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An η-Einstein paracontact manifold M admits a Ricci soliton (g, ξ) if and
only if M is a K-paracontact Einstein manifold provided one of the associ-
ated scalars α or β is constant. Also we prove the non-existence of Ricci soli-
ton in an N(k)-paracontact metric manifold M whose potential vector field
is the Reeb vector field ξ. Moreover, if the metric g of an N(k)-paracontact
metric manifold M2n+1 is a gradient Ricci soliton, then either the manifold
is locally isometric to a product of a flat (n + 1)-dimensional manifold and
an n-dimensional manifold of negative constant curvature equal to −4, or
M2n+1 is an Einstein manifold. Finally, an illustrative example is given.
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1. Introduction

A natural generalization of an Einstein metric is a Ricci soliton [4]. In a
pseudo-Riemannian manifold (M, g) a Ricci soliton is a triplet (g, V, λ), with g, a
pseudo-Riemannian metric, V , a smooth vector field (called the potential vector
field) and λ, a constant such that

£V g + 2S − 2λg = 0, (1.1)

where £V g is the Lie derivative of g along a vector field V and S is the Ricci
tensor of type (0, 2). Obviously, a Ricci soliton with V zero or Killing is an
Einstein metric. The Ricci soliton is said to be shrinking, steady or expanding
depending on λ being positive, zero or negative, respectively. Compact Ricci
solitons are the fixed points of the Ricci flow ∂

∂tg = −2S projected from the
space of metrics onto its quotient modulo diffeomorphisms and scalings. They
often arise as blow-up limits for the Ricci flow on compact manifolds. Metrics
satisfying (1.1) are interesting and useful in physics. Theoretical physicists have
also been looking into the equation of Ricci soliton in relation with string theory.
For some aspects in this direction we refer to Friedan [14]. A Ricci soliton on a
compact manifold has a constant curvature in dimension 2 (Hamilton [16]) and
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also in dimension 3 (Ivey [17]). On the other hand, a Ricci soliton on a compact
manifold is a gradient Ricci soliton [22]. If the complete vector field V is the
gradient of a potential function −f , then g is said to be a gradient Ricci soliton
and equation (1.1) takes the form

Hess f = S − λg, (1.2)

where Hess f denotes the Hessian of a smooth function f on M and is defined by
Hessf = ∇∇f . For details on Ricci solitons and gradient Ricci solitons, we refer
to Chow and Knopf [10], Bejan and Crasmareanu [1].

Sharma [24] started to study Ricci solitons in contact geometry as a K-contact
metric. In a K-contact manifold the structure vector field ξ is Killing, that
is, £ξg = 0, generally it is not true in an N(k)-paracontact metric manifold.
Recently, Ricci solitons and gradient Ricci solitons on several types of (almost)
contact metric manifolds were studied by many authors. Cho [8,9] obtained some
results about Ricci solitons in almost contact and contact geometry. Instantly,
Yildiz et al. [28] and Turan et al. [25] also studied Ricci solitons in 3-dimensional
f -Kenmotsu manifolds and 3-dimensional trans-Sasakian manifolds, respectively.
In [11], De and Matsuyama studied Ricci solitons and gradient Ricci solitons in a
Kenmotsu manifold. Ricci solitons were also studied by Deshmukh et al. [12,13],
Ghosh [15], Wang et al. [26] and others.

Motivated by these circumstances, in this paper, we study Ricci solitons and
gradient Ricci solitons in N(k)-paracontact metric manifolds. The present pa-
per is organized as follows: Section 2 contains some preliminary results of N(k)-
paracontact metric manifolds. In Section 3, we prove that an η-Einstein paracon-
tact manifold M admits a Ricci soliton (g, ξ) if and only if M is a K-paracontact
Einstein manifold provided one of the associated scalars α or β is constant. In the
next section we prove the non-existence of Ricci soliton in an N(k)-paracontact
metric manifold M whose potential vector field is the Reeb vector field ξ. Finally,
we study a gradient Ricci soliton in an N(k)-paracontact metric manifold M2n+1

and prove that if the metric g of M2n+1 is a gradient Ricci soliton, then either the
manifold is locally isometric to a product of a flat (n+ 1)-dimensional manifold
and an n-dimensional manifold of negative constant curvature equal to −4, or,
M2n+1 is an Einstein manifold. Finally, an illustrative example is given.

