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The space of Schwarz—Klein spherical
triangles

Alexandre Eremenko and Andrei Gabrielov

We describe the space of spherical triangles (in the sense of Schwarz and
Klein). It is a smooth connected orientable 3 manifold, homotopy equivalent
to the 1-skeleton of the cubic partition of the closed first octant in R®. The
angles and sides are real analytic functions on this manifold which embed it
to RS.
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1. Introduction

The word “triangle” can have two different meanings: a curve (Ptolemy,
Gauss, Mobius, Study) or a surface (Schwarz, Klein). In this paper we use it
in the sense of Schwarz and Klein. The references for the space of Gauss—Study
triangles are [1,10].

Spherical triangles with arbitrarily large interior angles and sides occur in
the study of spherical metrics with conic singularities which recently attracted
substantial attention, [2—4,7,8]. Here we describe topology of the space of all
such triangles.

A spherical triangle A is a closed oriented disk with three distinct marked
boundary points (corners) a1, a2, as equipped with a Riemannian metric of con-
stant curvature 1 with conic singularities with interior angles wa; at a; and such
that the sides (a;, a;+1) are geodesic. Two such triangles A and A’ are considered
equal if there is an orientation-preserving isometry A — A’ mapping corners to
corners and preserving the labels.

We always assume that the cyclic order (a1, a2, as) is consistent with the
positive orientation of 0A.

A developing map f : A — C is associated with each triangle A. Here C is
the Riemann sphere with the standard Riemannian metric of curvature 1. The
side lengths of A are the lengths of the images of the sides f([ai, ait+1]), counting
multiplicity. So the angles and side lengths of A are positive numbers.

A spherical triangle is completely determined by these six positive numbers,
the angles and side lengths. This defines the topology, induced from RS, on the
set of all spherical triangles.
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We measure the angles in half-turns instead of radians, thus “an integer angle”
means an integer multiple of 7 radians. Similarly, the side lengths are measured
so that the length of a great circle is 2. We use notation (4, B, C) for the interior
angles of a triangle at its corners (A,B,C) = (aj,az,a3), and (a,b,c) for the
lengths of its sides opposite the corners with angles (A, B, C).

The following characterization of angles of spherical triangles was proved
in [2].

Theorem A. The following assertions hold.

(1) If three positive numbers (A, B, C) are not integers, then they are the angles
of a spherical triangle if and only if

cos> mA + cos? mB + cos? 1C + 2cosmAcosmBcostC —1 < 0. (1.1)

A triangle with such angles is unique.

(ii) If exactly one of the angles (A, B,C), say A, is an integer then a triangle
with these angles exists if and only if either B + C or |B — C| is an integer
m of the opposite parity to A, and

m<A-1. (1.2)

For any such angles, a one-parametric family of triangles with these angles
exists. The length of the side opposite the integer corner is an integer, while
the length of the side opposite to one of the non-integer corners is not an
integer, and its fractional part can be chosen as a parameter. (In [2] it was
erroneously stated that in this case the triangle with given angles is unique.
The mistake was corrected in [8].)

(iii) If two angles are integers then all three are integers, and in this case a
triangle with the angles (A, B, C') exists if and only if A+ B+ C' is odd, and

max(A, B,C) < (A+ B +C —1)/2. (1.3)

There is a two-parametric family of triangles with such angles: any two side
lengths can be chosen as parameters. The ranges for the side lengths depend
on the angles and will be specified in Section 4 below.

Remark 1.1. Inequality (1.1) is equivalent to

A+B+C A+B-C A+C-B B+C—-A
cos T 5 cos T 5 COS T ————— COST ————— < 0. (1.4)

Yet another illuminating form of this inequality was discovered in [7]:
dl ((AaB,C)aZg) > 1’ (15)

where Z‘Z’ is the sublattice of Z> consisting of points with even sum of coordinates,
and dl((A,B,C),(M,N,K)) =|A— M|+ |B—-N|+|C - K|
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We use Theorem A to describe the space X C R® of all spherical triangles:

Theorem 1.2. The space X of all spherical triangles is a smooth, connected,
orientable real analytic 3-manifold, homotopy equivalent to the 1-skeleton of a
cubic partition of the closed first octant of R>.

The angles and side lengths of triangles, which define the embedding of X to
RS, are smooth (real analytic) functions on X.

