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On Einstein Sequential Warped Product
Spaces

Sampa Pahan and Buddhadev Pal

In this paper, Einstein sequential warped product spaces are studied.
Here we prove that if M is an Einstein sequential warped product space
with negative scalar curvature, then the warping functions are constants.
We find out some obstructions for the existence of such Einstein sequential
warped product spaces. We also show that if M = (M; x5 Ing,) X g Ingg is
a sequential warped product of a complete connected (n — 2)-dimensional
Riemannian manifold M; and one-dimensional Riemannian manifolds Iy,
and Iz, with some certain conditions, then (M, g1) becomes a (n — 2)-

n—

dimensional sphere of radius p = \/% Some examples of the Einstein

sequential warped product space are given in Section 3.
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1. Introduction

A Riemannian manifold (M™, g),n > 2, is said to be an Einstein manifold if
for every vector field X,Y € x(M) there exists a real constant A such that Ric =
Mg, where g is called Einstein metric and Ric denotes the Ricci tensor of M. It is
obvious that A = 7, where (= tr(Ric)) is the scalar curvature of M and n is the
dimension of M.

The notion of a warped product was introduced by R. Bishop and B. O’Nill [1]
for studying manifolds of negative curvature. Let (B, gp) and (F,gr) be two
Riemannian manifolds with dim B =m > 0, dimF =k > 0 and f: B — (0, 0),
f € C*(B). Consider the product manifold B x F with its projections 7 : B X
F — B and 0 : B x F' — F. The warped product B x; F' is the manifold B x
F with Riemannian structure such that || X||? = ||7*(X)||?> + f2(=(p))||e*(X)]?
for any vector field X on M. Thus, we have that gy = g + f2gr holds on M.
Here B is called the base of M, and F is the fiber. The function f is called the
warping function of the warped product [9].

Now, we can generalize warped products to multiply warped products. A
multiply warped product is the product manifold M = B X3, F Xp, Fo X -+ X3,
F,, with the metric g = gp ® bgp, © b3gr, ® b3gr, @ - -- ® b2,gr,,, where for each
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ie{l,2,...,m}, b : B— (0,00) is smooth and (F;, gF,) is a pseudo-Riemannian
manifold. In particular, when B = (c,d), the metric gg = —dt? is negative
and (Fj, gr,) is a Riemannian manifold. We call M the multiply generalized
Robertson—Walker space-time.

A multiply twisted product (M, g) is a product manifold of the form M =
B xp, Fi Xp, Fo x -+ xp, F,, with the metric g = gp @ bigr, © b3gr, ® bigr, ®
- @b2 gr,,, where for each i € {1,2,...,m}, the warping functions b; : B x F; —
(0, 00) are smooth.

In 2015, S. Shenawy introduced a new type of warped product manifolds,
namely, a sequential warped product [14]. Let (M;,g;), i = 1,2,3, be three
Riemannian manifolds. Let f : M; — (0,00) and f : My x Ms — (0,00) be two
smooth positive functions on M; and My x My respectively. Then the sequential
warped product manifold, denoted by (M; x ¢ Ma) x 7 Ms, is the triple product
manifold (M; x My) x Mz, with the metric tensor g = (g1 ® f2g2) @ f2g3. The
functions f and f are called warping functions.

Let (M;,g:), i = 1,2 be two n;-dimensional Riemannian manifolds. Let f :
My x My — (0,00) and f : My — (0,00) be two smooth positive functions. Then
(n1 + ng + 1)-dimensional product manifold I x 7 (My xy Mz), with the metric
tensor g = —f2dt?> @ (g1 ® fg2), is a standard static space-time, where I is an
open, connected subinterval of R, and dt? is the Euclidean metric tensor on I.
Also, the (n; + n2 + 1)-dimensional product manifold I x (M x; M>), with
the metric tensor g = —dt? @ f2(g1 @ f%g2), is a generalized Robertson-Walker
space-time, where I is an open, connected subinterval of R, f : I — (0,00) and
f: My — (0,00) are smooth functions, and dt? is the Euclidean metric tensor
on [.

