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1. Introduction

Space curves have many physical applications such as vortex filament motion,
twisted optical fiber, etc. Over the last four decades pioneering results have
spawned a huge research area exploring the connection between the motion of
space curves, surfaces and some important nonlinear equations of mathematical
physics.

Hasimoto presented the motion of a vortex filament and its relation to elas-
tica [13, 14]. Lakshmanan showed the connection of the nonlinear Schrödinger
equation with the continuum Heisenberg ferromagnetic spin chain system [15].
Lakshmanan, Myrzakulov, Vijayalakshmi and Danlybaeva investigated the mo-
tion of curves, surfaces and nonlinear evolution equations in (2+1) dimensions
[16]. Langer and Perline studied the Hasimoto transformation and integrable
flows on curves [17]. Murugesh and Balakrishnan presented new connections be-
tween moving curves and soliton equations in terms of Frenet frame in Euclidean
space [19]. Munijara and Lakshmanan investigated the motion of space curves in
a three-dimensional Minkowski space [20]. Gürbüz studied three classes of curve
evolution in terms of Bishop frame in Minkowski 3-space [10]. Guha studied
the connection of moving space curves with KdV-type equations in Euclidean
3-space [9].

A time evolution of a space curve is associated with the geometric phase.
Berry was first to study the quantum geometric phase in the adiabatic approx-
imation [6]. Later this topic was generalized by Aharonov and Anandan [1, 2].
Tomita and Chiao investigated the angle of rotation of linearly polarized light in
this fiber and gave a direct measure of Berry’s phase [21]. Mostafazadeh presented
relativistic adiabatic approximation and geometric phase [18].
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Balakrishnan, Bishop and Dandoloff used Lamb′s formalism to derive the
anholonomy density and the geometric phase in terms of Frenet frame in Eu-
clidean 3-space [4]. Gürbüz studied three formulations of curve evolution and
three geometric phases according to the Frenet frame in Minkowski space [11].
Balakrishnan discussed the first class of the curve evolution associated with the
geometric phase according to the Darboux frame in Euclidean space [3]. Gürbüz
introduced three classes of curve evolution associated with three geometric phases
according to the Darboux frame in Minkowski 3-space [12].

This paper considers the temporal motion of the so-called Bishop frame in-
stead of the natural Frenet frame of a space curve. Basically, three transforma-
tions of the Bishop frame are given and these three transformations yield to the
nonlinear Schrödinger, the coupled KdV and the Belavin–Polyakov equations [5]
through the usual computations involving curve motions, Darboux vector formu-
lations, Heisenberg spin chain equations etc. Later the corresponding anholonomy
densities are also computed.

In this section some preliminaries will be given.
The Frenet frame {T,N,B} formulas in Euclidean 3-space are given by

∂T

∂s
= κN,

∂N

∂s
= −κT + τB,

∂B

∂s
= −τN, (1.1)

where κ, τ are the curvature and the torsion of the curve in E3 [8]. The Bishop
frame is defined as a moving frame that well-defined even when the second deriva-
tive of the curve has vanished.

The Bishop frame {T,E1, E2} formulas are given in E3 as follows [7]:

∂T

∂s
= ξ1E1 + ξ2E2,

∂E1

∂s
= −ξ1T,

∂E2

∂s
= −ξ2T, (1.2)

where ξ1, ξ2 are the first and the second Bishop curvatures, s is the arc length
of the curve. The connection between the Frenet frame and the Bishop frame is
given by

T = T, N = E1 cosα+ E2 cosα, B = E1 sinα+ E2 cosα.

