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On Isometric Immersions of the Lobachevsky

Plane into 4-Dimensional Euclidean Space

with Flat Normal Connection

Yuriy Aminov

According to Hilbert’s theorem, the Lobachevsky plane L2 does not ad-
mit a regular isometric immersion into E3. The question on the existence of
isometric immersion of L2 into E4 remains open. We consider isometric im-
mersions into E4 with flat normal connection and find a fundamental system
of two partial differential equations of the second order for two functions.
We prove the theorems on the non-existence of global and local isometric
immersions for the case under consideration.
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1. Introduction

Hypothesis: There exists no isometric immersion with flat normal connec-
tion of a whole Lobachevsky plane L2 into 4-dimensional Euclidean space E4.

We prove the following theorem.

Theorem A. If F 2 ⊂ E4 is a C3-regular immersed surface with flat normal
connection isometric to the Lobachevsky plane L2, then the metric of F 2 admits
a conformal Chebyshev parametrization

ds2 =
dl2√
1 + β2

, dl2 = dp2 + 2 cosω dp dq + dq2.

There is no regular isometric immersion with flat normal connection of L2

into E4 under which the curvature of the metric dl2 does not change the sign or
changes the sign at a finite number of bounded domains.

We remark that the functions β and ω have a geometrical meaning. The
function β(x) is equal up to a sign to the distance from x ∈ F 2 to the segment
of indicatrix of normal curvature, and ω(x) is the angle between asymptotic lines
with respect to normal vector that is parallel to the segment of normal curvature.
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Note some results on isometric immersions of Lobachevsky plane into the
Euclidean space.

E. Rozendorn constructed an isometric immersion of L2 into E5 in [5].
D. Bolotov proved the following theorem in [1].

Theorem B. Denote by H the mean curvature vector. The Lobachevsky
space Ln does not admit a regular isometric immersion into the Euclidean space
En+m such that |H| < const and the normal connection of the immersion is flat.

On the other hand, an arbitrary geodesic disk on L2 admits an isometric
immersion into E3.

Note also recent interesting papers [2] and [4].

2. Proof of Theorem A

Proof of Theorem A. First, we consider a local isometric immersion or im-
mersion of a bounded domain.

Suppose that there exists an isometric immersion of a domain on the
Lobachevsky plane L2 into E4 as a regular surface F 2. If the normal connec-
tion of F 2 is flat, then the ellipse of normal curvature degenerates into a segment
γ. Denote by n1, n2 the unit normal frame on F 2 such that n1 is parallel to γ
and n2 is orthogonal to γ. Denote by (u, v) the local coordinates on F 2. Let τ1,
τ2 be unit vectors tangent to (u, v) coordinate lines, respectively. Let the end of
the normal curvature vector k1(τ1) at x ∈ F 2 coincide with the end of γ. In the
normal plane of F 2, introduce the orthogonal coordinate system (α, β) using n1,
n2 as its basis. Denote by a a half of the length of γ. The Gauss curvature K of
F 2 can be expressed [3] as follows:

K = α2 + β2 − a2.

Write the metric of F 2 as

ds2 = E du2 +Gdv2,

and the second quadratic forms as

IIσ = Lσij du
iduj , σ = 1, 2,

where u1 = u, u2 = v. Due to the choice of the normal frame and coordinates,
we have Li12 = 0, i = 1, 2. The following expressions

L1
11 = (α+ a)E, L2

11 = βE,

L1
12 = 0, L2

12 = 0,

L1
22 = (α− a)G, L2

22 = βG

hold. Let the Gauss curvature of F 2 be equal to −1. Then

α2 + β2 − a2 = −1.
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Hence, α2 − a2 = −(1 + β2). We can write the expression for Gauss curvature K
in terms of Lσij as follows:

K =
L1

11L
1
22 + L2

11L
2
22

EG
=
L1

11L
1
22

EG
+ β2 = −1.

Therefore, we can write

L1
11

E
√

1 + β2

L1
22

G
√

1 + β2
= −1.

Denote
L1
11

E
√

1+β2
= tg σ. Then

L1
22

G
√

1+β2
= − ctg σ. Write the Codazzi equations in

tensorial form as
Lαij,k − Lαik,j = µσα|kL

σ
ij − µσα|jLσik,

where σ is the index of summation and µσα|k are the torsion coefficients. In
developed form these equations take the forms

∂Lαij
∂uk

−
∂Lαik
∂uj

− ΓβikL
α
βj + ΓβijL

α
βk = µσα|kL

σ
ij − µσα|jLσik.

