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Some Non-Trivial and Non-Gradient Closed
Pseudo-Riemannian Steady Ricci Solitons

Maryam Jamreh and Mehdi Nadjafikhah

In this paper, we study the Ricci soliton equation on compact indecom-
posable Lorentzian 3-manifolds that admit a parallel light-like vector field
with closed orbits. These compact structures that are geodesically complete,
admit non-trivial, i.e., non-Einstein and non-gradient steady Lorentzian
Ricci solitons with zero scalar curvature which show the difference between
closed Riemannian and pseudo-Riemannian Ricci solitons. The associated
potential vector field of a Ricci soliton structure in all the cases that we con-
struct on these manifolds is a space-like vector field. However, we show that
there are examples of closed pseudo-Riemannian steady Ricci solitons in the
neutral signature (2,2) with zero scalar curvature such that the associated
potential vector field can be time-like or null. These compact manifolds are

also geodesically complete and they cannot admit a conformal-Killing vector
field.
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1. Introduction

Let (M, g) be a pseudo-Riemannian manifold and X be a smooth vector field
on M. We say that the triple (M, g, X) is a pseudo-Riemannian Ricci soliton if
the equation

Lx(g) + Ric(g) = Ag (1.1)

is satisfied, where Ly is the Lie-derivative with respect to X, Ric is the Ricci
tensor and A is a real number. A Ricci soliton is called shrinking, steady or
expanding according to whether A > 0, A = 0, or A < 0, respectively. If for a
smooth function f on a manifold (M, g), X = 1/2V f, where Vf is the gradient
of f, then equation (1.1) leads to

Hessf(g) + Ric(g) = Ag, (1.2)

where Hess; denotes the Hessian of the function f. In this case, the soliton is
called the gradient Ricci soliton and f is called the potential function. In what
follows we let (M, g, f) be a gradient Ricci soliton.
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Ricci solitons are natural generalizations of Einstein manifolds. If X is a
Killing vector field in the Ricci soliton equation (1.1) or f is a constant function
in the gradient Ricci soliton equation (1.2), then we obtain the Einstein equation
Ric(g) = Ag and the soliton is an Einstein manifold or, in the steady case, it is
a Ricci-flat manifold. The concept of Ricci solitons was first introduced in [8] by
Hamilton as a self-similar solution of Hamilton’s Ricci flow, 9yg(t) = —2Ric(g(t)),
on Riemannian metrics. Ricci flow is an evolutionary intrinsic geometric flow
introduced in 1982 by Hamilton on Riemannian metrics for studying the topology
of 3-dimensional manifolds [9].

A soliton for the Ricci flow is a metric that changes only by rescaling and by
a pullback of a one-parameter family of diffeomorphisms as it evolves under the
Ricci flow. If we have a Riemannian or pseudo-Riemannian metric g, a complete
vector field X and a real number A (all independent of time) that satisfy the
Ricci soliton equation (1.1), then g(t) = o(t)$;(g) is a solution of the Ricci flow,
where o(t) := 1 — 2\t and ¢; is a family of diffcomorphisms generated by the
t-dependent vector field o(t)~1X. See [7] for more details.

Geometry of Riemannian Ricci solitons has been studied widely because of
the role of the Ricci flow in solving the Poincaré conjecture and Thurston’s ge-
ometrization conjecture that were finally proved by Perelman [12]. Ricci solitons
often arise as limits of dilations of singularities in the Ricci flow [4]. The geo-
metric structure of Ricci solitons in pseudo-Riemannian setting has been stud-
ied by a number of authors. For some recent results and further references on
pseudo-Riemannian Ricci solitons, we may refer to [3] and references therein.
Also, solutions of Euclidean signature Einstein gravity coupled to a free massless
scalar field with nonzero cosmological constant are associated with shrinking or
expanding Ricci solitons [1].

From the work by Perelman, we know that closed Riemannian Ricci solitons
are necessarily gradient and, moreover, closed expanding or steady Ricci solitons
are necessarily Einstein [6], which is derived from maximum principles for the
Laplace operator that is an elliptic operator on Riemannian manifolds. In [10],
we show the existence of non-trivial and non-gradient steady Ricci solitons on a
special group of compact indecomposable Lorentzian 3-manifolds admitting a par-
allel light-like vector field with closed orbits. The aim of this paper is to study the
Ricci soliton equation on compact indecomposable Lorentzian 3-manifolds with
a parallel light-like vector field with closed orbits, that were classified recently
in [2], in order to construct more examples of closed Lorentzian steady Ricci soli-
tons with zero scalar curvature. In each case, the associated potential vector field
with the Ricci soliton structure is space-like. Furthermore, these Ricci solitons are
geodesically complete because compact indecomposable Lorentzian 3-manifolds
with a parallel light-like vector field are pp-waves, a special class of Lorentzian
manifolds admitting a parallel null vector field, which occur whenever the Ricci
tensor is completely determined by the parallel null vector. It was proved in [11]
that every compact pp-wave is geodesically complete. Also, we construct the
examples of closed pseudo-Riemannian steady Ricci solitons in dimension 4 with
the neutral signature (2,2) that admit a parallel light-like vector field. They are
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geodesically complete and do not admit a conformal-Killing vector field. But
they can admit a time-like Killing vector field. The potential vector field asso-
ciated with a Ricci soliton structure, in this case, can be space-like, time-like or
null. Whereas for a non-trivial gradient close pseudo-Riemannian steady Ricci
soliton with constant scalar curvature, if there exists, the gradient vector field is
necessarily a null vector field. Furthermore, the vector field X associated with
a Ricci soliton structure is a harmonic vector field [15], and in our examples of
closed pseudo-Riemannian Ricci solitons, X is divergence free and ||Lxg]||* = 0.

