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1. Introduction

Let (ak), where k = 1, 2, . . . , be a sequence of all rational numbers and every
rational number be included only one time. The function

f(x) =
∑
ak<x

2−k

is increasing in the whole real axes, has the range in (0, 1) and jumps at rational
points.

The next function,

g(x) =
∞∑
n=1

[
xnK

]
/n!,

is a strictly increasing function of x > 0 which does not take rational values
(see [4, Remark to Corollary 3.4]). Here K is an arbitrary positive integer and
[y] is an integer part of y. By analogy, the function

∞∑
n=1

[γnα]/n!

is a strictly monotonic function of α ≥ 0 and γ > 0 without rational values
(see [4, Remark for Corollary 3.5]).

The present paper is devoted to certain functions defined in terms of positive
Cantor series that are singular or non-differentiable.

Let Q ≡ (qk) be a fixed sequence of positive integers, qk > 1, Θk be a sequence
of the sets Θk ≡ {0, 1, . . . , qk − 1}, and εk ∈ Θk.
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The Cantor series expansion

ε1
q1

+
ε2
q1q2

+ · · ·+ εk
q1q2 . . . qk

+ . . . (1.1)

of x ∈ [0, 1] was first studied by G. Cantor in [2]. It is easy to see that the Cantor
series expansion is the q-ary expansion

α1

q
+
α2

q2
+ · · ·+ αk

qk
+ . . .

of numbers from the closed interval [0, 1] whenever the condition qk = q holds
for all positive integers k. Here q is a fixed positive integer, q > 1, and αk ∈
{0, 1, . . . , q − 1}.

By x = ∆Q
ε1ε2...εk..., denote any number x ∈ [0, 1] represented by series (1.1).

This notation is called the representation of x by Cantor series (1.1).
We note that certain numbers from [0, 1] have two different representations

by Cantor series (1.1), i.e.,

∆Q
ε1ε2···εm−1εm000··· = ∆Q

ε1ε2···εm−1[εm−1][qm+1−1][qm+2−1]··· =

m∑
i=1

εi
q1q2 · · · qi

.

Such numbers are called Q-rational. The other numbers in [0, 1] are called Q-
irrational.

Let c1, c2, . . . , cm be an ordered tuple of integers such that ci ∈
{0, 1, . . . , qi − 1} for i = 1,m.

A cylinder ∆Q
c1c2···cm of rank m with base c1c2 · · · cm is a set of the form

∆Q
c1c2···cm ≡ {x : x = ∆Q

c1c2···cmεm+1εm+2···εm+k···},

i.e., any cylinder ∆Q
c1c2···cm is a closed interval of the form[

∆Q
c1c2···cm000,∆

Q
c1c2···cm[qm+1−1][qm+2−1][qm+3−1]···

]
.

Define the shift operator σ of expansion (1.1) by the rule

σ(x) = σ
(
∆Q
ε1ε2···εk···

)
=

∞∑
k=2

εk
q2q3 · · · qk

= q1∆
Q
0ε2···εk···.

It is easy to see that

σn(x) = σn
(
∆Q
ε1ε2···εk···

)
=

∞∑
k=n+1

εk
qn+1qn+2 · · · qk

= q1 · · · qn∆Q
0 · · · 0︸ ︷︷ ︸
n

εn+1εn+2···.

Therefore,

x =

n∑
i=1

εi
q1q2 · · · qi

+
1

q1q2 · · · qn
σn(x). (1.2)
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In [13], the notion of the shift operator of the alternating Cantor series is
studied in detail.

In [7], Salem modeled the function

s(x) = s
(
∆2
α1α2···αn...

)
= βα1 +

∞∑
n=2

(
βαn

n−1∏
i=1

qi

)
= y = ∆Q2

α1α2···αn···,

where q0 > 0, q1 > 0, and q0 + q1 = 1. It is a singular function. However,
generalizations of the Salem function can be non-differentiable functions or not
have the derivative on a certain set. Some parers (see, for example, [9, 10, 15])
are devoted to modeling and studying generalizations of the Salem function.

