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In the paper, smooth functions with non-degenerate critical points on
a smooth compact surface with boundary are considered. Firstly, it is
shown that these functions are topologically equivalent to m-functions. The
equipped Reeb graph is used to describe their topological structure. Sec-
ondly, the authors characterize the topological structure of all simple func-
tions with at most 5 critical points. And finally, a formula for the genus of
the surface based on the equipped Reeb graph is obtained.
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1. Introduction

Smooth functions with non-degenerate singularities and their classification
are the main topics of research in many fields of mathematics. There is a number
of papers devoted to the functions with non-degenerate critical points on closed
2-dimensional manifolds [1,9,11,17]. Furthermore, some significant results on the
surfaces with boundary were obtained in [2–4, 6, 7]. For instance, M. Morse [11]
and others [2,3] gave a canonical representation of a function in the neighborhood
of its non-degenerate critical point in the form of a second degree polynomial.
In [1]), O.V. Bolsinov and A.T. Fomenko introduced the definition of atom and
f -atom using fiberwise and fiberwise frame equivalences respectively. Other de-
nominations of these equivalences are layer and layer equipped equivalences used
in [4].

Let us recall that two given smooth functions f and g, defined on the smooth
compact surfaces M and N respectively, are called layer (layer equipped) equiv-
alent if there exists a homeomorphism λ : M → N , which maps the components
of the level sets of f onto the components of the level sets of g (and preserves
growing direction of the functions). Thus an atom (f -atom) is a class of the layer
(layer equipped) equivalence of the function f restricted to the set f−1(c−ε, c+ε),
where c is a critical value of f , for small enough ε, such that the line segment [c−
ε, c+] does not include critical values with the exception of c. If additionally the
homeomorphism λ, which defines the layer equipped equivalence of the functions
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f and g on the oriented surfaces M and N respectively, preserves orientation,
then these functions are called O-equivalent. In this manner, the O-equivalence
class of the pair (U, f |U ) is called an O-atom for an oriented surface.

A level line c ∈ R of the function f is the set Lc = {f−1(c)} := {p ∈M |f(p) =
c}. A level c is critical if the corresponding Lc includes the critical point and the
regular value in the opposite case. A function f : M → R which has at most one
critical point at each level line is simple (see [4]). In this paper, we will consider
only simple functions. Analogically, an atom (O-atom) is called simple (see [1])
if it includes one critical point. Thus, every atom (O-atom) considered in this
paper is simple since every considered function is simple.

The smooth functions f and g, defined on a smooth compact surface M ,
are called topologically equivalent if there exist homeomorphisms h1 : M → M,
h2 : R → R such that h2 ◦ f = g ◦ h1 and h2 preserves the orientation of R.
Topologically equivalent functions f and g, defined on an oriented surface M , are
called topologically O-equivalent if (as denoted above) the homeomorphism h1
preserves the orientation of M .

Topological equivalence and O-equivalence are equivalence relations. The set
of functions splits into equivalent classes. The investigation of these classes is the
main aim of topological and O-classifications. In particular, these classifications
study invariant, which allows us to describe all topological properties of functions.
Many studies have been carried out on topological classification of functions with
non-degenerate critical points on surfaces without boundary such as [5,12,13,18].
Simple functions are strongly connected with the Reeb graph introduced by H.
Reeb [17] and A.S. Kronrod [9]. In this paper, the definition of the Reeb graph
is generalized to the case of a surface with boundary. A Morse function f : M →
R is said to be an m-function if all its critical points are interior, the restriction
f∂ to its boundary is also a Morse function and the critical levels of f include
exactly one critical point of f and do not include a critical point of f∂ . The
mentioned above equivalences of m-functions on a surface with boundary were
studied in [10,14,16].

This paper is focused on the topological properties of functions with non-
degenerate critical points on the boundary of a surface. These functions are
interesting, because they are Lyapunov functions of flows of general position on
surfaces with boundary and their application is one of the main research methods
in dynamical systems.

