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Fractional Boundary Value Problem on the
Half-Line

Bilel Khamessi

We consider the semilinear fractional boundary value problem

DA (b(lx)Do‘u) =a(z)u’ in (0,00)
with the conditions lim, .o x2_5T1$)D"u(x) = limg 00 xl_BﬁD“u(Z‘) =
0 and lim, 022" %u(z) = limy 00 217 %u(x) = 0, where B, € (1,2), 0 €
(—1,1) and D? D® stand for the standard Riemann-Liouville fractional
derivatives. The functions a,b : (0,00) — R are nonnegative continuous
functions satisfying some appropriate conditions. The existence and the
uniqueness of a positive solution are established. Also, a description of the
global behavior of this solution is given.
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1. Introduction

In this paper, we consider the nonlinear boundary value problem of the frac-
tional differential equation

Dﬁ(b(lz)Do‘u) =a(x)u’, € (0,00),

limx2*5LDau(a:) = lim mlfﬁiDau(x) =0, (1.1)

z—0 b(x) z—00 b(x)

limz?"%u(z) = lim z'%u(z) = 0,

z—0 T—00
where 5, € (1,2) and 0 € (—1,1). The functions a and b are positive and
continuous in (0,00). They may be singular at = 0 and satisfy some conditions
related to Karamata’s regular variation theory. Our goal is to study the existence,
uniqueness and exact asymptotic behavior of positive solutions for problem (1.1).

Many papers on fractional differential equations have been recently received

much attention. The motivation for those works stems from the fact that frac-
tional equations serve as an excellent tool to describe many phenomena in var-
ious fields of science and engineering such as viscoelasticity, electro-chemistry,
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control theory, porous media, electromagnetism, etc. For examples and details,
see [15,17,24].

Therefore, the existence, uniqueness and asymptotic behavior of positive con-
tinuous solutions related to fractional differential equations have been developed
very quickly by many researchers. Most of the results are focused on develop-
ing the global existence and uniqueness of the solution on the finite intervals
(see [3,5,6,9,10,14,16,19,20,25,29]). However, to the best of our knowledge,
there are few papers devoted to the study of fractional differential equations on
the half-line, see, for instance, [1,2,4,7,8,13,18,21,22,27,28].

This work is motivated by recent advances in the study of fractional dif-
ferential equations involving nonlinearities with different boundary conditions.
Namely, in [20], Liu considered the fractional differential equation

D (p(x)®p(D%u(2))) = f(a,u(z)), =€ (0,1),

where 0 < o, 8 < 1, p € C(0,1), and f is a nonnegative function on (0,1] x R
allowed to be singular at x = 0. The author proved the existence of positive
solution with fractional nonlocal integral boundary conditions.

In [8], Bachar and Maagli considered the problem on the half-line

{Dau(m) = —a(z)u’, z€(0,00), 1 <a<?2,

. 2—a . -« —
xliréler u(zx) = wlingox u(z) =0,

(1.2)

where —1 < ¢ < 1 and the function a is a nonnegative continuous function on
(0,00) that may be singular at 0. To describe the result of [8] in more details, we
need some notations. We first introduce the following Karamata’s classes.

Definition 1.1. The classes IC and ™ are the sets of all Karamata’s func-
tions defined respectively on (0,7], (n > 1) and [1, 00) by

K= {L(t) = cexp (/tn’"(s)ds> . ¢>0, z€C[0,n], 2(0) :0} (1.3)

S

and

e e {10 com [ )

c>0, z€C[l,00), limz(t)zO}. (1.4)

t—o00

For A < 2+ (a —2)o, p 2 1+ (o — 1)o, L € K defined on (0,7], (n > 1)
and L € K*°, we define the functions ¥y, » , and ®; o respectively on (0,7) and
[1,00) by

1, if A <1+ (a—1)0

(InL(s)dS)E ifA=14+(a—1)o
Urag(t) = .
Lao(t) (Lt)ﬁ ifl+(a—1)o<A<2+4+ (a—2)0

(

(Ithms)ﬁ if A =2+ (a—2)0
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and
ifu>2+(a—2)0
fltHL(S ds) T ifu=2+(a—2)o

