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Fractional Boundary Value Problem on the

Half-Line

Bilel Khamessi

We consider the semilinear fractional boundary value problem

Dβ

(
1

b(x)
Dαu

)
= a(x)uσ in (0,∞)

with the conditions limx→0 x
2−β 1

b(x)D
αu(x) = limx→∞ x1−β 1

b(x)D
αu(x) =

0 and limx→0 x
2−αu(x) = limx→∞ x1−αu(x) = 0, where β, α ∈ (1, 2), σ ∈

(−1, 1) and Dβ , Dα stand for the standard Riemann–Liouville fractional
derivatives. The functions a, b : (0,∞) → R are nonnegative continuous
functions satisfying some appropriate conditions. The existence and the
uniqueness of a positive solution are established. Also, a description of the
global behavior of this solution is given.

Key words: fractional differential equation, positive solution, Schauder
fixed point theorem.
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1. Introduction

In this paper, we consider the nonlinear boundary value problem of the frac-
tional differential equation

Dβ(
1

b(x)
Dαu) = a(x)uσ, x ∈ (0,∞),

lim
x→0

x2−β
1

b(x)
Dαu(x) = lim

x→∞
x1−β

1

b(x)
Dαu(x) = 0,

lim
x→0

x2−αu(x) = lim
x→∞

x1−αu(x) = 0,

(1.1)

where β, α ∈ (1, 2) and σ ∈ (−1, 1). The functions a and b are positive and
continuous in (0,∞). They may be singular at x = 0 and satisfy some conditions
related to Karamata’s regular variation theory. Our goal is to study the existence,
uniqueness and exact asymptotic behavior of positive solutions for problem (1.1).

Many papers on fractional differential equations have been recently received
much attention. The motivation for those works stems from the fact that frac-
tional equations serve as an excellent tool to describe many phenomena in var-
ious fields of science and engineering such as viscoelasticity, electro-chemistry,
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control theory, porous media, electromagnetism, etc. For examples and details,
see [15,17,24].

Therefore, the existence, uniqueness and asymptotic behavior of positive con-
tinuous solutions related to fractional differential equations have been developed
very quickly by many researchers. Most of the results are focused on develop-
ing the global existence and uniqueness of the solution on the finite intervals
(see [3, 5, 6, 9, 10, 14, 16, 19, 20, 25, 29]). However, to the best of our knowledge,
there are few papers devoted to the study of fractional differential equations on
the half-line, see, for instance, [1, 2, 4, 7, 8, 13,18,21,22,27,28].

This work is motivated by recent advances in the study of fractional dif-
ferential equations involving nonlinearities with different boundary conditions.
Namely, in [20], Liu considered the fractional differential equation

Dβ(ρ(x)Φp(D
αu(x))) = f(x, u(x)), x ∈ (0, 1),

where 0 < α, β ≤ 1, ρ ∈ C(0, 1), and f is a nonnegative function on (0, 1] × R
allowed to be singular at x = 0. The author proved the existence of positive
solution with fractional nonlocal integral boundary conditions.

In [8], Bachar and Mâagli considered the problem on the half-line{
Dαu(x) = −a(x)uσ, x ∈ (0,∞), 1 < α < 2,

lim
x→0+

x2−αu(x) = lim
x→∞

x1−αu(x) = 0,
(1.2)

where −1 < σ < 1 and the function a is a nonnegative continuous function on
(0,∞) that may be singular at 0. To describe the result of [8] in more details, we
need some notations. We first introduce the following Karamata’s classes.

Definition 1.1. The classes K and K∞ are the sets of all Karamata’s func-
tions defined respectively on (0, η], (η > 1) and [1,∞) by

K :=

{
L(t) = c exp

(∫ η

t

z(s)

s
ds

)
: c > 0, z ∈ C[0, η], z(0) = 0

}
(1.3)

and

K∞ :=

{
L(t) = c exp

(∫ t

1

z(s)

s
ds

)
:

c > 0, z ∈ C[1,∞), lim
t→∞

z(t) = 0

}
. (1.4)

For λ ≤ 2 + (α − 2)σ, µ ≥ 1 + (α − 1)σ, L ∈ K defined on (0, η], (η > 1)
and L̃ ∈ K∞, we define the functions ΨL,λ,σ and ΦL̃,µ,σ respectively on (0, η) and
[1,∞) by

ΨL,λ,σ(t) :=



1, if λ < 1 + (α− 1)σ(∫ η
t
L(s)
s ds

) 1
1−σ

if λ = 1 + (α− 1)σ

(L(t))
1

1−σ if 1 + (α− 1)σ < λ < 2 + (α− 2)σ(∫ t
0
L(s)
s ds

) 1
1−σ

if λ = 2 + (α− 2)σ

.
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and

ΦL̃,µ,σ(t) :=



1 if µ > 2 + (α− 2)σ(∫ t+1
1

L̃(s)
s ds

) 1
1−σ

if µ = 2 + (α− 2)σ(
L̃(t)

) 1
1−σ

if 1 + (α− 1)σ < µ < 2 + (α− 2)σ(∫∞
t

L̃(s)
s ds

) 1
1−σ

if µ = 1 + (α− 1)σ

.

