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Some Non-Trivial and Non-Gradient Closed

Pseudo-Riemannian Steady Ricci Solitons

Maryam Jamreh and Mehdi Nadjafikhah

In this paper, we study the Ricci soliton equation on compact indecom-
posable Lorentzian 3-manifolds that admit a parallel light-like vector field
with closed orbits. These compact structures that are geodesically complete,
admit non-trivial, i.e., non-Einstein and non-gradient steady Lorentzian
Ricci solitons with zero scalar curvature which show the difference between
closed Riemannian and pseudo-Riemannian Ricci solitons. The associated
potential vector field of a Ricci soliton structure in all the cases that we con-
struct on these manifolds is a space-like vector field. However, we show that
there are examples of closed pseudo-Riemannian steady Ricci solitons in the
neutral signature (2, 2) with zero scalar curvature such that the associated
potential vector field can be time-like or null. These compact manifolds are
also geodesically complete and they cannot admit a conformal-Killing vector
field.
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1. Introduction

Let (M, g) be a pseudo-Riemannian manifold and X be a smooth vector field
on M . We say that the triple (M, g,X) is a pseudo-Riemannian Ricci soliton if
the equation

LX(g) + Ric(g) = λg (1.1)

is satisfied, where LX is the Lie-derivative with respect to X, Ric is the Ricci
tensor and λ is a real number. A Ricci soliton is called shrinking, steady or
expanding according to whether λ > 0, λ = 0, or λ < 0, respectively. If for a
smooth function f on a manifold (M, g), X = 1/2∇f , where ∇f is the gradient
of f , then equation (1.1) leads to

Hessf (g) + Ric(g) = λg, (1.2)

where Hessf denotes the Hessian of the function f . In this case, the soliton is
called the gradient Ricci soliton and f is called the potential function. In what
follows we let (M, g, f) be a gradient Ricci soliton.
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Ricci solitons are natural generalizations of Einstein manifolds. If X is a
Killing vector field in the Ricci soliton equation (1.1) or f is a constant function
in the gradient Ricci soliton equation (1.2), then we obtain the Einstein equation
Ric(g) = λg and the soliton is an Einstein manifold or, in the steady case, it is
a Ricci-flat manifold. The concept of Ricci solitons was first introduced in [8] by
Hamilton as a self-similar solution of Hamilton’s Ricci flow, ∂tg(t) = −2Ric(g(t)),
on Riemannian metrics. Ricci flow is an evolutionary intrinsic geometric flow
introduced in 1982 by Hamilton on Riemannian metrics for studying the topology
of 3-dimensional manifolds [9].

A soliton for the Ricci flow is a metric that changes only by rescaling and by
a pullback of a one-parameter family of diffeomorphisms as it evolves under the
Ricci flow. If we have a Riemannian or pseudo-Riemannian metric g, a complete
vector field X and a real number λ (all independent of time) that satisfy the
Ricci soliton equation (1.1), then g(t) = σ(t)φ∗t (g) is a solution of the Ricci flow,
where σ(t) := 1 − 2λt and φt is a family of diffeomorphisms generated by the
t-dependent vector field σ(t)−1X. See [7] for more details.

Geometry of Riemannian Ricci solitons has been studied widely because of
the role of the Ricci flow in solving the Poincaré conjecture and Thurston’s ge-
ometrization conjecture that were finally proved by Perelman [12]. Ricci solitons
often arise as limits of dilations of singularities in the Ricci flow [4]. The geo-
metric structure of Ricci solitons in pseudo-Riemannian setting has been stud-
ied by a number of authors. For some recent results and further references on
pseudo-Riemannian Ricci solitons, we may refer to [3] and references therein.
Also, solutions of Euclidean signature Einstein gravity coupled to a free massless
scalar field with nonzero cosmological constant are associated with shrinking or
expanding Ricci solitons [1].

From the work by Perelman, we know that closed Riemannian Ricci solitons
are necessarily gradient and, moreover, closed expanding or steady Ricci solitons
are necessarily Einstein [6], which is derived from maximum principles for the
Laplace operator that is an elliptic operator on Riemannian manifolds. In [10],
we show the existence of non-trivial and non-gradient steady Ricci solitons on a
special group of compact indecomposable Lorentzian 3-manifolds admitting a par-
allel light-like vector field with closed orbits. The aim of this paper is to study the
Ricci soliton equation on compact indecomposable Lorentzian 3-manifolds with
a parallel light-like vector field with closed orbits, that were classified recently
in [2], in order to construct more examples of closed Lorentzian steady Ricci soli-
tons with zero scalar curvature. In each case, the associated potential vector field
with the Ricci soliton structure is space-like. Furthermore, these Ricci solitons are
geodesically complete because compact indecomposable Lorentzian 3-manifolds
with a parallel light-like vector field are pp-waves, a special class of Lorentzian
manifolds admitting a parallel null vector field, which occur whenever the Ricci
tensor is completely determined by the parallel null vector. It was proved in [11]
that every compact pp-wave is geodesically complete. Also, we construct the
examples of closed pseudo-Riemannian steady Ricci solitons in dimension 4 with
the neutral signature (2, 2) that admit a parallel light-like vector field. They are
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geodesically complete and do not admit a conformal-Killing vector field. But
they can admit a time-like Killing vector field. The potential vector field asso-
ciated with a Ricci soliton structure, in this case, can be space-like, time-like or
null. Whereas for a non-trivial gradient close pseudo-Riemannian steady Ricci
soliton with constant scalar curvature, if there exists, the gradient vector field is
necessarily a null vector field. Furthermore, the vector field X associated with
a Ricci soliton structure is a harmonic vector field [15], and in our examples of
closed pseudo-Riemannian Ricci solitons, X is divergence free and ‖LXg‖2 = 0.

