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Propagation of Singularities for Large

Solutions of Quasilinear Parabolic Equations

Yevgeniia A. Yevgenieva

The quasilinear parabolic equation with an absorption potential is con-
sidered:(
|u|q−1u

)
t
−∆p(u) = −b(t, x)|u|λ−1u (t, x) ∈ (0, T )× Ω, λ > p > q > 0,

where Ω is a bounded smooth domain in Rn, n > 1, b is an absorption
potential which is a continuous function such that b(t, x) > 0 in [0, T ) ×
Ω and b(t, x) ≡ 0 in {T} × Ω. In the paper, the conditions for b(t, x) that
guarantee the uniform boundedness of an arbitrary weak solution of the
mentioned equation in an arbitrary subdomain Ω0 : Ω0 ⊂ Ω are considered.
Under the above conditions the sharp upper estimate for all weak solutions
u is obtained. The estimate holds for the solutions of the equation with
arbitrary initial and boundary data, including blow-up data (provided that
such a solution exists), namely, u =∞ on {0} × Ω, u =∞ on (0, T )× ∂Ω.

Key words: partial differential equations, quasilinear parabolic equation,
degenerate absorption potential, large solution.
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1. Introduction and formulation of main results

Let Ω be a bounded domain in Rn, n > 1, with C2-smooth boundary ∂Ω.
We will consider the following quasilinear parabolic equation in the cylindrical
domain Q = (0, T )× Ω, 0 < T <∞:

(
|u|q−1u

)
t
−

n∑
i=1

(ai(t, x, u,∇u))xi = −b(t, x)|u|λ−1u in Q, λ > p > q > 0, (1.1)

where ai(t, x, s, ξ), i = 1, 2, . . . , n, are continuous functions satisfying the coerci-
tivity and growth conditions:

d0|ξ|p+1 6
n∑
i=1

ai(t, x, s, ξ)ξi; ∀(t, x, s, ξ) ∈ Q̄×R1 ×Rn; (1.2)

|ai(t, x, s, ξ)| 6 d1|ξ|p; ∀(t, x, s, ξ) ∈ Q̄×R1 ×Rn; i = 1, . . . , n; (1.3)
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where d0 = const > 0, d1 = const < ∞. Thus, the model representative of
equation (1.1) is the equation(

|u|q−1u
)
t
−∆pu = −b(t, x)|u|λ−1u, (1.4)

where ∆p(u) =
∑n

i=1

(
|∇xu|p−1uxi

)
xi

.

The function b(t, x) (the absorption potential) is a continuous function in
[0, T ]× Ω satisfying the conditions:

b(t, x) > 0 in [0, T )× Ω, b(t, x) = 0 on {T} × Ω. (1.5)

In the paper, we consider weak solutions of equation (1.1). In this context let
us introduce the following definition.

Definition 1.1. A function u(t, x) ∈ Cloc((0, T );Lq+1(Ω)) is called a weak
(energy) solution of equation (1.1) if:

u(t, x) ∈ Lp+1
loc

(
(0, T );W 1,p+1

loc (Ω)
)
∩ Lλ+1

loc ((0, T )× Ω) ,(
|u|q−1u

)
t
∈ L

p+1
p

loc

(
(0, T ); (W 1,p+1

c (Ω))∗
)

+ L
λ+1
λ

loc

(
(0, T ); (Lλ+1

c (Ω))∗
)
,

and the integral identity∫ b

a

〈(
|u|q−1u

)
t
, η
〉
dt

+

∫ b

a

∫
Ω

[ n∑
i=1

ai(t, x, u,∇u)ηxi + b(t, x)|u|λ−1uη

]
dxdt = 0 (1.6)

holds for an arbitrary 0 < a < b < T and an arbitrary

η(t, x) ∈ Lp+1
loc

(
(0, T );W 1,p+1

c (Ω)
)
∩ Lλ+1

loc

(
(0, T );Lλ+1

c (Ω)
)
,

where W 1,p+1
c (Ω), Lλ+1

c (Ω) are subspaces of W 1,p+1(Ω), Lλ+1(Ω) of the functions
with a compact support in Ω, and 〈·, ·〉 is the pairing of elements from W 1,p+1

c (Ω)∩
Lλ+1
c (Ω) and

(
W 1,p+1
c (Ω) ∩ Lλ+1

c (Ω)
)∗

.