Also, we denote by C2−α[0,∞) the set of all functions f such that t 7→ t2−αf(t)
is continuous on [0,∞). For two nonnegative functions f and g defined on a set
S, the notation f(x) ≈ g(x), x ∈ S, means that there exists c > 0 such that
1
cf(x) ≤ g(x) ≤ cf(x) for all x ∈ S.

In [8], Bachar and Mâagli studied problem (1.2) where a satisfies the following
condition:

(H0) a ∈ C (0,∞) such that for each x ∈ (0,∞),

a(x) ≈ x−λ(1 + x)λ−µL(min(x, 1))L̃(max(x, 1)),

where λ ≤ 2 + (α− 2)σ, µ ≥ 1 + (α− 1)σ, L ∈ K and L̃ ∈ K∞ satisfy∫ η

0

L(t)

tλ−(α−2)σ−1
dt <∞ and

∫ ∞
1

L̃(t)

tµ−(α−1)σ
dt <∞.

In [8], the authors, basing on the Schauder fixed-point theorem, showed the fol-
lowing result.

Theorem 1.2. Assume that a satisfies (H0). Then problem (1.2) has a
unique positive solution u ∈ C2−α[0,∞) satisfying for x ∈ (0,∞),

u(x) ≈ xα−2+ν(1 + x)ζ−νΨL,λ,σ(min(x, 1))ΦL̃,µ,σ(max(x, 1)), (1.5)

where ν = min
(

1, 2−λ+(α−2)σ
1−σ

)
and ζ = max

(
0, 2−µ+(α−2)σ

1−σ

)
.

In this paper, we improve and extend the above results on the boundary
behavior of solutions to problem (1.1). Let us consider the following hypotheses.

(H1) a, b ∈ C (0,∞) satisfy for each x ∈ (0,∞),

a(x) ≈ x−λ(1 + x)λ−µL1(min(x, 1))L2(max(x, 1))

and

b(x) ≈ xλ−β−2−(α−2)σ(1 + x)−(λ−β−2−(α−2)σ)−rL̃1(min(x, 1))L̃2(max(x, 1)),

where 1 < λ− (α− 2)σ < 2, µ, r ∈ R, L1, L̃1 ∈ K and L2, L̃2 ∈ K∞ satisfy∫ η

0

L1(t)L̃1(t)

t
dt <∞ and

∫ ∞
1

L2(t)L̃2(t)

t
dt <∞.
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Our main result is the following.

Theorem 1.3. Assume (H1). Then problem (1.1) has a unique positive
solution u ∈ C2−α[0,∞) satisfying for x ∈ (0,∞),

u(x) ≈ xα−2
(∫ min(x,1)

0

L1(s)L̃1(s)

s
ds

) 1
1−σ

ϕ(x),

where the function ϕ is defined on (0,∞) by

• if 1 < µ− (α− 2)σ − σ < 2 and r = 1− µ+ β + (α− 2)σ + σ, then

ϕ(x) = max(x, 1)

(∫ ∞
max(x,1)

L2(s)L̃2(s)

s
ds

) 1
1−σ

;

• if 1 < µ− (α− 2)σ − (2− µ−ασ+r−β
1−σ )σ < 2 and β − µ+ ασ − σ + 1 < r <

β − µ+ ασ − 2σ + 2, then

ϕ(x) = (max(x, 1))2−
µ−ασ+r−β

1−σ
(
L2(max(x, 1))L̃2(max(x, 1))

) 1
1−σ

;

• if 1 < µ− (α− 2)σ < 2 and r = 2− µ+ (α− 2)σ + β, then

ϕ(x) =

(∫ 1+max(x,1)

1

L2(s)L̃2(s)

s
ds

) 1
1−σ

;

• if 1 < µ− (α− 2)σ < 2 and 2− µ+ (α− 2)σ + β < r, then

ϕ(x) = 1.

The rest of the paper is as follows. In Section 2, we give some necessary
definitions and lemmas from the fractional calculus theory and already known
results on the functions in Karamata’s classes as well as the estimates on Green’s
function. In Section 3, we present some necessary conditions to the existence
result and prove our main results stated in Theorem 1.3. The last section is
reserved to an example.

2. Preliminary Results

2.1. Fractional calculus. We begin this subsection with some definitions
and fundamental facts of the fractional calculus theory, which can be found in
[17,24].

Definition 2.1. Let γ > 0, the Riemann–Liouville fractional integral of order
γ of a measurable function f : (0,∞)→ R is given by

Iγf(x) =
1

Γ(γ)

∫ x

0
(x− t)γ−1f(t)dt,

provided that the right-hand side is pointwise defined on (0,∞). Here Γ is the
Euler gamma function.
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Definition 2.2. The Riemann–Liouville derivative of order γ > 0 of a mea-
surable function f : (0,∞)→ R is given by

Dγf(x) =
1

Γ(n− γ)

(
d

dx

)n ∫ x

0
(x− t)n−γ−1f(t)dt

=

(
d

dx

)n
In−γf(x),

provided that the right-hand side is pointwise defined on (0,∞). Here n = [γ] +
1, where [γ] means the integer part of the number γ.