In the present paper, two examples of certain functions with complex local
structure are constructed and investigated.

Suppose that the condition qn ≤ q holds for all positive integers n. The first
function has the form

f : x = ∆Q
ε1ε2···εn··· → ∆q

ε1ε2···εn··· = y.

This function is interesting since the generalization of the Salem function studied
in [9] can be represented as

F (x) = Fξ,Q ◦ f.

Here, ◦ denotes the composition of functions. Also, the function Fξ,Q is the
function of the type

Fη,Q(y) = βε1(y),1 +
∞∑
k=2

βεk(y),k k−1∏
j=1

pεj(y),j

,
where y = ∆q

ε1ε2···εn···.

Note that the function Fη,q is a distribution function of a certain random
variable η whenever the elements pi,n of the matrix P , described in the last-
mentioned examples, are non-negative.

Remark 1.1. Let η be a random variable defined by the q-ary expansion, i.e.,

η =
ξ1
q

+
ξ2
q2

+
ξ3
q3

+ · · ·+ ξk
qk

+ · · · ≡ ∆q
ξ1ξ2···ξk···,

where the digits ξk (k = 1, 2, 3, . . . ) are random and take the values 0, 1, . . . , q −
1 with probabilities p0,k, p1,k, . . . , pq−1,k. That is, ξk are independent and P{ξk =
ik} = pik,k, ik ∈ Θ = {0, 1, . . . , q − 1}.

From the definition of the distribution function and the following expressions
for x = ∆q

α1α2···αk···:

{η < x} = {ξ1 < α1(x)} ∪ {ξ1 = α1(x), ξ2 < α2(x)} ∪ · · ·
∪ {ξ1 = α1(x), ξ2 = α2(x), . . . , ξk < αk(x)} ∪ · · · ,
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P{ξ1 = α1(x), ξ2 = α2(x), . . . , ξk < αk(x)} = βαk(x),k

k−1∏
j=1

pαj(x),j

we get that the distribution function Fη,q of the random variable η has the form

Fη,q(x) =


0 for x < 0

βα1(x),1 +
∑∞

k=2

[
βαk(x),k

∏k−1
j=1 pαj(x),j

]
for 0 ≤ x < 1

1 for x ≥ 1

since the conditions Fη,q(0) = 0, Fη,q(1) = 1 hold and Fη,q is a continuous, mono-
tonic and non-decreasing function. Most generalizations of the Salem function
were studied in [11]).

Remark 1.2. In the general case, suppose that (fn) is a finite or infinite se-
quence of certain functions (the sequence may contain functions with complicated
local structure). Let us consider the corresponding composition of the functions

· · · ◦ fn ◦ · · · ◦ f2 ◦ f1 = fc,∞

or

fn ◦ · · · ◦ f2 ◦ f1 = fc,n.

Also, we can take a certain part of the composition, i.e.,

fn0+t ◦ · · · ◦ fn0+1 ◦ fn0 = fc,n0,n0+t
,

where n0 is a fixed positive integer (a number from the set N), t ∈ Z0 = N ∪ {0}
and n0 + t ≤ n.

One can use this technique for modeling and studying the functions with
complex local structure. Also, one can use new representations of real numbers
(numeral systems) of the type

x′ = ∆
fc,∞
i1i2···in = · · · ◦ fn ◦ · · · ◦ f2 ◦ f1(x),

x′ = ∆
fc,n
i1i2···in = fn ◦ · · · ◦ f2 ◦ f1(x)

or

z′ = ∆
fc,n0,n0+t
i1i2···in = fn0+t ◦ . . . ◦ fn0+1 ◦ fn0(z)

in fractal theory, applied mathematics, etc.