Definition 1.2. A function u(t, x) is called a large solution of equation (1.1)
if it is a weak solution of equation (1.1) and satisfies the following singular initial
and boundary values:

u =∞ on {0} × Ω, i.e. u→∞ as t→ 0 uniformly ∀x ∈ Ω, (1.7)

u =∞ on (0, T )× ∂Ω, i.e. u→∞ as d(x, ∂Ω)→ 0 uniformly ∀ t ∈ (0, T ). (1.8)

The existence of weak solutions of such equations as (1.1) with arbitrary finite
initial and boundary values was proven in the papers published in the 1980s and
1990s, see, for example, [1, 6, 7].
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The existence and properties of large solutions were studied by many authors,
namely L. Veron, W. Al Sayed, C. Bandle, G. Diaz, J.I. Diaz, Y. Du, R. Peng,
P. Polaĉik and others (see [2, 3, 9, 10, 16] and references therein). There were
considered linear (p = q = 1) or semilinear (q = 1) equations. For the general
case of equation (1.1) with two nonlinearities (p 6= 1 and the q 6= 1), the existence
of a large solution has not been proven yet. In the current paper, the question of
the existence of large solutions of general equation (1.1) is not affected. However,
the main result is obtained for a whole class of weak solutions including large
solutions (if any), see also Remark 1.5.

Now let us consider the most interesting for us results. For the case of p =
q = 1, equation (1.4), namely

ut −∆u = −b(t, x)|u|λ−1u, (t, x) ∈ Q, λ > 1, (1.9)

with conditions (1.5), (1.7), and (1.8) was studied in [3]. The following condition
for the absorption potential b(t, x) was considered:

a1(t)d(x)β 6 b(t, x) 6 a2(t)d(x)β, ∀(t, x) ∈ [0, T ]× Ω, β > −2, (1.10)

where a1(t), a2(t) are positive continuous on [0, T ) functions, d(x) := dist{x, ∂Ω}.
Under condition (1.10), the existence of maximal u and minimal u positive solu-
tions of the problem under consideration was proved. Moreover, the main result
of [3] says that under the following additional condition on the degeneration of
a1(t) near t = T :

a1(t) > c0(T − t)θ in [0, T ), c0 = const > 0, θ = const > 0, (1.11)

for any t0 ∈ (0, T ), there exists C = C(t0) <∞ such that

u(t, x) 6 C min
{

(T − t)−
θ

λ−1 , d(x)−
2θ
λ−1

}
d(x)−

2+β
λ−1 , ∀(t, x) ∈ [t0, T )×Ω. (1.12)

At the same time, an open question was whether condition (1.11) was a sharp
condition of boundedness of solution u.

The answer to this question was found in [11]. Problem (1.7)–(1.9) was con-
sidered there. Conditions for the absorption potential b(t, x) have the following
form, which is similar to (1.10), but more general:

a1(t)g1(d(x)) 6 b(t, x) 6 a2(t)g2(d(x)), ∀ (t, x) ∈ [0, T )× Ω, (1.13)

where g1(s) 6 g2(s) are arbitrary nondecreasing positive for all s > 0 functions.
In [11], it was proven that under the mentioned conditions and the addition
condition for the minorant a1(t),

a1(t) > c0 exp

(
− ω0

(T − t)

)
in [0, T ), c0 = const > 0, ω0 = const > 0, (1.14)

there exists a constant k > 0 that does not depend on ω0 such that

lim sup
t→T

u(t, x) 6 C <∞, ∀x ∈ Ω0 := {x ∈ Ω : d(x) > kω
1
2
0 }. (1.15)
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As we can see, this result proves that condition (1.11) is not sharp. So the most
appropriate condition is (1.14). The proof of the sharpness of (1.14) will be given
in a subsequent paper.

In [11], there was also studied a more general equation (1.4) with condition
(1.5) for the case when λ > p > q > 0. For this problem, the precise conditions
of the boundedness of the solution u was also found. Namely, there was proven
that under the condition

a1(t) > ω−1
0 (T − t)

λ−p
p−q , ∀ t < T, ω0 = const > 0, (1.16)

an arbitrary weak solution (even large solution if any) u of the mentioned problem
remains bounded as t → T for arbitrary x ∈ Ωε := {x ∈ Ω : d(x) > ε}, where
ε = ε(ω0)→ 0 as ω0 → 0.

