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On Einstein Sequential Warped Product

Spaces

Sampa Pahan and Buddhadev Pal

In this paper, Einstein sequential warped product spaces are studied.
Here we prove that if M is an Einstein sequential warped product space
with negative scalar curvature, then the warping functions are constants.
We find out some obstructions for the existence of such Einstein sequential
warped product spaces. We also show that if M̄ = (M1 ×f IM2

) ×f̄ IM3
is

a sequential warped product of a complete connected (n − 2)-dimensional
Riemannian manifold M1 and one-dimensional Riemannian manifolds IM2

and IM3
with some certain conditions, then (M1, g1) becomes a (n − 2)-

dimensional sphere of radius ρ = n−2√
r1+α

. Some examples of the Einstein

sequential warped product space are given in Section 3.
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1. Introduction

A Riemannian manifold (Mn, g), n ≥ 2, is said to be an Einstein manifold if
for every vector field X,Y ∈ χ(M) there exists a real constant λ such that Ric =
λg, where g is called Einstein metric and Ric denotes the Ricci tensor of M. It is
obvious that λ = r

n , where r(= tr(Ric)) is the scalar curvature of M and n is the
dimension of M .

The notion of a warped product was introduced by R. Bishop and B. O’Nill [1]
for studying manifolds of negative curvature. Let (B, gB) and (F, gF ) be two
Riemannian manifolds with dim B = m > 0, dimF = k > 0 and f : B → (0,∞),
f ∈ C∞(B). Consider the product manifold B × F with its projections π : B ×
F → B and σ : B × F → F . The warped product B ×f F is the manifold B ×
F with Riemannian structure such that ‖X‖2 = ‖π∗(X)‖2 + f2(π(p))‖σ∗(X)‖2
for any vector field X on M . Thus, we have that gM = gB + f2gF holds on M .
Here B is called the base of M , and F is the fiber. The function f is called the
warping function of the warped product [9].

Now, we can generalize warped products to multiply warped products. A
multiply warped product is the product manifold M = B×b1 F1×b2 F2× · · · ×bm
Fm with the metric g = gB ⊕ b21gF1 ⊕ b22gF2 ⊕ b23gF3 ⊕ · · · ⊕ b2mgFm , where for each
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i ∈ {1, 2, . . . ,m}, bi : B → (0,∞) is smooth and (Fi, gFi) is a pseudo-Riemannian
manifold. In particular, when B = (c, d), the metric gB = −dt2 is negative
and (Fi, gFi) is a Riemannian manifold. We call M the multiply generalized
Robertson–Walker space-time.

A multiply twisted product (M, g) is a product manifold of the form M =
B ×b1 F1 ×b2 F2 × · · · ×bm Fm with the metric g = gB ⊕ b21gF1 ⊕ b22gF2 ⊕ b23gF3 ⊕
· · ·⊕b2mgFm , where for each i ∈ {1, 2, . . . ,m}, the warping functions bi : B×Fi →
(0,∞) are smooth.

In 2015, S. Shenawy introduced a new type of warped product manifolds,
namely, a sequential warped product [14]. Let (Mi, gj), i = 1, 2, 3, be three
Riemannian manifolds. Let f : M1 → (0,∞) and f̄ : M1 ×M2 → (0,∞) be two
smooth positive functions on M1 and M1×M2 respectively. Then the sequential
warped product manifold, denoted by (M1 ×f M2) ×f̄ M3, is the triple product

manifold (M1 ×M2) ×M3, with the metric tensor ḡ = (g1 ⊕ f2g2) ⊕ f̄2g3. The
functions f and f̄ are called warping functions.

Let (Mi, gi), i = 1, 2 be two ni-dimensional Riemannian manifolds. Let f̄ :
M1×M2 → (0,∞) and f : M1 → (0,∞) be two smooth positive functions. Then
(n1 + n2 + 1)-dimensional product manifold I ×f̄ (M1 ×f M2), with the metric

tensor ḡ = −f̄2dt2 ⊕ (g1 ⊕ f2g2), is a standard static space-time, where I is an
open, connected subinterval of R, and dt2 is the Euclidean metric tensor on I.
Also, the (n1 + n2 + 1)-dimensional product manifold If̄ × (M1 ×f M2), with

the metric tensor ḡ = −dt2 ⊕ f̄2(g1 ⊕ f2g2), is a generalized Robertson–Walker
space-time, where I is an open, connected subinterval of R, f̄ : I → (0,∞) and
f : M1 → (0,∞) are smooth functions, and dt2 is the Euclidean metric tensor
on I.