The second map considered in this paper can be used for modeling fractals in
the space R2:

f : x = ∆q
u · · ·u︸ ︷︷ ︸
α1−1

α1 u · · ·u︸ ︷︷ ︸
α2−1

α2···u · · ·u︸ ︷︷ ︸
αn−1

αn··· → ∆q
α1α2···αn···,
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where u ∈ {0, 1, . . . , q − 1} is a fixed number, αn ∈ {1, 2, . . . , q − 1} \ {u}, and
3 < q is a fixed positive integer. It is easy to see that one can consider this map
defined in terms of other representations of real numbers (e.g., the Qs, Q

∗, Q∗s, Q̃,
the nega-Q̃-representations and other positive and alternating representations).
Actually, the functions with complex local structure defined in terms of different
representations of real numbers, as well as their compositions, are useful for
modeling fractals (the Moran sets) in R2. Regularity properties of different sets
under the map generated by the functions with complex local structure and their
compositions are interesting and unknown.

2. One function defined in terms of positive Cantor series

Let us consider the function

f(x) = f
(
∆Q
ε1ε2...εn...

)
= f

( ∞∑
n=1

εn
q1q2 · · · qn

)
=
∞∑
n=1

εn
qn

= ∆q
ε1ε2...εn... = y,

where εn ∈ Θn and the condition qn ≤ q holds for all positive integers n.

Lemma 2.1 (On the well-posedness of the definition of the function). The
values of the function f for different representations of Q-rational numbers from
[0, 1] are:

• identical whenever for all positive integers n the condition qn = q holds;

• different whenever for all positive integers n the condition qn < q holds;

• different for numbers from no more than a countable subset of Q-rational
numbers whenever there exists a finite or infinite subsequence nk of positive
integers such that qnk < q for all positive integer values of k.

Proof. Let x be a Q-rational number. Then there exists a number n0 such
that

x = x1 = ∆Q
ε1ε2...εn0−1εn0000···

= ∆Q
ε1ε2···εn0−1[εn0−1][qn0+1−1][qn0+2−1][qn0+3−1]··· = x2.

Whence,

f(x1) = ∆q
ε1ε2···εn0−1εn0000···

, f(x2) = ∆q
ε1ε2···εn0−1[εn0−1][qn0+1−1][qn0+2−1][qn0+3−1]···

and

f(x2)− f(x1) = − 1

qn0
+

∞∑
n=n0+1

qn − 1

qn
≤ 0.

Thus, certain Q-rational points are the points of discontinuity of the function. It
is easy to see that f(x2)− f(x1) = 0 if the condition qn = q holds for all positive
integers n.

From the unique representation for each Q-irrational number from [0, 1], it
follows that the function f is well defined at any Q-irrational point.
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Remark 2.2. We should not consider the representation

∆Q
ε1ε2···εn−1[εn−1][qn+1−1][qn+2−1][qn+3−1]···

to get the function f to be well defined on the set of Q-rational numbers from
[0, 1].

Lemma 2.3. The function f has the following properties:

1. D(f) = [0, 1], where D(f) is the domain of f .

2. Let E(f) be the range of f . Then:

• E(f) = [0, 1] whenever the condition qn = q holds for all positive inte-
gers n,

• E(f) = [0, 1] \ Cf , where Cf = C1 ∪ C2, C1 =
{
y : y = ∆q

ε1ε2···εn , εn /∈

{qn, qn + 1, . . . , q − 1} for all n such that qn < q
}

and C2 =
{
y : y =

∆q
ε1ε2...εn−1[εn−1][qn+1−1][qn+2−1][qn+3−1]···

}
.

3. f(x) + f(1− x) = f(1) ≤ 1.

4. f
(
σk(x)

)
= σk (f(x)) for any k ∈ N.

Proof. Property 1 follows from the definition of f . Property 2 follows from
Lemma 2.1.

Let us prove property 3. Since

1− x =

∞∑
n=1

qn − 1− εn
q1q2 · · · qn

,

we have

f(1− x) =

∞∑
n=1

qn − 1− εn
qn

.