The plan of the paper is as follows. In Section 2 we describe the set X € R3 of
all possible triples (A4, B, C) of angles of spherical triangles in X'. The set X is the
union of open tetrahedra T, , 1, where (m,n, k) € N3, some of their open edges,
and some of their vertices. In Section 3 we describe the edges and vertices of
the tetrahedra T, ,, 1 belonging to X. An important difference appears between
balanced (satisfying the triangle inequality (3.1)) and unbalanced triangles. This
terminology was proposed in [6], see also [5]. In particular, only balanced vertices
of the tetrahedra T, ,, x belong to X. In Section 4 we define the neighborhoods
Ui € X, homeomorphic to open balls in R3, of the sets of triangles in X
corresponding to the balanced vertices (m,n,k) € X. The union U of these
neighborhoods is the set of all short-sided triangles (with all three sides shorter
than the full circle, see Definition 4.4). All balanced triangles are short-sided.
The covering of U by the charts U, ,, 1, defines the structure of an oriented three-
dimensional manifold on ¢. In Section 5 we define the charts S, ,, 1 C X, where
eitherm—1=n+4+korn—1=m+kor k—1=m+n, corresponding to semi-
balanced edges in X (see Definition 3.1). Together with the charts Uy, ,, i, this
defines a covering of the whole set X, defining the structure of an oriented three-
dimensional manifold on X. In Section 6.1 we show that the set X is homotopy
equivalent to the 1-skeleton of a cubic partition of the closed first octant of R3.
The same is true for the set U C X of short-sided triangles, and for the set B C
U of balanced triangles.

We thank Dmitry Panov for discussions of spherical triangles; he explained
to us their relevance for description of spherical metrics on tori, and stressed the
importance of the balanced condition (3.1).

2. Angles of spherical triangles

According to Theorem A, the set X of possible triples (A4, B, C) of the angles
of spherical triangles consists of three parts: the open set X3 described in (i),
the one-dimensional set X7 described in (ii) and the set of isolated points X
described in (iii). We have X3 = Y3N R?;O where Y3 is invariant under the group
G (see [2]) consisting of transformations

(A,B,C) + (£A+ M, +£B + N,+C + K), where (M,N,K) € Z2.
The interior of a fundamental region of G can be described by the inequalities

A>0, B>0, C>0, A+B<1l, A+C<l1, B+C<1. (2.1)
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The intersection of X3 with the region (2.1) is described by the additional in-
equality
A+B+C>1. (2.2)

Conditions (2.1) and (2.2) define an open tetrahedron V with vertices (1,0,0),
(0,1,0), (0,0,1), (%, %, %) Three transformations of the group G,

(A,B,C) — (A,1-B,1—-0C),
(A,B,C)— (1— A,B,1-C), (2.3)
(A,B,C)— (1— A,1-B,0),

map the tetrahedron V onto three disjoint tetrahedra, each having a common
facet with V. The union of these four tetrahedra, with their common facets, the
vertex (%, %, %), and four edges adjacent to that vertex, is an open tetrahedron Tj
with the vertices (1,0,0), (0,1,0), (0,0,1), (1,1,1), which is called a truncated
cube in [7]. The subgroup Gy of G preserving Ty consists of the identity and
transformations (2.3). It is the Klein Viergroup isomorphic to Zg x Zy. The
group G consisting of transformations (4, B,C) — +(4,B,C) + (M, N, K),
where (M, N, K) € Z2, is a normal subgroup of G such that G/G; = Gy. The
interior of a fundamental region of G is the open unit cube 0 < A< 1,0< B <

1,0 < C < 1. Thus G maps Ty to one tetrahedron 75, ,, ;. in each unit cube
Qmar={m<A<m+1l,n<B<n+1l, k<C<k+1, (mn,k)ecZ}.

The group G5 of translations (A, B, C) — (A+M, B+N,C+K) with (M, N, K) €
Z3 is a normal subgroup of Gy, and G1/Gs is generated by any involution
(A,B,C) — (M — A,N — B,K — C), where (M,N,K) € Z3, mapping Ty,
to Thj—1,n—1,K—1. Vertices of the tetrahedra T}, , ;. belong to the set Zg C 73 of
integer points with odd sum of coordinates. The set X3 is the union of the tetra-
hedra T}, , 1 with (m,n,k) € N3. Two tetrahedra in adjacent unit cubes have a
common edge (which may belong or not belong to X7). Since three of the four
vertices of Ty have the same sum of angles A + B + C = 1, three vertices of each
tetrahedron 75, ,,  have the same sum, either m+n+k+1 or m+n+k+2 when
m +n+ k is even or odd. It follows from (1.5) that the points (A, B, C) of open
facets of any tetrahedron T, ,, 1 never correspond to spherical triangles, since the
angles A, B, C are non-integer and dl((A, B, C’),ZZ’) =1 at these points.