(
(7
(

Also, we denote by Ca_,[0,00) the set of all functions f such that ¢ — t2~f(¢)
is continuous on [0, 00). For two nonnegative functions f and g defined on a set
S, the notation f(z) ~ g(x), x € S, means that there exists ¢ > 0 such that
1f(z) < g(z) <cf(z) forall z € S.

n [8], Bachar and Maagli studied problem (1.2) where a satisfies the following
condition:

(Hp) a € C (0,00) such that for each z € (0, 0),

) i1+ (a—1o<pu<2+(a—2o

—

°°L($>ds) T ifu=1+4(a—1)o

a(z) =~ 7M1 4 2)* *L(min(z, 1)) L(max(z, 1)),

where A < 24 (= 2)o, p > 1+ (a— 1)o, L € K and L € K> satisfy

T L) R0

In [8], the authors, basing on the Schauder fixed-point theorem, showed the fol-
lowing result.

Theorem 1.2. Assume that a satisfies (Hg). Then problem (1.2) has a
unique positive solution u € Ca_4[0,00) satisfying for x € (0, 00),

u(w) ~ x*2 (14 2)S V¥ 5, (min(z, 1))<I>Z7M70(max(x, 1)), (1.5)

where v = min (1, W) and ( = max <0, W)

In this paper, we improve and extend the above results on the boundary
behavior of solutions to problem (1.1). Let us consider the following hypotheses.

(H;) a,b € C(0,00) satisty for each x € (0, 00),
a(z) ~ z7*(1 + 2)* Ly (min(z, 1)) Lo (max(z, 1))
and
b(z) m g P20 2o (] 4 g)~(A=B=2=(e=2)0)=r [ (min(z, 1)) Ly (max(z, 1)),

where 1 < A — (o —2)o < 2, p,7 € R, L1, L1 € K and Lo, Ly € K™ satisfy

/77 7L1(t>i1(t) dt < oo and /OO 7L2(t)l~/2(t) dt < oo.
0 t 1 t
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Our main result is the following.

Theorem 1.3. Assume (Hy). Then problem (1.1) has a unique positive
solution u € Ca_4[0,00) satisfying for x € (0,00),

min(z,1) s T S 1-o
u(r) ~ x°? </0 Ll()Ll()d8> p(z),

S

where the function ¢ is defined on (0,00) by
e ifl<pu—(a—2)c—0c<2andr=1—pu+p+ (a—2)o+o, then

o(x) = max(x, 1) (/Oo( 1)112(8)SLQ(S)dS> - :

o ifl<p—(a—2)0— (242" B)y <2 and f—p+ac—o+1<r<
B —pu+ao — 20+ 2, then

_p—aotr—8 !

ple) = (max{a, 1) (LQ(maX(% 1)) Lo (max(z, 1)))E ;

e ifl<pu—(a—2)0<2andr=2—pu+ (a—2)o+ 3, then

1+max(z,1) S T s s
() = (/1 La(s) L )d8> ;

S

o ifl<pu—(a—2)0<2and2—p+ (a—2)o+ B <r, then
p(z) = 1.

The rest of the paper is as follows. In Section 2, we give some necessary
definitions and lemmas from the fractional calculus theory and already known
results on the functions in Karamata’s classes as well as the estimates on Green’s
function. In Section 3, we present some necessary conditions to the existence
result and prove our main results stated in Theorem 1.3. The last section is
reserved to an example.

2. Preliminary Results

2.1. Fractional calculus. We begin this subsection with some definitions

and fundamental facts of the fractional calculus theory, which can be found in
[17,24].

Definition 2.1. Let v > 0, the Riemann—Liouville fractional integral of order
~ of a measurable function f: (0,00) — R is given by

I f(x) = F(lw / Ca -t (),

provided that the right-hand side is pointwise defined on (0,00). Here I is the
Euler gamma function.
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Definition 2.2. The Riemann-Liouville derivative of order v > 0 of a mea-
surable function f: (0,00) — R is given by

D50 = s () [ -0

- () s

provided that the right-hand side is pointwise defined on (0,00). Here n = [y] +
1, where [y] means the integer part of the number ~.