Whence,

f(x) + f(1− x) =
∞∑
n=1

εn
qn

+
∞∑
n=1

qn − 1− εn
qn

=
∞∑
n=1

qn − 1

qn
= f(1) ≤ 1.

Note that the last inequality is an equality where y = x, i.e., the condition qn =
q holds for all positive integers n.

Let us prove property 4. We have

f
(
σk(x)

)
= f

 ∞∑
j=k+1

εj
qk+1qk+2 · · · qj


=

∞∑
j=k+1

εj
qj−k

= σk

( ∞∑
n=1

εn
qn

)
= σk (f(x)) .

The lemma is proved.
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Lemma 2.4. The function f is continuous at Q-irrational points from [0, 1].
The function f is continuous at all Q-rational points from [0, 1] if the condition

qn = q holds for all positive integers n.
If there exist positive integers n such that qn < q, then the points of the type

∆Q
ε1ε2···εn−1εn000··· and ∆Q

ε1ε2···εn−1[εn−1][qn+1−1][qn+2−1]···

are the points of discontinuity of the function.

Proof. Let x = ∆Q
ε1ε2···εn··· ∈ [0, 1] be an arbitrary number.

Let x0 be an Q-irrational number.
Then there exists n0 = n0(x) such that{

εm(x) = εm(x0) for m = 1, n0 − 1

εn0(x) 6= εn0(x0).

From the system, it follows that the conditions x→ x0 and n0 →∞ are equivalent
and

|f(x)− f(x0)| =

∣∣∣∣∣∣
∞∑

j=n0

εj(f(x))− εj(f(x0))

qk

∣∣∣∣∣∣ ≤
∞∑

j=n0

|εj(f(x))− εj(f(x0))|
qk

≤
∞∑

j=n0

q − 1

qk
=

1

qn0−1 → 0 as n0 →∞.

So, the function f is continuous at Q-irrational points. That is,

lim
x→x0

f(x) = f(x0).

Let x0 = ∆Q
ε1ε2···εn··· be a Q-rational number.

If the condition qn < q holds for a certain n ∈ N, then qn ≤ q − 1 and qn −
1 ≤ q − 2. That is,

εn ∈ Θn = {0, 1, . . . , qn − 1} ⊆ {0, 1, . . . , q − 2}.

Since
lim

x→x0−0
f(x) = ∆q

ε1ε2···εn−1[εn−1][qn+1−1][qn+2−1]···

and
lim

x→x0+0
f(x) = ∆q

ε1ε2···εn−1εn000···,

we obtain

∆f = lim
x→x0+0

f(x)− lim
x→x0−0

f(x) =
1

qn
−

∞∑
j=n+1

qj − 1

qj
≥ 0.

Notice that

∆f ≥
1

qn
−

∞∑
j=n+1

q − 2

qj
=

1

(q − 1)qn
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and

∆f ≤
1

qn
−

∞∑
j=n+1

1

qj
=

q − 2

(q − 1)qn
.

Thus, x0 is a point of discontinuity for qn < q and

1

(q − 1)qn
≤ ∆f ≤

q − 2

(q − 1)qn
.

Lemma 2.5. The function f is strictly increasing.

Proof. Let x1 = ∆Q
α1α2···αn··· and x2 = ∆Q

ε1ε2···εn··· such that x1 < x2. Then
there exists n0 such that αi = εi for i = 1, n0 − 1 and αn0 < εn0 . So,

f(x2)− f(x1) =
εn0 − αn0

qn0
+

∞∑
j=n0+1

εj − αj
qj

.

Since εn0 > αn0 and qn ≤ q, we have

f(x2)− f(x1) >
1

qn0
−

∞∑
j=n0+1

qj − 1

qj
≥ 1

qn0
+

∞∑
j=n0+1

1− q
qj

= 0.

Theorem 2.6 (On differential properties).

• If the condition qn = q holds for all positive integers n, then f
′
(x0) = 1.

• If for all n the condition qn < q holds or there exists only a finite number of
n such that qn = q, then f is a singular function.