Many authors studied Einstein warped product spaces. In 2002, D.S. Kim
established that there does not exist a compact Einstein warped product space
with nonconstant warping function [6]. In [8], S. Kim constructed compact base
manifolds with positive scalar curvature, which do not admit any non-trivial
Ricci-flat Einstein warped product, and noncompact complete base manifolds.
In 2011, M. Rimoldi [15] proved a result for Einstein warped products that is
the extension of a theorem from [7] to the case of noncompact bases. A.S. Diallo
obtained recent results on the existence of compact Einstein warped product
Riemannian manifolds in [3]. In [4], D. Dumitru gave some obstructions to the
existence of compact Einstein warped products. Also Q. Qu, Y. Wang [12],
S. Pahan, B. Pal and A. Bhattacharyya [10], [11] etc. studied Einstein warped
product and multiply warped product with affine connections.

In this paper, we study Einstein sequential warped product spaces. First, we
prove that if M̄ = (M1 ×f M2) ×f̄ M3 has negative scalar curvature, then the
warping functions f and f̄ are constants. Next, in Theorem 2.7, we show some
obstructions to the existence of such spaces. Then, in Theorem 2.8, we show that
an Einstein sequential warped product space with the complete connected (n −
2)-dimensional base is isometric to an (n−2)-dimensional sphere. Later we prove
a result in the static space-time with some conditions. In the last section, we give
an example of the Einstein sequential warped space.
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For more convenience, we give a summary of indices used in the paper as
follows:
(Mi, gi): Riemannian manifolds;
ni: dimensions of Mi;
λ, µ : scalar functions;
Ric: the Ricci tensor of a Riemannian manifold;
ri: scalar curvature of Riemannian manifolds Mi;
f, f̄ : the warping functions defined on M1 and M1 ×M2;
∇f : gradient of a smooth function f ;
Hf : the Hessian of a smooth function f is defined as its second covariant

differential Hf = ∇∇f , where ∇ is the Levi-Civita connection on
the Riemannian manifold M1;

∆f : Laplacian of a smooth function f is the divergence of its gradient;
χ(M): the set of all vector fields on M .

2. Einstein sequential warped product spaces

Now we consider the following propositions from [14], which will be helpful
in proving the main results of this section.

Proposition 2.1. Let M̄ = (M1×fM2)×f̄M3 be a sequential warped product

with metric g = (g1 ⊕ f2g2)⊕ f̄2g3 and also let Xi, Yi, Zi ∈ χ(Mi). Then

1) Ric(X1, Y1) = Ric1(X1, Y1)− n2

f
Hf

1 (X1, Y1)− n3

f̄
H f̄ (X1, Y1),

2) Ric(X2, Y2) = Ric2(X2, Y2)− f2g2(X2, Y2)f∗ − n3

f̄
H f̄ (X2, Y2),

3) Ric(X3, Y3) = Ric3(X3, Y3)− f̄2g3(X3, Y3)f̄∗,

4) Ric(Xi, Yj) = 0, i 6= j, where f∗ =
∆1f

f
+ (n2 − 1)

|∇1f |2

f2
and f̄∗ =

∆f̄

f̄
+

(n1 + n2 − 1)
|∇f̄ |2

f̄2
.

Proposition 2.2. The sequential warped product M̄ = (M1 ×f M2) ×f̄ M3

(dimM1 = n1, dimM2 = n2, dimM3 = n3), is Einstein with Ric = λḡ if and
only if

1) Ric1 = λg1 +
n2

f
Hf

1 +
n3

f̄
H f̄ ,

2) Ric2 = ωg2 +
n3

f̄
H f̄ , where ω = f2

(
λ+

∆1f

f
+ (n2 − 1)

|∇1f |2

f2

)
,

3) M3 is Einstein with Ric3 = µg3,

4) µ = f̄2

(
λ+

∆f̄

f̄
+ (n2 − 1)

|∇f̄ |2

f̄2

)
.
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Now, we state a lemma whose detailed proof is given in [6].

Lemma 2.3. Let f be a smooth function on a Riemannian manifold M1.
Then for any vector X, the divergence of the Hessian tensor Hf satisfies

div
(
Hf
)
(X) = Ric(∇f,X)−∆(df)(X),

where ∆ = dδ + δd denotes the Laplacian on M1 acting on differential forms.

Now we prove the following propositions for later use.

Proposition 2.4. Let (M1, g1) be a compact Riemannian manifold of dimen-
sion n1 ≥ 2. Suppose that f is a nonconstant smooth function on M1 satisfying

Ric1 = λg1 +
n2

f
Hf

1 +
n3

f̄
H f̄ ,

for a constant λ ∈ R and n2 ≥ 2, and if the condition

n2n3

ff̄
H f̄ (X,∇1f) + div

(
n3

f̄
H f̄

)
=

2n2

f
d(∆1f) +

n3

2
d

(
∆f̄

f̄

)
holds, then f satisfies

ω = f2

(
λ+

∆1f

f
+ (n2 − 1)

|∇1f |2

f2

)
for a constant ω ∈ R.