This paper is organized as follows. In Section 2, we give some preliminaries
about Ricci soliton structures. Section 3 is devoted to studying the Ricci soliton
structure on orientable compact indecomposable Lorentzian manifolds admitting
a parallel light-like vector field with closed orbits. Finally, in Section 4, we
construct the examples of non-trivial and non-gradient closed pseudo-Riemannian
Ricci solitons with the neutral signature (2, 2) in the steady case with zero scalar
curvature.

2. Preliminaries

Let (M,g,X) be an n-dimensional Ricci soliton. Then, by tracing equation
(1.1), we get
Div(X) 4+ 7 = nA, (2.1)

where 7 is the scalar curvature and Div(X) is the divergence of the vector field
X. If the manifold M is closed and orientable, then by the Divergence Theorem,
we have

/ T dpg = nAvol(M). (2.2)
M

So A =n~!r, where r = vol(M)~! [, 7 dpg is the mean scalar curvature.

Proposition 2.1. Let (M, g, X) be a closed pseudo-Riemannian Ricci soliton
with constant scalar curvature. Then T = nX and Div(X) = 0. In particular, in
the steady case the scalar curvature is zero.

Proof. If (M, g, X) is a closed pseudo-Riemannian Ricci soliton with constant
scalar curvature, then by (2.2), we have 7 vol(M) = nAvol(M). Therefore, 7 =
nA. Thus, equation (2.1) implies that Div(X) = 0. O

Remark 2.2. Let (M,g, f) be a gradient Ricci soliton. Then, by tracing
equation (1.2), we have
Agf =nA—r, (2.3)

where A, is the Laplace-Beltrami operator with respect to the pseudo-Rieman-
nian metric g that is an ultrahyperbolic operator in pseudo-Riemannian cases or
normally hyperbolic operator when the metric is given in the Lorentzian signa-
ture. Since the solutions of the Laplace equation A, on a closed Riemannian man-
ifold are necessarily trivial, i.e., constant functions, then we have no non-trivial
closed Riemannian Ricci solitons with constant scalar curvature. Whereas, in
pseudo-Riemannian cases, the Laplace equation may have non-trivial solutions.
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Therefore, we can find non-trivial examples of pseudo-Riemannian gradient Ricci
solitons with constant scalar curvature.

Proposition 2.3. The gradient vector field associated with a closed pseudo-
Riemannian steady gradient Ricci soliton with constant scalar curvature is a null
vector field.

Proof. Let (M, g, f) be a gradient Ricci soliton with constant scalar curvature.
Then ||V f||? — 2\f = const, see [3, Lemma 11.14]. Therefore, in the steady case,
[V£]|> = const. On the other hand, for an arbitrary function f on a pseudo-
Riemannian manifold (M, g), we have Ay f? = 2fA,f + ||V f||?, see [13, p. 94].
Hence, if (M, g) is closed and orientable, then by the divergence theorem,

/ IV 112 dg = / 2 Ay f diy. (2.4)
M M

Now we suppose that (M, g, f) is a closed gradient Ricci soliton with constant
scalar curvature. Then, by Proposition 2.1, we have A,f = 0. Therefore, equa-
tion (2.4) implies that [, |V f ||* dug = 0. But, since ||V f||? is constant, then
|V f||? is necessarily zero. O

3. Ricci solitons on orientable, compact indecomposable Lo-
rentzian 3-manifolds admitting a parallel light-like vector
field with closed orbits

For any n € N, we let T',, be a group of diffeomorphisms of R3 generated by
the maps

(2, y,2) = (z+ 1,y, 2),
Ty('x:yvz) = (xay+ 1>Z))
Tz,n(-raya Z) = (1: +ny,y,z+ 1)

that preserve the moving frame (9,0, + nz0,,0,) on R3. We call R3/T,, a
parabolic torus, as a suspension of the parabolic automorphism 7, ,(z,y, z) of
R2/7Z2 over R/Z. See [2] for more details.

Proposition 3.1. If (M,g) is an orientable, compact indecomposable
Lorentzian 3-manifold endowed with a parallel light-like vector field with closed
orbits, then it is isometric to (R3 /Ty, g), where g is the metric induced by a met-
ric § on R® whose matriz in the T'p-invariant moving frame (dy, 0y + nz0, +
00,,0.), 0 € R, is
0 0 A
0 L%(y,2) v(y,2) |, (3.1)
A vy, 2) wly,z)

where L, p and v are (1, 1)-biperiodic functions and A is a non-zero real number.