Put α = 1, σ = 2, i = j = 1, k = 2. Then the corresponding Codazzi equation is

∂L1
11

∂u2
− ∂L1

12

∂u1
+ Γ2

11L
1
22 − Γ1

12L
1
11 = µ21|2L

2
11.

As the coordinate system is orthogonal, the Christoffel symbols simplify to

Γ2
11 = − 1

2G

∂E

∂v
, Γ1

12 =
1

2E

∂E

∂v
.

Recall that

L1
11 = tg σE

√
1 + β2, L1

22 = − ctg σ
√

1 + β2, L2
11 = βE.

By substituting these expressions into the Codazzi equation, we get

∂ tg σE
√

1 + β2

∂u2
+

1

2G

∂E

∂u2
ctg σG

√
1 + β2 − 1

2E

∂E

∂u2
tg σE

√
1 + β2 = µ21|2β.

The latter equation can be reduced to

∂ tg σ
√

1 + β2

∂v
+ (tg σ + ctg σ)

Ev
√

1 + β2

2E
= µ21|2β. (2.1)

Put α = 2, σ = 1, i = l = 1, k = 2. The corresponding Codazzi equation can be
reduced to

∂β

∂v
= µ12|2 tg σ

√
1 + β2. (2.2)

Exclude µ12|2 from (2.2) and plug into (2.1). After some transformations, we get

∂

∂v
ln

(√
E(1 + β2)

cosσ

)
= 0.
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As a consequence,
√
E(1 + β2) = C(u) cosσ. By changing the u-parameter, we

can get C(u) = 1. Therefore, one can put E(1 +β2) = cos2 σ. By using the other
two Codazzi equations, we obtain G(1 + β2) = sin2 σ.

Thus we can write the expressions for three fundamental quadratic forms:

ds2 =
cos2 σ du2 + sin2 σ dv2

1 + β2
,

II1 =
sinσ cosσ(du2 − dv2)√

1 + β2
, II2 = β ds2.

Let as pass to new new coordinates (p, q) by

u = p+ q, v = p− q.

Then ds2 takes the conformal Chebyshev form and the coordinate lines p = const
and q = const become asymptotic lines of the form II1. Namely,

ds2 =
dp2 + 2 cosω dp dq + dq2

1 + β2
,

II1 =
2 sinω dp dq√

1 + β2
, II2 = β ds2,

where ω = 2σ.
Notice that the system of equations for isometric immersion of a 2-dimensional

metric into 4-dimensional Euclidean space consists of one Gauss equation, four
Codazzi equations and one Ricci equation (A.Sym and J.Cieslinski claimed that
the latter equation was first derived by Kühne ). In the case under consideration,
we intend to show that the system can be reduced to two equations for two
functions ω and β.

We begin with the Gauss equation. Introduce the metric

dl2 = (1 + β2) ds2.

Denote by K and Kl the Gauss curvatures of ds2 and dl2, respectively. Then

Kl =
K −∇2 ln

√
1 + β2

1 + β2
,

where ∇2 is the Laplace–Beltrami operator with respect to ds2. In our case we
can set K = −1. Denote by dS and dSl the area elements for ds2 and ds2

l ,
respectively. Then

dS =
sinω

1 + β2
dp dq, dSl = sinω dp dq.

Over any domain Ω ⊂ F 2 we have∫
Ω
Kl dSl = −

∫
Ω

(1 +∇2 ln
√

1 + β2) dS.
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With respect to the (p, q)-coordinates, the curvature Kl can be easily calculated:

Kl = − ωpq
sinω

.

We have the equation

1 +∇2 ln
√

1 + β2 =
(1 + β2)ωpq

sinω
. (2.3)

Hence, ∫
Ω

(1 +∇2 ln
√

1 + β2) dS =

∫
Ω
ωpq dp dq. (2.4)

If Ω is the coordinate rectangle with vertices at Pi, then∫
ω
ωpq dp dq =

4∑
i=1

ω(Pi)(−1)i. (2.5)

Since F 2 is a regular surface, we have 0 < ω(Pi) < π. Therefore the module of
the right-hand side of (2.5) is bounded from above by 2π.

On the Lobachevsky plane, consider the family of concentric disks Cr of radius
r bounded by circles Γr. We have∫

Cr

∇2 ln
√

1 + β2 dS =

∫
Γr

∂

∂ν

(
ln
√

1 + β2
)
ds,

where ∂
∂ν is a derivative along the exterior normal to Γr and s is the arc length

parameter of Γr.

Denote by Dr the image of the geodesic disc Cr in the (p, q)-plane endowed
with the metric dl2. Consider the integral∫

Dr

Kl dSl = −
∫
Dr

ωpq dp dq.