Many authors studied Einstein warped product spaces. In 2002, D.S. Kim
established that there does not exist a compact Einstein warped product space
with nonconstant warping function [6]. In [8], S. Kim constructed compact base
manifolds with positive scalar curvature, which do not admit any non-trivial
Ricci-flat Einstein warped product, and noncompact complete base manifolds.
In 2011, M. Rimoldi [15] proved a result for Einstein warped products that is
the extension of a theorem from [7] to the case of noncompact bases. A.S. Diallo
obtained recent results on the existence of compact Einstein warped product
Riemannian manifolds in [3]. In [4], D. Dumitru gave some obstructions to the
existence of compact Einstein warped products. Also Q. Qu, Y. Wang [12],
S. Pahan, B. Pal and A. Bhattacharyya [10], [11] etc. studied Einstein warped
product and multiply warped product with affine connections.

In this paper, we study Einstein sequential warped product spaces. First, we
prove that if M = (M X f M5) X 7 M3 has negative scalar curvature, then the
warping functions f and f are constants. Next, in Theorem 2.7, we show some
obstructions to the existence of such spaces. Then, in Theorem 2.8, we show that
an Einstein sequential warped product space with the complete connected (n —
2)-dimensional base is isometric to an (n — 2)-dimensional sphere. Later we prove
a result in the static space-time with some conditions. In the last section, we give
an example of the Einstein sequential warped space.
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For more convenience, we give a summary of indices used in the paper as

follows:
(M;,g;): Riemannian manifolds;

n;: dimensions of M;;

T scalar functions;

Ric: the Ricci tensor of a Riemannian manifold;

T scalar curvature of Riemannian manifolds M;;

I, f: the warping functions defined on M7 and My x Mo;

Vf: gradient of a smooth function f;

HT. the Hessian of a smooth function f is defined as its second covariant

differential H/ = VVf, where V is the Levi-Civita connection on

the Riemannian manifold Mj;
Af: Laplacian of a smooth function f is the divergence of its gradient;

X(M): the set of all vector fields on M.

2. Einstein sequential warped product spaces

Now we consider the following propositions from [14], which will be helpful
in proving the main results of this section.

Proposition 2.1. Let M = (M x s M>) X M3 be a sequential warped product
with metric g = (g1 ® f2g2) ® f2g3 and also let X;,Y;, Z; € x(M;). Then

n n 7
- 72H1f(X17}/1) - 7_3Hf(X17YV1)7

2) Ric(Xa,Yz) = Ric?(Xa,Y2) — f2g2(Xa, Ya) f* — %Hf (X2, Ya),

1) Ric(X1,Y1) = Ric' (X1, V1)

3) Ric(Xs,Ys) = Ric® (X3, Ys) — fPgs(X3, Y3) f*,

4) Ric(X;,Y;) =0, i # j, where f* = Aflf + (ng — 1)\V;2f]2 and f* = Af +
712
(n1 +ng —1) |vfjj .

Proposition 2.2. The sequential warped product M = (M x 5 My) x5 Ms
(dim My = nq, dim My = no, dim M3 = n3), is Einstein with Ric = \g if and
only if
1) Ric' = Ag + 2

I
fH{Jré’Hf,

f

2 Al 1r2
2) Ric? =g + "7, where w= 12 (34 S 4 (- ) V0,

3) Ms is Einstein with Ric® = pgs,

o)
7o)

4) M=f2</\+Af—f+(n2—1)
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Now, we state a lemma whose detailed proof is given in [6].

Lemma 2.3. Let f be a smooth function on a Riemannian manifold M;.
Then for any vector X, the divergence of the Hessian tensor H satisfies

div (H7)(X) = Ric(V f, X) — A(df)(X),
where A = dd + §d denotes the Laplacian on My acting on differential forms.
Now we prove the following propositions for later use.