Also, L is a non-vanishing function because of the non-degeneracy of the metric
g at any point on the manifold.
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The proof can be found in [2, Section 4].

Proposition 3.2. Let X = (X1, X2, X3) be a vector field on R3/T,,, where
X; = Xi(z,y,2), 0 <i <3, are real-valued functions that are Ty -invariant. Then
X defines a Ricci soliton in the steady case with respect to the metric g if X1 =
X1(y, z) and X9 = Xo(y, 2) are (1,1)-biperiodic functions and Xs = c is constant
that satisfy the following partial differential equations:

8y(LX2) + HaZ(LXQ) + cd,L =0, (3.2)
A0y X1 + 00.X1 — nc) + (9, Xa + 00, Xo)v
+ (Oyv + 00,v) Xo + L*0. X5 + cO,v = 0, (3.3)

L2A0. X1 + 200, X2 + (Oyp + 0010 + 2nA) X2 + cO, ]
=H,+0H, + L., (3.4)

where .
H(y,z) := ﬁ<2n1\+az,u+5y,u—28zu>. (3.5)
Furthermore,
| X|? = L2X3 4 2¢A X + 2cv X + Ap. (3.6)

Proof. Since the scalar curvature of (R3/T',,g) is zero, then by Proposi-
tion 2.1, we can only have steady Ricci solitons on these manifolds. By con-
sidering the Ricci soliton equation in the steady case with respect to the metric
g, we get a system of partial differential equations. In particular, we have 9, X3 =
0 that implies X3 = X3(y, 2) to be a (1, 1)-biperiodic function. Thus, we get the
following system of partial differential equations:

A9y X3 +00.X3) + L*0, X2 = 0, (3.7)
A0 X1 + 0.X3) + 0, X = 0, (3.8)
20(0y X3 + 00,X3) + 2L(nzLdy X + 0y(LX>5)

+00.(LX3) + X30,L) = 0, (3.9)

v0. X3 + (0, X3 + 00, X3)p + L. X>
+ (8yX2 +60,X9 + nzachg)y
+ A(OyXl + 00, X1 +nz20, X1 — nXg)

+ Xo(0yv + 00,v) + X30.v =0, (3.10)
200, X3 + 200, X2 + Xo(2nA + Oy + 00, 11) + 200, X1 + X30. 10
= L7 (0yH + 00.H + 0..). (3.11)

If we take the partial derivative of equation (3.7) with respect to x, then 9,, X2 =
0. Since Xy is I'-invariant, then Xo = Xa(y, 2) is a (1, 1)-biperiodic function.
Also, by taking the partial derivative of equation (3.8) with respect to x, we have
022 X1 = 0 that implies X; = X1 (y, 2) to be a (1, 1)-biperiodic function, because
X3 is I'p-invariant. Therefore, equation (3.8) leads to 0,X3 = 0. Hence, X3 =
X3(y) is a periodic function. But, by equation (3.7), X5(y) = 0. Therefore, X3 =
¢ is a constant function. Thus, equations (3.9), (3.10) and (3.11) lead to (3.2),
(3.3) and (3.4), respectively. O
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In the following, we identify the behavior of Ricci solitons when 6 = 0. We
show that when L is a non-zero constant function or when L just depends on v,
there are not any non-trivial Ricci solitons. But if L just depends on z, then we
can construct non-trivial Ricci solitons in the steady case that admit a parallel
light-like vector field. The potential vector fields in all these cases are space-like
that cannot be gradient vector fields.

Theorem 3.3. If we consider the metric g defined in Proposition 3.1 on
the parabolic torus R3/T',, when L is a non-zero constant function, v(y,z) and
w(y, z) are arbitrary (1,1)-biperiodic functions and 6 = 0, then there are not any
non-trivial Ricci solitons on (R3/T,,, g).

Proof. Suppose that L = 1 but v = v(y,2) and pu = pu(y, z) are arbitrary
(1,1)-biperiodic functions. If X = (Xi, X9, X3) is a vector field that defines a
Ricci soliton structure on R3 /T, with respect to the metric g, then by Proposi-
tion 3.2, X3 = ¢ is a constant function and due to the assumptions, we get the
system of partial differential equations:

0y X2 =0, (3.12)

A0y X1 — nc) + 0y(vX2) + 0. X2 + cO.v =0, (3.13)
1

2A0. X1 + 2v0, X5 + (ayu + 2nA)X2 +cOu = §8yyu — ayzy. (3.14)

By equation (3.12), Xo = Xy(z) is a periodic function. Now, by integrating
equation (3.13) with respect to y, we have

AX) +vXs(2) =ncAy — X5(2)y + c/azy dy + G(2). (3.15)
Since the left-hand side of equation(3.15) is a (1, 1)-biperiodic function, then G(z)
is periodic and
1
neA — X5(2) + c/ o.vdy = 0. (3.16)
0

