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Propagation of Singularities for Large
Solutions of Quasilinear Parabolic Equations

Yevgeniia A. Yevgenieva

The quasilinear parabolic equation with an absorption potential is con-
sidered:

(|u\q71u) —Ay(u) = fb(t,x)|u|>‘71u (t,z) € (0,T)xQ, A>p>q>0,

t

where ) is a bounded smooth domain in R™, n > 1, b is an absorption
potential which is a continuous function such that b(¢,z) > 0 in [0,7") x
Q and b(t,z) =0 in {T} x Q. In the paper, the conditions for b(t,x) that
guarantee the uniform boundedness of an arbitrary weak solution of the
mentioned equation in an arbitrary subdomain g : Qo C € are considered.
Under the above conditions the sharp upper estimate for all weak solutions
u is obtained. The estimate holds for the solutions of the equation with
arbitrary initial and boundary data, including blow-up data (provided that
such a solution exists), namely, u = co on {0} X ©, u = o0 on (0,T) x 9.

Key words: partial differential equations, quasilinear parabolic equation,
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1. Introduction and formulation of main results

Let Q be a bounded domain in R"®, n > 1, with C%-smooth boundary 0f.
We will consider the following quasilinear parabolic equation in the cylindrical
domain @ = (0,7) x 2,0 < T < oc:

(\u|q_1u)t—2(ai(t,a:,u, Vu))z, = —b(t, 1:)|u|>‘_1u inQ@, A>p>qg>0, (1.1)
=1

where a;(t,x,s,§), 1 =1,2,...,n, are continuous functions satisfying the coerci-
tivity and growth conditions:

dol¢P™ <D it w,5,€)&; V(t,5,8) € Q x R x R™; (1.2)
=1
|ai(t, z,s,8)| < d|¢]; V(t, 2,86 €Qx R xR i=1,...,n; (1.3)
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where dy = const > 0, di = const < oo. Thus, the model representative of
equation (1.1) is the equation

(|u|q_1u)t —Apu = —b(t,x)|u|>‘_1u, (1.4)

where Ap(u) = 3711, (‘Vmu’pilumi)l’i'
The function b(t,x) (the absorption potential) is a continuous function in
[0,T] x € satisfying the conditions:

b(t,#) >0 in [0,T) x €, b(t,r) =0 on {T} x Q. (1.5)

In the paper, we consider weak solutions of equation (1.1). In this context let
us introduce the following definition.

Definition 1.1. A function u(t,z) € Cle((0,T); LITH(Q)) is called a weak
(energy) solution of equation (1.1) if:

Lp-i-l (( ,P-I-l(Q)) L)\-i-l ((O,T) « Q) ’

loc loc
+

(Jul*u), € L (0.T): (W @)) + Lh (0,7 (127 (@)").

C

and the integral identity

b
[ttt o at
b n
+/ /[Zai(t,x,u,VU)n%+b(t,:r)]u’\_1u77}dxdt—0 (1.6)
a JQ i—1

holds for an arbitrary 0 < @ < b < T and an arbitrary

n(t,w) € LEE((0,7); Wi (@) n I ((0,7); L)),
where W2 PT(Q), LM1(Q) are subspaces of WhPHL (), LM1(Q) of the functions
with a compact support in 2, and (-, -) is the pairing of elements from wartt Q)N

L2F(@) and (WEPFH(Q) LQH(Q))*.

Definition 1.2. A function u(t, ) is called a large solution of equation (1.1)
if it is a weak solution of equation (1.1) and satisfies the following singular initial
and boundary values:

u =00 on {0} x £, ie.u—ooast—0 uniformly Vo € Q, (1.7)
u=o0on (0,7) x 99, i.e. u— oo as d(x,0Q) — 0 uniformly V¢ € (0,7). (1.8)

The existence of weak solutions of such equations as (1.1) with arbitrary finite
initial and boundary values was proven in the papers published in the 1980s and
1990s, see, for example, [1,6,7].
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The existence and properties of large solutions were studied by many authors,
namely L. Veron, W. Al Sayed, C. Bandle, G. Diaz, J.I. Diaz, Y. Du, R. Peng,
P. Pola¢ik and others (see [2,3,9, 10, 16] and references therein). There were
considered linear (p = ¢ = 1) or semilinear (¢ = 1) equations. For the general
case of equation (1.1) with two nonlinearities (p # 1 and the g # 1), the existence
of a large solution has not been proven yet. In the current paper, the question of
the existence of large solutions of general equation (1.1) is not affected. However,
the main result is obtained for a whole class of weak solutions including large
solutions (if any), see also Remark 1.5.