2. Anholonomy according to Bishop frame in E3

Case I. The first new frame {U1, U2, U
∗
2 } for the curve evolution associated

with the nonlinear Schrödinger equation, the coupled KdV equation and the
Belavin–Polyakov equation in terms of Bishop frame is given by

U1 = E1, (2.1)

U2 =
(T + iE2)√

2
ei

∫
ξ2 , (2.2)

U∗2 =
(T − iE2)√

2
e−i

∫
ξ2 . (2.3)
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The first transformation for the first case of curve evolution associated with the
nonlinear Schrödinger equation, the coupled KdV equation and the Belavin–
Polyakov equation in terms of Bishop frame in E3 is given by

θ =
ξ1√

2
ei

∫
ξ2 . (2.4)

We get

∂U1

∂t
= ζ1U2 + ζ2U

∗
2 + ζ3U1, (2.5)

∂U2

∂t
= η1U2 + η2U

∗
2 + η3U1, (2.6)

∂U∗2
∂t

= η∗1U2 + η∗2U
∗
2 + η∗3U1. (2.7)

Also, 〈
∂U1

∂t
, U2

〉
= ζ2,

〈
∂U∗2
∂t

, U1

〉
= η∗3,

〈
∂U1

∂t
, U1

〉
= ζ3 = 0. (2.8)

From (2.8), it follows

η3 = −ζ2 η∗3 = −ζ1. (2.9)

With the aid of (2.9), we have

∂U1

∂t
= −η∗3U2 − η3U∗2 , (2.10)

∂U2

∂t
= iχ1U2 + η3U1. (2.11)

Taking the derivatives of (2.1), (2.2), (2.3) with respect to s, we obtain

∂U1

∂s
= −θ∗U2 − θU∗2 , (2.12)

∂U2

∂s
= θU1, (2.13)

∂U∗2
∂s

= θ∗U1, (2.14)

where

θ∗ =
ξ1√

2
e−i

∫
ξ2 . (2.15)

The compatibility conditions

∂2U2

∂t∂s
=
∂2U2

∂s∂t

give

∂χ1

∂s
= −iη3θ∗ + iη∗3θ, (2.16)



Three Anholonomy Densities According to Bishop Frame 513

∂θ

∂t
− iχ1θ −

∂η3
∂s

= 0. (2.17)

The Darboux vector for the first case in terms of Bishop frame in E3 is presented
as

Z1 = AT − ξ∗2E1 + CE2. (2.18)

By using (2.18), the derivatives of {T,E1, E2} with respect to t can be written in
the form

∂T

∂t
= Z1 × T = −uE1 + ξ∗2E2, (2.19)

∂E1

∂t
= Z1 × E1 = uT + wE2, (2.20)

∂E2

∂t
= Z1 × E2 = −ξ∗2T − wE1, (2.21)

where u = −C, w = A. Moreover,

η3 = −(u+ iw)√
2

ei
∫
ξ2 (2.22)

satisfies (2.10) and (2.20). Taking the derivatives of (2.2) with respect to t and
using (2.11) and (2.22), the following equalities are derived for the first case in
terms of Bishop frame in Euclidean 3-space

∂T

∂t
= −uE1 +

(∫ s

−∞

∂ξ2
∂t

ds− χ1

)
E2, (2.23)

∂E2

∂t
=

(
χ1 −

∫ s

−∞

∂ξ2
∂t

ds

)
T − wE1. (2.24)

(2.19) and (2.23) give

ξ∗2 = −χ1 +

∫ s

−∞

∂ξ2
∂t

ds. (2.25)

From (2.25),

−∂χ1

∂s
=
∂ξ∗2
∂s
− ∂ξ2

∂t

is derived. Using (2.4), (2.15), (2.16) and (2.22),

∂χ1

∂s
= −ξ1w (2.26)

is obtained.
The natural Bishop frame vectors T and E2 rotate around E1 with the angular

velocity ξ2(s). When moving from s0 to s1 along a spatial curve, a geometric
phase

Ω1 =

∫ s1

s0

ξ2(s) ds

arises between the natural Bishop frame T , E1 and the corresponding nonrotating
Bishop frame for the first case in E3.
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A geometric phase for the first case corresponding to the Bishop frame

Ω2 =

∫ t2

t1

ξ∗2(t) dt

appears between the Bishop frame and the nonrotating Bishop frame along a
temporal curve for the first case in E3. As a β curve moves from (s, t) to (s +
∆s, t+∆t) in terms of Bishop frame in E3, the rotation angle Ω is given as follows:

Ω1 = ξ2(s, t)∆s+ ξ∗2(s+ ∆s, t)∆t, Ω2 = ξ∗2(s, t)∆t+ ξ2(s, t+ ∆t)∆s.