2. Preliminaries on N(k)-paracontact metric manifolds

By an almost paracontact manifold we mean a (2n+ 1)-dimensional smooth
manifold M which admits a tensor field φ of type (1, 1), a vector field ξ (called
the Reeb vector field), a 1-form η and for any X ∈ χ(M) satisfying [18]:

(i) φ2X = X − η(X)ξ,

(ii) φ(ξ) = 0, η ◦ φ = 0, η(ξ) = 1,

(iii) the tensor field φ induces an almost paracomplex structure on each fibre of
D = ker(η), that is, the eigendistributions D+

φ and D−
φ of φ corresponding

to the eigenvalues 1 and −1, respectively, have the same dimension n.
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An almost paracontact manifold equipped with a pseudo-Riemannian metric g
such that

g(φX, φY ) = −g(X,Y ) + η(X)η(Y ), (2.1)

for all X,Y ∈ χ(M), is said to be an almost paracontact metric manifold, where
the signature of g is (n+1, n). An almost paracontact structure is said to be nor-
mal [29] if the (1, 2)-type torsion tensor Nφ = [φ, φ]−2dη⊗ ξ vanishes identically
where [φ, φ](X,Y ) = φ2[X,Y ] + [φX, φY ] − φ[φX, Y ] − φ[X,φY ]. In an almost
paracontact structure g(X,φY ) = dη(X,Y ) implies the structure is a paracontact
structure [29]. The manifold M will be called a paracontact metric manifold [2] if
it is endowed with a paracontact metric structure (φ, ξ, η, g). In an almost para-
contact metric manifold, there always exists a special type of basis, the so-called
pseudo-orthonormal φ basis {Xi, φXi, ξ}, where Xi’s and ξ are space-like vector
fields and φXi’s are time-like vector fields. For this reason an almost paracontact
metric manifold is an odd dimensional manifold. A normal paracontact metric
manifold is a para-Sasakian manifold and satisfies

R(X,Y )ξ = −(η(Y )X − η(X)Y ), (2.2)

for any X,Y ∈ χ(M), but unlike contact metric geometry the relation (2.2)
does not imply that the paracontact manifold is a para-Sasakian manifold. It
is clear that every para-Sasakian manifold is a K-paracontact manifold, but the
converse is not always true as it is shown in the three dimensional case [5]. In
a paracontact metric manifold M , we define a (1, 1)-tensor field h by 2h = £ξφ.
Then we observe that h is symmetric and anticommutes with φ. Also, h satisfies
the following [29]:

hξ = tr(h) = tr(φh) = 0, (2.3)

∇Xξ = −φX + φhX (2.4)

for all X ∈ χ(M). Clearly, the tensor h = 0 holds if and only if ξ is a Killing
vector field and consequently M is said to be a K-paracontact manifold [21].

The (k, µ)-nullity distribution N(k, µ) [7] of a paracontact metric manifold
M is defined by

N(k, µ) : p→ Np(k, µ) = {W ∈ TpM |R(X,Y )W

= (kI + µh)(g(Y,W )X − g(X,W )Y )}

for all X,Y ∈ TpM and k, µ ∈ R. A paracontact metric manifold M with ξ ∈
N(k, µ) is called a (k, µ)-paracontact metric manifold. Then we must have

R(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ] (2.5)

for all X,Y ∈ χ(M). In [19,20], Martin-Molina studied (k, µ)-paracontact metric
spaces and constructed some examples.

In particular, if µ = 0, then the (k, µ)-nullity distribution will be called an
N(k)-nullity distribution. Thus (2.5) reduces to

R(X,Y )ξ = k[η(Y )X − η(X)Y ]. (2.6)
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For an N(k)-paracontact metric manifold M2n+1(n > 1), the following relations
hold [6, 23]:

h2 = (k + 1)φ2, (2.7)

(∇Xφ)Y = −g(X − hX, Y )ξ + η(Y )(X − hX) for k 6= −1, (2.8)

R(ξ,X)Y = k[g(X,Y )ξ − η(Y )X], (2.9)

QY = 2(1− n)Y + 2(n− 1)hY + [2(n− 1) + 2nk]η(Y )ξ for k 6= −1, (2.10)

S(X, ξ) = 2nkη(X), (2.11)

(∇Xh)Y = −[(1 + k)g(X,φY ) + g(X,φhY )]ξ

+ η(Y )φh(hX −X) for k 6= −1, (2.12)