Proof. By taking trace of both sides of Ric1 = λg1 + n2
f H

f
1 + n3

f̄
H f̄ , we have

r1 = λn1 +
n2

f
∆1f +

n3

f̄
∆f̄ , (2.1)

where r1 denotes the scalar curvature of M1 given by tr(Ric1). From [9], the
second Bianchi identity implies that

dr1 = 2 div Ric1 . (2.2)

From equations (2.1) and (2.2), we obtain

div Ric1(X) =
n2

2

[
−∆1f

f2
df +

1

f
d(∆1f)

]
+
n3

2

[
−∆f̄

f̄2
df̄ +

1

f̄
d(∆f̄)

]
.

Also, by the definition, we have

div

(
1

f
Hf

1

)
(X) =

∑
i

(
Dei

(
1

f
Hf

))
(ei, X) = − 1

f2
Hf

1 (∇f,X) +
1

f
divHf

1 (X)

for any vector field X and an orthonormal frame {e1, e2, . . . , em} of M1. Since

Hf
1 (∇f,X) = (DXdf)(∇f) = 1

2d(|∇1f |2)(X), the last equation becomes

div

(
1

f
Hf

1

)
(X) = − 1

2f2
d
(
|∇1f |2

)
(X) +

1

f
divHf

1 (X)
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for a vector field X on M1. From Lemma 2.3, it follows that

div

(
1

f
Hf

1

)
(X) =

1

2f2

[
d(|∇1f |2)(X) + 2λf(df)(X)− 2fd(∆1f)

]
+
n3

ff̄
H f̄ (X,∇1f).

But Proposition 2.2 gives

div Ric1 = div

(
n2

f
Hf

1

)
+ div

(
n3

f̄
H f̄

)
.

Therefore, using the condition

n2n3

ff̄
H f̄
(
X,∇1f

)
+ div

(
n3

f̄
H f̄

)
=

2n2

f
d(∆1f) +

n3

2
d

(
∆f̄

f̄

)
,

we obtain

n2

2f2

[
2fλ(df)(X) + fd(∆1f) + ∆1fdf + (n2 − 1)d(|∇1f |2)(X)

]
= 0,

that is,
f∆1f + (n2 − 1)|∇1f |2 + λf2 = ω

for some constant ω. Thus the proposition is proved.

Now, in a similar way, we will consider the following lemma.

Lemma 2.5. Let f̄ be a smooth function on a Riemannian manifold M1 ×
M2. Then, for any vector X, the divergence of the Hessian tensor H f̄ satisfies

div
(
H f̄
)

(X) = Ric
(
∇f̄ , X

)
−∆

(
df̄
)
(X),

where ∆ = dδ+δd denotes the Laplacian on M1×M2 acting on differential forms.

Now we prove another following proposition that will be also helpful in proving
the next theorem.

Proposition 2.6. Let (M1, g1) and (M2, g2) be two compact Riemannian
manifolds of dimension n1 ≥ 2 and n2 ≥ 2. Suppose that f̄ is a nonconstant
smooth function on M1 ×M2 satisfying Ric2 = ωg2 + n3

f̄
H f̄ for a constant ω ∈

R and if the condition

(n3 − n2)d
(
|∇f̄ |2

)
(X) + 2f̄(ω − λ)

(
df̄
)
(X) = 4f̄d

(
∆f̄
)
(X)

holds, then f̄ satisfies

µ = f̄2

(
λ+

∆f̄

f̄
+ (n2 − 1)

|∇f̄ |2

f̄2

)
for a constant µ ∈ R. Hence, for a compact Einstein space (M3, g3) of dimension
n3 ≥ 2 with Ric3 = µg3, we get a constant Einstein sequential warped product
space M̄ = (M1 ×f M2)×f̄ M3 with Ric = λḡ.
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Proof. By taking trace of both sides of Ric2 = ωg2 + n3

f̄
H f̄ , we have

r2 = ωn2 + n3
∆f̄

f̄
,

where r2 denotes scalar curvature of M2 given by tr(Ric2). As in the proof of

Proposition 2.4, we can show that µ = f̄2
(
λ + ∆f̄

f̄
+ (n2 − 1) |∇f̄ |

2

f̄2

)
. For a

compact Einstein space (M3, g3) of dimension n3 ≥ 2 with Ric3 = µg3, we make
a constant Einstein sequential warped product space M̄ = (M1 ×f M2) ×f̄ M3

with Ric = λḡ by the sufficiencies of Proposition 2.2.