See [5] for the integral of a periodic function. Now, if equation (3.16) is satisfied,
then

/o1 [ncA - Xj(2) +e /Olaz”dy] et o
But /01 X)(2)dz = X5(1) — X5(0) = 0,

because X3 is a periodic function with period 1. Also, since v(y, 2) is a (1,1)-
biperiodic function, then we have

1,1 1,1 1
/ / Ovdydz = / / Ovdzdy = / [v(y,1) — v(y,0)] dy = 0.
0 Jo 0o Jo 0

Hence, ncA = 0 which implies ¢ = 0. Thus, X3 is the zero function. Therefore,
equation (3.16) implies that X}(z) = 0. Since X is periodic, then X, is a
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constant function. Let Xo = b. Hence we have the following system of partial
differential equations:

ADy X1 + bd,w =0, (3.18)

1
200, X1 + (Oyp + 2nA)b = iﬁyyu — Oy . (3.19)

By integrating equation (3.19) with respect to y, we get

1
5 0ytt — 0,v — by = 2nbAy + 2A / 0. X1 dy + G(2). (3.20)

Since the left-hand side of equation (3.20) is a (1, 1)-biperiodic function, then
G(z) is periodic and

1
nb+/ 0, X1dy=0
0

that implies

1 1
/ [nb + / 0.X1 dy]dz = 0.
0 0

Since X is a (1, 1)-biperiodic function, then

1,1
/ / 0, X1dydz=0.
0 JO

Therefore, nb = 0. Thus, b = 0, and X3 is the zero function. Now equation (3.18)
implies that 9,X1 = 0. Hence, X; = Xi(2) is a periodic function of z. Now, by
equation (3.20), we have

Oyp — 20,v = 4AX1(2)y + G(2).

Since the left-hand side of this equation is biperiodic, then X} (z) = 0 that implies
X1 to be a constant function. Therefore, Lxg = 0, and X is a Killing vector
field. O

Theorem 3.4. Let g be the metric defined in Proposition 3.1 on the parabolic
torus R3 /T, when L = L(y) is a non-vanishing periodic function, v(y,z) and
w(y, z) are arbitrary (1,1)-biperiodic functions and 6 = 0. Then there are not
any non-trivial Ricci solitons on (R3/T,, g).

Proof. Let X = (X1, X2, X3) be a vector field on (R3/I',,g) that defines a
Ricci soliton with respect to the prescribed metric ¢ when L = L(y) is a periodic
function and 8 = 0. Then, by Proposition 3.2, X3 = ¢ is a constant function,
as well as X7 = X;(y,2) and Xy = Xs(y, 2) are (1, 1)-biperiodic functions that
satisfy the following system of partial differential equations

9y(L(y)X2) = 0, (3.21)
A(8y X1 — ne) + 0y (vX2) + L ()9, X2 + cd,v = 0, (3.22)
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200, X1 + 200, X5 + (Oyp + 2nA) Xo + O,
_ —nAL'(y) 1 B, ( Oy ) 1 ( 0.V
L3(y) 2L(y) " L(y)”  L(y) * L(y)

By integrating equation (3.22) with respect to z, we have

). (3.23)

L*Xy +cv = —A/((?yXl —nc)dz — /8y(I/X2) dz + F(y).

Since the left-hand side of this equation is (1, 1)-biperiodic, then F(y) is periodic
and

1 1
A/ (8yX1—nc)dz—/ Oy(vX2)dz =0
0 0

that implies

/OI[A/01(3yX1 —nc)dz — /01 8,(vX2) dz] dy = 0.

But X; and v Xy are (1, 1)-biperiodic functions. Hence,

1 1 11
/ / Oy X1 dzdy = / / 0y(vX2) dzdy = 0.
0 JO 0 JO

Therefore, ncA = 0 that implies ¢ = 0. Thus, X3 is the zero function. But,
by equation (3.21), Xy = L™'(y)F(z), where F(z) is a periodic function. By
substituting L~!(y)F(z) instead of X5 in equation (3.22) and integrating this
equation with respect to y, we have

AX 4 VL W)F() = ~F(2) [ L) dy+ Go).

Since the left-hand side of this equation is (1, 1)-biperiodic, then G(z) is periodic
and

F(2) /O L(y) dy =0

that implies F’(z) = 0 because fol L(y) dy is a non-zero real number. Since F' is
periodic, then F' is a constant function. Let F'(z) = a, where a is a real number.
Thus X2 = aL~!(y). Then equation (3.22) leads to

A9y X1 +ady(vL ™) =0
that implies X1 = —a(AL)"v + G(z). But, by equation (3.23), we have

—2a0,v + 2AG'(2) + adyp + 2nal
B —nAL'(y)

- “oiy” o (1) o () 20
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By integrating equation (3.24) with respect to y, we get
nA n Oype Ozv

L 2L L

—ap = 2A(na+G'(2))y — 2a / ovdy+ H(z). (3.25)