(∇Xη)Y = g(X,φY ) + g(φhX, Y ), (2.13)

(∇Xh)Y − (∇Y h)X = −(1 + k)[2g(X,φY )ξ

+ η(X)φY − η(Y )φX] + η(X)φhY − η(Y )φhX for k 6= −1, (2.14)

where Q is the Ricci operator defined by g(QX,Y ) = S(X,Y ) and for any vector
field X,Y ∈ χ(M). In fact, in a (k, µ)-paracontact metric manifold there is no
restriction for k [6], whereas in a (k, µ)-contact metric manifold, k ≤ 1 [3]. Also,
in the contact case, k = 1 implies the manifold is a Sasakian manifold, but in the
paracontact case, k = −1 (equivalently, h2 = 0 and h 6= 0) does not imply the
manifold is a para-Sasakian manifold.

An N(k)-paracontact metric manifold M is said to be η-Einstein manifold if
the Ricci tensor S satisfies the condition

S = αg + βη ⊗ η, (2.15)

where α, β are smooth functions on M . Moreover, if β = 0, then the manifold is
an Einstein manifold. We recall some results.

Lemma 2.1 ([30, Theorem 3.3]). Let M2n+1, n > 1, be a paracontact metric
manifold which satisfies R(X,Y )ξ = 0 for all X,Y ∈ χ(M). Then M2n+1 is
locally isometric to a product of a flat (n + 1)-dimensional manifold and an n-
dimensional manifold of negative constant curvature equal to −4.

Lemma 2.2 ([29, Corollary 3.2]). On a paracontact metric manifold M2n+1

the Ricci curvature in the direction of ξ is given by

S(ξ, ξ) = −2n+ |h|2. (2.16)

On a K-paracontact metric manifold M2n+1 we have

S(ξ, ξ) = −2n. (2.17)

3. η-Einstein paracontact metric as a Ricci soliton

The following lemma is very crucial for this section:
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Lemma 3.1 ([8]). If (g, V ) is a Ricci soliton of a Riemannian manifold, then
we have

1

2
‖£V g‖2 = dr(V ) + 2 div(λV −QV ), (3.1)

where r denotes the scalar curvature of g and Q is the Ricci operator defined by
S(X,Y ) = g(QX,Y ).

The above Lemma 3.1 also holds for a pseudo-Riemannian manifold. Suppose
M2n+1 is an η-Einstein paracontact metric manifold which admits a Ricci soliton
(g, ξ). Substituting (2.15) in (1.1), we get

(£V g)(Y,Z) = −2(α− λ)g(Y,Z)− 2βη(Y )η(Z) (3.2)

for any vector fields Y,Z. Taking covariant differentiation of (3.2) along an arbi-
trary vector field X and making use of (2.13), we obtain

(∇X£V g)(Y,Z) = − 2X(α)g(Y,Z)− 2X(β)η(Y )η(Z)

− 2βg(X,φY )η(Z)− 2βg(φhX, Y )η(Z)

− 2βg(X,φZ)η(Y )− 2βg(φhX,Z)η(Y ). (3.3)

The following formula follows from Yano [27]:

(£V∇Xg−∇X£V g−∇[V,X]g)(Y,Z)=−g((£V∇)(X,Y ), Z)−g((£V∇)(X,Z), Y )

for all X,Y, Z on M2n+1. Since ∇g = 0, then it follows from the above equation
that

(∇X£V g)(Y, Z) = g((£V∇)(X,Y ), Z) + g((£V∇)(X,Z), Y ) (3.4)

for all X,Y, Z on M2n+1. As £V∇ is a symmetric (1, 2)-tensor, that is,
(£V∇)(X,Y ) = (£V∇)(Y,X), then we have from (3.4) that

g((£V∇)(X,Y ), Z) =
1

2
(∇X£V g)(Y,Z) +

1

2
(∇Y £V g)(Z,X)

− 1

2
(∇Z£V g)(X,Y ). (3.5)

Using (3.3) in (3.5), we get

g((£V∇)(X,Y ), Z) = −X(α)g(Y, Z)−X(β)η(Y )η(Z)− Y (α)g(X,Z)

− Y (β)η(X)η(Z) + Z(α)g(X,Y ) + Z(β)η(X)η(Y )

− β{g(X,φY )η(Z) + g(φhX, Y )η(Z)