Now let us consider the most interesting for us results. For the case of p =
g = 1, equation (1.4), namely

up — Au = —b(t,z)|[ul* tu, (t,x)€Q, \>1, (1.9)

with conditions (1.5), (1.7), and (1.8) was studied in [3]. The following condition
for the absorption potential b(t,z) was considered:

a1 (t)d(z)? < b(t,x) < ag(t)d(x)?, V(t,z) € [0,T] x Q, B> —2, (1.10)

where a1 (t), a2(t) are positive continuous on [0, T") functions, d(z) := dist{x, 0Q}.
Under condition (1.10), the existence of maximal % and minimal u positive solu-
tions of the problem under consideration was proved. Moreover, the main result
of [3] says that under the following additional condition on the degeneration of
ay(t) near t =T

a1(t) = co(T —t)? in[0,T), co = const > 0, § = const > 0, (1.11)

for any to € (0,7, there exists C' = C(ty) < oo such that

26

a(t,z) < C min{(T—t)*%,d(x)*ﬁ}d(a:)*m, V(t,z) € [to, T)x Q. (1.12)

At the same time, an open question was whether condition (1.11) was a sharp
condition of boundedness of solution w.

The answer to this question was found in [11]. Problem (1.7)—(1.9) was con-
sidered there. Conditions for the absorption potential b(¢, ) have the following
form, which is similar to (1.10), but more general:

a1 (t)g1(d(@)) < b(t,2) < as(Dga(d(z), V(o) €[0,T) xQ  (L13)

where ¢1(s) < ga2(s) are arbitrary nondecreasing positive for all s > 0 functions.
In [11], it was proven that under the mentioned conditions and the addition
condition for the minorant a;(t),

wo

(T—t)> in [0,7"), c¢o = const > 0, wp = const > 0, (1.14)

(t)> e (-
there exists a constant k > 0 that does not depend on wq such that

1
limsupu(t,z) < C < oo, VzeQy:={reQ:dx)>kwi}. (1.15)
t—T
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As we can see, this result proves that condition (1.11) is not sharp. So the most
appropriate condition is (1.14). The proof of the sharpness of (1.14) will be given
in a subsequent paper.

In [11], there was also studied a more general equation (1.4) with condition
(1.5) for the case when A\ > p > ¢ > 0. For this problem, the precise conditions
of the boundedness of the solution u was also found. Namely, there was proven
that under the condition

A—
a1 (t) >wal(T—t)Fg, Vt<T, wp=const >0, (1.16)

an arbitrary weak solution (even large solution if any) u of the mentioned problem
remains bounded as t — T for arbitrary z € Q. := {x € Q : d(x) > ¢}, where
e =-¢e(wg) = 0 as wy — 0.

It is also interesting to estimate the solution profile when the conditions of the
boundedness hold. For the case of p = ¢ > 0, this estimate was obtained in [14].
Problem (1.1), (1.7), (1.8) with the condition A > p = ¢ > 0 was considered
n [14]. Under the conditions (1.5), (1.13) for the absorption potential b(t, z) and
the condition for the minorant aq(t),

a1(t) = coexp (—wo(T - t)fﬁ) , Vt<T, co,wo,p=const>0, (1.17)

the following estimate for an arbitrary weak solution (even for large solution if
any) u(t, z) of the problem under consideration was proven:

h(t,s) + E(t,s) := /

0
u(t,x)|p+1d:):+// \Vou(r, z) P dedr
Q(s) 7 /()

< K; min < exp (ng w(s—35) n

ptp pt+1 >
0<5<s

_14+p(A+2)
X

5 p+1 —-p
X (/ gl(h)“p(*“)dh) , Vse(0,sp), (1.18)
0

where the constants K, Ko < 0o, s > 0 depend only on the known parameters
of the problem, h(t,s), E(t, s) are energy functions connected with the solution u
and describing the behavior of the solution profile. The domain €2(s) from (1.18)
is defined in the following way:

Q(s) :={r e Q:d(x) >s}, s>0. (1.19)