This paper is organized as follows. In Section 2, we give some preliminaries
about Ricci soliton structures. Section 3 is devoted to studying the Ricci soliton
structure on orientable compact indecomposable Lorentzian manifolds admitting
a parallel light-like vector field with closed orbits. Finally, in Section 4, we
construct the examples of non-trivial and non-gradient closed pseudo-Riemannian
Ricci solitons with the neutral signature (2, 2) in the steady case with zero scalar
curvature.

2. Preliminaries

Let (M, g,X) be an n-dimensional Ricci soliton. Then, by tracing equation
(1.1), we get

Div(X) + τ = nλ, (2.1)

where τ is the scalar curvature and Div(X) is the divergence of the vector field
X. If the manifold M is closed and orientable, then by the Divergence Theorem,
we have ∫

M
τ dµg = nλ vol(M). (2.2)

So λ = n−1r, where r = vol(M)−1
∫
M τ dµg is the mean scalar curvature.

Proposition 2.1. Let (M, g,X) be a closed pseudo-Riemannian Ricci soliton
with constant scalar curvature. Then τ = nλ and Div(X) = 0. In particular, in
the steady case the scalar curvature is zero.

Proof. If (M, g,X) is a closed pseudo-Riemannian Ricci soliton with constant
scalar curvature, then by (2.2), we have τ vol(M) = nλ vol(M). Therefore, τ =
nλ. Thus, equation (2.1) implies that Div(X) = 0.

Remark 2.2. Let (M, g, f) be a gradient Ricci soliton. Then, by tracing
equation (1.2), we have

∆gf = nλ− τ, (2.3)

where ∆g is the Laplace-Beltrami operator with respect to the pseudo-Rieman-
nian metric g that is an ultrahyperbolic operator in pseudo-Riemannian cases or
normally hyperbolic operator when the metric is given in the Lorentzian signa-
ture. Since the solutions of the Laplace equation ∆g on a closed Riemannian man-
ifold are necessarily trivial, i.e., constant functions, then we have no non-trivial
closed Riemannian Ricci solitons with constant scalar curvature. Whereas, in
pseudo-Riemannian cases, the Laplace equation may have non-trivial solutions.
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Therefore, we can find non-trivial examples of pseudo-Riemannian gradient Ricci
solitons with constant scalar curvature.

Proposition 2.3. The gradient vector field associated with a closed pseudo-
Riemannian steady gradient Ricci soliton with constant scalar curvature is a null
vector field.

Proof. Let (M, g, f) be a gradient Ricci soliton with constant scalar curvature.
Then ‖∇f‖2− 2λf = const, see [3, Lemma 11.14]. Therefore, in the steady case,
‖∇f‖2 = const. On the other hand, for an arbitrary function f on a pseudo-
Riemannian manifold (M, g), we have ∆gf

2 = 2f∆gf + ‖∇f‖2, see [13, p. 94].
Hence, if (M, g) is closed and orientable, then by the divergence theorem,∫

M
‖∇f‖2 dµg = −

∫
M

2f∆gf dµg. (2.4)

Now we suppose that (M, g, f) is a closed gradient Ricci soliton with constant
scalar curvature. Then, by Proposition 2.1, we have ∆gf = 0. Therefore, equa-
tion (2.4) implies that

∫
M ‖∇f ‖

2 dµg = 0. But, since ‖∇f‖2 is constant, then
‖∇f‖2 is necessarily zero.

3. Ricci solitons on orientable, compact indecomposable Lo-
rentzian 3-manifolds admitting a parallel light-like vector
field with closed orbits

For any n ∈ N, we let Γn be a group of diffeomorphisms of R3 generated by
the maps

τx(x, y, z) = (x+ 1, y, z),

τy(x, y, z) = (x, y + 1, z),

τz,n(x, y, z) = (x+ ny, y, z + 1)

that preserve the moving frame (∂x, ∂y + nz∂x, ∂z) on R3. We call R3/Γn a
parabolic torus, as a suspension of the parabolic automorphism τz,n(x, y, z) of
R2/Z2 over R/Z. See [2] for more details.

Proposition 3.1. If (M, g) is an orientable, compact indecomposable
Lorentzian 3-manifold endowed with a parallel light-like vector field with closed
orbits, then it is isometric to (R3/Γn, g), where g is the metric induced by a met-
ric g̃ on R3 whose matrix in the Γn-invariant moving frame (∂x, ∂y + nz∂x +
θ∂z, ∂z), θ ∈ R, is 0 0 Λ

0 L2(y, z) ν(y, z)
Λ ν(y, z) µ(y, z)

 , (3.1)

where L, µ and ν are (1, 1)-biperiodic functions and Λ is a non-zero real number.
Also, L is a non-vanishing function because of the non-degeneracy of the metric
g at any point on the manifold.
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The proof can be found in [2, Section 4].