+ g(X,φZ)η(Y ) + g(φhX,Z)η(Y )

+ g(Y, φZ)η(X) + g(φhY,Z)η(X)

+ g(Y, φX)η(Z) + g(φhY,X)η(Z)

− g(Z, φX)η(Y )− g(φhZ,X)η(Y )

− g(Z, φY )η(X)− g(φhZ, Y )η(X)}. (3.6)
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Now putting X = Y = ei in (3.6), where {ei} is an orthonormal basis of the
tangent space at each point of the manifold, and taking summation over i =
1, 2, . . . , 2n+ 1, we get

2n+1∑
i=1

g((£V∇)(ei, ei), Z) = (2n− 1)Z(α) + Z(β)− 2ξ(β)η(Z). (3.7)

Also taking the covariant differentiation of (1.1) along an arbitrary vector field
X, we have

(∇X£V g)(Y,Z) = −2(∇XS)(Y, Z) (3.8)

for any vector fields X,Y, Z. Substituting (3.8) in (3.5) yields

g((£V∇)(X,Y ), Z) = −(∇XS)(Y, Z)− (∇Y S)(Z,X) + (∇ZS)(X,Y ). (3.9)

By setting X = Y = ei in (3.9), we have

2n+1∑
i=1

g((£V∇)(ei, ei), Z) = 0. (3.10)

The combining of equations (3.7) and (3.10) yields

(2n− 1)Z(α) + Z(β)− 2ξ(β)η(Z) = 0. (3.11)

Let us consider that α is constant. Then equation (3.11) gives us

Z(β)− 2ξ(β)η(Z) = 0. (3.12)

Putting Z = ξ in the above equation, we get ξ(β) = 0. Using this relation and
(3.12), one gets Z(β) = 0 from which it follows that β = const.

On the other hand, if we consider that β is constant, then from (3.11) we
obtain Z(α) = 0, that is, α is constant. Thus, we see that if one of the associated
scalars α or β is constant, then the other is constant.

From (1.1), we have

g(∇Xξ, Y ) + g(∇Y ξ,X) + 2S(X,Y )− 2λg(X,Y ) = 0. (3.13)

Applying (2.4) in (3.13) gives

S(X,Y ) + g(φhX, Y )− λg(X,Y ) = 0. (3.14)

Substitute X = ξ in the above equation. Since hξ = 0, we have Qξ = λξ. Also
contracting (2.15) we get r = α(2n+1)+β, which is a constant. Now we suppose
that V = ξ in (3.1). Then we obtain that ξ is a Killing vector field, and hence
M2n+1 is a K-paracontact metric manifold. Moreover, from (1.1) we have that
the manifold M2n+1 is an Einstein manifold. This leads to the following:

Theorem 3.2. An η-Einstein paracontact manifold M admits a Ricci soliton
(g, ξ) if and only if M is a K-paracontact Einstein manifold provided one of the
associated scalars α or β is constant.
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Putting X = Y = ξ in (3.14), we obtain

S(ξ, ξ) = λ. (3.15)

Making use of (2.17) and (3.15), we get λ = −2n, a negative number. Therefore
we can state the following:

Corollary 3.3. If an η-Einstein paracontact manifold M admits a Ricci
soliton (g, ξ), then the soliton is expanding.

4. Non-existence of Ricci soliton in N(k)-paracontact metric
manifolds

We consider a Ricci soliton whose potential vector field is the Reeb vector
field. Then, from (1.1), we have

1

2
£ξg + S − λg = 0. (4.1)

Suppose an N(k)-paracontact metric manifold admits a Ricci soliton (g, ξ). Then
(4.1) reduces to

1

2
(g(∇Xξ, Y ) + g(∇Y ξ,X)) + S(X,Y )− λg(X,Y ) = 0. (4.2)

Making use of (2.4) and the above equation yields

S(X,Y ) + g(φhX, Y )− λg(X,Y ) = 0. (4.3)

Substituting Y = ξ and using (2.11), we have

λ = 2nk. (4.4)

Thus, (4.3) can be written as

S(X,Y ) = 2nkg(X,Y )− g(φhX, Y ). (4.5)

Putting X = φX in (4.5) gives

S(φX, Y ) = 2nkg(φX, Y ) + g(hX, Y ). (4.6)

Also, in an N(k)-paracontact metric manifold the following relation holds:

S(X,Y ) = 2(1− n)g(X,Y ) + 2(n− 1)g(X,hY )

+ [2(n− 1) + 2nk]η(X)η(Y ). (4.7)

Replacing X by φX in (4.7) implies

S(φX, Y ) = 2(1− n)g(φX, Y ) + 2(n− 1)g(hφX, Y ). (4.8)
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Comparing the right-hand sides of (4.6) and (4.8), we get

2(1− n− nk)g(φX, Y ) + 2(n− 1)g(hφX, Y ) = g(hX, Y ). (4.9)

Interchanging X and Y in (4.9) yields

2(1− n− nk)g(φY,X) + 2(n− 1)g(hφY,X) = g(hY,X). (4.10)

By adding (4.9) and (4.10), one can easily get

2(n− 1)g(hφX, Y ) = g(hX, Y ). (4.11)

Once again substituting X = φX in the above equation, we get

g(hφX, Y ) = 2(n− 1)g(hX, Y ). (4.12)

Making use of (4.11) in (4.12) implies

{4(n− 1)2 − 1}g(hX, Y ) = 0. (4.13)

But the equation 4(n− 1)2 − 1 = 0 has no positive integer root. Thus, it follows
from (4.13) that g(hX, Y ) = 0, that is, h = 0. Applying h = 0 in (2.7) gives k =
−1, which is a contradiction as we consider k 6= −1. By the above discussions we
can state the following:

Theorem 4.1. There does not exist a Ricci soliton in an N(k)-paracontact
manifold M2n+1, n > 1, whose potential vector field is the Reeb vector field ξ and
k 6= −1.

5. Gradient Ricci soliton in N(k)-paracontact metric manifolds

Let (M, g) be a (2n+ 1)-dimensional paracontact metric N(k)-manifold and
g be a gradient Ricci soliton. Then equation (1.2) becomes

∇YDf = QY − λY (5.1)

for any Y ∈ χ(M), where D denotes the gradient operator of g. From (5.1) it
follows that

R(X,Y )Df = (∇XQ)Y − (∇YQ)X (5.2)

for any X,Y ∈ χ(M). Replacing X by ξ in (5.2) yields

g(R(ξ, Y )Df, ξ) = g((∇ξQ)Y − (∇YQ)ξ, ξ). (5.3)

With the help of (2.10) we have

(∇YQ)X = {2(n− 1) + 2nk}[(∇Y η)Xξ + η(X)∇Y ξ] + 2(n− 1)(∇Y h)X. (5.4)

Applying (2.4) and (2.13) in (5.4) gives

(∇YQ)X = {2(n− 1) + 2nk}[g(Y, φX)ξ + g(φhY,X)ξ − η(X)φY + η(X)φhY ]
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+ 2(n− 1)(∇Y h)X. (5.5)

Similarly, we obtain

(∇XQ)Y = {2(n− 1) + 2nk}[g(X,φY )ξ + g(φhX, Y )ξ − η(Y )φX + η(Y )φhX]

+ 2(n− 1)(∇Xh)Y. (5.6)

Using (2.14), (5.5) and (5.6), we have

(∇XQ)Y − (∇YQ)X = 2(n− 1)[−(k + 1){2g(X,φY )ξ + η(X)φY

− η(Y )φX}+ η(X)φhY − η(Y )φhX]

+ {2(n− 1) + 2nk}[2g(X,φY )ξ + η(X)φY

− η(Y )φX + η(Y )φhX − η(X)φhY ]. (5.7)

Replacing X = ξ in the above equation and then taking the inner product of
(5.7) with ξ implies

g((∇ξQ)Y − (∇YQ)ξ, ξ) = 0. (5.8)

In view of (5.3) and (5.8), we obtain

g(R(ξ, Y )Df, ξ) = 0. (5.9)

Together with (2.9) it gives

k{g(Y,Df)− g(Df, ξ)η(Y )} = 0, (5.10)

from which it follows that

k(Df − (ξf)ξ) = 0. (5.11)

Hence either k = 0, or
Df = (ξf)ξ. (5.12)

If k = 0, then equation (2.6) gives R(X,Y )ξ = 0. Thus, from Lemma 2.1 we can
say thatM2n+1, n > 1 is locally isometric to a product of a flat (n+1)-dimensional
manifold and an n-dimensional manifold of negative constant curvature equal
to −4.