Proposition 2.4. Let (M, g1) be a compact Riemannian manifold of dimen-
sion n1 > 2. Suppose that f is a nonconstant smooth function on My satisfying

Ric! = Ag) + %H{ + %Hf,

for a constant A € R and ny > 2, and if the condition

”;’;31{1”()( VL f) + div ( 7 Hf) 2;2 d(ALf) + (Af>

holds, then f satisfies

w=f? <A+Aflf+(n2—1)|vlf‘2>

I2
for a constant w € R.

Proof. By taking trace of both sides of Ric! = Ag1 + %H{ + %Hf, we have

n n3 , z
ro= Mg+ — A+ 2AT, (2.1)
f f
where r; denotes the scalar curvature of M; given by tr(Ric!). From [9], the
second Bianchi identity implies that

dry = 2div Ric'. (2.2)
From equations (2.1) and (2.2), we obtain
n9 |: Alf

A ar+ Laap)].

divRicl(X) = = 72 7

5 |~ A+ d(A f)] 23[

f? f
Also, by the definition, we have
div <}H{> (X)=>" <Dei (}Hf>> (e, X) = —PHf(Vf, X)+ }div H](X)

for any vector field X and an orthonormal frame {ei,eo,..., ey} of M;. Since
H{(Vf,X) = (Dxdf)(Vf) = %d(\Vlf|2)(X), the last equation becomes

. (1 1.,
v () 06) =~ 5 (VA7) 00 + 1 v 1 ()
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for a vector field X on M;. From Lemma 2.3, it follows that

: l f _ 1
aiv (£ ) (6) = 5 (A IE)C0) + 207 (X) — 2£d(A )

™ plix, vt
+ff ( f)

But Proposition 2.2 gives

div Ric! = div < ; Hf> +div (?Hf) .

Therefore, using the condition

naong
ff

we obtain

il (X, V'f) +div <T}§Hf> = %d(Alf)jL@d <A_f>7

o AN () + fA(AL]) + ALFdf + (n = D(V! (X)) =0,

that is,
fAYf 4+ (ng — D|IVIHPP 4+ AP =w

for some constant w. Thus the proposition is proved. O
Now, in a similar way, we will consider the following lemma.

Lemma 2.5. Let f be a smooth function on a Riemannian manifold My x
M. Then, for any vector X, the divergence of the Hessian tensor H' satisfies

div (H)(X) = Ric (V/, X) = A(df)(X)
where A = dd+0d denotes the Laplacian on My x My acting on differential forms.

Now we prove another following proposition that will be also helpful in proving
the next theorem.

Proposition 2.6. Let (Mi,g1) and (Ma,g2) be two compact Riemannian
manifolds of dimension nqy > 2 and ny > 2. Suppose that_f 1s a nonconstant
smooth function on My x Ms satisfying Ric? = wgs + %Hf for a constant w €
R and if the condition

(ng — n2)d(|Vf1*) (X) + 2f(w = N (df)(X) = 4fd(Af)(X)
holds, then f satisfies

r 2
TV S/

f2
for a constant p € R. Hence, for a compact Finstein space (Ms, g3) of dimension

ng > 2 with Ric® = ugs, we get a constant Einstein sequential warped product
space M = (My x g Mz) X § M3 with Ric = Ag.
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Proof. By taking trace of both sides of Ric? = wgs + ”f—i’Hf, we have

Af
T = Wng + N3—,

f

where 5 denotes scalar curvature of My given by tr(Ric?). As in the proof of

— r £12
Proposition 2.4, we can show that u = f? ()\ + % + (n2 — 1)'?;' ) For a
compact Einstein space (M3, g3) of dimension ng > 2 with Ric® = pg3, we make
a constant Einstein sequential warped product space M = (M; Xy Ms) X 7 Ms

with Ric = Ag by the sufficiencies of Proposition 2.2. O
Now we prove the following theorem.