Lemma 2.3. Let α, γ > 0 and f ∈ L1(0,∞). Then we have:

(i) IαIγf(x) = Iα+γf(x) for x ∈ [0,∞) and α+ γ ≥ 1;

(ii) DαIαf(x) = f(x) for almost all x ∈ [0,∞);

(iii) Dαf(x) = 0 if and only if f(x) =
∑n

j=1 cjx
α−j, where n is the smallest

integer greater than or equal to α and (c1, . . . , cn) ∈ Rn.

2.2. Karamata’s properties. In this subsection, we quote some funda-
mental properties of functions belonging to the classes K and K∞ collected
from [12,23,26].

Proposition 2.4. The following assertions hold.

(i) A function L is in K if and only if L is a positive function in C1(0, η], for
some η > 1, such that

lim
t→0+

tL
′
(t)

L(t)
= 0. (2.1)

(ii) A function L is in K∞ if and only if L is a positive function in C1[1,∞)
such that

lim
t→+∞

tL
′
(t)

L(t)
= 0. (2.2)

Proposition 2.5. The following assertions hold.

(i) Let L1, L2 ∈ K (respectively, K∞) and p ∈ R. Then we have

L1 + L2, L1L2 and Lp1 belong to K (respectively, K∞).

(ii) Let L ∈ K (respectively, K∞) and ε > 0. Then we have

lim
t→0+

tεL(t) = 0, (respectively, lim
t→∞

t−εL(t) = 0).

Lemma 2.6 ([12]). The following assertions hold.
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(i) Let L be a function in K. Then we have

lim
t→0+

L(t)∫ η

t

L(s)

s
ds

= 0.

In particular,

t 7−→
∫ η

t

L(s)

s
ds ∈ K.

(ii) If
∫ η
0
L(s)
s ds converges, then

lim
t→0+

L(t)∫ t

0

L(s)

s
ds

= 0.

In particular,

t 7−→
∫ t

0

L(s)

s
ds ∈ K.

Lemma 2.7 ([11]). The following assertions hold.

(i) Let L be a function in K∞. Then we have

lim
t→∞

L(t)∫ t

1

L(s)

s
ds

= 0.

In particular,

t 7−→
∫ t+1

1

L(s)

s
ds ∈ K∞.

(ii) If
∫∞
1

L(s)
s ds converges, then

lim
t→∞

L(t)∫ ∞
t

L(s)

s
ds

= 0.

In particular,

t 7−→
∫ ∞
t

L(s)

s
ds ∈ K∞.

Applying Karamata’s theorem, we get the next results.

Lemma 2.8. Let γ ∈ R and let L be a function in K defined on (0, η] for
some η > 1. We have

(i) If γ > −1, then
∫ η
0 s

γL(s) ds converges and∫ t

0
sγL(s) ds ∼

t→0+

t1+γL(t)

1 + γ
.
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(ii) If γ < −1, then
∫ η
0 s

γL(s) ds diverges and∫ η

t
sγL(s) ds ∼

t→0+
− t

1+γL(t)

1 + γ
.

Lemma 2.9. Let γ ∈ R and let L be a function in K∞. We have:

(i) if γ > −1, then
∫∞
1 sγL(s) ds diverges and∫ t

1
sγL(s)ds ∼

t→∞

t1+γL(t)

1 + γ
;

(ii) if γ < −1, then
∫∞
1 sγL(s)ds converges and∫ ∞

t
sγL(s) ds ∼

t→∞
− t

1+γL(t)

1 + γ
.

2.3. Estimates on Green’s function. Since our approach is based on
the potential theory, we should recall some basic tools. For γ ∈ (1, 2) and f ∈
L1(0,∞), by Gγ(x, t), we denote Green’s function for the following boundary
value problem: {

Dγu(x) = −f(x), x ∈ (0,∞),

lim
x→0+

x2−γu(x) = lim
x→∞

x1−γu(x) = 0.

From [8], we have

Gγ(x, t) =
1

Γ(γ)
[xγ−1 − ((x− t)+)γ−1],

where x+ = max(x, 0).

Proposition 2.10 ([8]). Let 1 < γ < 2 and let f be a nonnegative measurable
function on (0,∞). Then we have:

(i) for x, t ∈ (0,∞),
Gγ(x, t) ≈ xγ−2 min(x, t);

(ii) for x ∈ (0,∞),

x→ Gγf(x) :=

∫ ∞
0

Gγ(x, t)f(t) dt

belongs to C2−γ [0,∞) if and only if∫ ∞
0

min(1, t)f(t)dt <∞;

(iii) if the map t → min(1, t)f(t) is continuous and integrable on (0,∞), then
Gγf is the unique solution in C2−γ [0,∞) of the boundary value problem{

Dγu(x) = −f(x), x ∈ (0,∞),

lim
x→0+

x2−γu(x) = lim
x→∞

x1−γu(x) = 0.