It is also interesting to estimate the solution profile when the conditions of the
boundedness hold. For the case of p = q > 0, this estimate was obtained in [14].
Problem (1.1), (1.7), (1.8) with the condition λ > p = q > 0 was considered
in [14]. Under the conditions (1.5), (1.13) for the absorption potential b(t, x) and
the condition for the minorant a1(t),

a1(t) > c0 exp
(
−ω0(T − t)−

1
p+µ

)
, ∀ t < T, c0, ω0, µ = const > 0, (1.17)

the following estimate for an arbitrary weak solution (even for large solution if
any) u(t, x) of the problem under consideration was proven:

h(t, s) + E(t, s) :=

∫
Ω(s)
|u(t, x)|p+1dx+

∫ t

T
2

∫
Ω(s)
|∇xu(τ, x)|p+1dxdτ

6 K1 min
0<s̄<s

exp
(
K2ω

p+µ
µ (s− s̄)−

p+1
µ

)

×
(∫ s̄

0
g1(h)

p+1
1+p(λ+2)dh

)− 1+p(λ+2)
λ−p

 , ∀ s ∈ (0, s′0), (1.18)

where the constants K1,K2 <∞, s′0 > 0 depend only on the known parameters
of the problem, h(t, s), E(t, s) are energy functions connected with the solution u
and describing the behavior of the solution profile. The domain Ω(s) from (1.18)
is defined in the following way:

Ω(s) := {x ∈ Ω : d(x) > s}, s > 0. (1.19)

The purpose of the paper is to study the behavior of any weak solution u
of equation (1.1) with arbitrary initial and boundary values (including singular
values). We try to obtain the estimate of the solution profile and find the depen-
dence of this estimate from the minorant a1. In this context, the main result is
the following one.
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Theorem 1.3. Let u be an arbitrary weak (energy) solution (see Defini-
tion 1.1) of equation (1.1), where the absorption potential b(t, x) satisfies condi-
tions (1.5), (1.13) and the following condition for the function a1(t) holds:

a1(t) > κ−1(T − t)µ, ∀ t < T, κ = const > 0,
λ− p
p

< µ <
λ− p
p− q

. (1.20)

Then the following estimate holds for all T
2 < t < T :

h(t, s) + E(t, s) :=

∫
Ω(s)
|u(t, x)|q+1dx+

∫ t

T
2

∫
Ω(s)
|∇xu(τ, x)|p+1dxdτ

6 Kκ
q+1

λ−p−µ(p−q) min
0<s̄<s

{
(s− s̄)−θG1(s̄)

}
, ∀ s ∈ (0, s̃), (1.21)

where

G1(s) :=

(∫ s

0
g1(h)

p+1
1+p(λ+2)dh

)− (q+1)(1+p(λ+2))
(p+1)(λ−p−µ(p−q))

,

θ =
(n(p− q) + (q + 1)(p+ 1))(µ(p+ 1)− (λ− p))

(p+ 1)(λ− p− µ(p− q))
,

the constant K <∞ depends only on the known parameters of the problem under
consideration, s̃ > 0, and the domain Ω(s) is defined by (1.19).

To make the result more understandable, we introduce the following corollary
which describes one of the particular cases.

Corollary 1.4. Let g1(s) = as%, a = const > 0, % = const > 0. Then,

G1(s) = a
− q+1
λ−p−µ(p−q)

(
1 +

%(p+ 1)

λp+ 2p+ 1)

) (q+1)(1+p(λ+2))
(p+1)(λ−p−µ(p−q))

s−η, (1.22)

where η = η(%) = (q+1)((%+1)(p+1)+p(λ+1))
(p+1)(λ−p−µ(p−q)) . In this case, (1.21) yields:

h(t, s) + E(t, s) 6 K κ
q+1

λ−p−µ(p−q) s−(θ+η) ∀ t ∈
(
T

2
, T

)
, ∀ s ∈ (0, s̃), (1.23)

where

K = K(a, %) = K1a
− q+1
λ−p−µ(p−q)

(
1 +

%(p+ 1)

λp+ 2p+ 1)

) (q+1)(1+p(λ+2))
(p+1)(λ−p−µ(p−q)) (θ + η)θ+η

θθηη
,

K1, θ are from (1.21), η is from (1.22).

Remark 1.5. As mentioned above, in this paper we do not prove the existence
of a large solution of equation under consideration. Estimate (1.21) is obtained
for all weak solutions of equation (1.1) regardless of initial and boundary data.
Particularly, this result can be applied for the problem with singular data (1.7),
(1.8) (under the condition that the solution of this problem exists). Of course,
this case is the most interesting. Therefore the question about the existence of a
large solution for general equation (1.1) with two nonlinearities remains open.

Remark 1.6. We will prove (1.21) by using a method of local energy estimates.
It was proposed and developed in [4, 5, 8, 12,17].
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2. Auxiliary results

Let us introduce the following energy functions which are associated with the
weak solution u(t, x) of equation (1.1):

E(t) = E(u)(t) :=

∫ t

0

∫
Ω
|∇xu(τ, x)|p+1dxdτ, (2.1)

h(t) = h(u)(t) := sup
0<τ<t

∫
Ω
|u(τ, x)|q+1dx, ∀ t < T. (2.2)

These functions define the behavior of an arbitrary solution u. To study the
behavior in the neighborhood of the boundary of the domain Ω, we parameterize
the energy function by the parameter s which defines the distance to the boundary
∂Ω. Namely, we consider the family of subdomains Ω(s) which is defined by (1.19)
and the corresponding functions E(t, s) and h(t, s) which are defined in (1.21).