Proposition 3.2. Let X = (X1, X2, X3) be a vector field on R3/Γn, where
Xi = Xi(x, y, z), 0 ≤ i ≤ 3, are real-valued functions that are Γn-invariant. Then
X defines a Ricci soliton in the steady case with respect to the metric g if X1 =
X1(y, z) and X2 = X2(y, z) are (1, 1)-biperiodic functions and X3 = c is constant
that satisfy the following partial differential equations:

∂y(LX2) + θ∂z(LX2) + c∂zL = 0, (3.2)

Λ(∂yX1 + θ∂zX1 − nc) + (∂yX2 + θ∂zX2)ν

+ (∂yν + θ∂zν)X2 + L2∂zX2 + c∂zν = 0, (3.3)

L[2Λ∂zX1 + 2ν∂zX2 + (∂yµ+ θ∂zµ+ 2nΛ)X2 + c∂zµ]

= Hy + θHz + Lzz, (3.4)

where

H(y, z) :=
1

2L

(
2nΛ + ∂zµ+ ∂yµ− 2∂zν

)
. (3.5)

Furthermore,
‖X‖2 = L2X2

2 + 2cΛX1 + 2cνX2 + c2µ. (3.6)

Proof. Since the scalar curvature of (R3/Γn, g) is zero, then by Proposi-
tion 2.1, we can only have steady Ricci solitons on these manifolds. By con-
sidering the Ricci soliton equation in the steady case with respect to the metric
g, we get a system of partial differential equations. In particular, we have ∂xX3 =
0 that implies X3 = X3(y, z) to be a (1, 1)-biperiodic function. Thus, we get the
following system of partial differential equations:

Λ(∂yX3 + θ∂zX3) + L2∂xX2 = 0, (3.7)

Λ(∂xX1 + ∂zX3) + ν∂xX2 = 0, (3.8)

2ν(∂yX3 + θ∂zX3) + 2L(nzL∂xX2 + ∂y(LX2)

+ θ∂z(LX2) +X3∂zL) = 0, (3.9)

ν∂zX3 + (∂yX3 + θ∂zX3)µ+ L2∂zX2

+ (∂yX2 + θ∂zX2 + nz∂xX2)ν

+ Λ(∂yX1 + θ∂zX1 + nz∂xX1 − nX3)

+X2(∂yν + θ∂zν) +X3∂zν = 0, (3.10)

2µ∂zX3 + 2ν∂zX2 +X2(2nΛ + ∂yµ+ θ∂zµ) + 2Λ∂zX1 +X3∂zµ

= L−1
(
∂yH + θ∂zH + ∂zz

)
. (3.11)

If we take the partial derivative of equation (3.7) with respect to x, then ∂xxX2 =
0. Since X2 is Γn-invariant, then X2 = X2(y, z) is a (1, 1)-biperiodic function.
Also, by taking the partial derivative of equation (3.8) with respect to x, we have
∂xxX1 = 0 that implies X1 = X1(y, z) to be a (1, 1)-biperiodic function, because
X1 is Γn-invariant. Therefore, equation (3.8) leads to ∂zX3 = 0. Hence, X3 =
X3(y) is a periodic function. But, by equation (3.7), X ′3(y) = 0. Therefore, X3 =
c is a constant function. Thus, equations (3.9), (3.10) and (3.11) lead to (3.2),
(3.3) and (3.4), respectively.
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In the following, we identify the behavior of Ricci solitons when θ = 0. We
show that when L is a non-zero constant function or when L just depends on y,
there are not any non-trivial Ricci solitons. But if L just depends on z, then we
can construct non-trivial Ricci solitons in the steady case that admit a parallel
light-like vector field. The potential vector fields in all these cases are space-like
that cannot be gradient vector fields.

Theorem 3.3. If we consider the metric g defined in Proposition 3.1 on
the parabolic torus R3/Γn when L is a non-zero constant function, ν(y, z) and
µ(y, z) are arbitrary (1, 1)-biperiodic functions and θ = 0, then there are not any
non-trivial Ricci solitons on (R3/Γn, g).

Proof. Suppose that L ≡ 1 but ν = ν(y, z) and µ = µ(y, z) are arbitrary
(1, 1)-biperiodic functions. If X = (X1, X2, X3) is a vector field that defines a
Ricci soliton structure on R3/Γn with respect to the metric g, then by Proposi-
tion 3.2, X3 = c is a constant function and due to the assumptions, we get the
system of partial differential equations:

∂yX2 = 0, (3.12)

Λ(∂yX1 − nc) + ∂y(νX2) + ∂zX2 + c∂zν = 0, (3.13)

2Λ∂zX1 + 2ν∂zX2 + (∂yµ+ 2nΛ)X2 + c∂zµ =
1

2
∂yyµ− ∂yzν. (3.14)

By equation (3.12), X2 = X2(z) is a periodic function. Now, by integrating
equation (3.13) with respect to y, we have

ΛX1 + νX2(z) = ncΛy −X ′2(z)y + c

∫
∂zν dy +G(z). (3.15)

Since the left-hand side of equation(3.15) is a (1, 1)-biperiodic function, then G(z)
is periodic and

ncΛ−X ′2(z) + c

∫ 1

0
∂zν dy = 0. (3.16)

See [5] for the integral of a periodic function. Now, if equation (3.16) is satisfied,
then ∫ 1

0

[
ncΛ−X ′2(z) + c

∫ 1

0
∂zν dy

]
dz = 0. (3.17)

But ∫ 1

0
X ′2(z) dz = X2(1)−X2(0) = 0,

because X2 is a periodic function with period 1. Also, since ν(y, z) is a (1, 1)-
biperiodic function, then we have∫ 1

0

∫ 1

0
∂zν dy dz =

∫ 1

0

∫ 1

0
∂zν dz dy =

∫ 1

0
[ν(y, 1)− ν(y, 0)] dy = 0.