• If there exists only a finite number of n such that qn < q, then f is non-
differentiable.

• If there exists an infinite subsequence (nk) of positive integers such that qnk <
q, then f is a singular function.

Proof. Suppose x0 = ∆Q
ε1ε2···εm−1cεm+1···, where c is a fixed number from

{0, 1, . . . , qm − 1}, and (xm) is a sequence of numbers xm = ∆Q
ε1ε2···εm−1εmεm+1···.

Then

xm − x0 =
εm − c

q1q2 · · · qm
and f(xm)− f(x0) =

εm − c
qm

.

As the conditions xm → x0 and m→∞ are equivalent, we have

lim
m→∞

f(xm)− f(x0)

xm − x0
= lim

m→∞

q1q2 · · · qm
qm

. (2.1)

Let us consider the cylinders ∆Q
c1c2···cn . The value µf

(
∆Q
c1c2···cn

)
, defined by

the equality

µf
(
∆Q
c1c2···cn

)
= f

(
sup ∆Q

c1c2···cn
)
− f

(
inf ∆Q

c1c2···cn
)

= f
(

∆Q
ε1ε2···εn[qn+1−1][qn+2−1]···

)
− f

(
∆Q
ε1ε2···εn000···

)
,
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is called the change µf of the function f on a cylinder ∆Q
c1c2···cn .

Thus, for x0 ∈ ∆Q
c1c2···cn , we obtain

f ′(x0) = lim
n→∞

µf

(
∆Q
c1c2···cn

)
∣∣∣∆Q

c1c2···cn

∣∣∣ = lim
n→∞

q1q2 · · · qn
qn

∞∑
j=n+1

qj − 1

qj

. (2.2)

Since 2 ≤ qn ≤ q, we have

1

q − 1
lim
n→∞

(
q1q2 · · · qn

qn

)
≤ lim

n→∞

q1q2 · · · qn
qn

∞∑
j=n+1

qj − 1

qj


≤ lim

n→∞

(
q1q2 · · · qn

qn

)
.

Therefore,

• f
′
(x0) = 1 if the condition qn = q holds for all positive integers n;

• f
′
(x0) = 0, i.e., f is a singular function if for all n the condition qn < q holds

or there exists only a finite number of n such that qn = q;

• f is non-differentiable if there exists only a finite number of n such that qn <
q (since limits (2.1) and (2.2) are different);

• f is a singular function if there exists an infinite subsequence (nk) of positive
integers such that qnk < q.

Theorem 2.7. The Lebesgue integral of the function f can be calculated by
the formula ∫

[0,1]
f(x)dx =

1

2

∞∑
n=1

qn − 1

qn
.

Proof. We have

0 ≤ f(x) ≤
∞∑
n=1

qn − 1

qn
.

Suppose that

T = {0,∆q
1000···,∆

q
2000···, . . . ,∆

q
[q1−1]000···, . . . ,∆

q
[q1−1][q2−1]···[qn−1]···},

En = {x : yn−1 ≤ f(x) < yn} = ∆Q
c1c2...cn , cn ∈ Θn.

We get

λ(En) =
1

q1q2 · · · qn
,

where λ(·) is the Lebesgue measure of a set.
Also, y ∈ [yn−1, yn). Suppose that y = yn−1. It is easy to see that the

conditions λ(En)→ 0 and n→∞ are equivalent.
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Hence, ∫
[0,1]

f(x)dx = lim
n→∞

∑
n

∆q
c1c2···cn000···
q1q2 · · · qn

= lim
n→∞

(
(qn − 1)q1q2 · · · qn

2qnq1q2 · · · qn

)
=

1

2

∞∑
n=1

qn − 1

qn
.

We have that
1

2(q − 1)
≤
∫
[0,1]

f(x)dx ≤ 1

2
,

and the integral is equal to 1
2 if f(x) = x.