Notation 2.1. We denote by V,,,x C X the set of triangles with the
angles (m,n, k) € Z2 corresponding to a vertex (m,n,k) € Xo. If L C X; is an
open edge of a tetrahedron Ty, ,, 1, we denote by L, ., C X the set of triangles
corresponding to L, where (u,v,w) is the midpoint of L. For example, El,%,% is
the set of triangles with the angles A=1, 0 < B <1, 0 < C < 1 corresponding
to the edge L = ((1,0,0),(1,1,1)) of Tp.

3. Edges and vertices of the tetrahedra 7, ,

To see which edges and vertices of the tetrahedra T}, ,, ;. correspond to spher-
ical triangles, we use inequalities (1.2) and (1.3). If all three angles A, B,C are
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integer then A+ B+ C'is odd, and inequality (1.3) implies the triangle inequality
A<B+C, B<A+C, C<A+B. (3.1)

Inequalities (3.1) define a closed cone K in the first octant bounded by the planes
A=B+C,B=A+C,C = A+ B. The edges of K are three rays {A = B, C' =
0}, {A=0C, B=0}, {B=C, A=0}. Klein calls spherical triangles with
the angles satisfying (3.1) “triangles of the first kind.” We prefer to call them
balanced following Mondello and Panov.

Definition 3.1. A point (A, B, C) in the first octant satisfying the inequal-
ity (3.1) is called balanced, otherwise it is unbalanced. A tetrahedron T, ,, j is
balanced if all its vertices are balanced, unbalanced if all its vertices are unbal-
anced, and semi-balanced otherwise. An open edge L € X; of a tetrahedron
Tonn i is balanced if both its ends are balanced vertices, unbalanced if both its
ends are unbalanced vertices, and semi-balanced otherwise. An unbalanced end
(m,n,k) € Z, of a semi-balanced edge is called a marginally unbalanced vertex.
Its angles satisfy either m —1=n+4+korn—1=m+kork—1=m+n.

Remark 3.2. Theorem A (iii) says that Xo = K NZ3, thus Xj is the set of
all balanced vertices. Note that balanced vertices do not belong to coordinate
planes, since (3.1) implies B = C when A = 0, thus (A, B,C) ¢ Z,. All triangles
corresponding to a balanced edge are balanced, all triangles corresponding to
an unbalanced edge are unbalanced. Triangles corresponding to the points of a
semi-balanced edge L between its balanced vertex and midpoint (including the
midpoint) are balanced, triangles corresponding to the points of L beyond its
midpoint are unbalanced. It is shown below that a semi-balanced tetrahedron in
X3 may be either pointed, with three edges in X; meeting at a vertex V € Xy, or
not pointed, with two opposite edges in X;. All balanced tetrahedra are pointed,
and all unbalanced tetrahedra are not pointed. The set of balanced triangles in
a semi-balanced tetrahedron is described in Proposition 6.2 below.

To determine which edges of the tetrahedra T, , 1 belong to X7, we consider
the edges of eight tetrahedra with a common vertex (m,n,k) € Z3 NR3. The
edges meeting at (m,n, k) are of two types: those on which the sum A+ B + C
is constant (first type) and those on which it is not (second type). An edge L of
the second type is upward with respect to the vertex (m,n,k) if A+ B+ C >
m+n+ k on L and downward otherwise. It follows from Theorem A (ii) that
all edges of the first type belonging to X; are unbalanced.

Edges adjacent to a balanced vertex. Let V = (m,n,k) € X, be a
balanced vertex. Then edges of the first type adjacent to V' do not belong to X7,
while six edges of the second type belong to Xi: three upward edges from V to
(m,n+1,k+1), (m+1,n,k+1) and (m+1,n+1,k), and three downward edges
from V to (m,n — 1,k —1), (m —1,n,k —1) and (m — 1,n — 1,k). There are
four upward (with A+ B + C > m + n + k) and four downward (with A + B +
C < m+n+ k) tetrahedra adjacent to V. This is summarized in the following
statement.
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Proposition 3.3. Six edges of the second type adjacent to a balanced vertex
V = (m,n,k) (three upward and three downward) belong to Xi. All upward
edges adjacent to V' are balanced. Tetrahedra T, p 1 and Tp—1 p—1k—1 adjacent
to V are pointed. Each of them has three edges in X1 adjacent to V. Fach of the
remaining siz tetrahedra adjacent to V- has exactly one edge (V, V') in X1 adjacent
to V, common either with Ty, n 1 or with Tpy_1p—1k-1. If the edge (V,V') is
balanced, the tetrahedron is pointed, having two more edges in X1 adjacent to V.
Otherwise, the tetrahedron is not pointed and has two opposite edges in X;.