Hence, ncΛ = 0 which implies c = 0. Thus, X3 is the zero function. Therefore,
equation (3.16) implies that X ′2(z) = 0. Since X2 is periodic, then X2 is a
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constant function. Let X2 = b. Hence we have the following system of partial
differential equations:

Λ∂yX1 + b∂yν = 0, (3.18)

2Λ∂zX1 + (∂yµ+ 2nΛ)b =
1

2
∂yyµ− ∂yzν. (3.19)

By integrating equation (3.19) with respect to y, we get

1

2
∂yµ− ∂zν − bµ = 2nbΛy + 2Λ

∫
∂zX1 dy +G(z). (3.20)

Since the left-hand side of equation (3.20) is a (1, 1)-biperiodic function, then
G(z) is periodic and

nb+

∫ 1

0
∂zX1 dy = 0

that implies ∫ 1

0
[nb+

∫ 1

0
∂zX1 dy] dz = 0.

Since X1 is a (1, 1)-biperiodic function, then∫ 1

0

∫ 1

0
∂zX1 dy dz = 0.

Therefore, nb = 0. Thus, b = 0, and X2 is the zero function. Now equation (3.18)
implies that ∂yX1 = 0. Hence, X1 = X1(z) is a periodic function of z. Now, by
equation (3.20), we have

∂yµ− 2∂zν = 4ΛX ′1(z)y +G(z).

Since the left-hand side of this equation is biperiodic, then X ′1(z) = 0 that implies
X1 to be a constant function. Therefore, LXg = 0, and X is a Killing vector
field.

Theorem 3.4. Let g be the metric defined in Proposition 3.1 on the parabolic
torus R3/Γn when L = L(y) is a non-vanishing periodic function, ν(y, z) and
µ(y, z) are arbitrary (1, 1)-biperiodic functions and θ = 0. Then there are not
any non-trivial Ricci solitons on (R3/Γn, g).

Proof. Let X = (X1, X2, X3) be a vector field on (R3/Γn, g) that defines a
Ricci soliton with respect to the prescribed metric g when L = L(y) is a periodic
function and θ = 0. Then, by Proposition 3.2, X3 = c is a constant function,
as well as X1 = X1(y, z) and X2 = X2(y, z) are (1, 1)-biperiodic functions that
satisfy the following system of partial differential equations

∂y(L(y)X2) = 0, (3.21)

Λ(∂yX1 − nc) + ∂y(νX2) + L2(y)∂zX2 + c∂zν = 0, (3.22)
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2Λ∂zX1 + 2ν∂zX2 + (∂yµ+ 2nΛ)X2 + c∂zµ

=
−nΛL′(y)

L3(y)
+

1

2L(y)
∂y(

∂yµ

L(y)
)− 1

L(y)
∂y(

∂zν

L(y)
). (3.23)

By integrating equation (3.22) with respect to z, we have

L2X2 + cν = −Λ

∫
(∂yX1 − nc) dz −

∫
∂y(νX2) dz + F (y).

Since the left-hand side of this equation is (1, 1)-biperiodic, then F (y) is periodic
and

Λ

∫ 1

0
(∂yX1 − nc) dz −

∫ 1

0
∂y(νX2) dz = 0

that implies ∫ 1

0
[Λ

∫ 1

0
(∂yX1 − nc) dz −

∫ 1

0
∂y(νX2) dz] dy = 0.

But X1 and νX2 are (1, 1)-biperiodic functions. Hence,∫ 1

0

∫ 1

0
∂yX1 dzdy =

∫ 1

0

∫ 1

0
∂y(νX2) dzdy = 0.

Therefore, ncΛ = 0 that implies c = 0. Thus, X3 is the zero function. But,
by equation (3.21), X2 = L−1(y)F (z), where F (z) is a periodic function. By
substituting L−1(y)F (z) instead of X2 in equation (3.22) and integrating this
equation with respect to y, we have

ΛX1 + νL−1(y)F (z) = −F ′(z)
∫
L(y) dy +G(z).

Since the left-hand side of this equation is (1, 1)-biperiodic, then G(z) is periodic
and

F ′(z)

∫ 1

0
L(y) dy = 0

that implies F ′(z) = 0 because
∫ 1
0 L(y) dy is a non-zero real number. Since F is

periodic, then F is a constant function. Let F (z) ≡ a, where a is a real number.
Thus X2 = aL−1(y). Then equation (3.22) leads to

Λ∂yX1 + a∂y(νL−1) = 0

that implies X1 = −a(ΛL)−1ν +G(z). But, by equation (3.23), we have

− 2a∂zν + 2ΛG′(z) + a∂yµ+ 2naΛ

=
−nΛL′(y)

L2(y)
+

1

2
∂y

(
∂yµ

L(y)

)
− ∂y

(
∂zν

L(y)

)
. (3.24)
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By integrating equation (3.24) with respect to y, we get

nΛ

L
+
∂yµ

2L
− ∂zν

L
− aµ = 2Λ(na+G′(z))y − 2a

∫
∂zν dy +H(z). (3.25)

Since the left-hand side of equation (3.25) is (1, 1)- biperiodic, we obtain

2Λ(na−G′(z)) + 2a

∫ 1

0
∂zν dy = 0

that implies ∫ 1

0
[2Λ(na+G′(z)) + 2a

∫ 1

0
∂zν dy] dz = 0.