3. Fractal in R2 defined in terms of a certain map

Let us consider the function

g : x = ∆q
u . . . u︸ ︷︷ ︸
α1−1

α1 u . . . u︸ ︷︷ ︸
α2−1

α2... u . . . u︸ ︷︷ ︸
αn−1

αn... → ∆q
α1α2···αn···,

where u ∈ {0, 1, . . . , q − 1} is a fixed number, αn ∈ Θ = {1, 2, . . . , q − 1} \ {u},
and 3 < q is a fixed positive integer. This function can be represented as

g : x =
u

s− 1
+
∞∑
n=1

αn − u
qα1+α2+···+αn →

∞∑
n=1

αn
qn

= g(x) = y.

Theorem 3.1. The function g has the following properties:

1. The domain D(g) of the function g is an uncountable, perfect, and nowhere
dense set of zero Lebesgue measure as well as a self-similar fractal whose
Hausdorff dimension α0 satisfies the equation∑

p∈{1,2,...,q−1}
p6=u

(
1

s

)pα0

= 1.

2. The range of g is a self-similar fractal

E(g) = {y : y = ∆q
α1α2···αn···, αn ∈ Θ}

whose Hausdorff dimension α0 can be calculated by the formula

α0(E(g)) = logq |Θ|,

where | · | is the number of elements of a set.

3. The function g is well-defined and bijective on its domain.

4. On the domain, the function g is:
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• decreasing whenever u ∈ {0, 1} for all q > 3;

• increasing whenever u ∈ {s− 2, s− 1} for all q > 3;

• non-monotonic whenever u ∈ {2, 3, . . . , s− 3} and q > 4.

5. The function g is continuous at any point of the domain.

6. The function g is non-differentiable on the domain.

7. The following relations are true:

g (σα1(x)) = σ(g(x)),

g
(
σα1+α2+···+αn(x)

)
= σn(g(x)),

where σ is the shift operator.

8. The function does not preserve the Hausdorff dimension.

Proof. For any fixed u ∈ {0, 1, . . . , q− 1}, the domain D(g) of the function g
is an uncountable, perfect, and nowhere dense set of zero Lebesgue measure. It
is also a self-similar fractal whose Hausdorff dimension α0 satisfies the equation
(see [16,17]): ∑

p∈{1,2,...,q−1}
p 6=u

(
1

s

)pα0

= 1.

This set does not contain q-rational numbers, i.e., the numbers of the form

∆q
α1α2···αn000··· = ∆q

α1α2···αn[q−1][q−1][q−1]···.

Thus, any element of the domain D(g) of the function g has the unique q-
representation. Therefore the condition g(x1) 6= g(x2) holds for x1 6= x2. The
value g(x) ∈ E(g) is assigned to an arbitrary x ∈ D(g) and vice versa.

Let us consider the difference

|g(x)− g(x0)| =

∣∣∣∣∣
∞∑
n=1

βn − αn
qn

∣∣∣∣∣ ,
where x0 = ∆q

u · · ·u︸ ︷︷ ︸
α1−1

α1 u · · ·u︸ ︷︷ ︸
α2−1

α2···u · · ·u︸ ︷︷ ︸
αn−1

αn··· is a fixed number from D(g) and x =

∆q
u · · ·u︸ ︷︷ ︸
β1−1

β1 u · · ·u︸ ︷︷ ︸
β2−1

β2···u · · ·u︸ ︷︷ ︸
βn−1

βn···. It is easy to see that the conditions x → x0 and

βn → αn are equivalent, n = 1, 2, . . . . Hence,

lim
x→x0

|g(x)− g(x0)| = lim
βn→αn

∣∣∣∣∣
∞∑
n=1

βn − αn
qn

∣∣∣∣∣ = 0.