34 Bilel Khamessi

To this end, we need the following lemma.

Lemma 2.11. For x, t ∈ (0,∞),

min(1, x) min(1, t) ≤ min(x, t) ≤ max(1, x) min(1, t).

Remark 2.12. By Proposition 2.10 (i) and Lemma 2.11, there exists a positive
constant c such that for x, t ∈ (0,∞),

1

c
xγ−2 min(1, x) min(1, t) ≤ Gγ(x, t) ≤ cxγ−2 max(1, x) min(1, t).

Lemma 2.13. Let α, β ∈ (1, 2). Let f be a nonnegative measurable function
in (0,∞) such that x 7−→ min(1, x)f(x) and x 7−→ min(1, x)b(x)Gβf(x) are
continuous and integrable on (0,∞). Then the boundary value problem

Dβ(
1

b(x)
Dαu) = f, x ∈ (0,∞),

lim
x→0

x2−β
1

b(x)
Dαu(x) = lim

x→∞
x1−β

1

b(x)
Dαu(x) = 0,

lim
x→0

x2−αu(x) = lim
x→∞

x1−αu(x) = 0

(2.3)

has a unique positive solution in C2−α[0,∞) given by

u(x) = Gα

(
bGβf

)
(x) :=

∫ ∞
0

Gα(x, t)b(t)

∫ ∞
0

Gβ(t, s)f(s) ds dt.

Proof. Since x 7−→ min(1, x)f(x) is continuous and integrable on (0,∞), we
deduce by Proposition 2.10 (iii) that for x ∈ (0,∞) we have

1

b(x)
Dαu(x) = −Gβf(x).

Thus,
Dαu(x) = −b(x)Gβf(x).

In addition, using the fact that x 7−→ min(1, x)b(x)Gβf(x) is continuous and
integrable on (0,∞), we conclude again by Proposition 2.10 (iii) that problem
(2.3) has a unique solution u in C2−α([0,∞) given by

u(x) = Gα

(
bGβf

)
(x), x > 0.

Below we provide a crucial property on the continuity.

Lemma 2.14. Let h and b be two nonnegative measurable functions on (0,∞)
such that ∫ ∞

0
min(1, t)b(t)Gβh(t) dt <∞.

Then the family

F = {Sf : x 7−→ x2−α

x+ 1
Gα(bGβf))(x); |f | ≤ h}

is relatively compact in C0[0,∞).
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Proof. Let f be a measurable function in (0,∞) such that |f(x)| ≤ h(x) for
all x ∈ (0,∞).

Using Remark 2.12 1, there exists c > 0 such that for all x, t > 0 we have

x2−αGα(x, t)

1 + x
≤ cmin(1, t).

This implies that for all x ∈ (0,∞),

|Sf(x)| =
∣∣∣∣ x2−αx+ 1

Gα(bGβf)(x)

∣∣∣∣ =
x2−α

x+ 1

∣∣∣∣∫ ∞
0
Gα(x, t)b(t)Gβf(t) dt

∣∣∣∣
≤ c
∫ ∞
0

min(1, t)b(t)Gβh(t) dt <∞.

Thus F is uniformly bounded. Now, let us prove that F is equicontinuous in
[0,∞]. Let x, y ∈ (0,∞), then we have

|Sf(x)− Sf(y)| =
∣∣∣∣ x2−αx+ 1

Gα(bGβf)(x)− y2−α

y + 1
Gα(bGβf)(y)

∣∣∣∣
=

∣∣∣∣∫ ∞
0

(
x2−αGα(x, t)

1 + x
− y2−αGα(y, t)

1 + y

)
b(t)Gβf(t) dt

∣∣∣∣
≤
∫ ∞
0

∣∣∣∣x2−αGα(x, t)

1 + x
− y2−αGα(y, t)

1 + y

∣∣∣∣ b(t)Gβh(t) dt.

For every t ∈ (0, 1), we have∣∣∣∣x2−αGα(x, t)

1 + x
− y2−αGα(y, t)

1 + y

∣∣∣∣→ 0 as |x− y| → 0

and ∣∣∣∣x2−αGα(x, t)

1 + x
− y2−αGα(y, t)

1 + y

∣∣∣∣ ≤ 2cmin(1, t).

Then, by Lebesgue’s theorem, we obtain that

|Sf(x)− Sf(y)| → 0 as |x− y| → 0.

Now, let x ∈ (0,∞). Using the fact that x → x2−αGα(x,t)
1+x is in C0([0,∞)), again

by Lebesgue’s theorem, we get that∣∣Sf(x)
∣∣→ 0 as x→ 0 or x→∞.

