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On the Sharpness of One Integral Inequality

for Closed Curves in R4

Vasyl Gorkavyy and Raisa Posylaieva

The sharpness of the integral inequality
∫
γ

√
k21 + k22 + k23 ds > 2π for

closed curves with nowhere vanishing curvatures in R4 is discussed. We
prove that an arbitrary closed curve of constant positive curvatures in R4

satisfies the inequality
∫
γ

√
k21 + k22 + k23 ds ≥ 2

√
5π.
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1. Introduction

The famous Fenchel–Borsuk theorem of the classical theory of curves states
that the total curvature of an arbitrary smooth closed curve γ in Rn is greater
than or equal to 2π: ∫

γ
k1 ds ≥ 2π, (1.1)

and the equality holds if and only if γ is a convex closed curve in R2, see [1,
Chap. 21], [4, 5].

In [6], the first author obtained a series of integral inequalities for curvatures
of smooth closed curves in Rn which may be viewed as a direct generalization of
the Fenchel–Borsuk inequality. Namely, let γ be an arbitrary smooth closed curve
in Rn, n ≥ 4. Suppose that γ has nowhere vanishing curvatures k1, k2, . . . , kj for
some 2 ≤ j ≤ n− 1. Then the following inequality holds:∫

γ

√
k2j−1 + k2j + k2j+1 ds > 2π, (1.2)

where s stands for an arc-length of γ and kn is taken to be identically zero.

Consequently, if all the curvatures k1, . . . , kn−1 of γ ⊂ Rn are nowhere vanish-
ing, then (1.2) holds true for each 2 ≤ j ≤ n− 1, and thus γ satisfies a sequence
of n− 2 different integral inequalities.
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Inequality (1.2) is sharp in the case of an odd j, see [6]. Actually, for any
fixed odd 2 ≤ j ≤ n − 1 one can construct a sequence of smooth closed curves
{γm}∞m=1 in Rn such that the values of∫

γm

√
k2j−1 + k2j + k2j+1 ds

tend to 2π as m → ∞. If n is even, then the desired sequence {γm}∞m=1 may
consist of closed curves of constant curvatures in Rn; if n is odd, then {γm}∞m=1

in Rn may be obtained by slight perturbations of curves of constant curvatures in
Rn−1 ⊂ Rn. Thus, curves of constant curvatures provide the sharpness for (1.2)
in the case of an odd j.

As for the case of an even j, the problem of the sharpness of (1.2) still remains
quite challenging and interesting open problem, which motivated this research
paper.

We start to discuss the problem by considering the simplest case n = 4. As
stated above, an arbitrary smooth closed curve γ ⊂ R4 satisfies two inequalities:∫

γ

√
k21 + k22 + k23ds > 2π, if k1 > 0, k2 > 0, (1.3)∫

γ

√
k22 + k23ds > 2π, if k1 > 0, k2 > 0, k3 > 0. (1.4)

Inequality (1.4) is sharp since it corresponds to the odd value j = 3.

As for inequality (1.3), it looks rather trivial in view of (1.1), and hence one
can expect that (1.3) is not sharp. The main result of the paper partially confirms
this expectation.

Theorem 1.1. Let γ be a smooth closed curve in R4 with nowhere vanishing
constant curvatures k1, k2, and k3. Then the following sharp lower bound holds:∫

γ

√
k21 + k22 + k23ds ≥ 2

√
5π. (1.5)

Moreover, the equality in (1.5) is attained if and only if γ is represented in R4

as x1 = a1 cos t, x2 = a1 sin t, x3 = a2 cos 2t, x4 = a2 sin 2t, t ∈ [0, 2π], where a1

and a2 are arbitrary non-zero constants.

A computer-aided numerical analysis demonstrates that (1.5) holds true for
some closed curves with nonconstant curvatures too. This, together with Theo-
rem 1.1, allows us to think that inequality (1.5) remains true for any closed curve
with nowhere vanishing curvatures in R4.