Since G(z) is periodic and ν is biperiodic, then∫ 1

0
G′(z) dz =

∫ 1

0
∂zν dz dy = 0.

Therefore, 2naΛ = 0. Thus, a = 0, and X2 is the zero function, as well as X1 =
X1(z) is a periodic function of z. Now equation (3.23) leads to

2ΛL(y)X ′1(z) =
−nΛL′(y)

L2(y)
+

1

2
∂y

(
∂yµ

L(y)

)
− ∂y

(
∂zν

L(y)

)
. (3.26)

By integrating equation (3.26) with respect to y, we get

nΛ

L(y)
+

∂yµ

2L(y)
− ∂zν

L(y)
= 2ΛX ′1(z)

∫
L(y) dy +H(z). (3.27)

Since the left-hand side of equation (3.27) is (1, 1)-biperiodic, then

ΛX ′1

∫ 1

0
Ldy = 0

that implies X ′1(z) = 0 because
∫ 1
0 L dy is a non-zero real number. Hence, X1 is

a constant funtion. Thus, LX(g) = 0, and X is a Killing vector field.

Theorem 3.5. Let g be the metric defined in Proposition 3.1 on the parabolic
torus R3/Γn, where L = L(z) is a non-vanishing periodic function, ν(y, z) and
µ(y, z) are arbitrary (1, 1)-biperiodic functions and θ = 0. Then for a vector
field X on (R3/Γn, g), if X defines a Ricci soliton in the steady case, then
X = (X1(y, z), b, 0), where b =

∫ 1
0 (2nΛL)−1L′′ dz is a non-zero real number

and X1(y, z) is a (1, 1)-biperiodic function that satisfies the system of partial dif-
ferential equations:

Λ∂yX1 + b∂yν = 0, (3.28)

2Λ∂zX1 + (∂yµ+ 2nΛ)b =
∂yyµ

2L2(z)
− ∂yzν

L2(z)
+
L′′(z)

L(z)
. (3.29)
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Specially, if ∂yzν = 0, then µ is constant or µ = µ(z) is a periodic function,
as well as for some periodic functions κ(y) and η(z), ν(y, z) = κ(y) + η(z).
In this case, X1(y, z) = F (y) + G(z), where F (y) = −bΛ−1κ(y) and G(z) =∫

(2ΛL)−1L′′(z) dz − nbz are periodic functions. But, if ∂yzν 6≡ 0, then ∂yyµ −
2∂yzν = 0 and X1 = X1(y, z) is a biperiodic function that satisfies the following
partial differential equations:

Λ∂yX1 + b∂yν = 0, (3.30)

2Λ∂zX1 + (∂yµ+ 2nΛ)b =
L′′(z)

L(z)
. (3.31)

Also, ‖ X ‖2= b2L2(z) and X is space-like.

Proof. Let X = (X1, X2, X3) be a vector field on (R3/Γn, g) that defines
a Ricci soliton with respect to the prescribed metric g when L = L(z) is a
nonvanishing periodic function and θ = 0. Then by Proposition 3.2, X3 = c
is a constant function, as well as X1 = X1(y, z) and X2 = X2(y, z) are (1, 1)-
biperiodic functions that satisfy the system of partial differential equations:

L(z)∂yX2 + cL′(z) = 0, (3.32)

Λ(∂yX1 − nc) + ∂y(νX2) + L2(z)∂zX2 + c∂zν = 0, (3.33)

2Λ∂zX1 + 2ν∂zX2 + (∂yµ+ 2nΛ)X2 + c∂zµ =
∂yyµ

2L2
− ∂yzν

L2
+
L′′

L
. (3.34)

By integrating equation (3.32) with respect to y, we have

L(z)X2 = −cL′(z)y +G(z).

Since LX2 is a (1, 1)-biperiodic function, then G(z) is periodic and c = 0. Hence,
X3 is the zero function. Now equation (3.32) implies that ∂yX2 = 0. Therefore,
X2 = X2(z) is a periodic function. On the other hand, by integrating equation
(3.33) with respect to y, we have

ΛX1 +X2(z)ν = −L2(z)X ′2(z)y +G(z).

Since the left-hand side of this equation is biperiodic, then G(z) is periodic and
X ′2(z) = 0 that implies X2 to be a constant function. Let X2 = b. Then we get
the system of partial differential equations:

Λ∂yX1 + b∂yν = 0, (3.35)

2Λ∂zX1 + (∂yµ+ 2nΛ)b =
∂yyµ

2L2(z)
− ∂yzν

L2(z)
+
L′′(z)

L(z)
. (3.36)

By integrating equation (3.36) with respect to y, we have

∂yµ

2L2(z)
− ∂zν

L2(z)
− bµ = 2Λ

∫
∂zX1 dy +

(
2nbΛ− L′′(z)

L(z)

)
y + F (z). (3.37)
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Since the left-hand side of equation (3.37) is (1, 1)-biperiodic, then F (z) is peri-
odic and

2Λ

∫ 1

0
∂zX1 dy + 2nbΛ− L′′(z)

L(z)
= 0, (3.38)

see [5] for the integral of a periodic function that implies∫ 1

0
[2Λ

∫ 1

0
∂zX1 dy + 2nbΛ− L′′(z)

L(z)
] dz = 0. (3.39)