The geometric phase difference for the first case in terms of Bishop frame is
given by

δΩ = AD1(s, t)∆s∆t = Ω1 − Ω2 = (
∂ξ∗2
∂s
− ∂ξ2

∂t
)∆s∆t.

Here, AD1(s, t) = (
∂ξ∗2
∂s −

∂ξ2
∂t ) is a measure anholonomy density for the first case

in terms of Bishop frame in Euclidean 3-space. AD1(s, t) is given by

AD1(s, t) = −∂χ1

∂s
= ξ1w. (2.27)

The total anholonomy Ω for the first case in terms of Bishop frame is

Ω =

∫ t2

t1

∫ s

−s0
AD1(s, t) =

∫ t2

t1

∫ s

−s0
ξ1w ds dt (2.28)

=

∫ t2

t1

∫ s

−s0

〈
E1,

∂E1

∂s
× ∂E1

∂t

〉
ds dt.

The compatibility conditions

∂2U1

∂t∂s
=
∂2U1

∂s∂t

give

∂ξ1
∂t

= wξ2 −
∂u

∂s
,

∂w

∂s
+ uξ2 = −ξ1

(∫ s

−∞

∂ξ2
∂t

ds− χ1

)
.

The geometric phase for the first case in terms of Bishop frame is expressed as

Ω = −i
∫ s

−s0

∂

∂s

∫ t2

t1

〈
∂U2

∂t
,
∂U∗2
∂t

〉
ds dt.

Example 2.1. The equation

∂E1

∂t
= E1 × E1 ×

∂2E1

∂s2
−
〈
∂E1

∂s
,
∂E1

∂s

〉
∂E1

∂s
(2.29)

satisfies the coupled KDV-type equation for the first case in Euclidean 3-space.
The total anholonomy associated with the coupled-KdV equation for the first
case is given by

Ω =

∫ t2

t1

∫ s

−s0

∂(ξ21ξ2)

∂s
ds dt.
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Proof. Using (2.29), we obtain

∂E1

∂t
= T

(
∂2ξ1
∂s2

− ξ1ξ22
)

+ E2

(
∂(ξ1ξ2)

∂s
+
∂ξ1
∂s

ξ2

)
. (2.30)

From (2.30), it follows

u =

(
∂2ξ1
∂s2

− ξ1ξ22
)
, w =

(
∂(ξ1ξ2)

∂s
+
∂ξ1
∂s

ξ2

)
. (2.31)

From (2.16), (2.22) and (2.31), we obtain

χ1s = i

(
∂2θ

∂s2
θ∗ − ∂2θ∗

∂s2
θ

)
, (2.32)

η3 = −∂
2θ

∂s2
. (2.33)

Using (2.17), (2.32) and (2.33), the coupled KdV equation

∂θ

∂t
+
∂3θ

∂s3
+ 2 |θ|2 ∂θ

∂s
−
∂
(
|θ|2
)

∂s
θ = 0

is obtained. The total phase Ω associated with the coupled KdV equation for
the first case in terms of Bishop frame using (2.28) is

Ω =

∫ t2

t1

∫ s

−s0
ξ1w =

∫ t2

t1

∫ s

−s0

∂(ξ21ξ2)

∂s
ds dt.

Example 2.2. The Heisenberg spin chain equation

∂E1

∂t
= E1 ×

∂2E1

∂s2
(2.34)

satisfies the nonlinear Schrödinger equation (NLS) for the first case in Euclidean
3-space. The anholonomy density associated with the NLS is

Ω =
1

2

∫ t2

t1

∫ s

−s0

∂(ξ21)

∂s
ds dt.