Let us recall the idea of the proof of inequality (1.3). For an arbitrary smooth
curve γ ⊂ R4 with nowhere vanishing curvatures k1 and k2, one can consider a
well-defined family of two-dimensional osculating planes of γ, which are spanned
by the first and second vectors of the Frenet frame of γ. This family of planes may
be interpreted as a smooth closed curve in the Grassmann manifold G2,4; it is
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called the osculating indicatrix of γ and denoted by γ̃. The Grassmann manifold
G2,4 can be embedded into R6 via the Plücker embedding, see [2, Chap. 8.2], [3],
and therefore γ̃ can be viewed as a smooth closed curve in R6. It turns out that
the left-hand side of (1.3) is the total curvature of γ̃, and thus inequality (1.3)
for γ is just the Fenchel–Borsuk inequality for γ̃, c.f., [6].

If γ has constant curvatures, then the the following stronger result holds.

Theorem 1.2. Let γ be a smooth closed curve in R4 with nowhere vanishing
constant curvatures k1, k2 and k3. Let γ̃ ⊂ R6 be the osculating indicatrix of γ.
Then the following holds:

1) γ̃ is a smooth closed curve;

2) γ̃ lies in a four-dimensional affine subspace R4 ⊂ R6;

3) the curvatures k̃1, k̃2 and k̃3 of γ̃ are non-zero constants;

4)

∫
γ̃
k̃1ds̃ =

∫
γ

√
k21 + k22 + k23 ds;

5)

∫
γ̃

√
k̃21 + k̃22 + k̃23 ds̃ =

√
2

∫
γ

√
k21 + k22 + k23 ds, where s̃ is an arc-length of γ̃.

We were very surprised by the relationship 5) which looks quite elegant al-
though individual expressions for k̃j in terms of ki are rather cumbersome.

In view of Theorem 1.2, the procedure of constructing the osculating indicatrix
described above can be viewed as a particular transformation of closed curves of
constant curvatures in R4. The transformation can be iterated, and then at every
step we obtain a new curve of constant curvatures in R4. This results in a specific
sequence of curves of constant curvatures in R4 which is generated by the initial
curve γ of constant curvature. Notice that the value of∫

γ

√
k21 + k22 + k23 ds

is multiplied by
√

2 at each step of iteration.
It would be interesting to extend Theorem 1.1 and Theorem 1.2 to more

general families of closed curves with nonconstant curvatures in R4.

2. Closed curves of constant curvatures in R4

Let γ be a smooth curve in R4, whose curvatures k1, k2, k3 are non-zero
constant. Then γ is parameterized as follows:

x1 = a1 cosα1t, x2 = a1 sinα1t, x3 = a2 cosα2t, x4 = a2 cosα2t, (2.1)

where a1, a2, α1 and α2 are constants, see [1, Chap. 33].
For an arc-length s of γ, one has

ds

dt
=
√
a21α

2
1 + a22α

2
2. (2.2)
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Hence one needs to assume a21α
2
1 + a22α

2
2 6= 0 to guarantee the smoothness of γ.

For calculating the curvatures of γ, one can apply standard formulae of the
classical theory of curves, see [1, Chap. 32]. Elementary differential-geometric
calculations result in the following statement.

Proposition 2.1. The curvatures of γ are expressed as follows:

k1 =

√
a21α

4
1 + a22α

4
2

a21α
2
1 + a22α

2
2

, (2.3)

k2 =
a1a2α1α2|α2

1 − α2
2|

(a21α
2
1 + a22α

2
2)
√
a21α

4
1 + a22α

4
2

, (2.4)

k3 =
α1α2√

a21α
4
1 + a22α

4
2

. (2.5)

Therefore, in order to guarantee the smoothness of γ and the nowhere van-
ishing of its curvatures, one needs to assume that no one of the four constants
a1, a2, α1, α2 is zero and, moreover, α2

1 6= α2
2. If some of these constants are

negative, then one can apply a symmetry transformation in R4 to make them
positive. Thus, from now on we will assume that a1, a2, α1, α2 are positive and
α2
1 6= α2

2.

Clearly, the curve γ represented by (2.1) lies on the Clifford torus T 2 ⊂ R4

given implicitly by x21 + x22 = a21, x
2
3 + x24 = a22. The curve is closed if and only

if α1
α2
∈ Q, i.e., α1

α2
= m1

m2
, where m1 and m2 are coprime integers. The minimal

period T for the parameter t is expressed by the obvious formulae

T =
2πm1

α1
=

2πm2

α2
. (2.6)

Our aim is to analyze the value of
∫
γ

√
k21 + k22 + k23ds. Applying (2.2)–(2.5)

and taking into account (2.6), one gets the following.