Generally speaking, this integral is not bounded from above by a universal con-
stant. However, for every bounded domain Dr there is some coordinate rectangle
that covers Dr such that the integral of Kl over the rectangle is bounded from
above by a universal constant.

In what follows, we will point out the conditions on dl2 under which the
integral of −Kl over every bounded domain D is bounded from above by some
universal constant M , i.e.,

−
∫
D
Kl dSl < M = const.

Write the Lobachevsky metric with respect to the polar coordinates r, φ as

ds2 = dr2 + sh2 r dφ2.
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The arc length element of Γr is ds = sh r dφ. Thus we have∫
Γr

∂

∂r

(
ln
√

1 + β2 sh r
)
dφ =

d

dr

∫
Γr

ln
√

1 + β2 ds−
∫

Γr

ln
√

1 + β2 ch r dφ.

Denote by S(r) the area of the geodesic disk Cr on the Lobachevsky plane. Then

S(r) +
d

dr

∫
Γr

ln
√

1 + β2 ds−
∫

Γr

ln
√

1 + β2 ch r dφ = −
∫
Dr

Kl dSl.

Denote θ = ln
√

1 + β2. Dividing both sides of the equation by S(r), we get

1 +
d

dr

(
1

S

∫
Γr

θ ds

)
+
S′

S2

∫
Γr

θ ds− ch r

S

∫
Γr

θ dφ = − 1

S

∫
Dr

Kl dSl. (2.6)

Notice that S(r) = 2π(ch r − 1), S′ = 2π sh r. Equation (2.6) takes the form

1 +
d

dr

(
1

S(r)

∫
Γr

θ ds

)
+

sh2 r − ch r(ch r − 1)

2π(ch r − 1)2

∫
Γr

θ dφ = − 1

S(r)

∫
Dr

Kl dSl.

Suppose that the integral of −Kl over each bounded domain is bounded from
above by a constant M . Introduce the function

f(r) =
1

S(r)

∫
Γr

θ ds.

We get the inequality

f ′(r) ≤ −1− 1

2π(ch r − 1)

∫
Γr

θ ds+
M

S(r)
.

The third term in the right-hand side of the inequality tends to zero when r →
∞. Hence, the derivative of the function f(r) becomes less than −1 for large
enough r, and therefore the function f(r) is negative for large enough r. But the
function θ is always positive. We come to contradiction.

Consider now the conditions under which the absolute value of the integral
of −Kl is bounded. Note that dl2 is a complete metric.

1) Let the curvature do not change the sign. For any geodesic disk Cr there
exists a coordinate rectangle Ω that covers Cr. Then∣∣∣∣∫

Cr

Kl dSl

∣∣∣∣ ≤ ∣∣∣∣∫
Ω
Kl dSl

∣∣∣∣ ≤
∣∣∣∣∣

4∑
i=1

ω(Pi)(−1)i

∣∣∣∣∣ < 2π.

2) Let the curvature Kl change the sign over a finite number of bounded do-
mains. There exists a geodesic disk Cr that contains all these domains. Consider
two cases:
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a) The Gauss curvature Kl ≥ 0 at infinity and over a finite number of bounded
domains Kl ≤ 0. Denote by Λ a union of all the domains with Kl ≤ 0. We
have

−
∫
Cr

Kl dSl = −
∫

Λ
Kl dSl −

∫
Cr−Λ

Kl dSl. (2.7)

The first term in the right-hand side of (2.7) is nonnegative but bounded
from above by some number M since Λ consists of a finite number of do-
mains. The second term is non-positive. Hence, for enough large r,

−
∫
Cr

Kl dSl < M.

b) Suppose that Kl ≤ 0 at infinity. Let the number of bounded domains with
Kl > 0 be finite. Denote by Λ the union of all domains with Kl > 0. Let
Cr be a geodesic disk which contains Λ. We can write again equation (2.7).
Now the first term in the right-hand side of (2.7) is negative. Let Ω be the
coordinate rectangle that contains Cr. We have the equation

−
∫

Ω
Kl dSl = −

∫
Λ
Kl dSl −

∫
Ω−Λ

Kl dSl. (2.8)

The left-hand side of (2.8) is bounded from above by 2π. The first term
on the right-hand side is negative because Λ ⊂ Cr ⊂ Ω and is bounded in
module by some number M . Therefore, the second term is also bounded
from above by M + 2π, i.e.,

−
∫

Ω−Λ
Kl dSl ≤M + 2π.