Proof. With the aid of (2.34),

∂E1

∂t
= −ξ1ξ2T +

∂ξ1
∂s

E2 (2.35)

is obtained. Here,

u = −ξ1ξ2, w =
∂ξ1
∂s

. (2.36)

From (2.16), (2.22) and (2.36), we obtain

∂χ1

∂s
= −1

2

∂

∂s

(
|θ|2
)
, (2.37)
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η3 = − i∂θ
∂s

. (2.38)

Using (2.17), (2.37) and (2.38), the nonlinear Schrödinger equation

∂θ

∂t
+ i

∂2θ

∂s2
+
i

2
|θ|2 θ = 0

is obtained. From (2.27), (2.36), we obtain the anholonomy density associated
with the NLS for the first case:

AD1(s, t) = ξ1
∂ξ1
∂s

. (2.39)

From (2.28), the total phase Ω associated with the NLS for the first case in terms
of Bishop frame is

Ω =

∫ t2

t1

∫ s

−s0
AD1(s, t)dsdt =

1

2

∫ t2

t1

∫ s

−s0

∂(ξ21)

∂s
ds dt. (2.40)

Case II. The second frame {V1, V2, V ∗2 } for the second case of the curve
evolution associated with the coupled KdV equation, the nonlinear Schrödinger
equation and the Belavin–Polyakov equation in Euclidean 3-space in terms of
Bishop frame is given by

V1 = E2, (2.41)

V2 =
(T + iE1)√

2
ei

∫
ξ1 , (2.42)

V ∗2 =
(T − iE1)√

2
e−i

∫
ξ1 . (2.43)

The second transformation of the Bishop frame associated with the coupled KdV
equation, the nonlinear Schrödinger equation and the Belavin–Polyakov equation
in E3 is expressed by

ψ =
ξ2√

2
ei

∫
ξ1 . (2.44)

The derivatives of {V1, V2, V ∗2 } with respect to t are given by

∂V1
∂t

= kV2 + lV ∗2 +mV1, (2.45)

∂V2
∂t

= fV2 + gV ∗2 + hV1, (2.46)

∂V ∗2
∂t

= f∗V2 + g∗V ∗2 + h∗V1. (2.47)

If the derivatives of (2.41), (2.42) and (2.43) are taken with respect to s, we
obtain

∂V1
∂s

= −ψ∗U2 − ψU∗2 , (2.48)
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∂V2
∂s

= ψU1, (2.49)

∂V ∗2
∂s

= ψ∗U1, (2.50)

where ψ∗ = ξ
−i

∫
ξ1

2 . From (2.45), (2.46), (2.47), we have

l = 〈V1t, V2〉 ⇒ l = −h, 〈V ∗2t, V1〉 = h∗ ⇒ k = −h∗, 〈V1t, V1〉 = m = 0.
(2.51)

Using (2.45), (2.46), (2.47) and (2.51), we derive

∂V1
∂t

= −h∗V2 − hV ∗2 , (2.52)

∂V2
∂t

= iχ2V2 + hV1, (2.53)

where χ2 is a real function. From the equality

∂2V2
∂t∂s

=
∂2V2
∂s∂t

we obtain

∂χ2

∂s
= ih∗ψ − ihψ∗, (2.54)

∂ψ

∂t
−∂h
∂s
− iψχ2 = 0. (2.55)

The second Darboux vector for the Bishop frame for the second case in Euclidean
3-space has the form

Z2 = AT +BE1 + ξ∗1E2. (2.56)

By using (2.56), the temporal evolution equations can be written as

∂T

∂t
= Z2 × T = −uE2 + ξ∗1E1, (2.57)

∂E1

∂t
= Z2 × E1 = −ξ∗1T − vE2, (2.58)

∂E2

∂t
= Z2 × E2 = uT + vE1, (2.59)

where u = B, v = −A. The quantity

h = −(u+ iv)√
2

ei
∫
ξ1 (2.60)

satisfies (2.52) and (2.59). Taking the derivative of (2.42) with respect to t, the
following expressions are obtained:

∂T

∂t
= −uE2 +

(∫ s

−∞

∂ξ1
∂t

ds− χ2

)
E1, (2.61)
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∂E1

∂t
=

(
−
∫ s

−∞

∂ξ1
∂t

ds+ χ2

)
T − vE2. (2.62)

From (2.57) and (2.61), we obtain

−ξ∗1 = χ2 −
∫ s

−∞

∂ξ1
∂t

ds,

∂χ2

∂s
= −∂ξ

∗
1

∂s
+
∂ξ1
∂t

.