Lemma 2.3. Let o,y > 0 and f € L'(0,00). Then we have:
(i) I*I7f(x) = IV f(z) for x € [0,00) and o+ > 1;
(i) D*I“f(x) = f(x) for almost all x € [0,00);
(iii) D*f(z) = 0 if and only if f(z) = Y., c;x*7, where n is the smallest

j=1
integer greater than or equal to o and (c1,...,c,) € R™.

2.2. Karamata’s properties. In this subsection, we quote some funda-
mental properties of functions belonging to the classes K and K collected
from [12,23,26].

Proposition 2.4. The following assertions hold.

(i) A function L is in K if and only if L is a positive function in C'(0,n)], for
some n > 1, such that
tL' ()
—= =0. 2.1
0+ L(t) (2.1)

(ii) A function L is in K™ if and only if L is a positive function in C'[1,00)
such that

. tL(t)
thmm =0. (2.2)

Proposition 2.5. The following assertions hold.

(i) Let Ly, Ly € K (respectively, =) and p € R. Then we have

L1+ Lo, L1 Ly and LY belong to K (respectively, K™).

(ii) Let L € K (respectively, K*°) and € > 0. Then we have

e B : e B
tl_l)r(%t L(t) =0, (respectively, tllglot L(t) = 0).

Lemma 2.6 ([12]). The following assertions hold.
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(i) Let L be a function in K. Then we have

L
t—0 / S ds
t S

In particular,
mL
t— / ﬂ ds € K.
t S

(ii) Iff S %) ds converges, then

t—0 / (s) ds
0 S

t
t»—)/ L(S)dSGIC.
0 S

Lemma 2.7 ([11]). The following assertions hold.
(i) Let L be a function in K. Then we have

In particular,

L(t
,}Lth(()—
/ L(s)

1 S

In particular,

t+1
tt—)/ L(S)dselCoo.
1

S

(i) If [ = LG) g5 converges, then

L(t
— 00
/ ds
‘ s
In particular,
t >—>/ d € K.

Applying Karamata’s theorem, we get the next results.

Lemma 2.8. Let v € R and let L be a function in K defined on (0,n] for
some n > 1. We have

(i) Ify> —1, then []'s7L(s)ds converges and

t YLt
/ STL(s)ds ~ 7()
0 t—0t 1+ Y
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(i) Ify < —1, then [ s7L(s)ds diverges and
K HHYL(t
/ STL(s)ds ~ —70.
t t—0t 1 + Y
Lemma 2.9. Let v € R and let L be a function in K. We have:
(i) ify>—1, then [[°s7L(s)ds diverges and
HHYL(t)

I

t
/ sTL(s)ds ~
1

t—oo 147y

(ii) ifv < —1, then [[° s7L(s)ds converges and

o0 tHYL(t
/ STL(s)ds ~ —7().
¢ t—00 1+~

2.3. Estimates on Green’s function. Since our approach is based on
the potential theory, we should recall some basic tools. For v € (1,2) and f €
LY(0,00), by G+(z,t), we denote Green’s function for the following boundary
value problem:

{Dvu(x) =—f(z), z€(0,00),

lim 2 Yu(z) = lim ' Tu(z) = 0.
xr—0t T—00

From [8], we have

G (z,1) = r(ly)w_l —(w=0)"),

where 27 = max(z, 0).

Proposition 2.10 ([8]). Let 1 <y < 2 and let f be a nonnegative measurable
function on (0,00). Then we have:

() fora.t e (0,00),
G (x,t) ~ 272 min(z, t);

(ii) for x € (0,00), .
r— Gyf(z) = /o Gy (z, t)f(t) dt

belongs to Ca—[0,00) if and only if
/ min(1,¢)f(t)dt < oo;
0

(iii) 4f the map t — min(1,t)f(t) is continuous and integrable on (0,00), then
G f is the unique solution in Ca_,[0,00) of the boundary value problem

{Dvu(x) =—f(z), z€(0,00),

lim 2 Yu(z) = lim 2" Tu(z) = 0.
z—0t T—>00
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To this end, we need the following lemma.
Lemma 2.11. For z,t € (0,00),
min (1, z) min(1,¢) < min(z,t) < max(1,z)min(1,t).