But Cr − Λ ⊂ Ω− Λ. Hence,

−
∫
Cr−Λ

Kl dSl ≤ −
∫

Ω−Λ
Kl dSl < M + 2π.

From (2.7) it follows that

−
∫
Cr

Kl < M1 = const.

This inequality is valid for all large enough r. Therefore, in this case we
also come to contradiction.

Theorem A is proved.

The non-existence condition for isometric immersion of complete L2 into E4

can be formulated in terms of the function β. For example, if β satisfies

∇2 ln
√

1 + β2 ≥ (ε− 1), ε > 0,

then the isometric immersion of complete L2 into E4 does not exist.
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3. Fundamental system equations of isometric immersions of
L2 into E4 with flat normal connection

We have already obtained the expression for the torsion coefficient

µ12|2 =
βvctg σ√

1 + β2
.

From one of the Codazzi equations we get

µ12|1 = − βutg σ√
1 + β2

.

The Ricci (Kühne) equation has the form

∂µ12|1

∂v
−
∂µ12|2

∂u
= 0.

Substitution of the torsion coefficient yields

∂

∂v

(
βutg σ√
1 + β2

)
+

∂

∂u

(
βvctg σ√

1 + β2

)
.

Denote ρ = ln(β +
√

1 + β2). Then we come to the linear hyperbolic equation

ρuv + ρuσvtg σ − ρvσuctg σ = 0

with respect to ρ. In terms of θ = ln
√

1 + β2 and γ = arctg β this equation can
be written as (

θp − θq cosω

sinω

)
p

+

(
θp cosω − θq

sinω

)
q

=
γ2
p − γ2

q

sinω
.

The Gauss equation with respect to the metric of the Lobachevsky plane of
curvature K = −1 takes the form

1 =
1 + β2

sinω

{(
θp − θq cosω

sinω

)
p

+

(
θq − θp cosω

sinω

)
q

− ωpq

}
.

Denote (
θp − θq cosω

sinω

)
p

= A,

(
θp cosω − θq

sinω

)
q

= B.

Then the system of equations for isomeric immersion of L2 into E4 with flat
normal connection takes the form of two equations for two functions β and ω.
Namely,

A+B =
γ2
p − γ2

q

sinω
, γ = arctg β,

A−B = ωpq − sinωe−2θ, θ = ln
√

1 + β2.
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4. On local isometric immersions of L2 into E4 with flat normal
connection and ω = const

Theorem C. There is no local isometric immersion of L2 into E4 with flat
normal connection and ω = const.

Proof. We use now the equation for the function ρ in the (u, v)-coordinates.
If ω = const, then ρuv = 0, and hence ρ = a(u) + b(v). Notice that β = sh ρ. We
have

ds2 =
1

1 + β2

(
cos2 σ (du)2 + sin2 σ (dv)2

)
=

1

1 + β2

(
(d cosσu)2 + (d sinσv)2

)
.

Introduce new coordinates x = u cosσ, y = v sinσ. Then the coefficients of ds2

take the form E = G = 1
ch2 ρ

. The Gauss equation takes the form

K = sh ρ ch ρ(ρxx + ρyy) + ρ2
x + ρ2

y.

Denote ρ2
x = A(x), ρxx = C(x), ρ2

y = B(x), ρyy = D(y). Then Ax = 2ρxC, By =
2ρyD. Suppose that K = −1. Write the Gauss equation as

sh 2ρ = −2
1 +A+B

C +D
.

The derivatives of both parts of this equation yield the equations

2ρx ch 2ρ = −2
Ax

C +D
+ 2

(1 +A+B)Cx
(C +D)2

,

2ρy ch 2ρ = −2
By

C +D
+ 2

(1 +A+B)Dy

(C +D)2
.

Denote
Cx
ρx

= L,
Dy

ρy
= M.

We can write two expressions for ch 2ρ:

ch 2ρ = − 2C

C +D
+

(1 +A+B)L

(C +D)2
,

ch 2ρ = − 2D

C +D
+

(1 +A+ b)M

(C +D)2
.

By using these equations, we get

−2
C −D
C +D

+
(1 +A+B)(L−M)

(C +D)2
= 0.

Suppose that C +D 6= 0. Then we have

2(C2 −D2) = (1 +A+B)(L−M).
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Differentiating first by x and then by y, we obtain the equation

Ax
Lx

=
By
My

= k0 = const

with separable variables. Integrating, we get

A− k0L = k1, B − k0M = k2,

where ki are the constants of integration. Hence,

L =
A− k1

k0
, M =

B − k0

k0
.