Notice that there exists a value sΩ which defines the “radius” of the domain
Ω(s). It is such a constant that function d(·) ∈ C2(Ω \ Ω(s)), ∀s 6 sΩ, and
correspondingly ∂Ω(s), is a C2-smooth manifold for all 0 < s 6 sΩ. As is well
known, the existence of this constant follows from the prescribed smoothness of
∂Ω. Thus, the parameterized functions E(t, s), h(t, s) are defined by the following
relations:

E(t, s) :=

∫ t

T
2

∫
Ω(s)
|∇xu(τ, x)|p+1dxdτ, (2.3)

h(t, s) :=

∫
Ω(s)
|u(t, x)|q+1dx, ∀ s ∈ (0, sΩ), ∀ t ∈ (0, T ). (2.4)

To prove Theorem 1.3 we need to study the functions E(t, s), h(t, s). For this
purpose, assume that the interval [0, T ) is splitted by some increasing sequence
of points {tj} (j = 1, 2, . . ., j0 6 ∞, t0 = 0, tj0 = T ). Thus we get the intervals
[tj−1, tj) with the length ∆j := tj − tj−1 > 0. Now consider the following layered
energy functions:

Ej(s) :=

∫ tj

tj−1

∫
Ω(s)
|∇xu(t, x)|p+1dxdt, (2.5)

hj(s) := sup
tj−16t<tj

∫
Ω(s)
|u(t, x)|q+1dx, ∀ j 6 j0, ∀ s ∈ (0, sΩ). (2.6)

Now we have the following lemma for these functions.

Lemma 2.1 (see [8,13]). Let u(t, x) be an arbitrary weak solution of equation
(1.1) with conditions (1.5) for the absorption potential b(t, x). Then, for almost
all s ∈ (0, sΩ), the following system for the layered energy functions holds:

Ej(s) + hj(s) 6 C1hj−1(s) + C2∆ν1
j

(
−E′j(s)

)1+µ1 + C3∆ν2
j

(
−E′j(s)

)1+µ2 ,

hj(s) 6 (1 + γ)hj−1(s) + C4γ
−(ν1+µ1)∆ν1

j

(
−E′j(s)

)1+µ1 +
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+ C5γ
− 1
q∆ν2

j

(
−E′j(s)

)1+µ2 , j = 1, 2, . . . , j0, (2.7)

where γ = const > 0, Ci = const > 0, ∀ i = 1, 5, depend only on the known
parameters and do not depend on γ,

ν1 =
(1− θ)(q + 1)

q(p+ 1) + θ(p− q)
, µ1 =

(1− θ)(p− q)
q(p+ 1) + θ(p− q)

,

ν2 =
(q + 1)

q(p+ 1)
, µ2 =

(p− q)
q(p+ 1)

,

θ =
n(p− q) + q + 1

n(p− q) + (q + 1)(p+ 1)
< 1,

the functions Ej(s) and hj(s) are defined in (2.5), (2.6).

Since the absorption potential b(t, x) > 0, ∀ (t, x) ∈ Q, the proof of Lemma
2.1 is analogous to that of Lemma 6.2.3 in [8] or Lemma 1 in [13].

The next step of the proof is analysis of asymptotic properties of solutions of
ordinary differential inequality (ODI) system (2.7). The following result can be
obtained by repeating all the steps of the proof of Theorem 1 in [13].

Lemma 2.2. Let u be an arbitrary weak (energy) solution of equation (1.1)
and let the layered energy functions Ej(s), hj(s) satisfy the system of ODI (2.7).
Let also the “initial” conditions for energy functions hold,

E(t) + h(t) 6 ω0(T − t)−α, ∀ t < T,
1

p
< α <

q + 1

p− q
, (2.8)

where ω0 = const > 0, the functions E(t), h(t) are defined in (2.1), (2.2).
Then there exists the constant G > 0 and the value ŝ0 > 0, which depend on

known parameters of the problem only such that the following uniform by t 6 T
estimate holds:

E(t, s) + sup
0<τ<t

h(τ, s) 6 Gω
q+1

q+1−α(p−q)
0 s−ν , ∀ t 6 T, ∀ s ∈ (0, ŝ0), (2.9)

where ν = α(n(p−q)+(q+1)(p+1))
q+1−α(p−q) , Ω(s) is a family of subdomains from (1.19), the

functions E(t, s), h(t, s) are defined in (2.3), (2.4).