Remark 2.12. By Proposition 2.10 (i) and Lemma 2.11, there exists a positive
constant ¢ such that for z,¢ € (0, 00),

1
—27?min(1, z) min(1,t) < G (z,t) < cz?"? max(1, ) min(1, ).
c

Lemma 2.13. Let o, 5 € (1,2). Let f be a nonnegative measurable function
n (0,00) such that x — min(1l,z)f(z) and x — min(1,z)b(x)Gf(z) are
continuous and integrable on (0,00). Then the boundary value problem

1

Dﬂ(@Dau):fv J}G(O?OO)?
iig(l):czﬂb(l@Dau(x) = mllngoxlﬁl)(laj)Dau(x) =0, (2.3)

limz?~%u(z) = lim 2!~
z—0 T—+00
has a unique positive solution in Ca—4[0,00) given by

u(z) = bGﬁf / Go(z,t)b / Gp(t,s)f(s)dsdt.

Proof. Since z — min(1,x)f(x) is continuous and integrable on (0, c0), we
deduce by Proposition 2.10 (iii) that for x € (0,00) we have

b(lx)Dau(x) =—Gaf(x).
Thus,

D%u(x) = —b(z)Gaf(x).
In addition, using the fact that  —— min(1l,z)b(z)Gsf(x) is continuous and
integrable on (0,00), we conclude again by Proposition 2.10 (iii) that problem
(2.3) has a unique solution u in Ca_4 ([0, c0) given by

u(z) = Gqo (bGﬁf) (x), x>0. O
Below we provide a crucial property on the continuity.

Lemma 2.14. Let h and b be two nonnegative measurable functions on (0, c0)
such that

/OO min(1, )b(1)Gsh(t) dt < oc.
0

Then the family

2—a

F={Sf:z— z—HGa(bGﬁf))(x); |fl < h}

is relatively compact in Cy[0, 00).
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Proof. Let f be a measurable function in (0,00) such that |f(z)| < h(z) for
all z € (0,00).
Using Remark 2.12 1, there exists ¢ > 0 such that for all z,¢ > 0 we have

227G (1)

< emin(1, ).
T2 < c¢min(1,t)

This implies that for all z € (0, c0),

x2—o¢

r+1

x2—o¢

Cr+1
< c/ min(1,t)b(t)Ggh(t) dt < oo.
0

1Sf(2)| = Ga(bGp[)(2)

/OOOGa(x, t)b(t)Gpf(t) dt‘

Thus F is uniformly bounded. Now, let us prove that F is equicontinuous in
[0,00]. Let z,y € (0,00), then we have

132_a 2—a
187(0) = 70| = | £ 6al0Ga0) @) ~ 1 Gal0GaN )
® (227G (2, 1) Y TYGa(y, )
_ /O < anl) _¥_Ge )b(t)Ggf(t)dt'
| 227Gy (2, 1) Y YGal(y,t)
g/o et e ’b(t)Ggh(t) dt.

For every t € (0,1), we have

227Gy (2, 1) B y> Gy
1+ 1+y

t
’)‘%O as |z —y| =0

and

127G (7, 1) B > Go(y,t)
1+ 1+y

‘ < 2c¢min(1,t).

Then, by Lebesgue’s theorem, we obtain that

1Sf(x) = Sf(y)l =0 as |z —y| =0

. 227Gy (x,t)
Now, let x € (0,00). Using the fact that z — — 7%=

by Lebesgue’s theorem, we get that

is in Cy([0, 0)), again

|Sf(x)| =0 asx—0oraz— occ.