Theorem 2.7. Let M = (M x s M>) X § M3 be an Einstein sequential warped
product space, where My and My are compact spaces, and Ms is a compact Ein-
stein space. If M has the negative scalar curvature, then the warping functions
f and f are constants.

Proof. We have Ric? = wgs + "75”H ! , where

1 1p)2
w:f2<)\—|-Aff+(n2—1)|va2f| >7

and M3 is Einstein with Ric? = g3, where

Af VP
-
uw=rf </\+—|—(n2—1) = .
f f?
We see that w and p are constants. Let p,g € M; be two points, where f
attains its maximum and minimum in M;. Then V!f(p) = 0 = V1 f(g) and also

Alf(p) < 0 < Alf(q). Since M has negative scalar curvature, A < 0. Now we
also have f > 0. Hence we obtain —\f2(p) > —Af?(q). We also have w = f2 ()\—i—

At
7

+ (n2 — 1)‘V;7zf|2>. Therefore, we get

0> f(p)A'f(p) =w — Af3(p) > w — Af?(q) = f(9)A' f(q) > 0.

So, we can write
w=Af*(p) =w - Af*(q).
Thus, A < 0 implies that f(p) = f(q), i.e., f is constant.

Similarly, let (p1,q1), (p2,q2) € My x M be two points, where f attains its
maximum and minimum in M; x Ms. Then Vf(p1,q1) = 0 = Vf(p2, ¢2) and also
Af(p1,q1) €0 < Af(pa,q2). Since M has negative scalar curvature, A < 0. Now
we also have f > 0. Hence we obtain —\f?(p1,q1) > —Af2(p2, q2). We also have

= JFQ()\ + ATf + (ng — 1)'?@) Therefore, we get

0> f(p1,q)Af(p1,q1) = 1 — A (p2, q2)
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> 1 — A2 (p2, a2) = f(p2, @) Af(p2, q2) > 0.

So, we can write
1= A1, 1) = p— A (p2, @2).

Thus, A < 0 implies that f(p1,q1) = f(p2,q2), i.e., f is constant. This completes
the proof of the theorem. O

Theorem 2.8. Let M = (M, X 5 M) X7 M3 be a sequential warped product
space, where M1 and My are compact spaces with dim M7 = ny, dim My = ng, and
M3 is an Einstein space with dim M3 = ng3, Ricy, = Agar,. Then the following
conditions hold:

a) Ifr3 <0 and X\ >0, then f is constant.

b) Ifny =1 and w > (or <)f%\, then f is constant. Hence f is constant when
A>0.

c) If|Vif| > @ _ VS| > ,/# and also A\ < 0, then f and f are constant.

ng—17

Proof. Taking trace of Proposition 2.2, we have
n ng , -
n:Am+ﬁ%Mf+%Aﬁ

T2 :Wn2+n7§Afv

!
r3 = uns.
a) If r3 < 0, then p < 0. From Proposition 2.2, we have
i= A+ AT+ (g — DIV
So, we can write o B
PA+FAf=p— (2 = DIV <.
Hence, -
fAF < —f?x<0.
Therefore f is constant.

b) From Proposition 2.2, we have

Alf IV fI?
2
w=f" A+ +(ng —1
7 E
Using the conditions, we can easily say that f is constant. B
As f is constant, w = f?\. Therefore we obtain f2\ + 7}——3Af = 0. Using the

condition A > 0, Af > 0. Thus f is constant.
¢) We know

w=fPA+ fA f + (ng — 1|V
Then
PA+fAYf=w—(ng = 1)|V f2.
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Using the condition |V1f| > | [—5 and A < 0, we get

FAYF > —f2X > 0.