Thus the last step of the proof of Theorem 1.3 is to obtain condition (2.8) for
the energy functions.

3. Proof of Theorem 1.3

Let Ω(s) be a family of subdomains from (1.19). Let us introduce an addi-
tional family of cylindrical subdomains of Q:

Qτ (s) := (sr, τ)× Ω(s), ∀s ∈ (0, sΩ), ∀τ < T,

1 < r < 1 +
(λ+ 1)(p(λ+ 1)− q(p+ 1))

(q + 1)(λ− p)
. (3.1)
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Now we define the energy functions connected with a solution u of equation (1.1)
under consideration:

hτ (s) = h
(u)
τ (s) :=

∫
Ω(s)
|u(τ, x)|q+1dx, 0 < τ < T, 0 < s < sΩ, (3.2)

Eτ (s) = E
(u)
τ (s) :=

∫ τ

sr

∫
Ω(s)

(|∇xu(t, x)|p+1 + a1(t)g1(d(x))|u|λ+1) dx dt. (3.3)

Lemma 3.1. Let u be a solution of equation (1.1). And let the absorption
potential b(t, x) satisfy conditions (1.5), (1.13). Then energy functions (3.2),
(3.3) satisfy the following relations:

Bτ (s) := hτ (s) + Eτ (s) 6 Ĉ Φ(τ)G1(s) ∀ s ∈ (0, ŝ), (3.4)

where

Φ(τ) =

∫ τ

0
a1(t)

− p+1
λ−pdt, G1(s) =

(∫ s

0
g1(h)

p+1
1+p(λ+2)dh

)− 1+p(λ+2)
λ−p

,

Ĉ = const > 0, ŝ ∈ (0, sΩ) depend only on the known parameters.

Proof. Let us fix s > 0, δ > 0 and introduce a Lipschitz cut-off function
ξs,δ(h) : ξs,δ(h) = 0 for h 6 s, ξs,δ(h) = 1 for h > s + δ, ξs,δ(h) = h−s

δ for h :
s < h < s+ δ. Now we substitute the test function η(t, x) = u(t, x)ξs,δ(d(x)) into
integral identity (1.6). Then, using the formula of integration by parts (see, for
example, [1]), we get

q

q + 1

∫
Ω(s)
|u(b, x)|q+1ξs,δ(d(x))dx

+

∫ b

a

∫
Ω(s)

( n∑
i=1

ai(. . . ,∇xu)uxi + b(t, x)|u|λ+1
)
ξs,δ(d(x))dxdt

=
q

q + 1

∫
Ω(s)
|u(a, x)|q+1ξs,δ(d(x))dx

−
∫ b

a

∫
Ω(s)\Ω(s+δ)

n∑
i=1

ai(. . . ,∇xu)uξs,δ(d(x))xidxdt. (3.5)

Let us take b = τ < T , a = sr in (3.5). Then, passing to the limit δ → 0 and
using conditions (1.2), (1.3), by standard computations we derive the inequality

hτ (s) + Eτ (s) 6 c1

∫ τ

sr

∫
∂Ω(s)

|∇xu|p|u| dσdt+ c2hsr(s), ∀ s ∈ (0, sΩ), (3.6)

where c1 <∞, c2 <∞ depend only on d0, d1, p, n. Let us estimate the terms in
the right-hand side from above. Using Hölder’s inequality, we get∫

∂Ω(s)
|∇xu|p|u| dσ =

∫
∂Ω(s)

|u|g1(s)
1

λ+1a1(t)
1

λ+1 |∇xu|pa1(t)−
1

λ+1 g1(s)−
1

λ+1 dσ
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6 c3

(∫
∂Ω(s)

|u|λ+1a1(t)g1(s) dσ

) 1
λ+1

×

(∫
∂Ω(s)

|∇xu|p+1dσ

) p
p+1

a1(t)−
1

λ+1 g1(s)−
1

λ+1 ,

where c3 = (meas ∂Ω)
λ−p

(λ+1)(p+1) . Integrating the last inequality with respect to t
and using the Hölder and Young inequalities, we get∫ τ

sr

∫
∂Ω(s)

|∇xu|p|u| dσdt 6 c4g1(s)−
1

λ+1

(∫ τ

sr
a1(t)

− p+1
λ−p dt

) λ−p
(λ+1)(p+1)

×

(∫ τ

sr

∫
∂Ω(s)