Finally, we conclude that the family F is equicontinuous in [0,cc]. Hence, by
Ascoli’s theorem, we deduce that F is relatively compact in Cy[0, 00). ]

The following Lemma is due to [8].
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Lemma 2.15. Let L € K, Ly € K and let for x € (0,00),
b(z) = 27N (1 + )M~ Ly (min(z, 1)) Ly (max(x, 1))

with A1 <2 and pp > 1. Assume that
7 - 00 -
/ ML (t) dt < 0o and / t7H Ly(t) dt < 0.
0 1

Then we have for x € (0,00),

2> PGgb(x) ~ (min(z, 1))™" 20D (max(x, 1))mexZ74.0)

x \Ili’luAlvo(min(x’ 1))¢E27#1,0(max(x7 1))

Remark 2.16. We need to verify the conditions [ 1MLy (t)dt < oo and
floo t_“lig(t) dt < oo in Lemma 2.15 only if Ay = 2 and puq = 1. This is due to
Lemmas 2.8 and 2.9.

3. Proof of main results

We begin this section by stating the proposition that will play a crucial role
in proving our main result.

Proposition 3.1. Assume (H;) and suppose that there exists a nonnegative
function @ in C[0,00) such that t — w(t) := t(*=2)7a(t)07 () satisfies

/00 min(1, t)w(t)dt < oo, (3.1)
0

and
227G (bGpw) () ~ O(z). (3.2)

Then problem (1.1) has a unique solution u € Ca_4[0,00) satisfying for each x €
(0,00),
u(z) = 227%0(z). (3.3)

Proof. Let m > 1 and let # be a nonnegative function satisfying for each x €

(0, 00),
1

—0
m
Then, for each = € (0, c0),

(2) < 227G (bGaw) (z) < mb(z). (3.4)

1 0(x) a2« 0(x)
— < < .
mx+1— x+1Ga(ngw)(:c) _mx+1

(3.5)

1
Existence: Put ¢y := m?*-lel. We consider the closed convex set given by

Y = {v € Co[0, 0); 0(z) < v(z) < —2 H(m)} .

Co(l + .%')
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Using Remark 1 and (3.2), there exists ¢ > 0 such that

227Gy (2, t)
Tt o < cmin(1,t) for all z,t € (0,00)
and -
/ min(1,£)b(t)Ggw(t) dt < oc. (3.6)

This implies with Lemma 2.14 that the function z — £ G (bGgw)(x) belongs
to Cp([0, 00)) and satisfies (3.5). Thus Y is not empty. In order to use Schauder’s
fixed point theorem, we denote (z) = z(*~27(14z)%a(z) and define the operator
T onY by

2—a

l1+=x

We need to check that the operator T has a fixed point v in Y. For this choice
of ¢, we will prove that T maps Y into itself. Indeed, let v € Y. By using (3.5),
we have

Tv(z) = Go(bGg(av?))(x).

ol 22 o O(x) 0(z)
and
2—« —lo|
—lo| T ¢y O(x) 1 6(x)
T > [ a > _= — .
v(z) > ¢ l—i—xG (bGgw)(z) > m ite itz

Then, using (3.6) and the fact that
a(x)v?(z) < cl)a‘x(ad)"a(m)ﬁ"(x) = cg"w(:c),

by Lemma 2.14, we deduce that TY is relatively compact in Cy[0,00). Thus Y
is invariant under T'. Next, we shall prove the continuity of 7. Let (vg)x be a
sequence in Y which converges uniformly to v in Y. For z € (0,00), we have

$2—a
[ Top(2) = To(z)| = 7|Ga bG(avy))(z) — Ga(bGs(av”))(@)]

§ /G (z, 1)b(t)|Gp(avy)(t) — Gg(av?)(t)] dt.

r+1

For ¢ € (0,00), we have

‘Gg(fwk)() Gg(av? / Gs(t,s) avk,)( ) —(a v”)(s)’ds
and, by Remark 2.16, we have that for every s € (0, c0),

Ga(t, s)|(@vf)(s) — (@v)(s)| < 2cc’#°~2 max(1, £) min(1, s)w(s).



38 Bilel Khamessi

Hence, using (3.1), by Lebesgue’s theorem, we obtain that
|Gs(avy)(t) — Gg(av?)(t)] - 0 as k — oc.