Since the left-hand side of equation (3.25) is (1, 1)- biperiodic, we obtain

1
2A(na — G'(2)) + Qa/ O,vdy =0
0

that implies
1 1
/ [2A(na + G'(2)) + 2a/ O.vdy|dz = 0.
0 0

Since G(z) is periodic and v is biperiodic, then

1 1
/ G'(2)dz = / 0,vdzdy = 0.
0 0

Therefore, 2naA = 0. Thus, a = 0, and X5 is the zero function, as well as X =
X1(#) is a periodic function of z. Now equation (3.23) leads to

By integrating equation (3.26) with respect to y, we get

nA n Oy Ozv
L(y)  2L(y) L(y)

Since the left-hand side of equation (3.27) is (1, 1)-biperiodic, then

—2AX](2) / L(y) dy + H(). (3.27)

1
AX{/ Ldy=0
0

that implies X{(z) = 0 because fol L dy is a non-zero real number. Hence, X; is
a constant funtion. Thus, Lx(g) =0, and X is a Killing vector field. O

Theorem 3.5. Let g be the metric defined in Proposition 3.1 on the parabolic
torus R3 /T, where L = L(2) is a non-vanishing periodic function, v(y,z) and
w(y, z) are arbitrary (1,1)-biperiodic functions and 6 = 0. Then for a vector
field X on (R3/T,.,g), if X defines a Ricci soliton in the steady case, then
X = (X1(y,2),b,0), where b = fOI(QnAL)*lL” dz is a mon-zero real number
and X1(y, z) is a (1,1)-biperiodic function that satisfies the system of partial dif-
ferential equations:

ADy X1 + bdyw =0, (3.28)

- gyt Oyv L"(z).
2L2%(z) L%*(2) L(2)

20, X1 + (Oyp + 2nA) (3.29)
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Specially, if Oy.v = 0, then p is constant or p = p(z) is a periodic function,
as well as for some periodic functions k(y) and n(z), v(y,z) = k(y) + n(2).
In this case, X1(y,z) = F(y) + G(z), where F(y) = —bA 1 k(y) and G(z) =
[(2AL)™IL"(2) dz — nbz are periodic functions. But, if Oy.v # 0, then Oyyp —
20y.v =0 and X1 = X1(y, 2) is a biperiodic function that satisfies the following
partial differential equations:

Ad, X1 + bdy = 0, (3.30)

"
N, X + Dyt + 20A)p = L), (3.31)

Also, || X ||>=b2L2(2) and X is space-like.

Proof. Let X = (X1, X2, X3) be a vector field on (R3/T,,g) that defines
a Ricci soliton with respect to the prescribed metric ¢ when L = L(z) is a
nonvanishing periodic function and ¢ = 0. Then by Proposition 3.2, X3 = ¢
is a constant function, as well as X; = X;(y,z) and X9 = Xa(y, 2z) are (1,1)-
biperiodic functions that satisfy the system of partial differential equations:

L(2)0y X2+ cL'(2) =0, (3.32)
A(9y X1 — nc) + 0y (vXa) + L*(2)0,Xa + cd,v = 0, (3.33)
Oyypr  Oyov  L"
212 L? L~

2A0, X1 + 200, X5 + (8yu +2nA) X9 + cOu = (3.34)

By integrating equation (3.32) with respect to y, we have
L(2) Xy = —cL'(2)y + G(2).

Since LX3 is a (1, 1)-biperiodic function, then G(z) is periodic and ¢ = 0. Hence,
X3 is the zero function. Now equation (3.32) implies that 9, X2 = 0. Therefore,
X9 = Xs(z) is a periodic function. On the other hand, by integrating equation
(3.33) with respect to y, we have

AX + Xo(2)v = —L?(2)X5(2)y + G(2).

Since the left-hand side of this equation is biperiodic, then G(z) is periodic and
X/} (z) = 0 that implies X2 to be a constant function. Let X9 = b. Then we get
the system of partial differential equations:

A0y X1 + boyv = 0, (3.35)
Oyt Oy.v | L'(2)
202(z) L2(2)  L(z)

200, X1 + (Oyu + 2nA)b = (3.36)

By integrating equation (3.36) with respect to y, we have

L//(Z)
L(z)

Oyp v
2L2(z)  L%(z)

b= 2A / 0. X1 dy+ (200 — )y 1 B2 (337)
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Since the left-hand side of equation (3.37) is (1, 1)-biperiodic, then F'(z) is peri-
odic and

1 L”(z)
2A 0,X1d 2nbA — =0, 3.38
| o1y 2 - 2 (3.39)
see [5] for the integral of a periodic function that implies
1 1 L"
/ 2A / 9.X1 dy + 2nbA — L)1 4, — o, (3.39)
0 0 L(z)

1 1
/ / 0,X1dydz=0
o Jo

because X7 is a (1, 1)-biperiodic function. Hence,

1
2nbA — / L' dz = 0.
0

Then,
1 1 L'
b= — —dz. A
2nA/O L (340)
But, by integration by parts, we have
1 7n 172
L L
—dz = — dz. 3.41
I L 40

Hence, fol L7'L" dz is a non-negative number. Therefore, b is a non-zero real
number unless L is a constant function. If L is constant, then by Theorem 3.3,
there is not any non-trivial Ricci soliton on (R3/T',,,g). Hence, b is necessarily
a non-zero real number. Since X5 = b is a non-zero constant function and ¢ =
0, then by equation (3.6), || X||? = b*L?(z). Therefore, X = (X1(y, 2),b,0) is a
space-like vector field. In the following, we determine some solutions of equations
(3.28) and (3.29) when Jy.v = 0.