Using (2.44), (2.54) and (2.60), we have the equation

∂χ2

∂s
= −ξ2v. (2.63)

The compatibility conditions

∂2V1
∂t∂s

=
∂2V1
∂s∂t

give

−∂ξ2
∂t

= −vξ1 +
∂u

∂s
,

∂v

∂s
+ uξ1 = −ξ2

(∫ s

−∞

∂ξ1
∂t

ds− χ2

)
.

The natural Bishop frame vectors T and E1 rotate around E2 with the angular
velocity ξ1(s). When moving along a spatial curve from s0 to s1, a geometric
phase

Λ1 =

s1∫
s0

ξ1(s) ds

arises between the natural Bishop frame vectors T , E1 and the corresponding
second nonrotating Bishop frame in Euclidean 3-space. The geometric phase for
the second case in terms of Bishop frame

Λ2 =

t2∫
t1

ξ∗1(t) dt

appears between the Bishop frame and the nonrotating Bishop frame along a
temporal curve for the first case in E3. As the β curve moves from (s, t) to (s+
∆s, t + ∆t) according to Bishop frame in E3, the rotation angle Λ is given as
follows:

Λ1 = ξ1(s, t)∆s+ ξ∗1(s+ ∆s, t)∆t, Λ2 = ξ∗1(s, t) ∆t+ ξ1(s, t+ ∆t) ∆s.

The geometric phase difference for the second case in terms of Bishop frame is
given by

δΛ = AD2(s, t)∆s∆t = Λ1 − Λ2 = (ξ∗1s − ξ1t)∆s∆t.
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The second anholonomy density for the second case in terms of Bishop frame is

AD2(s, t) =
∂ξ∗1
∂s
− ∂ξ1

∂t
.

The total phase Λ for the second case in terms of Bishop frame is

Λ =

∫ t2

t1

∫ s

−s0
AD2(s, t) = −

∫ t2

t1

∫ s

−s0

∂χ2

∂s
ds dt

=

∫ t2

t1

∫ s

−s0
ξ2v ds dt = −

∫ t2

t1

∫ s

−s0

〈
E2,

∂E2

∂s
× ∂E2

∂t

〉
ds dt. (2.64)

Example 2.3. The Heisenberg spin chain equation

∂E2

∂t
= E2 ×

∂2E2

∂s2
(2.65)

satisfies the nonlinear Schrödinger equation for the second case in E3. Using
(2.64), the total phase Λ is given by

Λ =

∫ t2

t1

∫ s

−s0
AD2(s, t)dsdt = −1

2

∫ t2

t1

∫ s

−s0

∂(ξ22)

∂s
ds dt. (2.66)

Proof. From (2.65), we obtain

∂E2

∂t
= −∂ξ2

∂s
E1 + ξ1ξ2T. (2.67)

Here,

u = ξ1ξ2, v = − ∂ξ2
∂s

. (2.68)

From (2.60), (2.63), and (2.68), we get

h = i
∂ψ

∂s
, (2.69)

∂χ2

∂s
=

1

2

∂(|ψ|2)
∂s

. (2.70)

From (2.55), the nonlinear Schrödinger equation

∂ψ

∂t
− i∂

2ψ

∂s2
− i |ψ|2 ψ

2
= 0

is obtained. The anholonomy density is found as

AD2(s, t) = −ξ2
∂ξ2
∂s

. (2.71)

The geometric phase associated with the NLS for the second case has the form

Λ = −1

2

∫ t2

t1

∫ s

−s0

∂(ξ22)

∂s
ds dt.
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Example 2.4. The equation

∂E2

∂t
= E2 × E2 ×

∂2E2

∂s2
−
〈
∂E2

∂t
,
∂E2

∂t

〉
∂E2

∂t
(2.72)

satisfies the coupled KDV-type equation for the second case in terms of Bishop
frame in Euclidean 3-space. The geometric phase is

Λ =

∫ t2

t1

∫ s

−s0

∂(ξ22ξ1)

∂s
ds dt.