We have
b(t)| Ga(avf)(t) — Ga(av”)(t)] < 26 b(t)Gau(1).

Using (3.6), by Lebesgue’s theorem, we obtain that for x € (0, c0),
Tvg(z) = Tv(x) as k — oo.

Since TY is relatively compact in Cy([0,00)), we have the uniform convergence,
namely,
|Tvr — Tv|loo = 0 as k — oo.

Thus, we have proved that T is a compact mapping from Y into itself. By
Schauder’s fixed-point theorem, it follows that there exists v € Y such that Tv =
v. Put u(z) = 2°72(1 + x)v(z). Then u € Ca_4([0,00)), and u satisfies the
equation

u(z) = Ga(bGg(au?))) ().

Then, due to Lemma 2.13, u is a positive solution in Ca_, ([0, 00)) of problem (1.1).

Uniqueness: Finally, let us prove that w is the unique positive continuous
solution satisfying (3.3). To this aim, we assume that (1.1) has two positive
solutions u and v satisfying (3.3). Then there exists a constant m > 1 such that

1
—v < u < mu.
m

This implies that the set
1
J = {te(l,oo):tvgugtv}

is not empty. Now, putting c := inf J, we are to show that ¢ = 1. Suppose that
¢ > 1. Then, by simple calculus, we obtain that

D'B(%(Da(ck"v) — D)) = a(dl —u%) >0,

limx23(1(Do‘(clgv) — D%u)(x) =0,

x—0 b CL‘)

lim xl_ﬁ(l)(Da(c|”|v) — D%u)(z) = 0.

T—00 b(x

By Proposition 2.10 (iii), we conclude that
1
g(Da(c\fflv)) — D) = —Gp(a(cdlv” —u?)) <0.

Then we have
D(clv) < D,
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which implies that
D(cl7ly — ) <0,

lima2?~(cl”ly — u)(z) = 0.
z—0

Using again Proposition 2.10 (iii), we conclude that
oy — > 0.

By the symmetry, we obtain that v < ¢/?lu. Thus, ¢/?l € J. Since lo| < 1 and
¢ > 1, we have ¢l?l < ¢. This leads to a contradiction with the fact that ¢ = inf J.
Hence ¢ = 1 and, consequently, u = v. ]

Proof of Theorem 1.3. Consider 1 < A — (o — 2)o < 2 and Lj, Lo, Ly Ly

satisfying 3 B
TL1(t)L o La(t)Lo(t
/ 1t Lat < o and/ Mdt<oo.
ot . t
Let
1 ifl<p—(a—2)0—0<2,
§i=Q 2 HmATtTBf g <y (a - 2)o + (ETArE 9y, < 2,
0, ifl<p—(a—2)0 <2,

and let 6 be the function defined on [0, 00) by

1

min(z,1) s T s -0
0(z) = (max(z, 1)) </0 Ll()Ll(>d8> x(max(z, 1)),

S

where

(wwds)ﬁ ifl<p—(a—2)o—0<2,
r=1-p+pB+(a—-2)0+o,

(Lg(t)iz(t))E if 1< p—(a—2)0 + (= —2)0 <2,
B—put+ac—oc+1<r,

x(t) := r<fB—p+ac—20+2,

i o

(fﬂ%@” if1<p—(a—2)0<2,
r=2—p+(a—2)o+4,

1 ifl<p—(a—2)0 <2,
2—pu+(a—2)c+8<r.

Put
w(z) = 2D (2)07 ().