First, we suppose that dyv = 0 that implies J,.v = 0. Then v is constant
or v = v(z) is a periodic function. Thus, by equation (3.35), X; = X;(z) is a
periodic function. But, by equation (3.36), we have

Oyy 1t L' (z)

2AX1(2) + (Oyu + 2nA)b = 2L2(2) + o) (3.42)

If Oyyp = 0, then p = F(z)y + G(z). Since p is a biperiodic function, then p is a
constant or a periodic function of z. Hence, by equation (3.42), we have

L//(Z)

2AX! 2nbA = .
1(2) + 2nb (%)

(3.43)

Therefore,
L//(Z)
Xi(z) = / INL(2) dz — nbz (3.44)
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is a periodic function because b = f01(2nAL)*1L” dz. See [5] for the integral of a
periodic function. But, if dy,p # 0, then by equation (3.42), we get a first-order
ordinary differential equation with respect to the y variable for the function 9.
Therefore,

oy = 2L (2)y / einLz(z)y[QAX{ (2) + 4nbAL*(2) — 2LL"(2)] dy + G(2)

_ 2AX{(2) 4+ 4nbAL*(z) — 2LL"(2)
B —2bL2(z)

+ G(2). (3.45)

Hence, 0y is a periodic function of z which implies that ;1 cannot be a biperiodic
function. Thus, 0y,u = 0 and p is a constant or a periodic function of z. Now we
suppose that 0,v = 0 that implies 9y, = 0. Then v is a constant or a periodic
function of y. Thus, by equations (3.35) and (3.36),

X1 =G(z) — Aflby(y),
where
2AG’ (2) + (Oyp + 2nA)b = 27 L72(2)dyyp + L™ H(2) L (2). (3.46)

But, similar to what we saw in equation (3.42), equation (3.46) is satisfied if and
only if p is a constant or = u(z) a periodic function of z. Thus,

G(z) = / 21;\”22) dz — nbz, (3.47)

is a periodic function. Finally, we suppose that d,.v = 0, but neither d,v = 0 nor
0.v = 0. Hence, v(y, z) = k(y) + n(z) for some periodic functions x(y) and n(z).
Therefore, by equations (3.35) and (3.36), Xi(y,2) = G(2) — bA~ k(y), where
G(z) is a periodic function that satisfies equation (3.46). Hence, p is a constant
or a periodic function of z. Thus we get the periodic function G(z) by (3.47) for
a given nonvanishing periodic function L(z).

Now we suppose that 0,.v # 0. By integrating equation (3.35) with respect
to y, AX; = E(z) — bv, where E(z) is an arbitrary periodic function. If we take
the partial derivative of this equation with respect to z, then 2A0,X; = E'(z) —
2b0,v. Thus, by substituting E’(z) — 2b0,v instead of 2A9, X, in equation (3.36),
we have

1
Oyzv — 2bL20,v = —E'L* — bL?0ypu — 2nbAL* + 50wyl + LL, (3.48)

which is a first-order ordinary differential equation with respect to the y variable
for the function 0,v. Therefore,

"

1 L
O = 2Ly / LPe PP E' — bL20, 1 — 2nbA + gadwi+ T ldy+G(2)

n

1 1 L
= _F' — - A . A4
55 (z) + 28y,u TS +nA+ G(2) (3.49)

Thus, Oyyp — 20y.v = 0 and we take equations (3.30) and (3.31) from (3.35) and
(3.36), respectively. O
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Remark 3.6. By Theorem 3.5, there is not any non-trivial Ricci soliton on
the parabolic torus (R®/T,,, g), prescribed in Proposition 3.1 when § = 0, L =
L(z) and 0,.v # 0, whereas p is a constant or a periodic function of z.

In the following, we consider the gradient Ricci soliton equation on the
parabolic torus (R3/I',,g). We see that the potential function f is a periodic
function of £ = z — 0y.