Edges adjacent to an unbalanced vertex. Let V = (m,n,k) € Z3NR3,
be an unbalanced vertex such that m +n <k — 1. Then V' ¢ X, and the edges
meeting at V belong to X if and only if C' = k on those edges: the edges of the
first type from V to (m — 1,n+ 1,k) and to (m + 1,n — 1, k), and the edges of
the second type from V to (m + 1,n + 1,k) and to (m — 1,n — 1, k). Therefore
exactly four of the twelve edges meeting at V' belong to X;. Each of these four
edges is common to two tetrahedra adjacent to V', so there are four pairs of these
tetrahedra. Two of these pairs, (Tr—1nk—1, Tm—1nk) a0d (T n—1 k-1, Tnn—1.k),
have common edges of the first type (see Fig. 3.1 for m+n < k—1 and Fig. 3.3 for
m4n = k—1). Two other pairs, (Tn—1n—1,k—1, Tm—1,n—1,k) a0d (T k-1, Tnn k),
have common edges of the second type (see Fig. 3.2 and Fig. 3.4). f m+n < k—
1 then all eight tetrahedra are unbalanced, and each of them has two opposite
edges in X1. If m+n = k— 1 then vertices (m+1,n+1,k), (m,n+1,k—1) and
(m+1,n,k — 1), shown as black dots in Fig. 3.3 and Fig. 3.4, are balanced. All
other vertices of the tetrahedra adjacent to V' are unbalanced. The tetrahedron
Tnnk—1 in Fig. 3.4 is pointed, with three edges in X; meeting at its vertex (m+
1,n + 1,k). Each of the other seven tetrahedra in Fig. 3.3 and Fig. 3.4 has two
opposite edges in X;. This is summarized in the following statement.

Proposition 3.4. If V = (m,n, k) € ZNR3 is an unbalanced vertex then
four edges adjacent to V', the angle max(m,n, k) being constant on those edges,
belong to X1. Two of these edges are of the second type (one upward and one
downward) and the other two are of the first type. If V' is marginally unbalanced
then there are four semi-balanced and four unbalanced tetrahedra adjacent to V.
Two of the semi-balanced tetrahedra, one of them pointed and another one not
pointed, have a common semi-balanced upward edge in X1 adjacent to V. The
other two semi-balanced tetrahedra are not pointed, have no common edges, and
their edges adjacent to V' are unbalanced, of the first type. If V is not marginally

unbalanced, all eight tetrahedra adjacent to V' are unbalanced.

Remark 3.5. Note that every unbalanced edge in X is an edge of at least one
unbalanced tetrahedron. Each of the unbalanced edges in Figs. 3.1-3.4 belongs to
an unbalanced tetrahedron shown in those figures, except the edge ((m, n+1,k+
1),(m+1,n,k+1)) in Fig. 3.4 which is common to a semi-balanced tetrahedron
Trnon,k and an unbalanced tetrahedron T,,, ,, 11 with the vertices (m,n, k+2) and
(m+1,n+ 1,k + 2) not shown in Fig. 3.4.
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(m,n+1,k+1) (m+1,n,k+1)

(m-1,n,k+1) (m,n-1,k+1)

(m-1,n+1,k) (m+1,n-1,k)

(m,n+1,k-1) (m+1,n,k-1)

(m-1,n,k-1) (m,n-1,k-1)

Fig. 3.1: Tetrahedra adjacent to edges in X; of the first type meeting at a vertex
(m,n, k) with m 4+ n < k — 1. Edges in X; are shown in bold line.

(m+1,n+1,k)
(m,n+1,k+1) (m+1,n,k+1)
(m,n+1,k-1) (m+1,n,k-1)
(m-1,n,k+1) (m,n-1,k+1)
(m-1,n,k-1) (m,n-1,k-1)
(m-1,n-1,k)

Fig. 3.2: Tetrahedra adjacent to edges in X7 of the second type meeting at a
vertex (m,n, k) with m +n < k — 1. Edges in X; are shown in bold line.

4. Neighborhoods of balanced vertices

In this section we define a covering of the set U of short-sided triangles (see
Definition 4.4 below) by the open neighborhoods Uy, ,, 1 (see Notation 4.6) of the
sets Vp,nk of triangles corresponding to balanced vertices (m,n,k). Each set
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(m,n+1,k+1) (m+1,n,k+1)

(m-1,n,k+1) (m,n-1,k+1)

(m-1,n+1,k) (m+1,n-1,k)

(m,n+1,k-1) (m+1,n,k-1)

(m-1,n,k-1) (m,n-1,k-1)

Fig. 3.3: Tetrahedra adjacent to edges in X; of the first type meeting at a
marginally unbalanced vertex (m,n, k) with m +n = k — 1. Balanced vertices
are shown as black dots.