Now we prove the following theorem.

Theorem 2.7. Let M̄ = (M1×fM2)×f̄M3 be an Einstein sequential warped
product space, where M1 and M2 are compact spaces, and M3 is a compact Ein-
stein space. If M̄ has the negative scalar curvature, then the warping functions
f and f̄ are constants.

Proof. We have Ric2 = ωg2 + n3

f̄
H f̄ , where

ω = f2

(
λ+

∆1f

f
+ (n2 − 1)

|∇1f |2

f2

)
,

and M3 is Einstein with Ric3 = µg3, where

µ = f̄2

(
λ+

∆f̄

f̄
+ (n2 − 1)

|∇f̄ |2

f̄2

)
.

We see that ω and µ are constants. Let p, q ∈ M1 be two points, where f
attains its maximum and minimum in M1. Then ∇1f(p) = 0 = ∇1f(q) and also
∆1f(p) ≤ 0 ≤ ∆1f(q). Since M̄ has negative scalar curvature, λ < 0. Now we

also have f > 0. Hence we obtain −λf2(p) > −λf2(q). We also have ω = f2
(
λ+

∆1f
f + (n2 − 1) |∇

1f |2
f2

)
. Therefore, we get

0 ≥ f(p)∆1f(p) = ω − λf2(p) > ω − λf2(q) = f(q)∆1f(q) ≥ 0.

So, we can write
ω − λf2(p) = ω − λf2(q).

Thus, λ < 0 implies that f(p) = f(q), i.e., f is constant.
Similarly, let (p1, q1), (p2, q2) ∈ M1 ×M2 be two points, where f̄ attains its

maximum and minimum in M1×M2. Then ∇f̄(p1, q1) = 0 = ∇f̄(p2, q2) and also
∆f̄(p1, q1) ≤ 0 ≤ ∆f̄(p2, q2). Since M has negative scalar curvature, λ < 0. Now
we also have f > 0. Hence we obtain −λf̄2(p1, q1) > −λf̄2(p2, q2). We also have

µ = f̄2(λ+ ∆f̄
f̄

+ (n2 − 1) |∇f̄ |
2

f̄2
). Therefore, we get

0 ≥ f̄(p1, q1)∆f̄(p1, q1) = µ− λf̄2(p2, q2)
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> µ− λf̄2(p2, q2) = f̄(p2, q2)∆f̄(p2, q2) ≥ 0.

So, we can write
µ− λf̄2(p1, q1) = µ− λf̄2(p2, q2).

Thus, λ < 0 implies that f̄(p1, q1) = f̄(p2, q2), i.e., f̄ is constant. This completes
the proof of the theorem.

Theorem 2.8. Let M̄ = (M1 ×f M2)×f̄ M3 be a sequential warped product
space, where M1 and M2 are compact spaces with dimM1 = n1, dimM2 = n2, and
M3 is an Einstein space with dimM3 = n3, RicM3 = λgM3 . Then the following
conditions hold:

a) If r3 ≤ 0 and λ > 0, then f̄ is constant.

b) If n2 = 1 and ω > (or <)f2λ, then f is constant. Hence f̄ is constant when
λ > 0.

c) If |∇1f | ≥
√

ω
n2−1 , |∇f̄ | ≥

√
µ

n2−1 and also λ < 0, then f and f̄ are constant.

Proof. Taking trace of Proposition 2.2, we have

r1 = λn1 +
n2

f
∆1f +

n3

f̄
∆f̄ ,

r2 = ωn2 +
n3

f̄
∆f̄ ,

r3 = µn3.

a) If r3 < 0, then µ ≤ 0. From Proposition 2.2, we have

µ = f̄2λ+ f̄∆f̄ + (n2 − 1)|∇f̄ |2.

So, we can write
f̄2λ+ f̄∆f̄ = µ− (n2 − 1)|∇f̄ |2 ≤ 0.

Hence,
f̄∆f̄ ≤ −f̄2λ < 0.

Therefore f̄ is constant.
b) From Proposition 2.2, we have

ω = f2

[
λ+

∆1f

f
+ (n2 − 1)

|∇1f |2

f2

]
.

Using the conditions, we can easily say that f is constant.
As f is constant, ω = f2λ. Therefore we obtain f2λ + n3

f̄
∆f̄ = 0. Using the

condition λ > 0, ∆f̄ > 0. Thus f̄ is constant.
c) We know

ω = f2λ+ f∆1f + (n2 − 1)|∇1f |2.