Thus f is constant. Similarly, from Proposition 2.2 and using the conditions
IVf| > /-5 and A < 0, we can say that f is constant. O

Theorem 2.9. Let M = (M x5 Ipg,) X 5 Ing be a sequential warped product
of a complete connected (n — 2)-dimensional Riemannian manifold My and the
one-dimensional Riemannian manifolds In, and Ing. If (M,g) is an Einstein
manifold with constant associated scalars o, U € x(M) and the Hessian of f
or f is proportional to the metric tensor g1 on My, then (My,g1) is an (n —
2)-dimensional sphere of radius p = —2=2

Viita

Proof. Let M be a connected sequential warped product manifold. Then
from [14] we have

Ric'(X,Y) = Ric(X1,Y7) + }Hf(X Y) + chH (X,Y). (2.3)

Since (M, g) is an Einstein manifold with constant associated scalars «, then we
have o
Ric(X,Y) = ag(X,Y). (2.4)

Decomposing the vector field U uniquely into its components Uar,, Ur,,, Ur,,, on
My, Iy, and Iy, respectively, we have

U:UM1+U1A12+UIM3' (2.5)

Putting the value of (2.4) and (2.5) in (2.3), we get
1
Ricl(X,Y) = ag(X,Y) + fo(X Y) + fH f(X,Y).

By the contraction over X and Y, we get

A'f Af
r=7r—2a+—F—+ — 2.6
1 7 7 (2.6)
From [14], we obtain
Al A
F=— af_af (2.7)
f S
From equations (2.6) and (2.7), it follows that
Al
1+ 20 = (1 —n)—f
f
Since the Hessian of f is proportional to the metric tensor g;, then we have
1 ALf
HI(X,Y) = —1)—| g1(X,Y).
v) = oty -0 )
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From the above equation, we obtain

1
+2a)f
mx, vy + U2 vy — o,
(X,Y) + (n_2)2 n(X,Y)=0
So, M, is isometric to the (n — 2)-dimensional sphere of radius \/(% [13].
Again from [14], we obtain
__Af Wik
F=-n— —n(n—2)——. (2.8)
f f?
From equations (2.6) and (2.8), we get
Af f2 Al
r1+2a:—(n—1);—n(n—2)‘v_f‘ —|——f. (2.9)

f? f
Since the Hessian of f is proportional to the metric tensor g;, then we obtain

oy L AF L IVIE A
R e L T R SO

Hence, from equation (2.9), we have

gl(X’Y)'

(r' +2a)f

HI(X,Y) + g ¢

(X,Y) =0.

Thus M; is isometric to the (n — 2)-dimensional sphere of radius (n—2) [13].

Vri+2a
This completes the proof. O
Let (M;,g:), i = 1,2 be two n;-dimensional Riemannian manifolds. Let f :
M x My — (0,00) and f : M; — (0,00) be two smooth positive functions. Then
(n1 + ng + 1)-dimensional product manifold I x 7 (My xy Mz), with the metric
tensor g = — f2dt®> @ (g1 © f?g2), is a standard static space-time, where I is an
open, connected subinterval of R, and dt? is the Euclidean metric tensor on 1.

Theorem 2.10. Let M = I X7 (Ma x ¢ Ms) be a sequential warped product
with the metric tensor — f2dt>®(go® f2g3) and dim My = na, dim M3 = n3. Then
(M, g) is an BEinstein manifold with constant associated scalar \ if and only if
the following conditions are satisfied:

i) (M, go) is an Einstein manifold with scalar Ay when Hessian tensor HY is
proportional to the metric tensor g on Mo,

a3 _n 1" ns £/

11) >\ - 72 + 7§f 9

iit) A2 = Af? + £+ (n2 = D(f)’ = naf? =0,

iv) (Ms,gs) is an Einstein manifold with scalar A3,

V) A3 —AF2+ FF +no(f)? =0.
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Proof. From [14], we have

(2 O\ _ mepr(0 9N mspp(0 0
Rlc(afm) = <8t’6t> I <8t’8t>’ (2.10)
W "2
m(XQ,YQ) = RiCQ(Xz, Ys) + f2 ]; + (ng —1) ('};,2) ] 92(X2,Y3)
_ - %Hf(XQ,YQ), (2.11)
PRk
Ric(X3,Y3) = Ric*(X3, Y3) + f? 7 + ”2]?2] 93(X3,Y3). (2.12)

Since M is an Einstein manifold, we have

Ric = \g.