Also, from (5.2) we have R(X,Y )Df = 0, from which we can say that the
potential vector field Df is a nullity vector field.

On the other hand, if (5.12) holds, then we obtain from (5.1)

S(X,Y )− λg(X,Y ) = Y (ξf)η(X)− (ξf)g(φY,X) + (ξf)g(φhY,X). (5.13)

Putting X = ξ in the above equation and using (2.11) gives us

Y (ξf) = (2nk − λ)η(Y ). (5.14)

By applying (5.14) in (5.13), we have

S(X,Y )− λg(X,Y ) = (2nk − λ)η(X)η(Y )− (ξf)g(φY,X)
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+ (ξf)g(φhY,X). (5.15)

Interchanging X and Y in (5.15) yields

S(Y,X)− λg(Y,X) = (2nk − λ)η(Y )η(X)− (ξf)g(φX, Y )

+ (ξf)g(φhX, Y ). (5.16)

Adding (5.15) and (5.16) implies

S(X,Y )− λg(X,Y ) = (2nk − λ)η(X)η(Y ) + (ξf)g(φhX, Y ). (5.17)

Making use of (5.1) and (5.17), we get

∇YDf = (2nk − λ)η(Y )ξ + (ξf)φhY. (5.18)

Using the above equation, we obtain

R(X,Y )Df = (2nk − λ){2g(X,φY )ξ − η(Y )φX + η(X)φY }
+ (ξf){−(k + 1)(η(X)Y − η(Y )X)

+ η(X)hY − η(Y )hX}. (5.19)

Since g(R(X,Y )(ξf)ξ, ξ) = 0, we have from (5.19), (2nk− λ)g(X,φY ) = 0, from
which it follows that

λ = 2nk. (5.20)

In view of (5.20) and (5.13), we get

Y (ξf) = 0, (5.21)

which implies that ξf = c, where c is a constant. Also, from (5.12) we have df =
(ξf)η. Its exterior derivative gives 0 = d2f = d(ξf)η + (ξf)dη. Since ξf = c and
dη 6= 0, we get c = 0. Consequently, f is constant. Applying this fact in (5.1)
gives us S(X,Y ) = 2nkg(X,Y ).

By the above discussions we have the following:

Theorem 5.1. Let (M, g) be a (2n + 1)-dimensional (n > 1) N(k)-
paracontact metric manifold. If g is a gradient Ricci soliton, then either the
manifold is locally isometric to a product of a flat (n + 1)-dimensional manifold
and an n-dimensional manifold of negative constant curvature equal to −4, or
M2n+1 is an Einstein manifold, provided k 6= −1.

6. Example of a 5-dimensional N(k)-paracontact metric mani-
fold

In this section, we give an example of a 5-dimensional N(k)-paracontact met-
ric manifold such that k = −4. Let g be the Lie algebra of a Lie group G of basis
{e1, e2, e3, e4, e5} such that

[e1, e5] = −2e1 − 2e2, [e2, e5] = 2e2, [e1, e2] = 4e5,
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[e3, e4] = 4e4 + 4e5, [e1, e4] = 2e1 + 2e2, [e2, e4] = −2e2.

We consider the metric such that

g(e1, e2) = g(e5, e5) = 1,

g(e3, e4) = −1 and g(ei, ej) = 0, for all other values of i, j.

Set e5 = ξ and denote by η its dual 1-form. We define a tensor φ by φe1 = e1,
φe2 = −e2, φe3 = −e3, φe4 = e4, φe5 = 0. Therefore, we have φ2X = X − η(X)ξ
and g(φX, φY ) = −g(X,Y ) +η(X)η(Y ). Thus (φ, ξ, η, g) makes G a paracontact
metric manifold.

Using the well-known Koszul’s folmula, we have:

∇e1e5 = −2e1 − 2e2, ∇e2e5 = 2e2, ∇e3e5 = 2e3, ∇e4e5 = −2e4,

∇e5e1 = 0, ∇e5e2 = 0, ∇e5e3 = 2e3, ∇e5e4 = −2e4,

∇e1e1 = e3, ∇e1e2 = 2e5, ∇e1e3 = 0, ∇e1e4 = 2e2,

∇e2e1 = −2e5, ∇e2e2 = 0, ∇e2e3 = 0, ∇e2e4 = 0,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = −e3, ∇e3e4 = 2e5 + 4e4,

∇e4e1 = −2e1, ∇e4e2 = 2e2, ∇e4e3 = −2e5, ∇e4e4 = 0,

∇e5e5 = 0.