2. Atoms of simple functions on a surface with boundary

Let f : M → R be simple smooth functions on an oriented smooth compact
connected surface M with the boundary ∂M such that:

(i) if a critical point p0 of f does not belong to the boundary ∂M , then it is
non-degenerate critical point of f ;

(ii) if a critical point p0 of f belongs to the boundary ∂M , then it is non-
degenerate critical point of f and of its restriction to the boundary f |∂M ;
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(iii) if p0 is a critical point of the function f |∂M , then it is also a critical point
of the function f .

The class of these functions will be denoted by Ω(M). Thus, Ω(M) = {f :
M → R|CP (f) = NDCP (f) ⊃ CP (f |∂M ) = NDCP (f |∂M )}, where CP (f)
(NDCP (f)) is the set of (non-degenerate) critical points of f .

Theorem 2.1. Let M be an oriented connected smooth compact surface.
Then the following statements hold true:

1) for any arbitrary function f ∈ Ω(M) there exists an m-function g : M → R

which is topologically equivalent to f ;

2) for any arbitrary m-function g : M → R there exists a function f ∈ Ω(M)
such that f and g are topologically equivalent.

Proof. Note that the second statement follows from the first one and vice
versa because of the symmetry of topological equivalence. For this reason, we
will prove only the first statement.

Let f ∈ Ω(M). Then f has the representation f(x, y) = x + C for some
constant C = f(0, 0) in a neighborhood of a regular point [3]. M-functions have
the same representations in the regular neighborhood. Then the function g can
be constructed as g ≡ f in small enough regular neighborhoods.

In the neighborhoods of interior critical points, the function f is an m-
function(which follows directly from the definition) and the m-functiong can be
chosen as g ≡ f .

The last possible situation is when the critical points belong to the boundary
of the surface. Note that the function f has the local representation f(x, y) =
±x2 ± y2, y ≥ 0 [2, 3] in a neighborhood of a critical point on the boundary and
the m-functiong(x, y) = ±x2 ± y, y ≥ 0 [6] in a neighborhood of a critical point
of the restriction to the boundary ∂M .

Let p1, . . . , pl ∈ ∂M be critical points of the function f . Consider the rectan-
gular neighborhoods −2εi ≤ x ≤ 2εi, 0 ≤ y ≤ εi, i = 1, l for some small enough
εi, such that these neighborhoods do not include other critical points of f with
the exception of pi, i = 1, l. We denote ε = mini=1,lεi and restrict the neigh-

borhoods described above to Vi = {−2ε ≤ x ≤ 2ε, 0 ≤ y ≤ ε}, i = 1, l. Then
consider the δ-neighborhoods of the boundaries of Vi, i = 1, l, which have the
form U(Vi) = {−2ε − δ ≤ x ≤ −2ε + δ, 0 ≤ y ≤ ε + δ}

⋃
{2ε − δ ≤ x ≤ 2ε +

δ, 0 ≤ y ≤ ε + δ}
⋃
{−2ε ≤ x ≤ 2ε, ε − δ ≤ y ≤ ε + δ}, i = 1, l for some small

enough δ (such that U(Vi) includes only the regular values of f). Then on the
sets Vi\U(Vi), i = 1, l, the m-functionis defined as g = ±x2 ± y, y ≥ 0, and
the topological equivalence can be defined via the homeomorphisms h1(x, y) =
(x, y2), h2(z) = z. In the regular neighborhoods outside of Vi, we have that g ≡
f . And finally, after smoothing of the function g on the sets U(Vi) (for instance,
as in the paper [8]), i = 1, l, we get an m-function(see Fig. 2.1).

Let f ∈ Ω(M). The components of the level lines of the function f are called
layers. These layers are homeomorphic to the circle or to the line segment for
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Fig. 2.1

regular values of the function. Then the surface M can be considered as a union of
layers and we get a foliation with singularities. A layer is of the first (second) type
if it corresponds to the component homeomorphic to the line segment (circle).
Let us consider the equivalence relation on M such that points are equivalent
if and only if they belong to the same layer. Thus, after examining the natural
factor-topology, we get the graph Γf , whose edges are drawn by solid or dashed-
dotted lines depending on whether they correspond to the layers of the first or
second type. In this way, we get the edges of the first and second types, and this
classification of edges is said to be edges division of graph Γf .