(
|∇xu|p+1 + a1(t)g1(s)|u|λ+1

)
dσdt

) 1+p(λ+2)
(λ+1)(p+1)

. (3.7)

We estimate the second term of the right-hand side of (3.6) using the monotonicity
of the function g1(·) and Hölder’s inequality

hsr(s) =

∫
Ω(s)
|u(sr, x)|q+1a1(sr)

q+1
λ+1 g1(d(x))

q+1
λ+1a1(sr)−

q+1
λ+1 g1(d(x))−

q+1
λ+1dx

6 c5

(∫
Ω(s)
|u(sr, x)|λ+1a1(sr)g1(d(x))dx

) q+1
λ+1

a1(sr)−
q+1
λ+1 g1(s)−

q+1
λ+1 , (3.8)

where c5 = (meas Ω)
λ−q
λ+1 . It is easy to check that the inequality

− d

ds
Eτ (s) >

∫ τ

sr

∫
∂Ω(s)

(
|∇xu|p+1 + a1(t)g1(s)|u|λ+1

)
dσdt

+ rsr−1

∫
Ω(s)

(
|∇xu(sr, x)|p+1 + a1(sr)g1(d(x))|u(sr, x)|λ+1

)
dx (3.9)

holds for almost all s ∈ (0, sΩ). Using estimates (3.7), (3.8) and relation (3.9),
from (3.6) we deduce the following inequality:

Bτ (s) := hτ (s) + Eτ (s) 6 C1g1(s)−
1

λ+1 Φ(τ)
λ−p

(λ+1)(p+1)

(
− d

ds
Eτ (s)

) 1+p(λ+2)
(λ+1)(p+1)

+ C2g1(s)−
q+1
λ+1

(
− d

ds
Eτ (s)

) q+1
λ+1

s−
(r−1)(q+1)

λ+1 for a.a. s ∈ (0, sΩ), (3.10)

where

Φ(τ) =

∫ τ

0
a1(t)

− p+1
λ−pdt, C1 = c1c4, C2 = c2c5

(
min

06s6s0
a1(sr)

)− q+1
λ+1

.

Now, using the monotonic decreasing of the function hτ (s), by a simple compu-
tation we derive from (3.10) the following inequality:

− d

ds
Bτ (s) > H(s,Bτ (s)) : = min

{
H(1)
τ (s,Bτ (s)), H(2)

τ (s,Bτ (s))
}
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for a.a. s ∈ (0, sΩ), ∀τ < T, (3.11)

H(1)
τ (s,Bτ (s)) :=

(
g1(s)

1
λ+1Bτ (s)

2C1Φ(τ)
λ−p

(λ+1)(p+1)

) (λ+1)(p+1)
1+p(λ+2)

,

H(2)
τ (s,Bτ (s)) :=

(
g1(s)

q+1
λ+1Bτ (s)

2C2s
− (r−1)(q+1)

λ+1

)λ+1
q+1

.

Now we will solve ODI (3.11) and get the estimate for Bτ (s). For this purpose
we consider a domain D = Dτ ⊂ R2 as a set of points (s,B) : 0 < s < sΩ,
B > 0, where the function H(s,B) from (3.11) is defined by the first term in the
right-hand side of (3.11). It means that

Dτ =

(s,B) :

(
g1(s)

1
λ+1B

2C1Φ(τ)
λ−p

(λ+1)(p+1)

) (λ+1)(p+1)
1+p(λ+2)

<

(
g1(s)

q+1
λ+1B

2C2s
− (r−1)(q+1)

λ+1

)λ+1
q+1

 .

After simple transformation, we can rewrite the last definition as

Dτ = {(s,B) : B > B(0)
τ (s)}, (3.12)

where

B(0)
τ (s) = C3s

− (r−1)(q+1)(1+p(λ+2))
(λ+1)(p(λ+1)−q(p+1)) g1(s)

− p(q+1)
p(λ+1)−q(p+1) ,Φ(τ)

− (λ−p)(q+1)
(λ+1)(p(λ+1)−q(p+1)) ,

C3 = 2C
− (p+1)(q+1)
p(λ+1)−q(p+1)

1 C
1+p(λ+2)

p(λ+1)−q(p+1)

2 .