The purpose of the paper is to study the behavior of any weak solution u
of equation (1.1) with arbitrary initial and boundary values (including singular
values). We try to obtain the estimate of the solution profile and find the depen-
dence of this estimate from the minorant a;. In this context, the main result is
the following one.
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Theorem 1.3. Let u be an arbitrary weak (energy) solution (see Defini-
tion 1.1) of equation (1.1), where the absorption potential b(t,z) satisfies condi-
tions (1.5), (1.13) and the following condition for the function ai(t) holds:

ar(t) = kN T —t)*, Vt<T, Kk=const>0, AZP <p< )\; (1.20)
p q

. B T .
Then the following estimate holds for all 5 <t <T':

t
h(t,s) + E(t,s) ::/ |u(t,:v)]q+1dw+/T/ \Vu(r, z)|P M dedr
(s) 3 JQ(s)

Q

g+1
—p—u(r-9 mi —35%: (s 3

< Kk Pupqoglglgs{(s 5) Gl(s)}, Vse (0,5), (1.21)

where
(g+1)(1+p(A+2))

S p+1 T+t (A—p—n(p—q))
Gi(s) = / g1 (h) T ,
0

(np—a)+ (@ +Dp+1)(up+1) - (A—p)
(P+1)A—p—pp—1q)

the constant K < oo depends only on the known parameters of the problem under

consideration, § > 0, and the domain §(s) is defined by (1.19).

0 =

)

To make the result more understandable, we introduce the following corollary
which describes one of the particular cases.

Corollary 1.4. Let g1(s) = as®, a = const > 0, o = const > 0. Then,

(¢+1)(1+p(A+2))

_ g+1 Q(p + 1) P+ O—p—plp—9)
=q *rr-9 |1 ——F— n 1.22
Grls) = a rmrvtrs < +)\p+2p+1)> 5 (1.22)
where n =n(p) = (q+(1;$19;z/1\)_(§:1}(;f(;;;r1)). In this case, (1.21) yields:

_ 1 T
h(t,s) + E(t,s) < K e3 st s~ O+ vy e <2,T>, Vse(0,5), (1.23)

where
(g+1)(14+p(A+2))

olp+1) G DO—p—nG—0) (0 + n)f*"
Ap+2p+1) G0y’
K, 0 are from (1.21), n is from (1.22).

Remark 1.5. As mentioned above, in this paper we do not prove the existence
of a large solution of equation under consideration. Estimate (1.21) is obtained
for all weak solutions of equation (1.1) regardless of initial and boundary data.
Particularly, this result can be applied for the problem with singular data (1.7),
(1.8) (under the condition that the solution of this problem exists). Of course,
this case is the most interesting. Therefore the question about the existence of a
large solution for general equation (1.1) with two nonlinearities remains open.

— — +1
K =K(a,0) = Kya ¥ s (1 +

Remark 1.6. We will prove (1.21) by using a method of local energy estimates.
It was proposed and developed in [4,5,8,12,17].
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2. Auxiliary results

Let us introduce the following energy functions which are associated with the
weak solution u(t, z) of equation (1.1):

t
E(t) = EM(t) := / / \Vou(r, z) [P dedr, (2.1)
0 JQ
h(t) = k™ (t) := sup /\u(T,x)]quldx, Vt<T. (2.2)
o<r<t JQ

These functions define the behavior of an arbitrary solution u. To study the
behavior in the neighborhood of the boundary of the domain €2, we parameterize
the energy function by the parameter s which defines the distance to the boundary
0. Namely, we consider the family of subdomains Q(s) which is defined by (1.19)
and the corresponding functions E(t, s) and h(t, s) which are defined in (1.21).

Notice that there exists a value sq which defines the “radius” of the domain
Q(s). Tt is such a constant that function d(-) € C%(Q\ Q(s)), Vs < sq, and
correspondingly 9€)(s), is a C2?-smooth manifold for all 0 < s < sq. As is well
known, the existence of this constant follows from the prescribed smoothness of
0. Thus, the parameterized functions E(t, s), h(t, s) are defined by the following
relations:

t

Bt s) = / / Vou(r, o) P dedr, (2.3)
r Jag

ht, s) ::/ lu(t, )|+ da, Vs e (0,s0), Ve (0,T).  (2.4)
()

To prove Theorem 1.3 we need to study the functions E(¢, s), h(t,s). For this
purpose, assume that the interval [0,7) is splitted by some increasing sequence
of points {t;} (j =1,2,..., jo < 00, to =0, tj, =T). Thus we get the intervals
[tj—1,t;) with the length A; :=¢; —t;_1 > 0. Now consider the following layered
energy functions:

t.
E;(s) ::/J / |V ou(t, z) [P dadt, (2.5)
ti—1 Q(S)
hj(s) == sup / lu(t, z)|" dx, Vj < jo, Vs € (0,s0). (2.6)
tj—1<t<t; JQ(s)

Now we have the following lemma for these functions.