Definition 2.2. The vertices of graph Γf of the function f with degrees 3
and 4 incident to the first type edges are said to be Y- and X-vertices, respectively.

We denote the X-vertex as in Fig. 2.2.

Fig. 2.2

For an arbitrary Y-vertex of graph Γf , we fix the cycle order for the edges
incident to this vertex. In the figure, this order is defined by passing the edges
counterclockwise. The same can be applied to X-vertices.

Next, we consider the O-equivalence of f and g. Let us fix the orientation
of edges of the graphs Γf and Γg from the lower vertex to the upper one. This
orientation is not shown on the graph, as it is defined for each graph, however we
suppose that the graph is oriented.

Definition 2.3. The Equipped Reeb graph of a function f ∈ Ω(M) is the
graph Γf equipped with edges division, orientation and cycle order at Y- and
X-vertices.

There are possibly 7 (simple) atoms and 13 (simple) O-atoms, the classifica-
tion of which depends on the index of the critical point and its belonging to the
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boundary ∂M . The functions of the class Ω(M) are topologically equivalent to
m-functions (Theorem 2.1), and atoms can be considered as atoms of the height
function of m-function. Thus, we have the following atoms and O-atoms:

(i) 3 atoms if p0 ∈ ∂M : A, B, C, and 6 corresponding O-atoms: A1, A2, B1,
B2 and C1, C2 (2.3);

Fig. 2.3

(ii) 2 atoms if p0 6∈ ∂M and the atoms have empty intersections with the bound-
ary: D and E, and 4 corresponding O-atoms: D1, D2, E1, E2 (see Fig. 2.4);

Fig. 2.4

(iii) 2 atoms if p0 6∈ ∂M and the atoms have non-empty intersections with the
boundary: F and G, and 3 corresponding O-atoms: F1, F2 and G = G1 =
G2 (see Fig. 2.5).

Fig. 2.5

The orientation of atoms, which can be embedded into the plane, is defined
by the orientation of the plane (see Figs. 2.3 (1, 2, 5, 6), and 2.5 (3)). Otherwise
(see Figs. 2.3 (3, 4), 2.4 (1, 2, 3, 4), and 2.5 (1, 2)), we fix the orientation in
the following way: counterclockwise on the lower circles (parts of circles) and
clockwise on the upper circles (parts of circles). The corresponding equipped
Reeb graphs are also shown in Figs. 2.3, 2.4, and 2.5.
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Theorem 2.4. Each simple O-atom of a function from the class Ω(M) co-
incides with one of the O-atoms A1, A2, B1, B2, C1, C2, D1, D2, E1, E2, F1, F2

and G.

The proof of Theorem 2.4 follows from [16, Theorem 1] and Theorem 2.1.
Recall that a critical point which is not local extremum is called a saddle

critical point [3].
Some cases of degree deg(v) of a vertex v of the graph Γf is shown in Figs.

2.3, 2.4, and 2.5:

(i) if deg(v) = 1, then v corresponds to the minimum or maximum point;

(ii) if deg(v) = 2, then v corresponds to the saddle critical point, which belongs
to the boundary of the surface;

(iii) if deg(v) = 3, then v corresponds to the saddle critical point, which either
is interior or belongs to the boundary (Y-vertex);

(iv) if deg(v) = 4, then v corresponds to the interior saddle critical point (X-
vertex).

Definition 2.5. The equipped Reeb graphs Γf and Γg of the functions f, g ∈
Ω(M) are said to be equivalent by means of the isomorphism ϕ : Γf → Γg and
denoted by Γf ∼ Γg or Γf ∼ϕ Γg if ϕ :

(i) preserves the edges division;

(ii) preserves the cycle order of the edges at each X- and Y-vertex;

(iii) preserves the edges orientation.