Proposition 2.2. We have∫
γ

√
k21 + k22 + k23ds = 2π

√
m2

1 +m2
2. (2.7)

We would like to emphasize that the arc-length and the curvatures of γ depend
on all the constants a1, a2, α1, α2. However, the value of∫

γ

√
k21 + k22 + k23 ds

depends only on the coprime integers m1 and m2. Consequently, the range of
possible values of the integral in question is countable.

The minimal possible value is equal to 2
√

5π, and it is achieved if either m1 =
1, m2 = 2 or m1 = 2, m2 = 1. The cases of (m1,m2) being equal to (0, 0), (1, 0),
(0, 1), (1, 1), which give to

√
m2

1 +m2
2 values less than

√
5, are prohibited because
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α1 and α2 are assumed to be positive and different. This completes the proof of
Theorem 1.1.

Notice that γ represents the class (m1,m2) in the fundamental group of the
torus T 2. Therefore, in the general case of curves with nonconstant curvatures,
one may conjecture that the values of∫

γ

√
k21 + k22 + k23 ds

have to obey some topological (homotopical) restrictions.

3. Osculating indicatrices of closed curves of constant curva-
tures in R4

Now let us construct the osculating indicatrix of the curve γ, c.f., [6]. By
definition, the osculating plane of γ at an arbitrary point p ∈ γ is spanned and
oriented by the first two vectors of the Frenet fame of γ at p. Equivalently, the
same plane is spanned and oriented by the vectors dx

dt (t),
d2x
dt2

(t), where x = x(t)
is the position-vector of p ∈ γ. Being translated to the origin O ∈ R4, this
osculating plane represents a point in the Grassmann manifolds G(2, 4). (For
definitions and geometric properties of G(2, 4), see [2, Chap. 8], [3].) By moving
p along γ, one obtains the one-dimensional family of osculating planes of γ, which
generates a curve γ̃ in G(2, 4). This curve is called the osculating indicatrix of γ.

The Grassmann manifold G(2, 4) can be isometrically embedded into R6 via
the Plücker coordinates, see [2, Chap. 8.2], [3]. Consequently, γ̃ ⊂ G(2, 4) can
be viewed as a curve in R6. If x = x(t) is the position-vector of γ, then γ̃ is
represented in R6 by the position-vector

x̃ =

[
dx
dt ,

d2x
dt2

]
∣∣∣[dxdt , d2xdt2 ]∣∣∣ , (3.1)

where the brackets [·, ·] denote the exterior product of vectors. More precisely,
one has [

dx

dt
,
d2x

dt2

]
= (x̃12, x̃13, x̃14, x̃23, x̃24, x̃34) , (3.2)

where

x̃ij =
dxi
dt

d2xj
dt2
− dxj

dt

d2xi
dt2

, 1 ≤ i < j ≤ 4. (3.3)

Recall that the position-vector x(t) of γ is given by (2.1). By substituting (2.1)
into (3.1)–(3.3), we can easily derive the position-vector x̃(t) of the osculating
indicatrix γ̃ in R6:

x̃ =

(
a21α

3
1

λ
,
−a1a2α1α2

λ
(α1 cosα1t sinα2t− α2 sinα1t cosα2t) ,
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−a1a2α1α2

λ
(α1 cosα1t cosα2t+ α2 sinα1t sinα2t) ,

a1a2α1α2

λ
(α1 sinα1t sinα2t+ α2 cosα1t cosα2t) ,

a1a2α1α2

λ
(α1 sinα1t cosα2t− α2 cosα1t sinα2t) ,

−a22α3
2

λ

)
, (3.4)

where λ =
√
a21α

2
1 + a22α

2
2

√
a21α

4
1 + a22α

4
2.

Clearly, the curve γ̃ lies in the four-dimensional affine subspace R4 ⊂ R6 given

by the equations x̃12 =
a21α

3
1

λ , x̃34 =
−a22α3

2
λ .