—— (0 0 o 0
RIC <8t7at> = )\gl <at7 8t> .

From equation (2.10), we obtain

Now,

)\:@// nf?*//'
ff + ff

Since HY is proportional to g on My, we can write Hf(Xg, Y2) = ff292( X2, Yo).
Therefore, from equation (2.11), we get

Ric* (X3, Y2) = [Af2 = [ = (n2 = D(/) +n/?] ga(X2, Vo). (213)

Hence M5 is an Einstein manifold with As.
From equation (2.13), it follows that

e = A+ f17+ (n2 = DAY —naf? =0,
Again from equation (2.12), we have
Ric’(X3,Y3) = [)\f? —ff" - n2(f’)2] 93(X3,Y3).

Hence we can say that M3 is an Einstein manifold with As.
From the above equation we can easily see that

A3 — A2+ FF" +no(f)? = 0. O

Remark 2.11. From above discussions, we can also prove similar results and
theorems for more general metrics given by (2.11) of [2] and Section 3 of [5].
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3. Example of Einstein sequential warped product spaces

Example 3.1. Let us consider a five-dimensional pseudo-Riemannian manifold
M5 endowed with the metric given by

ds? = —dt® + ()’ (da? + dy? + d=2) + (') dv)?,

the fifth coordinate is taken to be space-like unlike in [16].
Then, in a local coordinate, the only non-vanishing components of the
Christoffel symbols are

P%Q = Fé&; = F}L4 = Fé5 = (et)2a

2 _ 13 _14d _ 15 _
Iy =I5 =Ty =I5 =1
The non-vanishing curvature tensors and the Ricci tensors are

t\2
Ri221 = Ri331 = Riaa1 = Riss1 = (€))7,

4
R332 = Roaao = R3auz = —(€")

4
Ros59 = Rasss = Russa = —(€7)

and
Ri1 =4, Rs5= —4(€t)2, Ry = R33 = Ryy = —4(€t)2.

Therefore, we can say that

Rij = agj,
where i,j ={1,2,3,4,5} and o = —4.
Hence this space-time is an Einstein space with scalar curvature a = —4.

Now we rewrite the metric in the following way:
ds® = —dt* + (¢")? [(da? + dy® + d2%) + dy?]

i.e., in the form of (ny +n2 + 1)-dimensional product manifold I x 7 (M1 Xy M2)
with the metric tensor § = —dt? @ f2(g1 © f?g2). In this case, I is any open set,
say, (a,b) C R, My = R® and My = R, and f : (a,b) — (0,00) is smooth and
given by f = (et)2 >0 and f: R?® — (0,00) is smooth and given by f =1 > 0.
Therefore, the above manifold is an example of the Einstein sequential warped
product space-time.

Example 3.2. Next we consider a spherically symmetric solution given by

2

ds®> = —f(r)dt* + ‘;h("r)

+ 7% (d6? + sin® 0d¢?)
where V(r) is a positive smooth function.

Now we know that (M;,gi), i = 1,2, are two n;-dimensional Riemannian
manifolds. Let f : M; x My — (0,00) and f : M; — (0,00) be two smooth
positive functions. Then (n1 +nz+1)-dimensional product manifold I x 7 (M X ¢
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My), with metric tensor g = — f2dt>® (g1 ® f?g2), is a standard static space-time,
where I is an open, connected subinterval of R, and dt? is the Euclidean metric
tensor on I.

To define a sequential warped product for this case, we consider the warping
function ¢ : R — (0,00) by ¥ = r1/V(r) and observe that 1 is a smooth function.
f:Rx R3— (0,00) is given by f = /f(r) which is smooth.