From the definition of g it follows that the set

E(g) = {y : y = ∆q
α1α2···αn···, αn ∈ Θ}
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is the range of g. It follows from Theorem 2 in [18] that E(g) is a self-similar
fractal whose Hausdorff dimension α0 can be calculated by the formula

α0(E(g)) = logq |Θ|,

where | · | is the number of elements of a set.
Thus properties 1–3 and 5 are proved.
Let us prove property 4. Let x1 = ∆q

u . . . u︸ ︷︷ ︸
α1−1

α1 u · · ·u︸ ︷︷ ︸
α2−1

α2···u . . . u︸ ︷︷ ︸
αn−1

αn··· and x2 =

∆q
u · · ·u︸ ︷︷ ︸
β1−1

β1 u · · ·u︸ ︷︷ ︸
β2−1

β2···u · · ·u︸ ︷︷ ︸
βn−1

βn··· such that x1 6= x2. Then there exists n0 such that

αi = βi for i = 1, n0 − 1 and αn0 6= βn0 . Suppose that αn0 < βn0 . Consider the
following numbers:

x1 = ∆q
u · · ·u︸ ︷︷ ︸
α1−1

α1 u · · ·u︸ ︷︷ ︸
α2−1

α2··· u · · ·u︸ ︷︷ ︸
αn0−1−1

αn0−1 u · · ·u︸ ︷︷ ︸
αn0−1

αn0 ···

and
x2 = ∆q

u · · ·u︸ ︷︷ ︸
β1−1

β1 u · · ·u︸ ︷︷ ︸
β2−1

β2··· u · · ·u︸ ︷︷ ︸
βn0−1−1

βn0−1 u · · ·u︸ ︷︷ ︸
βn0−1

βn0 ···

when αn0 < βn0 . It is sufficient to consider the numbers

∆q
u · · ·u︸ ︷︷ ︸
αn0−1

αn0 ···
and ∆q

u · · ·u︸ ︷︷ ︸
βn0−1

βn0 ···
.

Then we obtain the following cases:

• g(x1) < g(x2) for x1 > x2. The last condition is true for the case where u =
0 or u = 1. Thus g is decreasing.

• g(x1) < g(x2) for x1 < x2. The last condition is true for the case where u =
q − 1 or u = q − 2.

• If g(x1) < g(x2) for x1 > x2 and x1 < x2, then this condition is true for the
case where u ∈ {2, 3, . . . , q − 3} and q > 4. Thus g is non-monotonic.

For q = 4, g is increasing if u ∈ {2, 3} and decreasing if u ∈ {0, 1}.
Let us prove property 6. Consider a sequence (xn) of numbers

xn = ∆q
u . . . u︸ ︷︷ ︸
α1−1

α1 u . . . u︸ ︷︷ ︸
α2−1

α2... u . . . u︸ ︷︷ ︸
αn−1−1

αn−1 u . . . u︸ ︷︷ ︸
αn−1

αn u . . . u︸ ︷︷ ︸
αn+1−1

αn+1...

and a fixed number

x0 = ∆q
u . . . u︸ ︷︷ ︸
α1−1

α1 u . . . u︸ ︷︷ ︸
α2−1

α2... u . . . u︸ ︷︷ ︸
αn0−1−1

αn−1 u . . . u︸ ︷︷ ︸
c−1

c u . . . u︸ ︷︷ ︸
αn+1−1

αn+1...,

where c is a fixed number. Then

lim
x→x0

g(x)− g(x0)

x− x0
= lim

x→x0

αn−c
qn

αn
qα1+α2+···+αn−1+αn

− c
qα1+α2+···+αn−1+c
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= lim
αn→c

(αn − c)qα1+α2+···+αn−1+αn+c

qn(αnqc − cqαn)

= lim
αn→c

qα1+α2+···+αn−1+αn+c

qc+n
.

Thus the function is non-differentiable.

Property 7. It is easy to see that

g (σα1(x)) = g(∆q
u · · ·u︸ ︷︷ ︸
α2−1

α2··· u · · ·u︸ ︷︷ ︸
αn−1−1

αn−1 u · · ·u︸ ︷︷ ︸
αn−1

αn u · · ·u︸ ︷︷ ︸
αn+1−1

αn+1···)

= ∆q
α2α3···αn··· = σ(g(x)),

g
(
σα1+α2+···+αn(x)

)
= g(∆q

u · · ·u︸ ︷︷ ︸
αn+1−1

αn+1··· u · · ·u︸ ︷︷ ︸
αn+2−1

αn+2···)

= ∆q
αn+1αn+3··· = σn(g(x)).