By using standard formulae of the classical theory of curves, see [1, Chap. 32],
the following expressions for the arc length s̃ and the curvatures k̃1, k̃2, k̃3 of γ̃
can be found from (3.4).

Proposition 3.1. 1. The arc length s̃ of γ̃ is expressed as follows:

ds̃

dt
=

1

λ

a1a2α1α2

|α2
1 − α2

2|
. (3.5)

2. The curvatures k̃1, k̃2, k̃3 of γ̃ are expressed as follows:

k̃1 = λ

√
α2
1 + α2

2

a1a2α1α2|α2
1 − α2

2|
, (3.6)

k̃2 = λ
2

a1a2|α2
1 − α2

2|
√
α2
1 + α2

2

, (3.7)

k̃3 = λ
1

a1a2α1α2

√
α2
1 + α2

2

. (3.8)

Consequently, the curvatures k̃1, k̃2, k̃3 of γ̃ are constant. Moreover, by
applying (3.5)–(3.8), one can easily verify that 4), 5) of Theorem 1.2 hold true,
and this completes the proof of this theorem.

Notice that if α1 = α2, then γ represented by (2.1) is a circle, and thus its
first curvature is k1 = 1√

a21+a
2
2

, the second curvature is zero, k2 = 0, and the

third curvature k3 is undefined. In this case, the osculating plane of γ at every
point is the two-dimensional plane containing γ. Hence the osculating indicatrix
γ̃ degenerates to a point in G(2, 4).

4. Concluding remarks and questions

Remark 4.1. Theorem 1.1 can be extended to the case of closed curves of
constant curvatures in R2n, n > 2. Moreover, for closed curves with non-zero
constant curvatures in R2n one can consider the integrals∫

γ

√
k22m−1 + k22m + k22m+1 ds, 1 ≤ m ≤ n− 1.

It turns out that these integrals satisfy the same sharp inequality (1.5), although
the proof is technically more complicated.
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Remark 4.2. Let γ be an arbitrary smooth curve with nowhere vanishing
curvatures k1, k2 in R4. Then its osculating indicatrix γ̃ is a smooth curve in the
Grassmann manifold G(2, 4). By considering the Plücker coordinates, G(2, 4) is
embedded into the unit sphere S5 ⊂ R6, see [2, Chap. 8.2], [3]. It turns out that
the osculating indicatrix γ̃ is an asymptotic curve of G(2, 4) ⊂ S5 with nowhere
vanishing geodesic curvature. The integral∫

γ

√
k21 + k22 + k23 ds

is equal to the total curvature ∫
γ̃
k̃1 ds̃

of γ̃, when γ̃ is viewed as a curve in R6. Hence, the sharpness problem for∫
γ

√
k21 + k22 + k23 ds

gives rise to the problem on finding the sharp lower bound for∫
γ̃
k̃1ds̃,

where γ̃ is a closed asymptotic curve with nowhere vanishing geodesic curvature
in G(2, 4) ⊂ S5.

Remark 4.3. From a local point of view, a smooth curve γ̃ ⊂ G(2, 4) is the
osculating indicatrix of a smooth curve γ ⊂ R4 if and only if γ̃ is an asymptotic
curve with nowhere vanishing geodesic curvature in G(2, 4) ⊂ S5, c.f. [7]. We are
interested in a global version of this statement. Exactly, what the necessary and
sufficient conditions should be imposed for a closed smooth curve in G(2, 4) to
be the osculating indicatrix of a smooth closed curve in R4.
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Про точнiсть однiєї iнтегральної нерiвностi для
замкнутих кривих в R4

Vasyl Gorkavyy and Raisa Posylaieva

Для замкнутих кривих з ненульовими кривинами в R4 дослiджується
оптимальнiсть iнтегральної нерiвностi

∫
γ

√
k21 + k22 + k23 ds > 2π. Доведе-

но, що довiльна замкнута крива зi сталими додатними кривинами в R4

задовольняє нерiвнiсть
∫
γ

√
k21 + k22 + k23 ds ≥ 2

√
5π.

Ключовi слова: замкнута крива, кривина, кривi зi сталими криви-
нами.
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