(m+1,n+1,k)
(m,n+1,k+1) (m+1,n,k+1)
(m,n+1,k-1) (m+1,n,k-1)
(m-1,n,k+1) (m,n-1,k+1)
(m-1,n,k-1) (m,n-1,k-1)
(m-1,n-1,k)

Fig. 3.4: Tetrahedra adjacent to edges in X; of the second type meeting at a
marginally unbalanced vertex (m,n, k) with m +n = k — 1. Balanced vertices
are shown as black dots.

U n 1 is homeomorphic to an open ball in R3.

Lemma 4.1. Let U C X be the union of the sets of triangles corresponding to
the vertex V= (1,1,1), edges in X1 meeting at V', and tetrahedra in X3 adjacent
to V. Then U is an open neighborhood of the set V111 in X consisting of all
triangles with the angles A, B, C' satisfying the inequalities

0<A<?2 0<B<2 0<C<2. (4.1)
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In addition, the angles and side lengths of triangles in U satisfy
1<A+B+C<5, a<2, b<2 <2, (4.2)
with at most one side length being > 1.

Proof. It follows from Section 2 that the union of the vertex V, edges in X3
meeting at V and tetrahedra in X3 adjacent to V coincides with the intersection
of the set X with the open cube (0,2)? defined by the inequalities (4.1). Thus U
is the preimage of X N (0,2)? in X', which is an open neighborhood in X of the
preimage Vi 11 of V.

Each triangle corresponding to V is a hemisphere with three distinct marked
points (A,B,C) at the boundary. The set V; 1, of these triangles can be
parametrized by any two of the side lengths (a, b, ¢), since a + b+ ¢ = 2.

There are six edges in X; meeting at V' (see Proposition 3.3). Three upward
edges connect V' with the balanced vertices (1,2,2), (2,1,2) and (2,2,1), and
three downward edges connect it with the unbalanced vertices (1,0,0), (0,1,0)
and (0,0,1).

Triangles in £%71’% (see Fig. 4.1 b)) corresponding to the upward edge from
V to (2,1,2) have the angles 1 < A = C < 2, B =1 and side lengths a + ¢ = 1,
b =1. The set £%’L% can be parametrized by the angle A and either a or ¢. The
limits of these triangles in V4 1,1 have the side lengths a+c¢ =1, b = 1. This edge
is common to the tetrahedra 7701 and 77 ,;. Triangles corresponding to these
two tetrahedra are shown in Figs. 4.1 a) and 4.1 d). The angles of triangles in
T1 0,1 satisfy the inequalities 1 < A <2, 1<C <2, B<1,3<A+B+C<
5, and the side lengths are 1 <b <2, a<1,c< 1, a+ b+ ¢ > 2. The limits of
these triangles in V) 11 have side lengths 1 < b < 2, a+c=2—-0 < 1. The angles
of triangles in 77 1, satisfy the inequalities 1 < A < 2,1 < B <2,1<C <2,
A+ B+ C <5, and the side lengths are a < 1, b< 1, ¢ <1, a+b+c < 2. The
limits of these triangles in Vj 11 have all side lengths < 1. Both tetrahedra are
pointed: 7111 has three edges in X meeting at V', and T4 1 has three edges in
X1 meeting at (2,1,2) (see Fig. 4.3 a).

Triangles corresponding to the edges from V to (2,2, 1) and (1,2, 2) are shown
in Figs. 4.1 ¢) and 4.1 e). They have the angles 1 < A = B < 2, C =1 and
1< B=C<2, A=1, respectively, and side lengths satisfying a +b =1, c=1
(respectively, b+ ¢ = 1, a = 1). The limits of these triangles in V; ;1 have the
side lengths a +b = 1, ¢ = 1 (respectively, b+ ¢ = 1, a = 1). These two edges
are common for 77 11 and the tetrahedra T4 1,0 and 75 1,1, respectively. Triangles
corresponding to these two tetrahedra are shown in Figs. 4.1 f) 4.1 g).

Triangles in £ 191 (see Fig. 4.2 b)) corresponding to the downward edge from
V to (0,1,0) have the angles 0 < A = C < 1, B =1 and side lengths a + ¢ = 1,
b=1. The set £%71,% can be parametrized by the angle A and either a or ¢. The
limits of these triangles in V; 11 have the side lengths a+c¢ =1, b = 1. This edge
is common to the tetrahedra Ty 10 and Tp0,0. Triangles corresponding to these
tetrahedra are shown in Figs. 4.2 a) and 4.2 d). The angles of triangles in Ty 1 ¢
satisfy the inequalities A < 1, C < 1,1 < B <2, A+ B+ C < 3, and the side
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Fig. 4.1: Triangles with A+ B+ C > 3 in a neighborhood U of the vertex (1,1, 1).
When two sides of a triangle are mapped to the same circle, that circle is shown
in dual color/style.