Then
f2λ+ f∆1f = ω − (n2 − 1)|∇1f |2.
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Using the condition |∇1f | ≥
√

ω
n2−1 and λ < 0, we get

f∆1f ≥ −f2λ > 0.

Thus f is constant. Similarly, from Proposition 2.2 and using the conditions

|∇f̄ | ≥
√

µ
n2−1 and λ < 0, we can say that f̄ is constant.

Theorem 2.9. Let M̄ = (M1 ×f IM2)×f̄ IM3 be a sequential warped product
of a complete connected (n − 2)-dimensional Riemannian manifold M1 and the
one-dimensional Riemannian manifolds IM2 and IM3 . If (M̄, g) is an Einstein
manifold with constant associated scalars α, U ∈ χ(M̄) and the Hessian of f
or f̄ is proportional to the metric tensor g1 on M1, then (M1, g1) is an (n −
2)-dimensional sphere of radius ρ = n−2√

r1+α
.

Proof. Let M̄ be a connected sequential warped product manifold. Then
from [14] we have

Ric1(X,Y ) = Ric(X1, Y1) +
1

f
Hf

1 (X,Y ) +
1

f̄
H f̄ (X,Y ). (2.3)

Since (M̄, g) is an Einstein manifold with constant associated scalars α, then we
have

Ric(X,Y ) = αg(X,Y ). (2.4)

Decomposing the vector field U uniquely into its components UM1 , UIM2
UIM3

on
M1, IM2 and IM3 , respectively, we have

U = UM1 + UIM2
+ UIM3

. (2.5)

Putting the value of (2.4) and (2.5) in (2.3), we get

Ric1(X,Y ) = αg(X,Y ) +
1

f
Hf

1 (X,Y ) +
1

f̄
H f̄ (X,Y ).

By the contraction over X and Y , we get

r1 = r̄ − 2α+
∆1f

f
+

∆f̄

f̄
. (2.6)

From [14], we obtain

r̄ = −n∆1f

f
− ∆f̄

f̄
. (2.7)

From equations (2.6) and (2.7), it follows that

r1 + 2α = (1− n)
∆1f

f
.

Since the Hessian of f is proportional to the metric tensor g1, then we have

Hf (X,Y ) =
1

(n− 2)

[
(n− 1)

∆1f

(n− 2)

]
g1(X,Y ).
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From the above equation, we obtain

Hf (X,Y ) +
(r1 + 2α)f

(n− 2)2
g1(X,Y ) = 0.

So, M1 is isometric to the (n− 2)-dimensional sphere of radius (n−2)√
r1+2α

[13].

Again from [14], we obtain

r̄ = −n∆f̄

f̄
− n(n− 2)

|∇f̄ |2

f̄2
. (2.8)

From equations (2.6) and (2.8), we get

r1 + 2α = −(n− 1)
∆f̄

f̄
− n(n− 2)

|∇f̄ |2

f̄2
+

∆1f

f
. (2.9)

Since the Hessian of f is proportional to the metric tensor g1, then we obtain

H f̄ (X,Y ) =
1

(n− 2)

[
(n− 1)

∆f̄

(n− 2)
+ n
|∇f̄ |2

f̄
− f̄∆1f

(n− 2)f

]
g1(X,Y ).

Hence, from equation (2.9), we have

H f̄ (X,Y ) +
(r1 + 2α)f̄

(n− 2)2
g1(X,Y ) = 0.

Thus M1 is isometric to the (n − 2)-dimensional sphere of radius (n−2)√
r1+2α

[13].

This completes the proof.

Let (Mi, gi), i = 1, 2 be two ni-dimensional Riemannian manifolds. Let f̄ :
M1×M2 → (0,∞) and f : M1 → (0,∞) be two smooth positive functions. Then
(n1 + n2 + 1)-dimensional product manifold I ×f̄ (M1 ×f M2), with the metric

tensor ḡ = −f̄2dt2 ⊕ (g1 ⊕ f2g2), is a standard static space-time, where I is an
open, connected subinterval of R, and dt2 is the Euclidean metric tensor on I.

Theorem 2.10. Let M̄ = I ×f̄ (M2 ×f M3) be a sequential warped product

with the metric tensor −f̄2dt2⊕(g2⊕f2g3) and dimM2 = n2, dimM3 = n3. Then
(M̄, g) is an Einstein manifold with constant associated scalar λ if and only if
the following conditions are satisfied:

i) (M2, g2) is an Einstein manifold with scalar λ2 when Hessian tensor H f̄ is
proportional to the metric tensor g on M2,

ii) λ = n2
f f
′′ + n3

f̄
f̄ ′′,

iii) λ2 − λf2 + ff ′′ + (n2 − 1)(f ′)2 − n3f
2 = 0,

iv) (M3, g3) is an Einstein manifold with scalar λ3,

v) λ3 − λf̄2 + f̄ f̄ ′′ + n2(f̄ ′)
2

= 0.
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Proof. From [14], we have