Using (H;), we deduce that

w(z) ~ 2~ A@=29) (1 4 ) (max(z, 1)) Ly (min(z, 1))
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o

) (/min(x’l)lzl(s)f/l(s) ds) -0 LQ(maX($, 1))X0(max(l', 1))
0

S

Put

() = Ly (2) ( /OL”L“d> U and ma(e) = La(@)° (@),

S

By Proposition 2.5, Lemmas 2.6 and 2.7, the functions m; and ms are in K and
K>, respectively. For t € (0,1], w(t) ~ t~A=(@=2))m (t). Since 1 < X\ — (a —
2)o < 2, from Lemma 2.8 we deduce that

1
/ HO@2)0) () gt < oo, (3.7)
0

For t € [1,00), w(t) ~ t~ = (a=20=0)m, (¢). By the expression to &, we remark
that 1 <y — (o —2)o — &0 < 2, and from Lemma 2.9 we deduce that

/ (1= (0-2)0E0) 0 (1) G < oo, (3.9)
1
Combining (3.7) and (3.8), we conclude that the function 6 satisfies (3.1):
/ min(1, £)w(t) dt < co.
0

To reach the estimate (3.2), we distinguish the following cases.
Case 1. Let z € (0,1]. We have

(A=(a=2)0)

w(z) =z~ mi(x).

Since 1 < A — (v — 2)0 < 2 and m; is in K, by Lemma 2.15 with A\ = A — (o —
2)o and Lz(x) = mq(x), we obtain that

Gpw(z) ~ 2P A2 (2).

Then we have

o

L1(s)L1(s) ds)l-“.

S

b(a:)Gﬁw(m) ~ I72L1(CE)I~/1(CE) (/0

Put o
M(z) = Li(2) L1 (2) (/OxLl(s)fl(S) ds) o

In view of Proposition 2.5 and Lemma 2.6, the function M is in K and we have

1

/77 wdt R~ (/nLl(t)il(t) ds> o < 00.
o t 0 t
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Then, using again Lemma 2.15, we deduce that for = € (0, 1],

= T
51:2_0‘G baﬂw / M) 4y ( / L)) )Ll(s) ds> .
Hence, for = € (0, 1],
220G, (ngw) (z) ~ 0(z). (3.9)
Case 2. Let z € [1,00). We have
w(z) ~ a~ W @m2)0=80) 0 (1),

Since 1 < pp— (@ —2)0 — &0 < 2 and mg is in K*°, by Lemma 2.15 with pu; = p—
(o —2)o — o and Ly(x) = ma(x), we obtain that

Gpw(x) ~ g~ n=(a=2)0=80) ) (7).
Then we have
b(2)Ggw(x) ~ 2~ =027 Ly (1) Ly ()X ().

Put N(z) = Lo(x)Lo(z)x?(z). In view of Proposition 2.5 and Lemma 2.7, the
function N is in K.
sletl<pu—(a—2)o—oc<2andr=1—pu+ B+ (a—2)oc+ 0. We have

< N(t) * Lo(t)La(t) [ [ La(s)La(s) . =
[ M0 R0 (/ts d> "

1

~ (/mlmdt>m<oo.
1 ¢

Using Lemma 2.15 with g1 :=p—f — (¢ —2)c —o +7r =1 and

La(x) = Lo(2)La(x) </°°L2(S)L2(S>ds> o

S

we obtain

227Gy (bGﬁw :U/OO La(t (/tOOLQ(S)iZ(S)ds> o dt

(/OOL2 )ds>” = 0(z).

oLet1<p—(a—2)a—(2—%)a<Zandﬁ—,LH—aa—a—i-l<r<
B8 —p+ ac — 20 + 2. Then
p—oao+r—_

= < 2.
Jo 1—0

p—ao+r—

l<p+r—p—(a—2)o—(2- o
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Using Lemma 2.15 with 3 = p+r—5—(a—2)o — (2— W)J and Ly(x) =
Lo(z)La(z) (LQ(x)EQ(x)> =7 we obtain

T 0Ga <bGﬂw) (z) ~ g2 (utr—f—(a=2)o+(A=9ZT=E ~2)0) (L2(CE)I~/2(:L“))E

1

(2— 4= ac+r—f

) (La(a)Ea(a) ) 7 = 0().

eletl<pu—(a—2)0<2andr=2—pu+ (a—2)o+ . We have

5 z+1 s T s ﬁ
b(z)Gpw(x) ~ v~ 2 Lo(x) La(x) (/1 La(s)L2(s) ds> .