Thus we have come to the symmetric expression for ch 2ρ:

ch 2ρ = −1 +
(1 +A+B)(A+B − k1 − k2)

2k0(C +D)2
.

Besides,

2(C2 −D2) = (1 +A+B)
(A−B + k2 − k1)

k0
.

Now we can separate the variables. We get one equation with the argument x,

2C2 − A(1 + k4)

k0
− A2

k0
= k5 = const, k4 = k2 − k1,

and the other equation with the argument y. Take the derivative in x and use
Cx = ρx

A−k1
k0

, Ax = 2ρxC. Then

4CCx −Ax
1 + k4

k0
− 2AAx

1

k0
= 0.

In case of Cρx 6= 0, we get

4
A− k1

k0
− 2

1 + k4

k0
− 4

A

k0
= 0.

It follows then that

k1 + k2 = −1.

The symmetric expression for ch 2ρ yields the equation

ch 2ρ = −1 +
1

2k0

(
1 +A+B

C +D

)2

= −1 +
sh2 2ρ

8k0
.

As a consequence, ρ = const, which contradicts to the Gauss equation. If k0 =
0, then Ax = By = 0 and ρ2

x + ρ2
y = −1. In the case C = 0 or D = 0, we also

come to contradiction. Theorem C is proved.
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5. An example of Chebyshev metric with a sequence of
bounded domains for which the integral curvature is un-
bounded from above

We intend to show that there is a metric

dl2 = dp2 + 2 cosω dp dq + dq2

and a sequence Ωn such that ∫
Ωn

KldSl →∞

when n→∞.
On the (p, q)-plane introduce the polar coordinates (r, φ). In the capacity

of the domains Ωn we take the concentric disks Mr of radius r bounded by the
circles γr centered at the origin of coordinate system. We have

p = r cosφ, r =
√
p2 + q2,

q = r sinφ, φ = arctg
q

p
.

Then we obtain

∂r

∂p
= cosφ,

∂φ

∂p
= −sinφ

r
,

∂r

∂q
= sinφ,

∂φ

∂q
=

cosφ

r
.

Rewrite the double integral over Mr in terms of the contour integral along γr,

J =

∫
Mr

ωpq dp dq =
1

2

∫
γr

−ωp dp+ ωq dq.

The derivatives of ω are of the form:

∂ω

∂p
= ωr cosφ− ωφ

sinφ

r
,

∂ω

∂q
= ωr sinφ+ ωφ

cosφ

r
.

We get

J =
1

2

∫
γr

(
ωr cosφ− ωφ

sinφ

r

)
d(r cosφ) +

(
ωr sinφ+ ωφ

cosφ

r

)
d(r sinφ)

=
r

2

∫
γr

(
ωr sin 2φ− ωφ

cos 2φ

r

)
dφ.

After transformations we obtain

J =
r

2

d

dr

∫
γr

ω sin 2φdφ−
∫
γr

ω sin 2φdφ.
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Suppose

ω(r, φ) = εb(r) sin 2φ+
π

4
, ε > 0.

Choose the function b(r) such that |b(r)| < 1 and three derivatives at the origin
are equal to zero. Choose ε small enough to satisfy 0 < ω < π. Under these
conditions the metric is regular. We have

J =
1

2
εr
db(r)

dr

∫ 2π

o
sin2 2φdφ− εb(r)

∫
γr

sin2 2φdφ.

Take the sequence

rn =

n∑
k=1

1

k
.

It is easy to construct a bounded regular function b(r) satisfying

b(rn) = 0 and b(rn +
1

2(n+ 1)
) = ±1

2
.

Choose + for odd n and − for even ones. Since the distance between rn and
rn+1 tends to zero, |b′| → ∞ for some sequence of points. Therefore, for some
sequence of disks Mr the integral curvature is not bounded from above.
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Про iзометричнi занурення площини Лобачевського
в чотиривимiрний евклiдiв простiр з плоскою

нормальною зв’язнiстю
Yuriy Aminov

Згiдно з теоремою Гiльберта, площина Лобачевського L2 не може бу-
ти iзометрично зануреною в E3. Питання iснування iзометричного зану-
рення L2 в E4 залишається вiдкритим. Ми розглядаємо iзометричнi за-
нурення в E4 з плоскою нормальною зв’язнiстю i знаходимо фундамен-
тальну систему двох диференцiальних рiвнянь з частинними похiдними
другого порядку для двох функцiй. Доведено теореми про неiснування
iзометричних глобальних та локальних занурень за певних умов.

Ключовi слова: iзометричне занурення, iндикатриса, кривизна, асим-
птотична крива
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