Lemma 2.1 (see [8,13]). Let u(t,x) be an arbitrary weak solution of equation
(1.1) with conditions (1.5) for the absorption potential b(t,x). Then, for almost
all s € (0,8q), the following system for the layered energy functions holds:

Ej(s) + hj(s) < Cihjoa(s) + ColA]! (= Ej(s)) " + AT (—Ej(s)) ™,

(v v 1
hy(s) < (L+7)hjoa(s) + Coy AT (< Bj(s)) 7 4
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1., , .
+ Oy T AR (<Ei(s) T, =12, o, (2.7)

where v = const > 0, C; = const > 0, Vi = 1,5, depend only on the known
parameters and do not depend on 7y,

s (1-0)(+1) __(d=-09r-9
g+ )+ 0 —q) M=+ 1) +0(p—q)
(q+1) (p—q)

po = ——,
q(p+1)

Vy = —
qlp+1)

__ nlp—q)t+aq+1
n(p—q)+(q@+1)(p+1)

the functions E;(s) and h;(s) are defined in (2.5), (2.6).

<1,

Since the absorption potential b(t,z) > 0, V¥ (¢t,7) € Q, the proof of Lemma
2.1 is analogous to that of Lemma 6.2.3 in [8] or Lemma 1 in [13].

The next step of the proof is analysis of asymptotic properties of solutions of
ordinary differential inequality (ODI) system (2.7). The following result can be
obtained by repeating all the steps of the proof of Theorem 1 in [13].

Lemma 2.2. Let u be an arbitrary weak (energy) solution of equation (1.1)
and let the layered energy functions E;(s), hi(s) satisfy the system of ODI (2.7).
Let also the “initial” conditions for energy functions hold,

1 1
E(t)+h(t) Swo(T—1)%, Vi<T, —<a<l™® (2.8)
p pP—q
where wy = const > 0, the functions E(t), h(t) are defined in (2.1), (2.2).

Then there exists the constant G > 0 and the value Sy > 0, which depend on
known parameters of the problem only such that the following uniform by t < T
estimate holds:

g+1
E(t,s)+ sup h(r,s) < ngJrl_a(p_Q)s_”, Vi< T, Vs e (0,5), (2.9)
o<r<t

where v = O‘(n(p;a)féq(;i)q(f’ﬂ)), Q(s) is a family of subdomains from (1.19), the

functions E(t,s), h(t,s) are defined in (2.3), (2.4).

Thus the last step of the proof of Theorem 1.3 is to obtain condition (2.8) for
the energy functions.

3. Proof of Theorem 1.3

Let Q(s) be a family of subdomains from (1.19). Let us introduce an addi-
tional family of cylindrical subdomains of Q:

Q-(s) :=(s",7) xQs), Vse(0,sq), Vr <T,
A+ DpA+1) —qlp+1))

l<r<1+ G+ )0 —p)

(3.1)
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Now we define the energy functions connected with a solution u of equation (1.1)
under consideration:

hr(s) = hiu)(s) = / lu(r, )9 de, 0<7<T,0<s<sq, (3.2)

// (Vault, 2) P! + a1 (g1 (d(@))[ul ™) dadt. (3.3)

Lemma 3.1. Let u be a solution of equation (1.1). And let the absorption
potential b(t,x) satisfy conditions (1.5), (1.13). Then energy functions (3.2),
(3.3) satisfy the following relations:

B (s) := hr(s) + E-(s) < C®(1)Gi(s) Vs e (0,3), (3.4)
where

1+p(/\+2)

T —ptlL s _ptl A=p
(1) :/ ay(t) *=rdt, Gi(s) = </ g1(h) P02 dh) :
0 0

C = const > 0, § € (0,sq) depend only on the known parameters.