Property 8. It is obvious that there exists a set S such that α0(S) 6= α0(g(S)),
where α0(·) is the Hausdorff dimension of a set.

Theorem 3.2. The Hausdorff dimension of the graph of the function g is
equal to 1.

Proof. Suppose that

X = [0, 1]× [0, 1] =

{
(x, y) : x =

∞∑
m=1

αm
qm

, αm ∈ Θq = {0, 1, . . . , q − 1},

y =
∞∑
m=1

βm
qm

, βm ∈ Θq

}
.

Then the set

u(α1β1)(α2β2)···(αmβm) = ∆q
α1α2···αm ×∆q

β1β2···βm

is a square with the length of a side q−m. This square is called a square of rank
m with base (α1β1)(α2β2) . . . (αmβm).

If E ⊂ X, then the number

αK(E) = inf{α : Ĥα(E) = 0} = sup{α : Ĥα(E) =∞},

where

Ĥα(E) = lim
ε→0

[
inf
d≤ε

K(E, d)dα
]

and K(E, d) is the minimal number of squares of diameter d required to cover
the set E. The value K(E, d) is called the fractal cell entropy dimension of the
set E. It is easily seen that αK(E) ≥ α0(E).
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From the definition and properties of the function g it follows that the graph
of the function belongs to τ = |Θ| squares from q2 first-rank squares (here τ is
equal to (s− 1) for u = 0 and equal to (s− 2) for u 6= 0):

u(i1i1) =
[
∆q
u . . . u︸ ︷︷ ︸
i1−1

i1
,∆q

i1

]
, i1 ∈ Θq.

The graph of the function f belongs to τ2 squares from q4 second-rank squares:

u(i1i2)(i1i2) =
[
∆q
u . . . u︸ ︷︷ ︸
i1−1

i1 u . . . u︸ ︷︷ ︸
i2−1

i2
,∆q

i1i2

]
, i1, i2 ∈ Θq.

The graph Γg of the function g belongs to τm squares of rank m with sides
qα1+α2+···+αm and q−m. Then

Ĥα(Γg) = lim
m→∞

τm
(√

q−2(α1+α2+···+αm) + q−2m
)α
.

Since q−m(q−1) ≤ q−(α1+α2+···+αm) ≤ q−m, we get

Ĥα(Γg) = lim
m→∞

τm
(
2q−2m

)α
2 = lim

m→∞
τm
(
2q−2m

)α
2

= lim
m→∞

(
2
α
2 τmq−mα

)
= lim

m→∞

(
2
α
2

(
τ

qα

)m)
for α1 + α2 + · · ·+ αm = m and

Ĥα(Γg) = lim
m→∞

τm
(
q−2m(q−1) + q−2m

)α
2

= lim
m→∞

(τ 1
α

q

)2m

+
(
q1−qτ

1
α

)2mα
2

for α1 + α2 + · · ·+ αm = m(q − 1).

It is obvious that if
(
τ
qα

)m
→ 0,

(
τ

1
α

q

)2m

→ 0, and
(
q1−qτ

1
α

)2m
→ 0 for

α > 1, and the graph of the function has self-similar properties, then αK(Γg) =
α0(Γg) = 1.
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Деякi функцiї, визначенi в термiнах рядiв Кантора
Symon Serbenyuk

Цю статтю присвячено деяким прикладам функцiй, аргумент яких
подано в термiнах рядiв Кантора.

Ключовi слова: нiде недиференцiйовна функцiя, сингулярна фун-
кцiя, розвинення дiйсного числа, немонотонна функцiя, розмiрнiсть Га-
усдорфа
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