The above-described relation ∼ is an equivalence relation.

3. Equipped Reeb graph of simple functions defined on surfaces
with boundaries

Let f ∈ Ω(M) be a function which has n critical points p1, p2, . . . , pn with
the corresponding critical values c1 < c2 < . . . < cn and Mt = {p ∈M |f(p) ≤ t},
Lt = {p ∈ M |f(p) = t}. In other words, Mt is the subsurface of M consisting
of all points at which the function f takes values less than or equal to t, and Lt

is the set of points where the value of f is exactly t (level line). We consider
an oriented connected surface M , so the topological type of M can be defined
from the information about the genus g and the number of components of the
boundary ∂ of the surface (see [14]). As the parameter t changes, we can observe
the changes of invariants of the subsurface Mt and of the number of connected
components. Recall that the genus of changes of a non-connected surface is
defined as the sum of the genera of all connected components.

Let us consider the changing of the topological type of the subsurface Mt

depending on the gluing of the corresponding O-atoms (here 4g, 4∂, 4c are the
changes of the genus, the number of boundary components and the number of
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connected components of Mt). The function f takes its maximum value cn and
minimum value c1. Since there is no point p with f(p) < a, we have Mt = ∅ for
t < c1. Also we have f(p) ≤ cn at any point p ∈M , that is, if t ≥ cn, then Mt =
M . Thus, the fundamental idea is to trace the change of shapes of Mt as the
parameter t starts from a value greater than or equal to c1 and changes up to cn.
If f does not have critical values on the interval [t1, t2], then the subsurfaces Mt1

and Mt2 are diffeomorphic (see [2]). In other words, the topological type of Mt

does not change at the regular value t.

Thus, important is the change of Mt when t passes through a critical value
ci, i = 1, n. If ti = ci and pi is a local minimum or maximum, then, for some
small enough εi > 0, the subsurface Mti+εi can be represented as a disjoint union
Mti−εi

∐
D1 [19] (pi 6∈ ∂M) or Mti−εi

∐
A1 [3] (pi ∈ ∂M). In particular, if it is

an O-atom A1, then 4∂ = +1 and 4c = +1, and if it is an O-atom, then D1 −
4g = 0, 4∂ = +1, 4c = +1. The gluing of these O-atoms causes an increase of
the number of connected components 4c.

In case pi is a local maximum, either a half of a disk D2
+ (if additionally pi ∈

∂M) or a disk D2 (if additionally pi 6∈ ∂M) is glued to the subsurface Mti−εi ,
which is homeomorphic to O-atoms A2 and D2 (see [3, 19]). The gluing of O-
atoms D2 causes a decrease of the number of boundary components by 1 (4∂ =
−1) while other invariants do not change.

In case pi is a saddle critical point, the rectangle [0, 1]× [0, 1] is glued to the
subsurface Mti−εi such that the two opposite sides are glued to the boundary of
the level line Lti−εi and the other two sides, to the boundary ∂M (see [3, 15]).
As a result, we get the gluing of the atoms: E, B, C, F , and G. The gluing of
the O-atoms B2 and C2 does not change the topological type of the subsurface
(see Fig. 2.3 (4, 6)), and the gluing of the O-atoms B1, E2 and F2 increases the
number of boundary components, 4∂ = +1, since we get a new component of the
boundary of Mti+εi (see Figs. 2.3 (3), 2.4 (4), and 2.5 (2)). For other O-atoms
(C1, E1, F1, and G), the cases P (i : j), {i, j} ⊂ {1, 2} should be considered,
when the atom is glued to the i connected components and j components of the
boundary of the level line Lti . The case P (2 : 1) is impossible. As shown in Figs.
2.3 (5) and 2.5 (3), the gluing of the O-atom C1 or G to one component of the
boundary of Lti (P (1 : 1)) increases the number of boundary components, i.e.,
4∂ = +1. Moreover, the case P (1 : 1) is impossible for the O-atoms E1 and
F1 (see Figs. 2.4 (3) and 2.5 (1)). In the case of P (1 : 2), the O-atoms C1 (see
Fig. 2.3 (1)), E1 and G (see Figs. 2.4 (3) and 2.5 (3)) increase the genus of the
surface (4g = +1) and decrease the number of boundary components (4∂ =
−1). And finally, in the case of P (2 : 2), we get one of the O-atoms C1, E1, F1,
and G, whose gluing causes a decrease of the number of boundary components
and connected components by 1 (see Figs. 2.3 (5), 2.4 (3), and 2.5 (1, 3)).