Proof. Let us fix s > 0, § > 0 and introduce a Lipschitz cut-off function
Eos(h) : Egs(h) =0 for h < s, E5(h) = 1 for h > s+ 6, & 45(h) = 2
s < h < s+9. Now we substitute the test function n(t,z) = u(t, z)& s(d(x)) into
integral identity (1.6). Then, using the formula of integration by parts (see, for
example, [1]), we get

L Ju(b,2)|" e, 5(d(2))de
Q(s)

qg+1
b
+/ /Q( ) Zaz , Vou)ua, +b(t, 95)|“’)‘+1)€s s(d(x))dxdt

=1

qﬁ |u(a )| 5(d(2))da

// al( o Vau)ués s(d(x)), dxdt. (3.5)
NQ(s+6)

Let us take b = 7 < T, a = s" in (3.5). Then, passing to the limit 6 — 0 and
using conditions (1.2), (1.3), by standard computations we derive the inequality

he(s) + E-(s) < cl/ / |V ulP|u| dodt + cohsr(s), Vs €(0,sq), (3.6)
sT JOQ(s)

where ¢; < 00, co < oo depend only on dy, di, p, n. Let us estimate the terms in
the right-hand side from above. Using Holder’s inequality, we get

/ VeulPlul do = / g () ¥ a1 (£) 557 [V gulPay (1)~ T g () 55T do
oQ(s) o82(s)
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e
< c3 (/ ul* a1 (t)g1(s) dU)
o0Q(s)

# 1 1
* / VeulPHldo | ai(t)" T gi(s) >,
0Q(s)

A—p
where ¢z = (meas 0§2) 3D+ Integrating the last inequality with respect to ¢
and using the Holder and Young inequalities, we get

T Ay e\ GFOGED
/ / |VaulPlu| dodt < cagi(s)” 31 / ay(t)”*=r dt
sT JOQ(s) ST

1+p(A+2)

- CHD(p+D)
X < / / (]qu\pﬂ+a1(t)g1(s)|u])‘+1) dadt) . (37)
sT JOQ(s)

We estimate the second term of the right-hand side of (3.6) using the monotonicity
of the function g;(-) and Holder’s inequality

har(s) = /Q( : fu(s", )|y (") 1 g1 (d(2)) T a

—
—~
V)
3
SN—
|

>
{

-

Q

=

—
QU
—~

8
~—
SN—
|

b
{

—
QU

8

<os / (s, 2) ey (g (d@)de | ar(sh) " E gy (s) H (3.8)
Q(s)

A—
where c; = (meas Q)Tr(ll It is easy to check that the inequality

d T
—d—ET(s) > / / (|qu\p+1 + al(t)gl(s)|u]/\+1> dodt
S s™ JOQ(s)

st [ (1Tl P (D)t P do (39)
Q(s)

holds for almost all s € (0,sq). Using estimates (3.7), (3.8) and relation (3.9),
from (3.6) we deduce the following inequality:

- = 1 __A-p d— %
By (s) i= r(s) + Br(s) < Crgn(s) 7 0(r) 000 (=, (s)
s
d ge} (r=1)(q+1)
+1 _ r—1)(q+1
+ C’ggl(s)_% <—dET(s)> sT ML foraa. s € (0,sq), (3.10)
s
where
T _ptl -1
®(r) = / ai(t) *rdt, Cp=cics, Cy=cacs < min al(s’")> .
0 0<S§50

Now, using the monotonic decreasing of the function h,(s), by a simple compu-
tation we derive from (3.10) the following inequality:

—dilsBT(s) > H(s, By(s)) : = min {Hw(s, B.(s)), H (s, BT(S))}
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for a.a. s € (0,sq), Vr < T, (3.11)

A+ (p+1)

H(l)(saBT(S)) = < 91(5)%“37(3) > T+p(A+2) |

T A—p
2C’1<I)(7-) OFD(p+1)

A+1
afl T
91(8)* 1 B-(s) \ "
H?)(s, Br(s)) := (M@H) :
2058~ 1

Now we will solve ODI (3.11) and get the estimate for B-(s). For this purpose
we consider a domain D = D, C R? as a set of points (s,B) : 0 < s < sq,
B > 0, where the function H (s, B) from (3.11) is defined by the first term in the
right-hand side of (3.11). It means that

A+D(p+1)

A+1
D (S B) : gl(S)%HB e < ﬂ h
T , . = il
201@(7’)% QCQS_%

After simple transformation, we can rewrite the last definition as

D, ={(s,B) : B> BW(s)}, (3.12)