Proposition 3.7. If (R*/T,,g,f) is a gradient Ricci soliton, where
(R3/T,, g) is defined in Proposition 3.1, then f = f(z — 0y) is a periodic func-
tion with period 1 and 0 is an integer number that satisfies the partial differential
equation

Lf,,=0,H+00.H+ L., (3.50)
where
nA  00.u 10yp O.v
L 2L 2L L

Proof. Let f be a smooth real-valued function on R3/I',, that defines a gradi-
ent Ricci soliton in the steady case with respect to the metric g defined by Propo-
sition 3.1. By considering the gradient Ricci soliton equation, we get Oy, f = 0
that implies f = fi1(y, z)x + f2(y, z). Since f is I',-invariant, then f = f(y, z) is
a (1,1)-biperiodic function. On the other hand, by Proposition 2.3, V f is a null
vector field. Thus, |V f||?> = (00.f + 0,f)/L* = 0 that implies f = f(z — 0y)
to be a (1,1)-biperiodic function. Hence, f = f(z — 0y) is a periodic function
with period 1 and 6 is an integer number. Finally, we get equation (3.50) by the
gradient Ricci soliton equation. O

H(y,z):=

. (3.51)

4. Non-gradient closed pseudo-Riemannian steady Ricci soli-
tons with time-like or null potential vector fields

In this section, we construct the examples of non-trivial and non-gradient
closed pseudo-Riemannian steady Ricci solitons with zero scalar curvature in the
neutral signature (2,2) such that the associated potential vector fields can be
time-like or null.

For any n € N, define the quotient manifold R*/T,,, where I',, is the group of
diffeomorphisms generated by the maps

T(t,x,y,2) = (t+ 1,2,y, 2),

T=(t, Yy, 2) = Lz + 1,9, 2),

Tyt z,y,2) = (tx,y+1,2),
Ten(t, ,y,2) = (t,x +ny,y,z + 1),

and consider the metric ¢ that is the metric induced by the metric § on R* whose
matrix in the I',-invariant frame field (0, 0,, 0y + n20;, 0,) is

~K?(z) 0 0 0
0 0 0 A
0 0 L%(z) 0| (4.1)
0 A 0 0
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where L?(z) and K?(z) are positive periodic functions and A is a non-zero real
number. Then (R*/T,, g) is an orientable closed pseudo-Riemannian manifold in
the neutral signature (2,2) with zero scalar curvature. In this case, the image of
0, is a well-defined light-like and parallel vector field. Furthermore,

it = - (20 ), 6, 02

where wy is the 1-form associated with the image of the null parallel vector field
Oz. A curve y(s) = (t(s),z(s),y(s),2(s)) is a geodesic curve on (R*,g) if its
components satisfy the second-order system of differential equations:

t"(s) = 2t/(s)2' () K" (2(3)) K~ (2(s)), (4.3)

2"(s) = A1 (4 (s)L(2(5)) L' (2(5)) — t(s) K (2(5)) K (2()))

—ny/(s)#'(s), (4.4)
y'(s) = nA2"(s)L72(2(s)) — 24/ (5)'(s) L™ (2(s)) L' (=(5)), (4.5
Z"(s) =0. (4.6

By equation (4.6), we have z(s) = as + b. If a # 0, then equation (4.5) leads to

2aL(as + b)L' (as +b) na’A
" "(8) = —4—— = 0. 4.7
yils) + L+ Y9 T+ (47)
Hence,
2
; na“As + c3
= = 4.8
y (S) L2(a8 + b) ( )
that implies
na’As + c3
= | ————d 3. 4.9
W) = [ s+ e (49)
Also, by equation (4.3), we have
C1
t == 4.10
and thus
C1
= | ————+d . 4.11
s) /K2(as+b) sta (4.11)

Now, by substituting the functions 2'(s), 3/(s) and t(s) in equation (4.4), we
have
() = —na(na’As +c3)  (na’As + c3)?L'(as + b) B cAK'(as + b)
~ L%(as+b) AL3(as +b) AL3(as +b)"

(4.12)

By integrating equation (4.12) and using the integration by parts formula, we get

(s) = st o) i
~ 2aAL2(as+b)  2aAKZ2(as+b)

+ co. (413)
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Then,

—(na®As + c3)? c?
x(s) = / 5aAL%(as 7 b) ds + / SaAK2(as +0) ds + cas + e. (4.14)

Thus, if a # 0 and z(s) = as + b, then equations (4.9), (4.11), and (4.14)
show that every maximal geodesic is defined on the entire real line. Furthermore,
by equations (4.8), (4.10) and (4.13), ||7/(s)||* = 2aczA. Therefore, geodesics
can be space-like, time-like, or null. Also, when a = 0 and z(s) is a constant
function, every maximal geodesic is defined on the entire real line. Thus, (R*, §)
is geodesically complete that implies the quotient manifold (R*/T,,, g) to be a
geodesically complete compact manifold.