But ∫ 1

0

∫ 1

0
∂zX1 dy dz = 0

because X1 is a (1, 1)-biperiodic function. Hence,

2nbΛ−
∫ 1

0
L−1L′′ dz = 0.

Then,

b =
1

2nΛ

∫ 1

0

L′′

L
dz. (3.40)

But, by integration by parts, we have∫ 1

0

L′′

L
dz =

∫ 1

0

L′2

L2
dz. (3.41)

Hence,
∫ 1
0 L
−1L′′ dz is a non-negative number. Therefore, b is a non-zero real

number unless L is a constant function. If L is constant, then by Theorem 3.3,
there is not any non-trivial Ricci soliton on (R3/Γn, g). Hence, b is necessarily
a non-zero real number. Since X2 = b is a non-zero constant function and c =
0, then by equation (3.6), ‖X‖2 = b2L2(z). Therefore, X = (X1(y, z), b, 0) is a
space-like vector field. In the following, we determine some solutions of equations
(3.28) and (3.29) when ∂yzν = 0.

First, we suppose that ∂yν = 0 that implies ∂yzν = 0. Then ν is constant
or ν = ν(z) is a periodic function. Thus, by equation (3.35), X1 = X1(z) is a
periodic function. But, by equation (3.36), we have

2ΛX ′1(z) + (∂yµ+ 2nΛ)b =
∂yyµ

2L2(z)
+
L′′(z)

L(z)
. (3.42)

If ∂yyµ = 0, then µ = F (z)y +G(z). Since µ is a biperiodic function, then µ is a
constant or a periodic function of z. Hence, by equation (3.42), we have

2ΛX ′1(z) + 2nbΛ =
L′′(z)

L(z)
. (3.43)

Therefore,

X1(z) =

∫
L′′(z)

2ΛL(z)
dz − nbz (3.44)
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is a periodic function because b =
∫ 1
0 (2nΛL)−1L′′ dz. See [5] for the integral of a

periodic function. But, if ∂yyµ 6≡ 0, then by equation (3.42), we get a first-order
ordinary differential equation with respect to the y variable for the function ∂yµ.
Therefore,

µy = e2bL
2(z)y

∫
e−2bL

2(z)y[2ΛX ′1(z) + 4nbΛL2(z)− 2LL′′(z)] dy +G(z)

=
2ΛX ′1(z) + 4nbΛL2(z)− 2LL′′(z)

−2bL2(z)
+G(z). (3.45)

Hence, ∂yµ is a periodic function of z which implies that µ cannot be a biperiodic
function. Thus, ∂yyµ = 0 and µ is a constant or a periodic function of z. Now we
suppose that ∂zν = 0 that implies ∂yzν = 0. Then ν is a constant or a periodic
function of y. Thus, by equations (3.35) and (3.36),

X1 = G(z)− Λ−1bν(y),

where

2ΛG′(z) + (∂yµ+ 2nΛ)b = 2−1L−2(z)∂yyµ+ L−1(z)L′′(z). (3.46)

But, similar to what we saw in equation (3.42), equation (3.46) is satisfied if and
only if µ is a constant or µ = µ(z) a periodic function of z. Thus,

G(z) =

∫
L′′(z)

2ΛL(z)
dz − nbz, (3.47)

is a periodic function. Finally, we suppose that ∂yzν = 0, but neither ∂yν = 0 nor
∂zν = 0. Hence, ν(y, z) = κ(y) + η(z) for some periodic functions κ(y) and η(z).
Therefore, by equations (3.35) and (3.36), X1(y, z) = G(z) − bΛ−1κ(y), where
G(z) is a periodic function that satisfies equation (3.46). Hence, µ is a constant
or a periodic function of z. Thus we get the periodic function G(z) by (3.47) for
a given nonvanishing periodic function L(z).

Now we suppose that ∂yzν 6≡ 0. By integrating equation (3.35) with respect
to y, ΛX1 = E(z)− bν, where E(z) is an arbitrary periodic function. If we take
the partial derivative of this equation with respect to z, then 2Λ∂zX1 = E′(z)−
2b∂zν. Thus, by substituting E′(z)−2b∂zν instead of 2Λ∂zX1 in equation (3.36),
we have

∂yzν − 2bL2∂zν = −E′L2 − bL2∂yµ− 2nbΛL2 +
1

2
∂yyµ+ LL′′, (3.48)

which is a first-order ordinary differential equation with respect to the y variable
for the function ∂zν. Therefore,

∂zν = e2bL
2y

∫
L2e−2bL

2y[−E′ − bL2∂yµ− 2nbΛ +
1

2L2
∂yyµ+

L′′

L
] dy +G(z)

=
1

2b
E′(z) +

1

2
∂yµ−

L′′

2bL
+ nΛ +G(z). (3.49)

Thus, ∂yyµ− 2∂yzν = 0 and we take equations (3.30) and (3.31) from (3.35) and
(3.36), respectively.
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Remark 3.6. By Theorem 3.5, there is not any non-trivial Ricci soliton on
the parabolic torus (R3/Γn, g), prescribed in Proposition 3.1 when θ = 0, L =
L(z) and ∂yzν 6≡ 0, whereas µ is a constant or a periodic function of z.

In the following, we consider the gradient Ricci soliton equation on the
parabolic torus (R3/Γn, g). We see that the potential function f is a periodic
function of ξ = z − θy.