Finally, we conclude that the family F is equicontinuous in [0,∞]. Hence, by
Ascoli’s theorem, we deduce that F is relatively compact in C0[0,∞).

The following Lemma is due to [8].
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Lemma 2.15. Let L̃1 ∈ K, L̃2 ∈ K∞ and let for x ∈ (0,∞),

b(x) = x−λ1(1 + x)λ1−µ1L̃1(min(x, 1))L̃2(max(x, 1))

with λ1 ≤ 2 and µ1 ≥ 1. Assume that∫ η

0
t1−λ1L̃1(t) dt <∞ and

∫ ∞
1

t−µ1L̃2(t) dt <∞.

Then we have for x ∈ (0,∞),

x2−βGβb(x) ≈ (min(x, 1))min(2−λ1,1)(max(x, 1))max(2−µ1,0)

×ΨL̃1,λ1,0
(min(x, 1))ΦL̃2,µ1,0

(max(x, 1)).

Remark 2.16. We need to verify the conditions
∫ η
0 t

1−λ1L̃1(t) dt < ∞ and∫∞
1 t−µ1L̃2(t) dt < ∞ in Lemma 2.15 only if λ1 = 2 and µ1 = 1. This is due to

Lemmas 2.8 and 2.9.

3. Proof of main results

We begin this section by stating the proposition that will play a crucial role
in proving our main result.

Proposition 3.1. Assume (H1) and suppose that there exists a nonnegative
function θ in C[0,∞) such that t→ w(t) := t(α−2)σa(t)θσ(t) satisfies∫ ∞

0
min(1, t)w(t)dt <∞, (3.1)

and

x2−αGα(bGβw)(x) ≈ θ(x). (3.2)

Then problem (1.1) has a unique solution u ∈ C2−α[0,∞) satisfying for each x ∈
(0,∞),

u(x) ≈ xα−2θ(x). (3.3)

Proof. Let m ≥ 1 and let θ be a nonnegative function satisfying for each x ∈
(0,∞),

1

m
θ(x) ≤ x2−αGα(bGβw)(x) ≤ mθ(x). (3.4)

Then, for each x ∈ (0,∞),

1

m

θ(x)

x+ 1
≤ x2−α

x+ 1
Gα(bGβw)(x) ≤ m θ(x)

x+ 1
. (3.5)

Existence: Put c0 := m
1

1−|σ| . We consider the closed convex set given by

Y :=

{
v ∈ C0[0,∞);

1

c0(1 + x)
θ(x) ≤ v(x) ≤ c0

1 + x
θ(x)

}
.
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Using Remark 1 and (3.2), there exists c > 0 such that

x2−αGα(x, t)

1 + x
≤ cmin(1, t) for all x, t ∈ (0,∞)

and ∫ ∞
0

min(1, t)b(t)Gβw(t) dt <∞. (3.6)

This implies with Lemma 2.14 that the function x 7→ x2−α

x+1 Gα(bGβw)(x) belongs
to C0([0,∞)) and satisfies (3.5). Thus Y is not empty. In order to use Schauder’s
fixed point theorem, we denote ã(x) = x(α−2)σ(1+x)σa(x) and define the operator
T on Y by

Tv(x) =
x2−α

1 + x
Gα(bGβ(ãvσ))(x).

We need to check that the operator T has a fixed point v in Y . For this choice
of c0, we will prove that T maps Y into itself. Indeed, let v ∈ Y . By using (3.5),
we have

Tv(x) ≤ c|σ|0

x2−α

1 + x
Gα(bGβw))(x) ≤ c|σ|0 m

θ(x)

1 + x
= c0

θ(x)

1 + x

and

Tv(x) ≥ c−|σ|0

x2−α

1 + x
Gα(bGβw)(x) ≥ c

−|σ|
0

m

θ(x)

1 + x
=

1

c0

θ(x)

1 + x
.

Then, using (3.6) and the fact that

ã(x)vσ(x) ≤ c|σ|0 x(α−2)σa(x)θσ(x) = c
|σ|
0 w(x),

by Lemma 2.14, we deduce that TY is relatively compact in C0[0,∞). Thus Y
is invariant under T . Next, we shall prove the continuity of T . Let (vk)k be a
sequence in Y which converges uniformly to v in Y . For x ∈ (0,∞), we have

|Tvk(x)− Tv(x)| = x2−α

x+ 1

∣∣Gα(bGβ(ãvσk ))(x)−Gα(bGβ(ãvσ))(x)
∣∣

≤ x2−α

x+ 1

∫ ∞
0
Gα(x, t)b(t)

∣∣Gβ(ãvσk )(t)−Gβ(ãvσ)(t)
∣∣ dt.

For t ∈ (0,∞), we have

∣∣Gβ(ãvσk )(t)−Gβ(ãvσ)(t)
∣∣ ≤ ∫ ∞

0
Gβ(t, s)

∣∣(ãvσk )(s)− (ãvσ)(s)
∣∣ ds

and, by Remark 2.16, we have that for every s ∈ (0,∞),

Gβ(t, s)
∣∣(ãvσk )(s)− (ãvσ)(s)

∣∣ ≤ 2cc
|σ|
0 tβ−2 max(1, t) min(1, s)w(s).
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Hence, using (3.1), by Lebesgue’s theorem, we obtain that∣∣Gβ(ãvσk )(t)−Gβ(ãvσ)(t)
∣∣→ 0 as k →∞.

