, we have Mf = M , i.e., M is an exponential maximal ideal.
Conversely, let M = Mf for some exponential function f . Then the mapping Ψ :
Mc(Q) → C defined by Ψ(µ) := µ(f̌) is a multiplicative linear functional with
ker Ψ = M . Therefore Mc(Q)/M is topologically isomorphic to C.

Definition 3.7. Let Q be a cocommutative KPC-hypergroup. We say that
spectral analysis holds for a variety E on Q if every non-zero subvariety of E
contains an exponential.

Theorem 3.8. Spectral analysis holds for the variety E if and only if every
maximal ideal containing AnnE is exponential, or equivalently, every maximal
ideal of the residue ring Mc(Q)/AnnE is exponential.

Proof. Let spectral analysis hold for the variety E, and M be a maximal ideal
containing AnnE. Then, by Proposition 2.6, AnnM is a subvariety of E. Thus
there is an exponential f in AnnM , and the mapping Ψ :Mc(Q) → C, defined
by Ψ(µ) := µ(f̌), is a multiplicative linear functional with M ⊆ ker Ψ = Mf .
This implies that M = Mf since Mf is a proper ideal (Theorem 3.4). Conversely,
let every maximal ideal containing AnnE be exponential, and V be a non-zero
subvariety of E. For a maximal ideal M containing AnnV , AnnE ⊆ AnnV ⊆
M . Thus, there exists an exponential f such that M = Mf = Ann τ(f). Then
f ∈ τ(f) = Ann Ann τ(f) ⊆ Ann AnnV = V .
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[10] L. Székelyhidi, Exponential polynomials on commutative hypergroups, Arch. Math.
101 (2013), No. 4, 341–347.
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Iнварiантнi пiдпростори на KPC-гiпергрупах
László Székelyhidi and Seyyed Mohammad Tabatabaie

У данiй роботi ми вивчаємо простори функцiй, iнварiантних вiдносно
зсувiв, i спектральний аналiз на KPC-гiпергрупах та описуємо вiдповiд-
нiсть мiж iдеалами в алгебрi мiр з компактними носiями i многовидами
неперервних функцiй на КРС-гiпергрупi.

Ключовi слова: DJS-гiпергрупа, KPC-гiпергрупа, спектральний ана-
лiз, спектральний синтез.
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