0 _ (=1 (@+1)(+p(A+2)) _ p(g+1) _ (A=p)(g+1)
BO) (5) = C3s™ GFDEOD-a(e+1) gy (5) " pOFD-atptD) | (7) " OFDRO+)—a(pT1) |

___(+)(¢+D) 14+p(A+2)
Cs = 201 p(A+1)—aq(p+1) 0219(/\+1>—q(p+1) )

Let us consider now all possible cases for the solution B;(s) with respect to the
domain D.. The first possibility is

(s,B;(s)) € D, for all s € (0,sgq). (3.13)
In this situation ODI (3.11) has the form

Q4D (p+1)

91() ¥ By (s) ><>
20, B(7) CFIGFD ’
Vr<T, Vse(0,s0). (3.14)

- ) > HO . B (s) =

ds

From assumption (3.13) it follows that B, (0) = co. Solving now ODI (3.14) with
this initial condition, we get simply

_ 1+p(A+2)
A—p

s p+1
B.(s) < B (s) := C4(7) < / g1 (h) TFP0AF2) dh) :
0
Vs e (0,sq),YT <T, (3.15)

Lrp(+2) Q1) (p+1)

where 042(%2;2)) P(20) b
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Let us check that (3.15) does not contradict the assumption that B, (s) € D;.
For this we have to guarantee the inequality

BM(s) > BY(s), Vs e (0,s0), (3.16)

or, due to definitions (3.12), (3.15):

_ 14p(0+2)
s p+1 A—p
Cy®(7) ( / g1(h) #7042 dh)
0
(r—1)(g+1)(1+p(A+2)) p(g+1)

> (Cgs CHFDEOFD—ap+1) gy (3)7 p(A+1)—q(p+1)

_ (A—p)(g+1)
X (I)(T) CHDEAFD—a+D)) | Vs € (07 SQ),

Due to the monotonicity of the function g;(-), we have
s pt1 pt1
1 (W) T 0 < g (s) T
0

and therefore,

_1+p(A+2)

8 ptl A=p _4p(A+2) _ptl
(/ g1(h) HHr03+2) dh> >s AP ogi(s) P, Vse(0,sq). (3.17)
0

As a consequence, we have that for validity of (3.16) it is sufficient to guarantee
that
1+p(A+2)  (r=1)(g+1)(1+p(A+2))
04(1)(7-) > (C3s *—» O+D A+ —q(p+1))

(p—q)(1+p(A+2)) _ (A—p)(g+1)
X gl(g) C=p)(p(A+1)—a(p+1)) (I)(T) GHFDEOF)—ae+D) |

which is equivalent to

— i
(1) = C3C g4(s), (3.18)
— 1+ (A—p)(g+1)
O(7) := ®(7) T CFDEOF) =+ |

1+p(A+2)  (r=1)(g+1)(A+p(A+2)) (P=a)(A1+p(A+2))
G1(s) :=5 Ar  GFDEGHD-a@+D) g (5) B-peOF)—ae+1)

Since the parameter r satisfies the assumption from (3.1), the function g, (s) is a
monotonically increasing function. Using the monotonicity of the functions g (s)
and ®(7), we can get that inequality (3.17) holds for the arbitrary 7 € [£,T’) and
arbitrary s, satisfying the condition

0 <s < sp, (3.19)

where sy := min{sq, 50}, 5o is determined by g;(50) = C3_16’4$ (%) Thus,
relationship (3.16) is true for all 7 > £ and s from (3.19). As a consequence,
(3.15) holds if condition (3.13) is satisfied.
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Let us suppose that estimate (3.15) is not true for some s € (0, s9). So, there
exists s1 € (0, sp) such that

Br(s1) > BW (s). (3.20)

If we suppose that B, (s) > Bgl)(s), Vs € (0,s1), then it also satisfies condition
(3.13). Therefore, due to the previous consideration estimate (3.15) holds for all
s € (0,s1), which contradicts assumption (3.20). Thus, it remains the following
possibility only: there exists a point so € (0, s1) such that

B.(so) = BW(sy), By(s) > BW(s), Vse(sq,51). (3.21)
From (3.21) it follows easily that there exists a point 52 € (s2,s1) such that

d d
T.B-(52) > £B§1>(§2), B.(52) > BW(5,). (3.22)

But on the other side, due to (3.14), (3.15) and (3.22), we have

p+1
d So ) 1+p(3+2) A+1) (p+1)
_7BT(§2) > M—HBT(§2) T+p(A+2)

ds Cs®(7) T

p+1
g1 (52) T+p(A+2) B(l) A+ (p+1) d 1)