Therefore the metric can be expressed as

1
ds? = —f(r)dt* + m(dr2 + 72V (r)[d6? + sin® 0d¢?)),
r
which is an example of the Einstein sequential warped product space, because we
know that any spherically symmetric solution is Einstein.

4. Appendix

Here we rewrite some basic formulas in a tensor language, which is more
common in physical community. We choose local coordinates (z!,22,...,2") of
any point p € M. Consider g;; = (55 0 > and g = det(gw) Any two smooth

Ozt dxd
vector fields X, Y on M can be written as X = X' i L- and Y = YJ a . We also

know that Rlc(X Y) = R;j, 7 = R., that is, r = tr(Rlc) grad f = ¢92L 0

= 97 527 o2

0 0
divX = fax] (X7/9), Hess(f) = V(Vf) = a‘; (8751) Ffjafk, the Laplacian
of f=Af= ﬁa?gi <\/§gij %). These are the tensor forms used in this paper.

First, let M = (M, X ¢ M>) X 7 M3 be a sequential warped product with metric
g=(q1® f?92)® f?g3, and let X;,Y;, Z; € x(M;). Here we can derive Proposition
2.1 with tensor approach in the following way:

1) In terms of local coordinate system, we suppose

0
X e x(M Y1 = —= € x(My),
1= 833'04 X( 1) 1 al_ﬁ X( 1)
where «, 8 € {1,2,...,n1}. The Riemannian metric corresponding to the

smooth manifold M; is g1, and the component of the metric is denoted by
Jas- Then we obtain

_ no [ & Of . Of] mns[ 0 Of of
Rap = Ras =~ | 5 0 gap ~ Los 6xk} i [6360‘ oxP o ogm

2) In terms of local coordinate system, we consider

0
X, = a0 © X(Mz), Yo = X(Mz),

w G
where 7,0 € {1,2,...,n2}. The Riemannian metric corresponding to the
smooth manifold Ms is g2, and the component of the metric is denoted by
g~s- Then we have

_ e 1 1 0 ap Of
o e [fmaxa( ol 35
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Yl _ms[ 0 (OF\ _» O
f [0z \ 920 10 9P |’
where f is a smooth function on M; and the components of the Riemma-

nian metric g; corresponding to the smooth manifold M; are g.g, o, 8 €
{1, 2, e ,77,1}.

TL2—1

f2

af 8f 0

+ 0z Oue

3) In terms of local coordinate system, we choose

0
Xs=55 € X(Ms), Y3 € x(Ms),

= Oz~

where 1,k € {1,2,...,n3}. The Riemannian metric corresponding to the
smooth manifold Mjs is g3, and the component of the metric is denoted by
9nw- Then we write

(\/WQ‘KSJJ

2]
where f is a smooth function on M; x My = N (say), dimension of N = n; +

ng, the components of the Riemmanian metric corresponding to the smooth
manifold N are g,¢, 0,6 € {1,2,...,n1 +na}.

Ro—R, P |t L O
Ry = Ryx f Ink [f /—det(ggg) Ox°
b Of O

ni+ng —1 a5
oxs ou’

f2

4) Rz] :07 (&S {0577777}7je {5757’%} and When@:aa]#ﬁﬂz%.? #6712
0,J # K-

Now we can rewrite Proposition 2.2 with tensor approach in the following
way. In terms of local coordinate system, we suppose

X1 = e € x(My), Y1 = 928 € x(M),
0 0

Xo = Fye € x(Mz), Yo = 920 € x(Ma),
0 0

X3 = e € x(Ms), Ys = ar € x(Ms),

where o, f € {1,2,...,n1}, 7,0 € {1,2,...,n2} and n,k € {1,2,...,n3} . The
Riemannian metrics corresponding to the smooth manifolds M7, My and Ms are
g1, go and g3, respectively, and the components of the metrics are denoted by
9aBs 9vs and gy, respectively.