Let us consider now all possible cases for the solution Bτ (s) with respect to the
domain Dτ . The first possibility is

(s,Bτ (s)) ∈ Dτ for all s ∈ (0, sΩ). (3.13)

In this situation ODI (3.11) has the form

− d

ds
Bτ (s) > H(1)

τ (s,Bτ (s)) =

(
g1(s)

1
λ+1Bτ (s)

2C1Φ(τ)
λ−p

(λ+1)(p+1)

) (λ+1)(p+1)
1+p(λ+2)

,

∀τ < T, ∀ s ∈ (0, sΩ). (3.14)

From assumption (3.13) it follows that Bτ (0) =∞. Solving now ODI (3.14) with
this initial condition, we get simply

Bτ (s) 6 B(1)
τ (s) := C4Φ(τ)

(∫ s

0
g1(h)

p+1
1+p(λ+2)dh

)− 1+p(λ+2)
λ−p

,

∀ s ∈ (0, sΩ),∀ τ < T, (3.15)

where C4 =
(

1+p(λ+2)
λ−p

) 1+p(λ+2)
λ−p

(2C1)
(λ+1)(p+1)

λ−p .
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Let us check that (3.15) does not contradict the assumption that Bτ (s) ∈ Dτ .
For this we have to guarantee the inequality

B(1)
τ (s) > B(0)

τ (s), ∀ s ∈ (0, sΩ), (3.16)

or, due to definitions (3.12), (3.15):

C4Φ(τ)

(∫ s

0
g1(h)

p+1
1+p(λ+2)dh

)− 1+p(λ+2)
λ−p

> C3s
− (r−1)(q+1)(1+p(λ+2))

(λ+1)(p(λ+1)−q(p+1)) g1(s)
− p(q+1)
p(λ+1)−q(p+1)

× Φ(τ)
− (λ−p)(q+1)

(λ+1)(p(λ+1)−q(p+1)) , ∀ s ∈ (0, sΩ).

Due to the monotonicity of the function g1(·), we have∫ s

0
g1(h)

p+1
1+p(λ+2)dh 6 sg1(s)

p+1
1+p(λ+2) ,

and therefore,(∫ s

0
g1(h)

p+1
1+p(λ+2)dh

)− 1+p(λ+2)
λ−p

> s
− 1+p(λ+2)

λ−p g1(s)
− p+1
λ−p , ∀ s ∈ (0, sΩ). (3.17)

As a consequence, we have that for validity of (3.16) it is sufficient to guarantee
that

C4Φ(τ) > C3s
1+p(λ+2)
λ−p − (r−1)(q+1)(1+p(λ+2))

(λ+1)(p(λ+1)−q(p+1))

× g1(s)
(p−q)(1+p(λ+2))

(λ−p)(p(λ+1)−q(p+1)) Φ(τ)
− (λ−p)(q+1)

(λ+1)(p(λ+1)−q(p+1)) ,

which is equivalent to

Φ(τ) > C3C
−1
4 g1(s), (3.18)

Φ(τ) := Φ(τ)
1+

(λ−p)(q+1)
(λ+1)(p(λ+1)−q(p+1)) ,

g1(s) := s
1+p(λ+2)
λ−p − (r−1)(q+1)(1+p(λ+2))

(λ+1)(p(λ+1)−q(p+1)) g1(s)
(p−q)(1+p(λ+2))

(λ−p)(p(λ+1)−q(p+1)) .

Since the parameter r satisfies the assumption from (3.1), the function g1(s) is a
monotonically increasing function. Using the monotonicity of the functions g1(s)
and Φ(τ), we can get that inequality (3.17) holds for the arbitrary τ ∈ [T2 , T ) and
arbitrary s, satisfying the condition

0 < s < s0, (3.19)

where s0 := min{sΩ, s̄0}, s̄0 is determined by g1(s̄0) = C−1
3 C4Φ

(
T
2

)
. Thus,

relationship (3.16) is true for all τ > T
2 and s from (3.19). As a consequence,

(3.15) holds if condition (3.13) is satisfied.
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Let us suppose that estimate (3.15) is not true for some s ∈ (0, s0). So, there
exists s1 ∈ (0, s0) such that

Bτ (s1) > B(1)
τ (s1). (3.20)

If we suppose that Bτ (s) > B
(1)
τ (s), ∀ s ∈ (0, s1), then it also satisfies condition

(3.13). Therefore, due to the previous consideration estimate (3.15) holds for all
s ∈ (0, s1), which contradicts assumption (3.20). Thus, it remains the following
possibility only: there exists a point s2 ∈ (0, s1) such that

Bτ (s2) = B(1)
τ (s2), Bτ (s) > B(1)

τ (s), ∀ s ∈ (s2, s1). (3.21)

From (3.21) it follows easily that there exists a point s̄2 ∈ (s2, s1) such that

d

ds
Bτ (s̄2) >

d

ds
B(1)
τ (s̄2), Bτ (s̄2) > B(1)

τ (s̄2). (3.22)

But on the other side, due to (3.14), (3.15) and (3.22), we have

− d

ds
Bτ (s̄2) >

g1(s̄2)
p+1

1+p(λ+2)

C5Φ(τ)
λ−p

1+p(λ+2)

Bτ (s̄2)
(λ+1)(p+1)
1+p(λ+2)

>
g1(s̄2)

p+1
1+p(λ+2)

C5Φ(τ)
λ−p

1+p(λ+2)

B(1)
τ (s̄2)

(λ+1)(p+1)
1+p(λ+2) = − d

ds
B(1)
τ (s̄2),

where C5 := (2C1)
(λ+1)(p+1)
1+p(λ+2) , which contradicts (3.22) and, consequently, (3.21).