Proposition 3.7. If (R3/Γn, g, f) is a gradient Ricci soliton, where
(R3/Γn, g) is defined in Proposition 3.1, then f = f(z − θy) is a periodic func-
tion with period 1 and θ is an integer number that satisfies the partial differential
equation

Lfzz = ∂yH + θ∂zH + Lzz, (3.50)

where

H(y, z) :=
nΛ

L
+
θ

2

∂zµ

L
+

1

2

∂yµ

L
− ∂zν

L
. (3.51)

Proof. Let f be a smooth real-valued function on R3/Γn that defines a gradi-
ent Ricci soliton in the steady case with respect to the metric g defined by Propo-
sition 3.1. By considering the gradient Ricci soliton equation, we get ∂xxf = 0
that implies f = f1(y, z)x+ f2(y, z). Since f is Γn-invariant, then f = f(y, z) is
a (1, 1)-biperiodic function. On the other hand, by Proposition 2.3, ∇f is a null
vector field. Thus, ‖∇f‖2 = (θ∂zf + ∂yf)/L2 = 0 that implies f = f(z − θy)
to be a (1, 1)-biperiodic function. Hence, f = f(z − θy) is a periodic function
with period 1 and θ is an integer number. Finally, we get equation (3.50) by the
gradient Ricci soliton equation.

4. Non-gradient closed pseudo-Riemannian steady Ricci soli-
tons with time-like or null potential vector fields

In this section, we construct the examples of non-trivial and non-gradient
closed pseudo-Riemannian steady Ricci solitons with zero scalar curvature in the
neutral signature (2, 2) such that the associated potential vector fields can be
time-like or null.

For any n ∈ N, define the quotient manifold R4/Γn, where Γn is the group of
diffeomorphisms generated by the maps

τt(t, x, y, z) = (t+ 1, x, y, z),

τx(t, x, y, z) = (t, x+ 1, y, z),

τy(t, x, y, z) = (t, x, y + 1, z),

τz,n(t, x, y, z) = (t, x+ ny, y, z + 1),

and consider the metric g that is the metric induced by the metric g̃ on R4 whose
matrix in the Γn-invariant frame field (∂t, ∂x, ∂y + nz∂x, ∂z) is

−K2(z) 0 0 0
0 0 0 Λ
0 0 L2(z) 0
0 Λ 0 0

 , (4.1)
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where L2(z) and K2(z) are positive periodic functions and Λ is a non-zero real
number. Then (R4/Γn, g) is an orientable closed pseudo-Riemannian manifold in
the neutral signature (2, 2) with zero scalar curvature. In this case, the image of
∂x is a well-defined light-like and parallel vector field. Furthermore,

Ric(g) = −
(
L′′(z)

L(z)
+
K ′′(z)

K(z)

)
ω4 ⊗ ω4, (4.2)

where ω4 is the 1-form associated with the image of the null parallel vector field
∂x. A curve γ(s) = (t(s), x(s), y(s), z(s)) is a geodesic curve on (R4, g̃) if its
components satisfy the second-order system of differential equations:

t′′(s) = 2t′(s)z′(s)K ′(z(s))K−1(z(s)), (4.3)

x′′(s) = Λ−1
(
y′2(s)L(z(s))L′(z(s))− t′2(s)K(z(s))K ′(z(s))

)
− ny′(s)z′(s), (4.4)

y′′(s) = nΛz′2(s)L−2(z(s))− 2y′(s)z′(s)L−1(z(s))L′(z(s)), (4.5)

z′′(s) = 0. (4.6)

By equation (4.6), we have z(s) = as+ b. If a 6= 0, then equation (4.5) leads to

y′′(s) +
2aL(as+ b)L′(as+ b)

L(as+ b)
y′(s)− na2Λ

L2(as+ b)
= 0. (4.7)

Hence,

y′(s) =
na2Λs+ c3
L2(as+ b)

(4.8)

that implies

y(s) =

∫
na2Λs+ c3
L2(as+ b)

ds+ e3. (4.9)

Also, by equation (4.3), we have

t′(s) =
c1

K2(as+ b)
, (4.10)

and thus

t(s) =

∫
c1

K2(as+ b)
ds+ e1. (4.11)

Now, by substituting the functions z′(s), y′(s) and t′(s) in equation (4.4), we
have

x′′(s) =
−na(na2Λs+ c3)

L2(as+ b)
+

(na2Λs+ c3)
2L′(as+ b)

ΛL3(as+ b)
− c21K

′(as+ b)

ΛL3(as+ b)
. (4.12)

By integrating equation (4.12) and using the integration by parts formula, we get

x′(s) =
−(na2Λs+ c3)

2

2aΛL2(as+ b)
+

c21
2aΛK2(as+ b)

+ c2. (4.13)
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Then,

x(s) =

∫
−(na2Λs+ c3)

2

2aΛL2(as+ b)
ds+

∫
c21

2aΛK2(as+ b)
ds+ c2s+ e2. (4.14)

Thus, if a 6= 0 and z(s) = as + b, then equations (4.9), (4.11), and (4.14)
show that every maximal geodesic is defined on the entire real line. Furthermore,
by equations (4.8), (4.10) and (4.13), ‖γ′(s)‖2 = 2ac2Λ. Therefore, geodesics
can be space-like, time-like, or null. Also, when a = 0 and z(s) is a constant
function, every maximal geodesic is defined on the entire real line. Thus, (R4, g̃)
is geodesically complete that implies the quotient manifold (R4/Γn, g) to be a
geodesically complete compact manifold.