Fig. 4.2: Triangles with A+ B+ C < 3 in a neighborhood U of the vertex (1,1, 1).
When two sides of a triangle are mapped to the same circle, that circle is shown
in dual color/style.

lengths are 1 <b < 2,a<1,c<1,a+ b+ c> 2 The limits of these triangles
in V11,1 have the side lengths 1 <b <2, a+c=2—-0b < 1. All angles and side
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(0,1,2) (2,1,0)
(1,1,1)

0,2,1) (1,2,0)

(0,0,1) (1,0,0)
(0,1,0)

Fig. 4.3: The upward (a) and downward (b) tetrahedra adjacent to the vertex
(1,1,1) in Lemma 4.1. Edges in X are shown in bold line.

(5,5,5)

Fig. 4.4: The sets Ag and A; of balanced vertices and edges in ]Rf;,q’r.
lengths of triangles in T 00 are less than 1, A+ B +C > 1,a+b+c < 2. The
limits of these triangles in V) 11 have all side lengths < 1. The tetrahedron 7p o
is pointed (with three edges in X; meeting at V'), while the tetrahedron T 1 ¢ is
not pointed (see Fig. 4.3 b)).

Triangles corresponding to the edges from V to (0,0, 1) and (

1,0,0) are shown
in Figs. 4.2 ¢) and 4.2 e). They have the angles A = B < 1, C =1

and B =
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C < 1, A = 1, respectively, and side lengths a + b = 1, ¢ = 1 (respectively, b +
¢ =1, a =1). The limits of these triangles in V; 11 have the side lengths a +
b=1, c=1 (respectively, b+ ¢ = 1, a = 1). These two edges are common for
Tv,0,0 and the tetrahedra Ty 1 and T4 0, respectively. Triangles corresponding
to these tetrahedra are shown in Figs. 4.2 f) and 4.2 g). O

Remark 4.2. The involution 7 : (A, B,C) — (2 — A,2 — B,2 — C) maps the
tetrahedron Ty = Tp,0,0 to the tetrahedron 71 = T7 1,1, and the tetrahedra 71 g,
Tb,1,0 and Tp,1 to the tetrahedra Tp 1,1, Th 0,1 and Ti 1,0, respectively. For each
triangle A C C in one of these tetrahedra, the triangle 7(A) = C \ A is reflection
symmetric to the complementary to A triangle. In particular, T preserves the
side lengths of triangles, and can be extended to the neighborhood U of V; 1 ;.

Proposition 4.3. The neighborhood U of V111 in Lemma 4.1 is a three-
dimensional real analytic manifold homeomorphic to an open ball in R3. The
angles A, B, C and side lengths a,b, ¢ of triangles in U are real analytic functions
on U. They define an embedding of U to RS as a real analytic submanifold.

Proof. Let D C C be a hemisphere bounded by a great circle G, with a
marked point B € G. For a point C € G \ B, let BC be the arc of G of length
a < 2 from B to C oriented consistently with the orientation of G = 0D. Let B’
and C’ be the points of G opposite to B and C, and let C'B’ be the arc of G
such that either BC C C'B’ or C'B’ C BC. Let 'c = BCUC'B’. Then G\ T'c
is a non-empty open arc of G of length min(a,2 — a). For a point A € C\ I'c,
let Apac C C be a spherical triangle with the sides AB and AC of lengths ¢ <
1 and b < 1, respectively, and the side BC C G. The set Uy of triangles Aac
is an open subset of U, parametrized by the length a € (0,2) of the arc BC and
the point A € C\ I'c.

Let us show that there is one-to-one correspondence between triangles Aac €
Ua and spherical triangles with the angles satisfying (4.1) and the side lengths
a<2,b<1,c<1. Since the sides AB and AC of Aac have lengths less than
1, they do not intersect G at any points other than B and C, respectively. Since
BC is oriented from B to C in 0D, this implies that D is a proper subset of Apc
when A ¢ D, Apac = D when A € G\ I'c, and Aac is a proper subset of D
when A € D\ G. Accordingly, each triangle Aac may be of the following types:

(i) Triangle in V11 with the sides b < 1 and ¢ < 1, when A € G\ I'c;

(ii) Triangle in £, 1

1 corresponding to the edge ((1, 1,1), (1,0,0)) when A €
D\ G and a =1 (see Fig. 4.2 ¢));

N

(iii) Triangle in £, 3 3 corresponding to the edge ((1,1,1),(1,2,2)), when A ¢
1272
D and a =1 (see Fig. 4.1 e)).