Thus, estimate (3.4) is true with Ĉ = C4, ŝ = min{sΩ, s0} for all τ ∈
(
T
2 , T

)
.

Proof of Theorem 1.3. Due to condition (1.20), we can get the following
estimate for the function Φ(·) from (3.10):

Φ(t) 6 Φ0(t) := K1 κ
p+1
λ−p (T − t)−

(
µ p+1
λ−p−1

)
, ∀t < T. (3.23)

Now inequality (3.4) yields the estimate

h(t, s) + E(t, s) 6 ĈΦ(t)G1(s), ∀t ∈ (t0, T ), ∀s ∈ (0, s̄Ω), (3.24)

where t0 = T
2 , s̄Ω := min

(
sΩ, t

1
r
0

)
, r is from (3.1), the functions E(t, s), h(t, s)

are from (2.3), (2.4), respectively. Now we fix some value s̄ ∈ (0, s̄Ω) and deduce
from (3.24) the following “initial” energy estimate:

h(t, s̄) + E(t, s̄) 6 ĈG1(s̄)Φ(t) ∀ t ∈ (t0, T ). (3.25)

We will consider u(t, x) as a solution of equation (1.1) in the domain (t0, T ) ×
Ω(s̄). Using (3.25) and (3.23), we get

h(t, s̄) + E(t, s̄) 6 K2κ
p+1
λ−pG1(s̄)(T − t)−β, ∀ t ∈ (t0, T ), (3.26)
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where β = µ p+1
λ−p − 1, K2 = ĈK1 and condition from (1.20) for µ gives us the

condition for β : 1
p < β < q+1

p−q .
Now we have system (2.7) for the layered functions Ej(s), hj(s) and “initial”

condition (3.26). Applying Lemma 2.2, we get the estimate

h(t, s) + E(t, s) 6 GK
(q+1)(λ−p)

(p+1)(λ−p−µ(p−q))
2 κ

q+1
λ−p−µ(p−q) (s− s̄)−θG1(s̄)

(q+1)(λ−p)
(p+1)(λ−p−µ(p−q))

∀ t ∈ (t0, T ), ∀ s, s̄ such that 0 < s̄ < s < s̃, (3.27)

where s̃ := min{s̄Ω, ŝ0}, G, ŝ0 are from (2.9), θ is from (1.21). Optimizing the
last estimate with respect to a free parameter s̄, 0 < s̄ < s < s̃, we get (1.21)

with K = GK
(q+1)(λ−p)

(p+1)(λ−p−µ(p−q))
2 .
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Поширення сингулярностей великих розв’язкiв
квазiлiнiйних параболiчних рiвнянь

Yevgeniia A. Yevgenieva

Розглянуто квазiлiнiйне параболiчне рiвняння з потенцiалом абсорб-
цiї:

(|u|q−1u)t −∆p(u) = −b(t, x)|u|λ−1u (t, x) ∈ (0, T )× Ω, λ > p > q > 0,

де Ω є обмеженою гладкою областю в Rn, n > 1, b є потенцiалом абсорб-
цiї, який є неперервною функцiєю такою, що b(t, x) > 0 в [0, T ) × Ω та
b(t, x) ≡ 0 в {T} × Ω. У роботi розглянуто умови на b(t, x), якi гаранту-
ють рiвномiрну обмеженiсть довiльного слабкого розв’язку зазначеного
рiвняння в будь-якiй пiдобластi Ω0 : Ω0 ⊂ Ω. За цих умов одержано то-
чну оцiнку зверху для всiх слабких розв’язкiв u. Цю оцiнку виконано
для розв’язкiв цього рiвняння з довiльними початковими та гранични-
ми даними, включаючи сингулярнi данi (якщо такi розв’язки iснують),
а саме u =∞ на {0} × Ω, u =∞ на (0, T )× ∂Ω.

Ключовi слова: диференцiальнi рiвняння з частинними похiдними,
квазiлiнiйне параболiчне рiвняння, вироджений потенцiал абсорбцiї, ве-
ликi розв’язки.
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