All the described calculations can be summed up in Table 3.1, where P1 is
the case P (1 : 1), P2 is the case P (1 : 2) and P3 is the case P (2 : 2).

Remark 3.1. Let f ∈ Ω(M) be a function which has n critical points with
corresponding critical values t1, . . . , tn. Then the topological invariants of the
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A1 A2 B1 B2 C1 C1 C1 C2 D1 D2

P 1 1 1 1 1 2 3 1 1 1

4g 0 0 0 0 0 +1 0 0 0 0

4∂ +1 0 +1 0 +1 −1 −1 0 +1 −1

4c +1 0 0 0 0 0 −1 0 +1 0

E1 E1 E2 F1 F1 F2 G G G

P 2 3 1 2 3 1 1 2 3

4g +1 0 0 +1 0 0 0 +1 0

4∂ −1 −1 +1 −1 −1 +1 +1 −1 −1

4c 0 −1 0 0 −1 0 0 0 −1

Table 3.1

surface M can be calculated using the following formulas:

g = 4g1 + . . .+4gn,
∂ = 4∂1 + . . .+4∂n,
(c = 4c1 + . . .+4cn = 1),

where 4gi, 4∂i, 4ci are the changes of the genus, the number of boundary
components and the number of connected components of the surface Mti , i =
1, n.

The definition of the O-equivalence can be locally represented as follows. The
functions f ∈ Ω(M) and g ∈ Ω(N) defined on the oriented smooth compact
surfaces M and N are O-equivalent in some neighborhoods of their critical levels
f−1(c1), g

−1(c2) if there exist ε1 > 0, ε2 > 0 and a homeomorphism λ : f−1(c1 −
ε1, c1 + ε1) → g−1(c2 − ε2, c2 + ε2) which maps the level lines of the function
f onto the level lines of the function g and preserves the growing direction of
functions and the orientation of surfaces.

Theorem 3.2. Let M,N be smooth compact surfaces (with boundaries) such
that f ∈ Ω(M), g ∈ Ω(N). Then f and g are O-equivalent if and only if their
equipped Reeb graphs Γf and Γg are equivalent.

The statement of Theorem 3.2 follows from [16, Theorem 2] and Theorem 2.1.

Let us enumerate the vertices of the equipped Reeb graph of the functions
f, g ∈ Ω(M) according to ordinal numbers (by functions growing) of critical
points. Then the equivalent graphs Γf and Γg are said to be orderly equivalent
if the isomorphism ϕ additionally preserves the numeration of graphs’ vertices.
Note that in the case of orderly equivalent graphs, in the definition of equivalent
graphs condition (iii) is redundant.

Corollary 3.3. Let M,N be smooth compact surfaces (with boundaries) such
that f ∈ Ω(M), g ∈ Ω(N). Then f and g are topologically O-equivalent if and
only if their equipped Reeb graphs Γf and Γg are orderly equivalent.
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4. Examples of calculations

According to Theorem 3.2, the O-equivalence of the functions of class Ω(M)
is an equivalence relation, because the equivalence of equipped Reeb graphs is
an equivalence relation. Thus, Ω(M) can be considered as a set of equivalence
classes, which we denote for the function f ∈ Ω(M) by [f ].