Ric

(
∂

∂t
,
∂

∂t

)
= −n2

f
Hf

1

(
∂

∂t
,
∂

∂t

)
− n3

f̄
H f̄

(
∂

∂t
,
∂

∂t

)
, (2.10)

Ric(X2, Y2) = Ric2(X2, Y2) + f2

[
f ′′

f
+ (n2 − 1)

(f ′)2

f2

]
g2(X2, Y2)

− n3

f̄
H f̄ (X2, Y2), (2.11)

Ric(X3, Y3) = Ric3(X3, Y3) + f̄2

[
f̄ ′′

f̄
+ n2

(f̄ ′)
2

f̄2

]
g3(X3, Y3). (2.12)

Since M̄ is an Einstein manifold, we have

Ric = λg.

Now,

Ric

(
∂

∂t
,
∂

∂t

)
= λg1

(
∂

∂t
,
∂

∂t

)
.

From equation (2.10), we obtain

λ =
n2

f
f ′′ +

n3

f̄
f̄ ′′.

Since H f̄ is proportional to g on M2, we can write H f̄ (X2, Y2) = f̄f2g2(X2, Y2).

Therefore, from equation (2.11), we get

Ric2(X2, Y2) =
[
λf2 − ff ′′ − (n2 − 1)(f ′)

2
+ n3f

2
]
g2(X2, Y2). (2.13)

Hence M2 is an Einstein manifold with λ2.

From equation (2.13), it follows that

λ2 − λf2 + ff ′′ + (n2 − 1){(f ′))}2 − n3f
2 = 0.

Again from equation (2.12), we have

Ric3(X3, Y3) =
[
λf̄2 − f̄ f̄ ′′ − n2(f̄ ′)

2
]
g3(X3, Y3).

Hence we can say that M3 is an Einstein manifold with λ3.

From the above equation we can easily see that

λ3 − λf̄2 + f̄ f̄ ′′ + n2(f̄ ′)
2

= 0.

Remark 2.11. From above discussions, we can also prove similar results and
theorems for more general metrics given by (2.11) of [2] and Section 3 of [5].
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3. Example of Einstein sequential warped product spaces

Example 3.1. Let us consider a five-dimensional pseudo-Riemannian manifold
M5 endowed with the metric given by

ds2 = −dt2 + (et)
2
(dx2 + dy2 + dz2) + (et)

2
dψ2,

the fifth coordinate is taken to be space-like unlike in [16].
Then, in a local coordinate, the only non-vanishing components of the

Christoffel symbols are

Γ1
22 = Γ1

33 = Γ1
44 = Γ1

55 = (et)
2
,

Γ2
21 = Γ3

31 = Γ4
41 = Γ5

51 = 1.

The non-vanishing curvature tensors and the Ricci tensors are

R1221 = R1331 = R1441 = R1551 = (et)
2
,

R2332 = R2442 = R3443 = −(et)
4
,

R2552 = R3553 = R4554 = −(et)
4
,

and
R11 = 4, R55 = −4(et)

2
, R22 = R33 = R44 = −4(et)

2
.

Therefore, we can say that
Rij = αgij ,

where i, j = {1, 2, 3, 4, 5} and α = −4.
Hence this space-time is an Einstein space with scalar curvature α = −4.
Now we rewrite the metric in the following way:

ds2 = −dt2 + (et)
2 [

(dx2 + dy2 + dz2) + dψ2
]
,

i.e., in the form of (n1 + n2 + 1)-dimensional product manifold I ×f̄ (M1 ×f M2)

with the metric tensor ḡ = −dt2 ⊕ f̄2(g1 ⊕ f2g2). In this case, I is any open set,
say, (a, b) ⊂ R, M1 = R3 and M2 = R, and f̄ : (a, b) → (0,∞) is smooth and

given by f̄ = (et)
2
> 0 and f : R3 → (0,∞) is smooth and given by f = 1 > 0.

Therefore, the above manifold is an example of the Einstein sequential warped
product space-time.

Example 3.2. Next we consider a spherically symmetric solution given by

ds2 = −f(r)dt2 +
dr2

V (r)
+ r2

(
dθ2 + sin2 θdφ2

)
,

where V (r) is a positive smooth function.
Now we know that (Mi, gi), i = 1, 2, are two ni-dimensional Riemannian

manifolds. Let f̄ : M1 × M2 → (0,∞) and f : M1 → (0,∞) be two smooth
positive functions. Then (n1 +n2 +1)-dimensional product manifold I×f̄ (M1×f
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M2), with metric tensor ḡ = −f̄2dt2⊕(g1⊕f2g2), is a standard static space-time,
where I is an open, connected subinterval of R, and dt2 is the Euclidean metric
tensor on I.