(iv) Triangle in Tp 0,0, when A € D\ G and a < 1 (see Fig. 4.2 d));

(v) Triangle in Th 0, when A € D\ G and a > 1 (see Fig. 4.2 g));
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(vi) Triangle in 771, when A ¢ D and a < 1 (see Fig. 4.1 d));

(vii) Triangle in T 11, when A ¢ D and a > 1 (see Fig. 4.1 g));

Conversely, each triangle in (i)—(vii) can be realized as a unique triangle
Aac € Uy, for a fixed point B € G, and for some points C € G \ B and
AcC \ T'c.

Finally, Uy is projected to an open interval (0,2) of the values of a, with the
fiber C \ I'c homeomorphic to an open disk and continuously depending on a.
Thus U4 is homeomorphic to an open ball in R3.

By a cyclic permutation of the labels (A, B, C), we define the sets Up and U¢
of triangles with the angles satisfying (4.1) and sides satisfying b < 2, a < 1, ¢ <
land ¢ < 2,a <1, b< 1, respectively. The same arguments as above show that
each of these two sets is homeomorphic to an open ball in R3. The intersection
UasnNUp = UsNUg = UgNUg¢ consists of triangles in U with all three side lengths
less than 1, corresponding to triangles in V; ;1 with max(a,b,c) < 1, Ty o0 and
T11,1- The set of such triangles, also homeomorphic to an open ball in R3, can
be parametrized, as a subset of Uy, by the length a € (0,1) of the side BC and
the point A € C\ I'c. Since triangles in U have at most one side length > 1, we
have U = U4 UUp U Ug. Thus U is homeomorphic to an open ball in R3.

To prove that U is embedded in RS as a real analytic manifold, we show this
first for embedding of the chart Uy of U, parametrized by the length a € (0,2)
of the side BC and the point A € C\ I'c.

We realize C as the unit sphere in Rivw and G as the unit circle in the xy-
plane, and set B = (1,0,0), C = (s,t,0) where s> + > = 1, A = (u,v,w) where
u? + v? + w? = 1. The opposite points of B and C in G are B’ = (—1,0,0) and
C’' = (—s,—t,0). Then

I'c ={(z,y,0) € G: y>0orsy <t} (4.3)

The sides AB, BC and CA belong to the circles in the planes through the origin
of R? with the normals (0, —w,v), (0,0,1) and (tw, —sw, sv — tu), respectively.
All three normals are non-zero vectors for any point in Uy, as A ¢ I'c implies
that v # 0, sv # tu when w = 0, and (s,t) is a unit vector. Thus all three
planes depend analytically on parameters in U4, and the angles A, B, C' between
any two of these planes are real analytic functions on Uy. The side lengths b <
1 and ¢ < 1 are also real analytic functions of parameters in Uy, as cos(mc) =
u, cos(mb) = su + tv. The mapping from Uy to Ri,b, . Is nondegenerate when

ds AduAd(su+tv) Ad(s® +12) Ad(u? +v? +w?) = 42w ds Adt AduAdv Adw # 0.

When w = 0, all corners A, B, C are on the unit circle in the xy-plane, all angles
A, B, C are equal to 1, and the sides a, b, ¢ satisfy a+b+ ¢ = 2. For fixed a and b
we have 0C /0w = —1/(7?b) # 0 when w = 0, thus the mapping of U4 to Ri,b,()
is nondegenerate in this case. When ¢ = 0, we have C = (—1,0,0), a = 1, b+
c=1,A=1,and 0 < B = C < 2 is the angle between the vectors (0,v,w) =
A — (4,0,0) and (0,—1,0) counterclockwise in the yz-plane. Note that u # £1
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since A # B and A # C. Thus the mapping from Uy to Ri,b,c is nondegenerate
in this case. This proves that U, is embedded in R® as a real analytic manifold.

Embedding of the charts Up and Ug of U is obtained by cyclic permutations
of the corners A, B, C, angles A, B, C' and side lengths a, b, c. Also, the common
intersection of any two of the charts Uy, Up and Ug of U is mapped to itself
by these cyclic permutations, which act as linear transformations of R®. Thus
transition maps between the three charts of U are real analytic. 0

Definition 4.4. A spherical triangle A is called short-sided if all its sides are
shorter than the full circle (have length less than 2). Otherwise, A is long-sided.
At most one side of a triangle A may be long. If the side BC of a triangle A
is short, a hemisphere can be attached to BC, increasing the angles B and C' of
A by 1, and replacing the side length a of BC by 2 — a. This operation can be
repeated, attaching several hemispheres to BC. Similarly, hemispheres can be
attached to short sides AC and BC of A. The triangle A(p,q,r) obtained by
attaching p hemispheres to the side BC of a triangle A with angles (A, B, C) and
side lengths (a, b, ¢), ¢ hemispheres to its side AC and r hemispheres to its side
AB has the angles (A+q+r,B+p+7,C+p+q) and side lengths ((—1)?(a —
1)+1,(-1)%b—1)+1,(=1)"(c—1)+1). The value 0 for p, ¢ or r means that no
hemispheres are attached to the corresponding side of A. If a side of A is long
then hemispheres cannot be attached to that side, thus the corresponding value
of p, ¢ or » must be 0.