Comparing the above relations with (2.4), we get

he1 = −e1 + 2e2, he2 = −e2, he3 = −e3, he4 = −e4, he5 = 0.

Using the formula R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, we can calculate
the following:

R(e1, e2)e1 = 4e1 + 4e2, R(e1, e2)e2 = −4e2, R(e1, e2)e3 = −8e3,

R(e1, e2)e4 = 8e4, R(e1, e3)e1 = e3, R(e1, e3)e2 = −4e3,

R(e1, e3)e3 = 0, R(e1, e3)e4 = 4e2 − 4e1, R(e1, e4)e1 = −4e3 + 6e5,

R(e1, e4)e2 = 4e4, R(e1, e4)e3 = 4e1 + 4e2, R(e1, e4)e4 = −8e2,

R(e1, e5)e1 = −4e5, R(e1, e5)e2 = 4e5, R(e1, e5)e5 = −4e1,

R(e2, e3)e1 = 4e3, R(e2, e3)e2 = 0, R(e2, e3)e3 = 0,

R(e2, e3)e4 = 4e2, R(e2, e4)e1 = −4e4, R(e2, e4)e2 = 0,

R(e2, e4)e3 = −4e2, R(e2, e4)e4 = 0, R(e2, e5)e1 = 4e5,

R(e2, e5)e4 = 0, R(e2, e5)e5 = −4e2, R(e3, e4)e1 = 8e1,

R(e3, e4)e2 = −8e2, R(e3, e4)e3 = −12e3 + 6e5, R(e3, e4)e4 = 12e4,

R(e3, e5)e3 = 2e3, R(e3, e5)e4 = −4e5, R(e3, e5)e5 = −4e3,

R(e4, e5)e2 = 0, R(e4, e5)e3 = −4e5, R(e4, e5)e5 = −4e4.

With the help of the expressions of the curvature tensor we conclude that the
manifold is an N(k)-paracontact metric manifold with k = −4. Also, from the
above expressions we obtain
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S(e1, e1) = S(e1, e2) = S(e2, e2) = −4,

S(e3, e4) = 8, S(e3, e3) = −12, S(e4, e4) = −20.

For X = e1, Y = e2, by using the above results, we have from (4.2) that λ = −4.
Substituting the value of λ in (4.2), we see that the relation (4.2) is not true for
all values of X and Y . Thus Theorem 4.1 is verified.

Now, if we take the non-zero Lie brackets as

[e1, e5] = −(k0 + 1)e1 − (k0 + 1)e2, [e2, e5] = (k0 + 1)e2,

[e1, e2] = 2(k0 + 1)e5, [e3, e4] = 2(k0 + 1)e4 + 2(k0 + 1)e5,

[e1, e4] = (k0 + 1)e1 + (k0 + 1)e2, [e2, e4] = −(k0 + 1)e2,

where k0 is a real number such that k0 6= −1, then it can be easily shown that
the manifold under consideration is an N(k)-paracontact metric manifold with
k = −(k0 + 1)2, k0 6= −1.
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Солiтони Рiччi та градiєнтнi солiтони Рiччi на
N(k)-параконтактних многовидах

Uday Chand De and Krishanu Mandal

η-ейнштейнiвський параконтактний многовид M допускає солiтон
Рiччi (g, ξ) тодi i тiльки тодi, колиM єK-параконтактним ейнштейнiвсь-
ким многовидом за умови, що одна з асоцiйованих скалярних величин α
або β є постiйною. Ми також доводимо неможливiсть iснування солiтона
Рiччi на N(k)-параконтактному метричному многовидi M , потенцiальне
векторне поле якого є рiбовським векторним полем ξ. Бiльш того, якщо
метрика g N(k)-параконтактного метричного многовиду M2n+1 є гра-
дiєнтним солiтоном Рiччi, то або многовид локально iзометричний до-
бутку плоского (n + 1)-вимiрного многовида i n-вимiрного многовида
з постiйною негативною кривиною −4, або M2n+1 є ейнштейнiвським
многовидом. На додаток наведено iлюстративний приклад.

Ключовi слова: параконтактний многовид, N(k)-параконтактний
многовид, солiтон Рiччi, градiєнтний солiтон Рiччi, ейнштейнiвський
многовид.
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