Let X = (X1, X9, X3,Xy) be a vector field on R*/T',,. Then X defines a
non-trivial steady pseudo-Riemannian Ricci soliton with respect to the metric g
if and only if X, is the zero function, X; = @ and X3 = c¢ are constant functions,
and X9 = X5(2) is a periodic function that satisfies the equation

L”(Z) B K”(Z) _
L(z)  K(2)

1 L// K//
Xo(z) = 21 / < + K) dz — ncz, (4.16)

L// K//
QRA/ ( - > dz (4.17)

is a non-zero real number that implies X3(2) to be a periodic function. Thus,
we see that for the given non-vanishing periodic functions L(z) and K(z), and a
non-zero real number A, there are many vector fields that differ only in their first
component, which is a constant function, that define a Ricci soliton on (R*/T,, g).
But || X||? = ¢?L? —a?K?. Thus, as we see in the following, with a suitable choice
of the first component of the vector field X, we have Ricci solitons with space-like,
time-like, or null potential vector fields. If a = 0, then X is a space-like vector
field. Now we suppose that a # 0. Since L?(z) and K?(z) are smooth positive
periodic functions and thus bounded, then there are positive real numbers m and
M such that ¢?L?(z) < M and ma? < a?K?(z). Hence, if we choose a such
that m~'M < a2, then || X]|> < 0 and X is a time-like vector field. Therefore,
for the given non-vanishing periodic functions L(z) and K(z), and a non-zero
real number A, with a suitable choice of a we can construct non-trivial steady
pseudo-Riemannian Ricci solitons with time-like potential vector field which is
not a gradient vector field.

If K(z) = bL(z), where b is a non-zero real number, then equation (4.15)
leads to

2AX5(2) + 2ncA — (4.15)

Then,

where

AXS +neh — L7 = 0.
Thus,
Xo = /(AL)_lL” dz — ncz
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where ¢ = (nA)~! fol L7'L" dz is a non-zero real number that implies X»(2) to
be a periodic function. But || X||? = L?(c? — a?b?). Let a® = b~2c?, then we have
a non-trivial steady pseudo-Riemannian Ricci soliton with null potential vector
field.

Remark 4.1. Tt was proved in [14] that a compact pseudo-Riemannian mani-
fold that admits a time-like conformal-Killing vector field is geodesically complete.
But the quotient manifold (R*/T,,,g) is an example of a geodesically complete
compact pseudo-Riemannian manifold that cannot admit a (time-like) conformal-
Killing vector field. However, if we let X = (a,b,0,0), where a and b are non-zero
real numbers, then X defines a time-like Killing vector field on (R*/T',,, g), and
X112 = —a?K2(2).

Remark 4.2. If we consider K?(z) instead of —K?(2) in the matrix represen-
tation of the metric §, (4.1), then (R*/I',,g) is a compact Lorentzian pp-wave
manifold in dimension 4. In this case, the associated potential vector field with
the structure of Ricci soliton is necessarily a space-like vector field.
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Jlesiki HeTpuBiaJIbHI Ta HEerpaJi€HTHI 3aMKHYTi
ICeBIO-PUMAaHOBI cTiliki cosritoHn Piuui

Maryam Jamreh and Mehdi Nadjafikhah

VY crarTi BUB9a€ETHCA piBHAHHSA cOiToHA Pivdi Ha KOMITAKTHUX 3-BUMip-
HUX HE3BiHUX JIOPEHIIEBUX MHOTOBHJAX, IO JIOMYCKAIOTH MapaJebHe CBiT-
JionioiibHe BEeKTOpHE ToJie i3 3aMkHyTuMu opbitamu. 1li KoMmakTHI cTpyK-
TypH, SKi € T€0Je3NTHO MOBHUMH, JOIIYCKAIOTh HETPUBiaabHi, TOOTO HE eiiH-
IMITEHOBI Ta HErpaIi€HTHI, cTaIioHapHi comiTonn Piadi 3 Hy/IbOBOIO CKaJIsIp-
HOIO KPUBHUHOIO, $IKi TTOKa3YIOTh PI3HUIO MiXK 3aMKHYTHUMH PIMAHOBUMU Ta
[ICEeBJ0-pIMAHOBUMU cojlitoHaMu Piguyi. AcoriiioBane moTeHIiine BEKTOPHE
110JIe COJIITOHHOI cTPYKTypu Piudi y Bcix Bumajkax, siki Mu OyIyeMO Ha IIX
MHOTOBHJIAX, € IIPOCTOPONOIIOHNM BeKTOpHUM mosieM. QHAK MU TIOKa3ye-
MO, IO € TPUKJIAINA 3aMKHYTHX ICEBI0-PIMAHOBAX CTIfKUX cosiToniB Piawi
B HeliTpaJibHiil curHaTypi (2,2) 3 HyJIbOBOIO CKAJISIPHOIO KPUBUHOIO, TaKi, 110
acortiffoBaHe OTEHITITHE BEKTOPHE T0JIe MOYXKe OyTH JacOMOMIOHIM YU HY/THO-
BuM. Ili KOMIIAKTHI MHOTOBUJIM TAKOXK I'€OJIE3NUTHO TIOBHI 1 HE JOIyCKAIOTH
KOH(OPMHE KiJIIHTOBE BEKTOPHE TIOJIE.

KirouoBi cioBa: comitonn Piudi, 3aMKHyTI TICeBIOpiMaHOBI MHOTOBHIH,
rapaJjieJIibHe CBITJIONOiOHE BEKTOPHE IIOJIE.
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