We have
b(t)
∣∣Gβ(ãvσk )(t)−Gβ(ãvσ)(t)

∣∣ ≤ 2c
|σ|
0 b(t)Gβw(t)).

Using (3.6), by Lebesgue’s theorem, we obtain that for x ∈ (0,∞),

Tvk(x)→ Tv(x) as k →∞.

Since TY is relatively compact in C0([0,∞)), we have the uniform convergence,
namely,

‖Tvk − Tv‖∞ → 0 as k →∞.

Thus, we have proved that T is a compact mapping from Y into itself. By
Schauder’s fixed-point theorem, it follows that there exists v ∈ Y such that Tv =
v. Put u(x) = xα−2(1 + x)v(x). Then u ∈ C2−α([0,∞)), and u satisfies the
equation

u(x) = Gα(bGβ(auσ)))(x).

Then, due to Lemma 2.13, u is a positive solution in C2−α([0,∞)) of problem (1.1).
Uniqueness: Finally, let us prove that u is the unique positive continuous

solution satisfying (3.3). To this aim, we assume that (1.1) has two positive
solutions u and v satisfying (3.3). Then there exists a constant m > 1 such that

1

m
v ≤ u ≤ mv.

This implies that the set

J :=

{
t ∈ (1,∞) :

1

t
v ≤ u ≤ tv

}
is not empty. Now, putting c := inf J, we are to show that c = 1. Suppose that
c > 1. Then, by simple calculus, we obtain that

Dβ
(1

b
(Dα(c|σ|v)−Dαu)

)
= a(c|σ|vσ − uσ) ≥ 0,

lim
x→0

x2−β
1

b(x)

(
Dα(c|σ|v)−Dαu

)
(x) = 0,

lim
x→∞

x1−β
1

b(x)

(
Dα(c|σ|v)−Dαu

)
(x) = 0.

By Proposition 2.10 (iii), we conclude that

1

b
(Dα(c|σ|v))−Dαu

)
= −Gβ(a(c|σ|vσ − uσ)) ≤ 0.

Then we have
Dα(c|σ|v) ≤ Dαu,
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which implies that Dα(c|σ|v − u) ≤ 0,

lim
x→0

x2−α(c|σ|v − u)(x) = 0.

Using again Proposition 2.10 (iii), we conclude that

c|σ|v − u ≥ 0.

By the symmetry, we obtain that v ≤ c|σ|u. Thus, c|σ| ∈ J . Since |σ| < 1 and
c > 1, we have c|σ| < c. This leads to a contradiction with the fact that c = inf J .
Hence c = 1 and, consequently, u = v.

Proof of Theorem 1.3. Consider 1 < λ − (α − 2)σ < 2 and L1, L2, L̃1 ,L̃2

satisfying ∫ η

0

L1(t)L̃1

t
dt <∞ and

∫ ∞
1

L2(t)L̃2(t)

t
dt <∞.

Let

ξ :=


1 if 1 < µ− (α− 2)σ − σ < 2,

2− µ−ασ+r−β
1−σ if 1 < µ− (α− 2)σ + (µ−ασ+r−β1−σ − 2)σ < 2,

0, if 1 < µ− (α− 2)σ < 2,

and let θ be the function defined on [0,∞) by

θ(x) = (max(x, 1))ξ

(∫ min(x,1)

0

L1(s)L̃1(s)

s
ds

) 1
1−σ

χ(max(x, 1)),

where

χ(t) :=



(∫∞
t

L2(s)L̃2(s)
s ds

) 1
1−σ

if 1 < µ− (α− 2)σ − σ < 2,

r = 1− µ+ β + (α− 2)σ + σ,(
L2(t)L̃2(t)

) 1
1−σ

if 1 < µ− (α− 2)σ + (µ−ασ−r+β1−σ − 2)σ < 2,

β − µ+ ασ − σ + 1 < r,

r < β − µ+ ασ − 2σ + 2,(∫ t+1
1

L2(s)L̃2(s)
s ds

) 1
1−σ

if 1 < µ− (α− 2)σ < 2,

r = 2− µ+ (α− 2)σ + β,

1 if 1 < µ− (α− 2)σ < 2,

2− µ+ (α− 2)σ + β < r.

Put
w(x) = x(α−2)σa(x)θσ(x).

Using (H1), we deduce that

w(x) ≈ x−(λ−(α−2)σ)(1 + x)λ−µ(max(x, 1))ξσL1(min(x, 1))
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×

(∫ min(x,1)

0

L1(s)L̃1(s)

s
ds

) σ
1−σ

L2(max(x, 1))χσ(max(x, 1)).