=X

S

Using Lemma 2.15 with pu; :==r+ pu— (o —2)o — =2 and

x+1 T ﬁ
La(z) = Lo(z) Lo () (/1 ' L2(S)L2(S)ds) ’

S

we obtain

o

z+l t+1 7 -0
%G (bGpw) (z) ~ / < / L2(S)SLQ(S)dS> dt
1 1

1

(/J:H La(3)La(s) ds) v =0(x).
1

eletl<pu—(av—2)o<2and2—pu+ (a—2)o+  <r. We have
b(z)Gaw(x) = x~ =A== [, (1) Lo ().

Using Lemma 2.15 with py :=r4+p— 8 — (@ —2)0 > 2 and Ly(z) = La(2) La(z),
we obtain

227G, (bGpw)(z) = 1 =6(z).

Hence, for x € [1,00),

G (bGgw) (z) ~ 0(2). (3.10)
Combining (3.9) and (3.10), we conclude that for = € (0, 00),
2?7 Gy (bGw) (z) ~ O(x).

Then the function 6 satisfies (3.1) and (3.2). It follows by Proposition 3.1 that
problem (1.1) has a unique positive solution u € Co_,[0, 00) satisfying for = €
(0, 00),

u(z) = 227%0(z).
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As an application of our main results, we give the following example.

Example 3.2. Let 5, € (1,2) and 0 € (—1,1). Let a and b be two positive
continuous functions on (0, 00) such that

a(@) ~ 2 (1 4 2" (log(min?m)>

and

3 -
b ~ pA—B—2—(a=2)0 1 —(A\=B—2—(a—2)o)—r 1
(0)~a (1++2) tlmo))
where 1 < A—(a—2)o < 2,7 < 2and r € R. Then, by Theorem 1.3, problem (1.1)
has a unique positive solution u € Cy_4[0, 1] satisfying the following estimates:
elfl<p—(a—20—(2—E=24 B 2 B—p+ac—oc+1<r<f—

1-0o

i+ aoc — 20 + 2 and 7y < 2, then for x € (0,0),

2=y
1-0o

g_p—aotr—p

u(w) ~ 20 (max(z, 1)) (1og(mn§’m)>

elfl<pu—(a—2)c<2andr=2—p+ (o —2)o + f, then for z € (0,00),

2—y
I 1

u(z) = 272 (10g('?a;,1))> fa (log(l + max(x, 1))) .

min

elfl<pu—(av—2)0<2and2—pu+ (a—2)o+p <r, then

2—n

() =222 (log(——))
u(z) =x og(—— .
& min(z, 1)
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KpaiioBa 3agaya 3 aApoboOBUMMH ITOXiJTHUMHM Ha IiBOCi
Bilel Khamessi

Y cTaTTi po3TIAMaEThCA HaMiBIiIHIfTHA KpaitoBa 3a/7ata 3 JIPOOOBUMHU TI0-
XiTHIMI
1
DP( — D% ) = a(z)u’” wua (0,00
(35 (@) ma (0,50)

3 yMOBaMH limﬁ_,OxQ_ﬁﬁD“u(x) = limxﬁwml_ﬁﬁDau(m) =0 Ta

lim, 0 22~ %u(z) = limy_ oo 217 %u(z) = 0, 1e B,a € (1,2), 0 € (—=1,1) i
DP, D® o3navaiors cranmaprTHi 1po6osi moxinxi PimanaJIiysimmsa. Oysxiil
a,b : (0,00) — R e HeBig'eMHUMU HenepepBHUMHI (DYHKI[sIMH, sIKi 3810-
BOJIBHSIOTD JIedKi BinmoBigHi ymoBu. BceranoBieno icHyBaHHS Ta €IWHICTH
MTO3UTHBHOTO PO3B’A3Ky. TaKoK HAIAHO OMKC TJI00AJIHHOI MOBEIIHKHU IIHOTO
PO3B’SI3Ky.

Kutr010Bi cioBa: piBHSIHHS 3 APOOOBUMHY MTOXITHUMHA, TO3UTUBHUN PO3B’s-
30K, TeopeMa lllaynepa mpo HEPYyXOMY TOUKY.
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