To define a sequential warped product for this case, we consider the warping
function ψ : R→ (0,∞) by ψ = r

√
V (r) and observe that ψ is a smooth function.

f̄ : R×R3 → (0,∞) is given by f̄ =
√
f(r) which is smooth.

Therefore the metric can be expressed as

ds2 = −f(r)dt2 +
1

V (r)
(dr2 + r2V (r)[dθ2 + sin2 θdφ2]),

which is an example of the Einstein sequential warped product space, because we
know that any spherically symmetric solution is Einstein.

4. Appendix

Here we rewrite some basic formulas in a tensor language, which is more
common in physical community. We choose local coordinates (x1, x2, . . . , xn) of
any point p ∈ M . Consider gij =

〈
∂
∂xi
, ∂
∂xj

〉
and g = det(gij). Any two smooth

vector fields X,Y on M can be written as X = Xi ∂
∂xi

and Y = Y j ∂
∂xj

. We also

know that Ric(X,Y ) = Rij , r = Rii, that is, r = tr(Ric), grad f = gij ∂f
∂xj

∂
∂xi

,

divX = 1√
g
∂
∂xj

(Xj√g), Hess(f) = ∇(∇f) = ∂
∂xi

(
∂f
∂xj

)
− Γkij

∂f
∂xk

, the Laplacian

of f = ∆f = 1√
g
∂
∂xi

(√
ggij ∂f

∂xj

)
. These are the tensor forms used in this paper.

First, let M̄ = (M1×fM2)×f̄M3 be a sequential warped product with metric

g = (g1⊕f2g2)⊕ f̄2g3, and let Xi, Yi, Zi ∈ χ(Mi). Here we can derive Proposition
2.1 with tensor approach in the following way:

1) In terms of local coordinate system, we suppose

X1 =
∂

∂xα
∈ χ(M1), Y1 =

∂

∂xβ
∈ χ(M1),

where α, β ∈ {1, 2, . . . , n1}. The Riemannian metric corresponding to the
smooth manifold M1 is g1, and the component of the metric is denoted by
gαβ. Then we obtain

R̄αβ = Rαβ −
n2

f

[
∂

∂xα
∂f

∂xβ
− Γkαβ

∂f

∂xk

]
− n3

f̄

[
∂

∂xα
∂f̄

∂xβ
− Γmαβ

∂f̄

∂xm

]
.

2) In terms of local coordinate system, we consider

X2 =
∂

∂xγ
∈ χ(M2), Y2 =

∂

∂xδ
∈ χ(M2),

where γ, δ ∈ {1, 2, . . . , n2}. The Riemannian metric corresponding to the
smooth manifold M2 is g2, and the component of the metric is denoted by
gγδ. Then we have

R̄γδ = Rγδ − f2gγδ

[
1

f

1√
(det(gαβ)

∂

∂xα

(√
det(gαβ)gαβ

∂f

∂xβ

)
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+
n2 − 1

f2

∣∣∣∣gαβ ∂f∂xβ ∂

∂uα

∣∣∣∣2
]
− n3

f̄

[
∂

∂xγ

(
∂f̄

∂xδ

)
− Γpγδ

∂f̄

∂xp

]
,

where f is a smooth function on M1 and the components of the Riemma-
nian metric g1 corresponding to the smooth manifold M1 are gαβ, α, β ∈
{1, 2, . . . , n1}.

3) In terms of local coordinate system, we choose

X3 =
∂

∂xη
∈ χ(M3), Y3 =

∂

∂xκ
∈ χ(M3),

where η, κ ∈ {1, 2, . . . , n3}. The Riemannian metric corresponding to the
smooth manifold M3 is g3, and the component of the metric is denoted by
gηκ. Then we write

R̄ηκ = Rηκ − f̄2gηκ

[
1

f̄

1√
det(gσς)

∂

∂xσ

(√
det(gσς)g

σς ∂f̄

∂xς

)

+
n1 + n2 − 1

f̄2

∣∣∣∣gσς ∂f̄∂xς ∂

∂uσ

∣∣∣∣2
]
,

where f̄ is a smooth function on M1×fM2 = N (say), dimension of N = n1 +
n2, the components of the Riemmanian metric corresponding to the smooth
manifold N are gσς , σ, ς ∈ {1, 2, . . . , n1 + n2}.

4) R̄ij = 0, i ∈ {α, γ, η}, j ∈ {β, δ, κ} and when i = α, j 6= β; i = γ, j 6= δ; i =
η, j 6= κ.