Put

m1(x) = L1(x)

(∫ x

0

L1(s)L̃1(s)

s
ds

) σ
1−σ

and m2(x) = L2(x)χσ(x).

By Proposition 2.5, Lemmas 2.6 and 2.7, the functions m1 and m2 are in K and
K∞, respectively. For t ∈ (0, 1], w(t) ≈ t−(λ−(α−2)σ)m1(t). Since 1 < λ − (α −
2)σ < 2, from Lemma 2.8 we deduce that∫ 1

0
t1−(λ−(α−2)σ)m1(t) dt <∞. (3.7)

For t ∈ [1,∞), w(t) ≈ t−(µ−(α−2)σ−ξσ)m2(t). By the expression to ξ, we remark
that 1 < µ− (α− 2)σ − ξσ < 2, and from Lemma 2.9 we deduce that∫ ∞

1
t−(µ−(α−2)σ−ξσ)m2(t) dt <∞. (3.8)

Combining (3.7) and (3.8), we conclude that the function θ satisfies (3.1):∫ ∞
0

min(1, t)w(t) dt <∞.

To reach the estimate (3.2), we distinguish the following cases.
Case 1. Let x ∈ (0, 1]. We have

w(x) ≈ x−(λ−(α−2)σ)m1(x).

Since 1 < λ− (α− 2)σ < 2 and m1 is in K, by Lemma 2.15 with λ1 = λ− (α−
2)σ and L3(x) = m1(x), we obtain that

Gβw(x) ≈ xβ−λ+(α−2)σm1(x).

Then we have

b(x)Gβw(x) ≈ x−2L1(x)L̃1(x)

(∫ x

0

L1(s)L̃1(s)

s
ds

) σ
1−σ

.

Put

M(x) = L1(x)L̃1(x)

(∫ x

0

L1(s)L̃1(s)

s
ds

) σ
1−σ

.

In view of Proposition 2.5 and Lemma 2.6, the function M is in K and we have

∫ η

0

M(t)

t
dt ≈

(∫ η

0

L1(t)L̃1(t)

t
ds

) 1
1−σ

<∞.
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Then, using again Lemma 2.15, we deduce that for x ∈ (0, 1],

x2−αGα

(
bGβw

)
(x) ≈

∫ x

0

M(t)

t
dt ≈

(∫ x

0

L1(s)L̃1(s)

s
ds

) 1
1−σ

.

Hence, for x ∈ (0, 1],

x2−αGα

(
bGβw

)
(x) ≈ θ(x). (3.9)

Case 2. Let x ∈ [1,∞). We have

w(x) ≈ x−(µ−(α−2)σ−ξσ)m2(x).

Since 1 < µ− (α− 2)σ− ξσ < 2 and m2 is in K∞, by Lemma 2.15 with µ1 = µ−
(α− 2)σ − ξσ and L4(x) = m2(x), we obtain that

Gβw(x) ≈ xβ−(µ−(α−2)σ−ξσ)m2(x).

Then we have

b(x)Gβw(x) ≈ xβ−r−(µ−(α−2)σ−ξσ)L2(x)L̃2(x)χσ(x).

Put N(x) = L2(x)L̃2(x)χσ(x). In view of Proposition 2.5 and Lemma 2.7, the
function N is in K∞.
• Let 1 < µ− (α− 2)σ − σ < 2 and r = 1− µ+ β + (α− 2)σ + σ. We have∫ ∞

1

N(t)

t
dt ≈

∫ ∞
1

L2(t)L̃2(t)

t

(∫ ∞
t

L2(s)L̃2(s)

s
ds

) σ
1−σ

dt

≈

(∫ ∞
1

L2(t)L̃2(t)

t
dt

) 1
1−σ

<∞.

Using Lemma 2.15 with µ1 := µ− β − (α− 2)σ − σ + r = 1 and

L4(x) = L2(x)L̃2(x)

(∫ ∞
x

L2(s)L̃2(s)

s
ds

) σ
1−σ

,

we obtain

x2−αGα

(
bGβw

)
(x) ≈ x

∫ ∞
x

L2(t)L̃2(t)

t

(∫ ∞
t

L2(s)L̃2(s)

s
ds

) σ
1−σ

dt

≈ x

(∫ ∞
x

L2(s)L̃2(s)

s
ds

) 1
1−σ

= θ(x).

• Let 1 < µ− (α− 2)σ− (2− µ−ασ+r−β
1−σ )σ < 2 and β − µ+ασ− σ+ 1 < r <

β − µ+ ασ − 2σ + 2. Then

1 < µ+ r − β − (α− 2)σ − (2− µ− ασ + r − β
1− σ

)σ =
µ− ασ + r − β

1− σ
< 2.
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Using Lemma 2.15 with µ1 = µ+r−β−(α−2)σ−(2− µ−ασ+r−β
1−σ )σ and L4(x) =

L2(x)L̃2(x)
(
L2(x)L̃2(x)

) σ
1−σ

, we obtain

x2−αGα

(
bGβw

)
(x) ≈ x2−(µ+r−β−(α−2)σ+(µ−ασ+r−β

1−σ −2)σ)
(
L2(x)L̃2(x)

) 1
1−σ

= x(2−
µ−ασ+r−β

1−σ )
(
L2(x)L̃2(x)

) 1
1−σ

= θ(x).