The sequential warped product M = (‘M} X f My) x5 Ms (dim M; = nq, dim
My = ny, dim M3 = ns,) is Einstein with R;; = Agij, 1,7 € {1,2,...,n1 +na +
ns} if and only if

B ng | 0 ([ Of r Of ny[ @ (0f m Of
D Bas =Agep 45 [ax (w) - Faﬂaxk} tF [ax <(w> - Faﬂaxm]’
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2) Rvézwg%+ng[8 (8f) e 8f},where

f oz \oxd ) 0 9ar
11 0 of
=2 A+= <dta "‘5)
o= (o (Vi
no—1| .50f 9 |?
12 0xP oux| |’

3) Ms is Einstein with R, = gy,

o 11 ) b OF\ na—1] , 0f 0|
4) p=f <)‘ + f\/maxg (\/ det(goc)g 6$<> + 72 9 9L DU’ )a
where f is a smooth function on M, the components of the Riemmanian met-
ric g1 corresponding to the smooth manifold M; are g3, o, 8 € {1,2,...,n1},
and f is a smooth function on M; Xt My = N. The dimension of N is n; +
ng, the components of the Riemmanian metric corresponding to the smooth

manifold N are g,c, 0,6 € {1,2,...,n1 + na}.

5. Conclusions

An Einstein manifold is a Riemannian or pseudo-Riemannian differentiable
manifold whose Ricci tensor is proportional to the metric tensor. A warped prod-
uct manifold is a Riemannian or pseudo-Riemannian manifold which plays very
important role not only in geometry but also in mathematical physics, especially
in general relativity. We know that the Einstein equations are fundamental in the
construction of cosmological models. The physical motivation for studying vari-
ous types of space-time models in cosmology is to obtain the information about
the evolution of the universe. The study of Einstein sequential warped product
spaces is important because such space-time represents different phases in the
evolution of the universe. Consequently, the investigations of Einstein sequen-
tial warped product spaces help us to have a deeper understanding of the global
character of the universe.
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ITpo cekBeHIiaIbHO BUKPUBJIEHI JOOYTKU, IO €
npocropamu EiiHninreiina

Sampa Pahan and Buddhadev Pal

Y poboTi BUBUYAIOTHCSI CEKBEHINAJbHO BUKPUBJIEHI JOOYTKH, IO € IIPO-
cropamu Eitrmreitna. loseneno, sxkmo M — CeKBEHIIaIbHO BUKPUBJIEHUIT
00y TOK, 10 € mpocTopoM EffHrTeiiHa 3 Bif’ € MHOIO CKAJISTPHOIO KPUBU3HOIO,
TO (DYHKIT BUKPUBJIEHHSI € KOHCTAHTAMH. 3’sICOBAHO JIESKI ITEPENTKOIM JJIsT
iCHyBaHHSI TAKUX CEKBEHIIIAJILHO BUKPUBJIEHUX JOOYTKIB, IO € IPOCTOPaMU
Eitnmrreiina. Takoxk mokasamo, mo xoin M = (M7 x5 In,) % 7 Iy, € ce-
KBEHI[IaJIbHO BUKPUBJIEHUM JI00YTKOM TIOBHOIO 3B’A3HOTO (1 — 2)-BUMIpHOTO
MHOroeuza Pumana My Ta omHoBuMmipHEmX MHOroBuuiB Pumana Ing, i In,,
10 3a nesHux ymoB (Mi, g1) crae (n — 2)-BuMipHoIo ceporo 3 pajiycoM p =

n—2 II : :
. UKJIAI CEKBEHIAJIbHO BUKPUBJIEHNX 00y TKIB O € IIPOCTOpaMn
oo Hpukia it P 1100y TKiB, 1110 € IPOCTOP

Eitnmreitna, sHaBemeno B Posaii 3.

KirouoBi cjioBa: BUKpUBJIEHUI H0OYTOK, CEKBEHIAJbHO BUKPUBJIEHUIA
00yTOK, MHOTOBHI EiiHmmTeiina.
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