> (52) T+p(A+2) — _£BT (52)7

T

EES A
C5®(7) TF0+D)

QO+D (p+1)

where Cp := (2C7) 7342 which contradicts (3.22) and, consequently, (3.21).
Thus, estimate (3.4) is true with C' = Cy, § = min{sgq, so} for all 7 € (%, T). O

Proof of Theorem 1.3. Due to condition (1.20), we can get the following
estimate for the function ®(-) from (3.10):

1 (g tL
B(t) < Bo(t) i= K1 £50 (T 1) (55 1>, vt < T. (3.23)

Now inequality (3.4) yields the estimate

~

hit,s) + E(t,s) < CO#)C1(s), Ve (to,T), Vs € (0,30), (3.24)

1
50 = min|( sq,t§ |, r is from (3.1), the functions E(t,s), h(t,s)

where tg = %,

are from (2.3), (2.4), respectively. Now we fix some value 5 € (0, 5q) and deduce
from (3.24) the following “initial” energy estimate:

h(t,5) + E(t,5) < CGL(5)D(t) Vi e (to,T). (3.25)

We will consider u(t,x) as a solution of equation (1.1) in the domain (tg,7T") x
Q(s). Using (3.25) and (3.23), we get

h(t,5) + E(t,5) < Kok >0 G1(3)(T — 1), Vit € (to,T), (3.26)



Propagation of Singularities for Large Solutions . .. 143

where 8 = ,u% — 1, Ky = CK; and condition from (1.20) for pu gives us the
condition for S : % < B <L

Now we have system (2.7) for the layered functions Fj(s), h;(s) and “initial”
condition (3.26). Applying Lemma 2.2, we get the estimate

% _ g¥l 0 __(@+D)QA=p)
h(t, )+ B(t,5) < G H070 3T (5 — 5) ™0 Ga (5) PO -sto

Vit e (tg,T), Vs,5such that 0 <5< s <35, (3.27)

where § := min{sq, S0}, G, S¢ are from (2.9), 0 is from (1.21). Optimizing the

last estimate with respect to a free parameter 5, 0 < § < s < §, we get (1.21)
(g+1)(A\—p)

with K = GEJ7F V07000 .
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IlommpenHs: CUHTYJISIPDHOCTEN BEJIMKUX PO3B’SI3KiB
KBa3UIiHITHNX mapabo/ivHuX piBHIHD

Yevgeniia A. Yevgenieva

PosriisryTo kBazininiitae nmapabosrivHe piBHSIHHS 3 TOTEHITIaI0M abcopb-
mil:

(‘u|q_1u)t - AP(U) = —b(t,;v)|u|)‘_1u (t,.’L’) € (O7T) X Q? A> p>q> 07

1e ) € obMexkeHoIo IIa Koo obaactio B R, n > 1, b € morenmiagom abcopb-
i, sKwit € HemepepBHOWO (yHKIE Takow, mo b(t,z) > 0 B [0,7) x Q Ta
b(t,x) =08 {T} x Q. Y pobori posrusiHyTo ymMoBHu Ha b(t, ), siki rapanTy-
FOTh PIBHOMIPHY OOMEKEHICTh JOBIJIBHOIO CJIAOKOrO PO3B’sI3KYy 3a3HAYEHOI'O
piBHsHHS B Oyab-aKiit migobaacti Qg : Qy C Q. 3a 1uX yMOB 0JepKaHO TO-
9HYy OIIIHKY 3BEpXY [JIs BCiX cjaabKmx po3B’sa3kiB u. 110 OmiHKY BHKOHAHO
JJIs PO3B’SI3KIB 1IHOI'O PIBHAHHSA 3 JOBIIBHUME IOYATKOBUMH Ta TDAHIIHI-
MU JTaHUMU, BKJIFOYAIOYN CHHTYJISPHI MaHi (KO Taki pO3B’A3KM ICHYIOTH ),
a came u = oo Ha {0} x Q, u = oo na (0,7) x IN.

KimrouoBi cioBa: nmudepenmiaabhi PIBHAHHA 3 YACTUHHUME IIOXiTHUMH,
KBa3iminiiine mapaboJiiaHe piBHIHHs, BUPOKEHNI TOTEHIaI abcopOIrii, Be-
JINKi PO3B’SI3KMU.
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