Let i, j be an in-degree and out-degree of a vertex of an oriented graph γ.
The pair of numbers (i, j) is said to be a vertex index. Let us denote by Γ≤4

n a set
of all connected oriented graphs γ with n vertices, the indexes of which are (1, 1),
(1, 2), (2, 1), (2, 2) and at least one vertex with index (0, 1) and one with index
(1, 0) belong to each of these graphs. If the number of vertices is not important
to us, then we denote the set by Γ≤4.

Let us consider the operations with the graphs from Γ≤4:

(a1) addition of vertices and incident edges (see Fig. 4.1 (1));

(a2) division of one of the edges by the interior point, which is said to be a new
vertex of the graph (see Fig. 4.1 (2));

(a3) addition of edges without new vertices (see Fig. 4.1 (3)).

Next, we consider operations (a1)–(a3) for obtaining a graph from the set
Γ≤4.

Fig. 4.1

Definition 4.1. An operation of increasing (decreasing) the number of ver-
tices of the graph γ ∈ Γ≤4

n is one of the following actions (a1), (a2), (a3) ((a1)−1,
(a2)−1, (a3)−1) or their finite sequence.

Lemma 4.2. Each graph γ ∈ Γ≤4
n can be obtained from the graph γ̃ ∈ Γ≤4

2

(see Fig. 4.2) after some operations of increasing the number of vertices of the
graph γ̃.

Fig. 4.2

Proof. It is enough to show that the graph γ ∈ Γ≤4
n can be deformed into the

graph depicted in Fig. 4.2 by the operation of decreasing the number of vertices.
The graph γ is a tree that includes at least one simple cycle (without repeating

vertices). If γ includes a simple cycle, then, after some operations (a3)−1, it can
be represented as a graph without cycles. Thus, we can suppose that γ is a
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tree and hence it is planar and has an edges orientation which forms an acute
angle with the positive direction of the second line of coordinate system (after
embedding of γ into the plane). We fix a vertex v0 with index (0, 1) and consider
the relation � on the set of vertices V of the graph γ as follows: vi, vj ∈ V :
vi � vj ⇔ l(vi) ≤ l(vj) = j, where l(vs) is a non-oriented distance (the least
number of edges of all possible non-oriented paths) from vs to v0. Thus, the set
V can be represented as a disjoint union of classes V = V 1

⋃
V 2
⋃
. . .
⋃
V l for

some natural l, where V j = {vj1, v
j
2, . . . , v

j
ij
} ⊂ V, j = 1, l are such that l(v0, v

j
p) =

l(v0, v
j
q) = j, p, q ∈ {1, 2, . . . , ij}, j = 1, l. Note that ∀j = 1, l : V j 6= ∅, and

V l consists of the vertices with index (1, 0), and
∣∣V l
∣∣ ≥ 1. Let vl1 ∈ V l, and let

vl−1
1 ∈ V l−1 be a vertex connected with the previous one by an edge. Next, we

consider the operation of decreasing the number of vl−1
1 depending on the vertex

index:

(i) (0, 1): γ is connected and it coincides with the graph in Fig. 4.2;

(ii) (1, 1): by operation (a2)−1 we contract the vertex vl−1
1 , then vl1 ∈ V l−1 (it is

equivalent to the contraction of the vertex vl1 and the corresponding edge);

(iii) (1, 2): in this case, there exists vl2 ∈ V l and by applying operation (a1)−1

twice we contract the vertices vl1 and vl2;

(iv) (2, 1): there exists the vertex vl2 ∈ V l which is connected with vl−1
1 by some

edge, therefore, by applying operation (a1)−1 to the vertex vl2, we obtain
the case (1, 1);

(v) (2, 2): we have
∣∣V l
∣∣ ≥ 3, in other words, there exist two vertices vl2, v

l
3

connected with vl−1
1 , and we obtain case (1, 2) or (2, 1) (operation (a1)−1 at

vl2 or at vl3).