Now we can rewrite Proposition 2.2 with tensor approach in the following
way. In terms of local coordinate system, we suppose

X1 =
∂

∂xα
∈ χ(M1), Y1 =

∂

∂xβ
∈ χ(M1),

X2 =
∂

∂xγ
∈ χ(M2), Y2 =

∂

∂xδ
∈ χ(M2),

X3 =
∂

∂xη
∈ χ(M3), Y3 =

∂

∂xκ
∈ χ(M3),

where α, β ∈ {1, 2, . . . , n1}, γ, δ ∈ {1, 2, . . . , n2} and η, κ ∈ {1, 2, . . . , n3} . The
Riemannian metrics corresponding to the smooth manifolds M1, M2 and M3 are
g1, g2 and g3, respectively, and the components of the metrics are denoted by
gαβ, gγδ and gηκ respectively.

The sequential warped product M̄ = (M1 ×f M2)×f̄ M3 (dim M1 = n1, dim
M2 = n2, dim M3 = n3,) is Einstein with R̄ij = λḡij , i, j ∈ {1, 2, . . . , n1 + n2 +
n3} if and only if

1) Rαβ = λgαβ +
n2

f

[
∂

∂xα

(
∂f

∂xβ

)
− Γkαβ

∂f

∂xk

]
+
n3

f̄

[
∂

∂xα

(
∂f̄

∂xβ

)
− Γmαβ

∂f̄

∂xm

]
,
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2) Rγδ = ωgγδ +
n3

f̄

[
∂

∂xγ

(
∂f̄

∂xδ

)
− Γpγδ

∂f̄

∂xp

]
, where

ω = f2

(
λ+

1

f

1√
(det(gαβ)

∂

∂xα

(√
det(gαβ)gαβ

∂f

∂xβ

)

+
n2 − 1

f2

∣∣∣∣gαβ ∂f∂xβ ∂

∂uα

∣∣∣∣2
)
,

3) M3 is Einstein with Rηκ = µgηκ,

4) µ = f̄2

(
λ+

1

f̄

1√
det(gσς)

∂

∂xσ

(√
det(gσς)g

σς ∂f̄

∂xς

)
+
n2 − 1

f̄2

∣∣∣∣gσς ∂f̄∂xς ∂

∂uσ

∣∣∣∣2
)

,

where f is a smooth function on M1, the components of the Riemmanian met-
ric g1 corresponding to the smooth manifold M1 are gαβ, α, β ∈ {1, 2, . . . , n1},
and f̄ is a smooth function on M1 ×f M2 = N . The dimension of N is n1 +
n2, the components of the Riemmanian metric corresponding to the smooth
manifold N are gσς , σ, ς ∈ {1, 2, . . . , n1 + n2}.

5. Conclusions

An Einstein manifold is a Riemannian or pseudo-Riemannian differentiable
manifold whose Ricci tensor is proportional to the metric tensor. A warped prod-
uct manifold is a Riemannian or pseudo-Riemannian manifold which plays very
important role not only in geometry but also in mathematical physics, especially
in general relativity. We know that the Einstein equations are fundamental in the
construction of cosmological models. The physical motivation for studying vari-
ous types of space-time models in cosmology is to obtain the information about
the evolution of the universe. The study of Einstein sequential warped product
spaces is important because such space-time represents different phases in the
evolution of the universe. Consequently, the investigations of Einstein sequen-
tial warped product spaces help us to have a deeper understanding of the global
character of the universe.
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Про секвенцiально викривленi добутки, що є
просторами Ейнштейна
Sampa Pahan and Buddhadev Pal

У роботi вивчаються секвенцiально викривленi добутки, що є про-
сторами Ейнштейна. Доведено, якщо M — секвенцiально викривлений
добуток, що є простором Ейнштейна з вiд’ємною скалярною кривизною,
то функцiї викривлення є константами. З’ясовано деякi перешкоди для
iснування таких секвенцiально викривлених добуткiв, що є просторами
Ейнштейна. Також показано, що коли M̄ = (M1 ×f IM2

) ×f̄ IM3
є се-

квенцiально викривленим добутком повного зв’язного (n− 2)-вимiрного
многовида Римана M1 та одновимiрних многовидiв Римана IM2 i IM3 ,
то за певних умов (M1, g1) стає (n− 2)-вимiрною сферою з радiусом ρ =
n−2√
r1+α

. Приклади секвенцiально викривлених добуткiв, що є просторами
Ейнштейна, наведено в Роздiлi 3.

Ключовi слова: викривлений добуток, секвенцiально викривлений
добуток, многовид Ейнштейна.
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