Proof. With the aid of (2.72),

∂Λ1

∂t
=

(
∂2ξ2
∂s2

− ξ21ξ2
)
T + E1

(
2
∂ξ2
∂s

ξ1 +
∂ξ1
∂s

ξ2

)
(2.73)

is obtained. From (2.73), we get

u = (
∂2ξ2
∂s2

− ξ21ξ2), v = (2
∂ξ2
∂s

ξ1 +
∂ξ1
∂s

ξ2). (2.74)

Using (2.54) , (2.60) and (2.74), we have

h = −∂
2ψ

∂s2
, (2.75)

∂χ2

∂s2
= i

(
−∂

2ψ∗

∂s2
ψ +

∂2ψ

∂s2
ψ∗
)
. (2.76)

Using (2.55), (2.75) and (2.76), the coupled KdV equation

∂ψ

∂t
+
∂3ψ

∂s3
+ 2 |ψ|2 ∂ψ

∂s
− ∂(|ψ|2)

∂s
ψ=0

is obtained. The anholonomy density associated with the coupled KdV equation
of the curve evolution according to the Bishop frame for the second case is given
by

AD2(s, t) = ξ2v =
∂(ξ22ξ1)

∂s
. (2.77)

The total phase Λ associated with the coupled KdV equation for the Bishop frame
using (2.28) is

Λ =

∫ t2

t1

∫ s

−s0

∂(ξ22ξ1)

∂s
ds dt.

Example 2.5. The antiferromagnetic chain equation

∂E2

∂t
= −E2 ×

∂E2

∂s
(2.78)

satisfies the Belavin–Polyakov equation for the second case in terms of Bishop
frame in Euclidean 3-space. The geometric phase is obtained as Λ =∫ t2
t1

∫ s
−s0 ξ

2
2dsdt.
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Proof. From (2.78), we obtain

∂E2

∂t
= ξ2E1.

Using (2.54) and (2.60), we derive

∂χ2

∂s
= −ξ22 , h = −iψ. (2.79)

From (2.55) and (2.79), the Belavin–Polyakov equation

∂ψ

∂t
+ i

∂ψ

∂s
+ i

∫
|ψ|2 = 0

is obtained for the second case in terms of Bishop frame in Euclidean 3-space.
The second anholonomy density is found as

AD2(s, t) = ξ22 . (2.80)

From (2.80), the geometric phase for the second case is obtained:

Λ =

∫ t2

t1

∫ s

−s0
ξ22 ds dt.

Case III. The third frame {W1,W2,W
∗
2 } associated with the nonlinear

Schrödinger equation, the coupled KdV equation and the Belavin–Polyakov equa-
tion in terms of Bishop frame is given by

W1 = T, (2.81)

W2 =
E1 + iE2√

2
, (2.82)

W ∗2 =
E1 − iE2√

2
. (2.83)

The third transformation λ is introduced as

λ =
ξ1 + iξ2√

2
.

Taking the derivatives of (2.81), (2.82) and (2.83) with respect to s, we have

∂W1

∂s
= λ∗W2 − λW ∗2,

∂W2

∂s
= λW1,

∂W ∗2
∂s

= −λ∗W1.