Thus, the graph γ can be represented in the form of V l = ∅ if index of vl−1
1 equals

(1, 1) and of V l = {vl1} (i.e.,
∣∣V l
∣∣ = 1) otherwise. In the same way, we assume

that the classes V 1, V 2, . . . , V l−1 do not have any vertex with degree 1. The last
statement means that the whole graph is the path between v0 and vl1. And finally,
we get the graph by using operation (a1)−1, which is depicted in Fig. 4.2.

Theorem 4.3. For any arbitrary function f ∈ Ω(M) with at most 5 critical
pints, the equipped Reeb graph of its equivalence class [f ] has one of the repre-
sentations from Fig. 4.3.

Proof. Each function f ∈ Ω(M), except f = const, takes its maximum and
minimum values on a compact set and corresponding points are extremum points
of the function. Thus, each equipped Reeb graph has at least two vertices. There
exist exactly 2 equipped Reeb graphs with two vertices, because there are two
possibilities for determining the edge of the first or second type (see Fig. 4.3
(1, 2)). An equipped Reeb graph with three vertices has one of the forms depicted
in Fig. 4.3 (3, 4). It follows from the statement that the edges incident with the
vertices with degree 2 should be of different types (see Fig. 2.2 (3, 4)).
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Fig. 4.3

Each graph with the vertices as in Figs. 2.3, 2.4, and 2.5, which has n vertices,
can be obtained from the graph with the less number of vertices and edges after
the procedure of increasing the number of vertices of the graph. Thus, firstly
we consider the graphs of the functions from [f ] with three vertices and without
edges division. Let us consider all above-described operations with these graphs,
after which we get the graphs with four and five vertices with at most deg = 4.
We fix the edges division such that some neighborhood of each of the vertex has
the form depicted in Figs. 2.3, 2.4, and 2.5. Hence, for the function from [f ] we
get one of the graphs from Fig. 4.3.

Corollary 4.4. There exist 57 topologically O-inequivalent m-functions, the
equipped Reeb graphs of which are depicted in Fig. 4.3.

Remark 4.5. In [16], the oriented layer equipped classification of m-functions
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with minimal number and at most 6 critical points is obtained. Thus, the graphs
1, 2, 7–10 in Fig. 4.3 correspond to the minimal m-functions.

5. Topological type of a surface

Let M be an oriented smooth compact connected surface with boundary, and
f ∈ Ω(M).

Definition 5.1. A vertex with degree 2 (3) of the graph Γf of the function f ,
which is incident with the edges of both types, is said to be a T-vertex (D-vertex).

As it was mentioned earlier, the topological type of the surface can be defined
basing on the information given by the genus g and the number of boundary
components ∂.

Let us consider the definition of a boundary cycle. We consider the first type
edge and an arbitrary moving direction along this edge. When moving along
this direction, we reach the vertex. The final move is defined by the orientation
(cycle order) in Y- and X-vertices along the other edge of the first type in the
T-vertex or along the same edge in the opposite direction in the D-vertex and
on the vertices with degree 1. After passing the edge, the next edge is passed in
the same way. We continue this procedure until we reach the initial vertex. As
a result, we obtain a cycle with the initial moving direction which is said to be
a boundary cycle. From the structure of this cycle it follows that the number of
boundary cycles is equal to the number of boundary components ∂.

The first and the second type edges of the graph Γf are called I- and O-edges,
respectively.

To define the genus of the surface, we consider the following designation: let
EI (EO) be the number of I-edges (O-edges) and VI (VO) be the number of the
vertices incident only with I-edges (O-edges).

Theorem 5.2. Let a graph Γf of a function f ∈ Ω(M) include either O-edges
or I-edges. Then the genus of the surface can be computed using formulas (5.1)
and (5.2), respectively, where

gO = EO − VO + 1, (5.1)

gI =
EI − VI + 2− ∂

2
. (5.2)

Proof. If the graph Γf includes only O-edges, then the surface M can not
include the boundary, i.e., ∂ = 0. If Γf is a tree, then the genus equals 0, and
adding the edges with new vertices at interior vertices of the connected graph
increases the genus by 1. Thus, (5.1) follows from the last statement.