Let X = (X1, X2, X3, X4) be a vector field on R4/Γn. Then X defines a
non-trivial steady pseudo-Riemannian Ricci soliton with respect to the metric g
if and only if X4 is the zero function, X1 ≡ a and X3 ≡ c are constant functions,
and X2 = X2(z) is a periodic function that satisfies the equation

2ΛX ′2(z) + 2ncΛ− L′′(z)

L(z)
− K ′′(z)

K(z)
= 0. (4.15)

Then,

X2(z) =
1

2Λ

∫ (
L′′

L
+
K ′′

K

)
dz − ncz, (4.16)

where

c =
1

2nΛ

∫ 1

0

(
L′′

L
+
K ′′

K

)
dz (4.17)

is a non-zero real number that implies X2(z) to be a periodic function. Thus,
we see that for the given non-vanishing periodic functions L(z) and K(z), and a
non-zero real number Λ, there are many vector fields that differ only in their first
component, which is a constant function, that define a Ricci soliton on (R4/Γn, g).
But ‖X‖2 = c2L2−a2K2. Thus, as we see in the following, with a suitable choice
of the first component of the vector field X, we have Ricci solitons with space-like,
time-like, or null potential vector fields. If a = 0, then X is a space-like vector
field. Now we suppose that a 6= 0. Since L2(z) and K2(z) are smooth positive
periodic functions and thus bounded, then there are positive real numbers m and
M such that c2L2(z) < M and ma2 < a2K2(z). Hence, if we choose a such
that m−1M < a2, then ‖X‖2 < 0 and X is a time-like vector field. Therefore,
for the given non-vanishing periodic functions L(z) and K(z), and a non-zero
real number Λ, with a suitable choice of a we can construct non-trivial steady
pseudo-Riemannian Ricci solitons with time-like potential vector field which is
not a gradient vector field.

If K(z) = bL(z), where b is a non-zero real number, then equation (4.15)
leads to

ΛX ′2 + ncΛ− L−1L′′ = 0.

Thus,

X2 =

∫
(ΛL)−1L′′ dz − ncz,
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where c = (nΛ)−1
∫ 1
0 L
−1L′′ dz is a non-zero real number that implies X2(z) to

be a periodic function. But ‖X‖2 = L2(c2 − a2b2). Let a2 = b−2c2, then we have
a non-trivial steady pseudo-Riemannian Ricci soliton with null potential vector
field.

Remark 4.1. It was proved in [14] that a compact pseudo-Riemannian mani-
fold that admits a time-like conformal-Killing vector field is geodesically complete.
But the quotient manifold (R4/Γn, g) is an example of a geodesically complete
compact pseudo-Riemannian manifold that cannot admit a (time-like) conformal-
Killing vector field. However, if we let X = (a, b, 0, 0), where a and b are non-zero
real numbers, then X defines a time-like Killing vector field on (R4/Γn, g), and
‖X‖2 = −a2K2(z).

Remark 4.2. If we consider K2(z) instead of −K2(z) in the matrix represen-
tation of the metric g̃, (4.1), then (R4/Γn, g) is a compact Lorentzian pp-wave
manifold in dimension 4. In this case, the associated potential vector field with
the structure of Ricci soliton is necessarily a space-like vector field.

References

[1] M.M. Akbar and E. Woolgar, Ricci solitons and Einstein-scalar field theory, Classical
Quantum Gravity 26 (2009), No. 5, 055015.

[2] C. Boubel and P. Mounoud, Affine transformations and parallel lightlike vector
fields on compact Lorentzian 3-manifolds, Trans. Amer. Math. Soc. 368 (2016),
2223–2262.
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Monographs, 3, Ame. Math. Soc., Providence, RI; Clay Mathematics Institute,
Cambridge, MA, 2007.

[13] B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Pure and
Applied Mathematics, 103, Academic Press, New York, 1983.

[14] M. Sánchez, An Introduction to the Completeness of Compact Semi-Riemannian
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Деякi нетривiальнi та неградiєнтнi замкнутi
псевдо-римановi стiйкi солiтони Рiччi

Maryam Jamreh and Mehdi Nadjafikhah

У статтi вивчається рiвняння солiтона Рiччi на компактних 3-вимiр-
них незвiдних лоренцевих многовидах, що допускають паралельне свiт-
лоподiбне векторне поле iз замкнутими орбiтами. Цi компактнi струк-
тури, якi є геодезично повними, допускають нетривiальнi, тобто не ейн-
штейновi та неградiєнтнi, стацiонарнi солiтони Рiччi з нульовою скаляр-
ною кривиною, якi показують рiзницю мiж замкнутими рiмановими та
псевдо-рiмановими солiтонами Рiччi. Асоцiйоване потенцiйне векторне
поле солiтонної структури Рiччi у всiх випадках, якi ми будуємо на цих
многовидах, є простороподiбним векторним полем. Однак ми показує-
мо, що є приклади замкнутих псевдо-рiманових стiйких солiтонiв Рiччi
в нейтральнiй сигнатурi (2, 2) з нульовою скалярною кривиною, такi, що
асоцiйоване потенцiйне векторне поле може бути часоподiбним чи нульо-
вим. Цi компактнi многовиди також геодезично повнi i не допускають
конформне кiлiнгове векторне поле.

Ключовi слова: солiтони Рiччi, замкнутi псевдорiмановi многовиди,
паралельне свiтлоподiбне векторне поле.
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