Here λ∗ = ξ1−iξ2√
2
. Take the derivatives of W1, W2 and W ∗2 with respect to t to

get:

∂W1

∂t
= µ1W1 + µ2W2 + µ3W

∗
2 , (2.84)
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∂W2

∂t
= γ1W2 + γ2W

∗
2 + γ3W1, (2.85)

∂W ∗2
∂t

= γ∗1W2 + γ∗2W
∗
2 + γ∗3W1. (2.86)

From (2.84) and (2.85), we obtain

µ1 = 0, γ = 0, µ3 = −γ3, µ2 = −γ∗3 . (2.87)

Using (2.87), the time evolution of {W1,W2,W
∗
2 } can be written in the form

∂W1

∂t
= Tt = −γ∗3W2 − γ3W ∗2 , (2.88)

∂W2

∂t
= γ3W1 + iχ3W2. (2.89)

The compatibility conditions

∂2W1

∂t∂s
=
∂2W1

∂s∂t
,

∂2W2

∂t∂s
=
∂2W2

∂s∂t

give

∂χ3

∂s
= iγ3λ

∗ − iλγ∗3 , (2.90)

∂λ

∂t
− iλχ3 +

∂γ3
∂s

= 0. (2.91)

The Darboux vector for the third case of the curve evolution in terms of Bishop
frame is defined as follows:

Z3 = ξ∗3T +BE1 + CE2. (2.92)

With the aid of (2.92), we have

∂W1

∂t
= (ξ∗3T +BE1 + CE2)× T = vE1 + wE2, (2.93)

∂W2

∂t
= −vT − χ3E2, (2.94)

∂W ∗2
∂t

= −wT + χ3E1, (2.95)

where −B = w, v = C and the quantity

γ3 = −(v + iw)√
2

(2.96)

satisfies (2.88) and (2.93). From (2.90) and (2.96), we have

∂χ3

∂t
= ξ1w − vξ2 = −∂χ1

∂s
+
∂χ2

∂s
. (2.97)
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The anholonomy density AD3 for the third case is given in terms of Bishop frame
as

AD3(s, t) = −vξ2 + ξ1w = ((ξ∗1s − ξ∗2s)− (ξ1t − ξ2t))
= −AD2(s, t) +AD1(s, t).

The total phase P for the third case in terms of Bishop frame is expressed as

P =

∫ t2

t1

∫ s0

−s0
(ξ1w − vξ2) ds dt =

∫ t2

t1

∫ s

−s0

〈
T,
∂T

∂s
× ∂T

∂t

〉
ds dt. (2.98)

Example 2.6. The ferromagnetic chain equation

∂T

∂t
= −T × ∂2T

∂s2
(2.99)

satisfies the nonlinear Schrödinger equation for the third case of the curve evo-
lution according to Bishop frame in Euclidean 3-space. The geometric phase
is

P =
1

2

∫ t2

t1

∫ s

−s0

∂(ξ21 + ξ22)

∂s
ds dt.

Proof. From (2.99), we have

v = −∂ξ2
∂s

, w =
∂ξ1
∂s

. (2.100)

With the aid of (2.90), (2.96) and (2.100), the following expressions are obtained:

∂χ3

∂s
= −

(
∂ξ2
∂s

ξ2 +
∂ξ1
∂s

ξ1

)
, (2.101)

γ3 = −i∂λ
∂s
. (2.102)

From (2.91), (2.100), (2.101), (2.102), the nonlinear Schrödinger equation

∂λ

∂t
− i∂2λ

∂s2
− i |λ|2 λ

2
= 0

is obtained. The third anholonomy density is derived as

AD3(s, t) =

(
∂ξ2
∂s

ξ2 +
∂ξ1
∂s

ξ1

)
.

The geometric phase is obtained as follows:

P =
1

2

∫ t2

t1

∫ s

−s0

∂(ξ21 + ξ22)

∂s
ds dt.
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Eskisehir Osmangazi University, Sciences and Arts Faculty, Department of Mathematics-
Computer, 26480, Eskisehir, Turkey,
E-mail: ngurbuz@ogu.edu.tr

Три негологомнi щiльностi вiдносно репера Бiшопа у
тривимiрному евклiдовому просторi

Nevin Gürbüz

У статтi ми одержуємо три негологомнi щiльностi за допомогою
трьох перетворень репера Бiшопа у тривимiрному евклiдовому просторi.
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