If Γf is a tree and includes only I-edges, then the surface is a 2-dimensional
disk. The gluing of an edge to the inner vertices is equivalent to the gluing of a
rectangle to the surface M . If the rectangle is glued to one boundary component,
then the number of boundary components increases by 1 while the genus does not
change. Otherwise, the number of boundary components decreases by 1 while
the genus increases by 1. Thus, we obtain (5.2).
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Theorem 5.3. The genus of a surface can be computed using the formula

g = gO + gI + VD + VT − cO − cI + 1, (5.3)

where gO is a summary genus of the subgraph, which consists only of the edge
of the second type, such that the genus of each graph component is defined by
formula (5.1), gI is a summary genus of the subgraph, which consists only of the
edge of the first type, such that the genus of each graph component is defined by
formula (5.2), VD is the number of D-vertices and VT is the number of T-vertices,
cO is the number of connected components of the subgraph, which consists only of
the edge of the second type, and cI is the number of connected components of the
subgraph, which consists only of the edge of the first type.

Proof. Let us cut the graph in D- and T-vertices. The union of the second
type edges with D- and T-vertices forms a subgraph of the second type. The
genus of each component of this subgraph is defined by (5.1) and the genus gO
of the whole subgraph is defined as the sum of these genera. In the same way,
we determine a subgraph of the first type and its genus gI. The graph G can
be obtained as a disjoint union of graphs of the first and second types by gluing
the corresponding edges of the second type to the edges of the first type in D-
and T-vertices. Then, either the number of connected components decreases by
1 while the genus does not change, or the number of connected components does
not change while the genus increases by 1.

The next statement follows from 2.1 :

Corollary 5.4. Let f be an m-function. Then formulas (5.1), (5.2) and (5.3)
hold true.

6. Conclusion

We proved the topological equivalence of functions of class Ω(M) and m-
functions. We obtained the classification of functions of class Ω(M) up to the
O-equivalence by means of equipped Reeb graphs. We computed the number
of functions from class Ω(M) with at most five critical points. Moreover, the
problem of topological type of the equipped Reeb graph was solved.

The results obtained in the paper can be generalized to the case of non-
oriented surfaces with boundary.

Acknowledgments. This paper is partly based on the first author’s talk de-
livered in the AUI seminars (Vienna, Austria–Kosivska Poliana, Ukraine; Novem-
ber 2017–September 2018).

Supports. The first author was partly supported by the joint project of Aus-
trian Academy of Sciences (AAS) and National Academy of Sciences of Ukraine
(NASU) on Fundamentals of Astroparticle and Quantum Physics.



Simple Morse Functions on an Oriented Surface with Boundary 367

References

[1] A.V. Bolsinov and A.T. Fomenko, Integrable Hamiltonian systems. Geometry, topol-
ogy and classification, Chapman & Hall/CRC, Boca Raton, FL, 2004.

[2] M. Borodzik, A. Nemethi, and A. Ranicki, Morse theory for manifolds with bound-
ary, Algebr. Geom. Topol. 16 (2016), 971–1023.

[3] B.I. Gladish and O.O. Prishlyak, Functions with nondegerated critical ponts on the
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Простi функцiї Морса на орiєнтованiй поверхнi
з межею

Bohdana Hladysh and Alexandr Prishlyak

У данiй роботi розглядаються гладкi функцiї з невиродженими кри-
тичними точками на гладкiй компактнiй орiєнтованiй поверхнi з ме-
жею. Спочатку показано, що такi функцiї топологiчно еквiвалентнi m-
функцiям. Для опису їх топологiчної структури використовується осна-
щений граф Рiба. Потiм автори характеризують топологiчну структуру
всiх простих функцiй з не бiльш нiж 5-ма критичними точками. Наре-
штi, виводиться формула для обчислення роду поверхнi, яка базується
на оснащеному графi Рiба.

Ключовi слова: топологiчна класифiкацiя, невироджена критична
точка, оснащений граф Рiба.
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