• Let 1 < µ− (α− 2)σ < 2 and r = 2− µ+ (α− 2)σ + β. We have

b(x)Gβw(x) ≈ x−2L2(x)L̃2(x)

(∫ x+1

1

L2(s)L̃2(s)

s
ds

) σ
1−σ

.

Using Lemma 2.15 with µ1 := r + µ− (α− 2)σ − β = 2 and

L4(x) = L2(x)L̃2(x)

(∫ x+1

1

L2(s)L̃2(s)

s
ds

) σ
1−σ

,

we obtain

x2−αGα
(
bGβw

)
(x) ≈

∫ x+1

1

L2(t)L̃2(t)

t

(∫ t+1

1

L2(s)L̃2(s)

s
ds

) σ
1−σ

dt

≈

(∫ x+1

1

L2(s)L̃2(s)

s
ds

) 1
1−σ

= θ(x).

• Let 1 < µ− (α− 2)σ < 2 and 2− µ+ (α− 2)σ + β < r. We have

b(x)Gβw(x) ≈ x−(r+µ−β−(α−2)σ)L2(x)L̃2(x).

Using Lemma 2.15 with µ1 := r+µ− β− (α− 2)σ > 2 and L4(x) = L2(x)L̃2(x),
we obtain

x2−αGα
(
bGβw

)
(x) ≈ 1 = θ(x).

Hence, for x ∈ [1,∞),
x2−αGα

(
bGβw

)
(x) ≈ θ(x). (3.10)

Combining (3.9) and (3.10), we conclude that for x ∈ (0,∞),

x2−αGα
(
bGβw

)
(x) ≈ θ(x).

Then the function θ satisfies (3.1) and (3.2). It follows by Proposition 3.1 that
problem (1.1) has a unique positive solution u ∈ C2−α[0,∞) satisfying for x ∈
(0,∞),

u(x) ≈ xα−2θ(x).
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As an application of our main results, we give the following example.

Example 3.2. Let β, α ∈ (1, 2) and σ ∈ (−1, 1). Let a and b be two positive
continuous functions on (0,∞) such that

a(x) ≈ x−λ(1 + x)λ−µ
(

log(
3

min(x, 1)
)

)
and

b(x) ≈ xλ−β−2−(α−2)σ(1 + +x)−(λ−β−2−(α−2)σ)−r
(

log(
3

min(x, 1)
)

)−γ
,

where 1 < λ−(α−2)σ < 2, γ < 2 and r ∈ R. Then, by Theorem 1.3, problem (1.1)
has a unique positive solution u ∈ C2−α[0, 1] satisfying the following estimates:

• If 1 < µ− (α− 2)σ − (2− µ−ασ+r−β
1−σ )σ < 2, β − µ+ ασ − σ + 1 < r < β −

µ+ ασ − 2σ + 2 and γ < 2, then for x ∈ (0,∞),

u(x) ≈ xα−2
(

max(x, 1)
)2−µ−ασ+r−β

1−σ
(

log(
3

min(x, 1)
)

) 2−γ
1−σ

.

• If 1 < µ− (α− 2)σ < 2 and r = 2− µ+ (α− 2)σ + β, then for x ∈ (0,∞),

u(x) = xα−2
(

log(
3

min(x, 1)
)

) 2−γ
1−σ (

log(1 + max(x, 1))
) 1

1−σ
.

• If 1 < µ− (α− 2)σ < 2 and 2− µ+ (α− 2)σ + β < r, then

u(x) = xα−2
(

log(
3

min(x, 1)
)

) 2−γ
1−σ

.
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Крайова задача з дробовими похiдними на пiвосi
Bilel Khamessi

У статтi розглядається напiвлiнiйна крайова задача з дробовими по-
хiдними

Dβ

(
1

b(x)
Dαu

)
= a(x)uσ на (0,∞)

з умовами limx→0 x
2−β 1

b(x)D
αu(x) = limx→∞ x1−β 1

b(x)D
αu(x) = 0 та

limx→0 x
2−αu(x) = limx→∞ x1−αu(x) = 0, де β, α ∈ (1, 2), σ ∈ (−1, 1) i

Dβ , Dα означають стандартнi дробовi похiднi Рiмана–Лiувiлля. Функцiї
a, b : (0,∞) −→ R є невiд’ємними неперервними функцiями, якi задо-
вольняють деякi вiдповiднi умови. Встановлено iснування та єдинiсть
позитивного розв’язку. Також надано опис глобальної поведiнки цього
розв’язку.

Ключовi слова: рiвняння з дробовими похiдними, позитивний розв’я-
зок, теорема Шаудера про нерухому точку.
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