Proposition 4.5 (See [3, Section 10]). For a balanced vertex (m,n,k) € Xy
there exists a unique solution (p,q,r) € N> of the system

g+r=m-1, p+r=n—-1, p+qg=k-—1. (4.4)

This identifies Xo with the set Ay of integer points in the first octant of R?MLT’
where the origin (p,q,r) = (0,0,0) corresponds to the vertex (m,n,k) = (1,1,1)
(see Fig. 4.4). A triangle A(p,q,r) with integer angles (m,n, k) can be obtained
from a hemisphere A with distinct boundary points (A, B, C) by attaching p hemi-
spheres to the side BC, q hemispheres to the side AC, and r hemispheres to the
side AB. The developing map of A(p,q,r) is a rational function with three crit-
ical points at A, B and C of multiplicities m — 1, n — 1 and k — 1.

Let S be the commutative semigroup of (7 generated by translations
(A,B,C) —» (A, B+1,C+1), (A,B,C) » (A+1,B,C+1), (A,B,C) —
(A+1,B+1,C). For each balanced vertex W = (m,n, k), translation by (m —
1,m—1,k—1) in S maps the vertex V = (1,1,1) to W, and the edges in X; and
tetrahedra in Xy adjacent to V' to the edges and tetrahedra adjacent to W.

Notation 4.6. Let U,, 1 be the neighborhood of the set Vy, 1. consisting of
triangles with the angles (A, B,C) such thatm —1 < A<m+1,n—1< B <
n+1,k—1<C<k+1.

Since all triangles in the neighborhood U of the set Vi 11 are short-sided,
Proposition 4.5 implies that this action can be extended to the mapping from
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U = U111 to Uy i by attaching p hemispheres to the side BC, ¢ hemispheres
to the side AC, and r hemispheres to the side AB of each triangle A € U, where
(p,q,r) satisfies (4.4).

The sides of the resulting triangle are either of the same length a, b, ¢ as
the corresponding sides of A or of the complementary length 2 —a, 2 — b, 2 — ¢,
depending on the parity of the numbers p, ¢, 7. For example, the sides of triangles
in Uy 22 are (2 —a, b, ¢), since (p,q,7) = (1,0,0) in that case. In particular, all
triangles in each set Uy, ,, 1, are short-sided.

Theorem 4.7. The set of all short-sided spherical triangles is an orientable
three-dimensional manifold in RS consisting of triangles corresponding to all bal-
anced vertices in Xg, balanced and semi-balanced edges in X1, and balanced and
semi-balanced tetrahedra in X3. It is the union U of the sets Uy, n 1 corresponding
to all balanced vertices (m,n, k).

Proof. It will be shown in the next section that all triangles in X' \ U are
long-sided (have one side of length > 2). Since U is a three-dimensional manifold
covered by charts U, , k, it is enough to show that U/ is orientable.

The set U = Uy,1,1 is the union U = U4 UUp U U of three open subsets sets,
each of them naturally oriented as a subset of (0,2) x C (see proof of Proposition
4.3). It is easy to check (selecting the point A either at the center of D or at
the center of C \ D in the proof of Proposition 4.3) that these orientations are
compatible on the intersections U4 N Up = Usq N Uc = Up N Uc (opposite to
the orientation of Ri‘ p.c on the tetrahedra Tpo0 and T1,1,1). Thus the set U is
oriented. Note that this orientation of U is compatible with the orientation of
R?&BC on all tetrahedra adjacent to (1,1, 1) except Tp 0,0 and 17 1 1.

A generator (A,B,C) — (A,B +1,C + 1) of S maps the set Uy 1, to the
set Uy 22 which intersects with Uy 11 over Tp11 U711 U El,%%' This mapping
defines orientation of Uj 22 such that orientations of Uy 1,1 N Uy 22 induced from
Ui,1,1 and Uy 22 are opposite. Orientation of the set I/ can be defined by reversing
orientations of all sets Uy, ,  induced from the orientation of Uy when m +
n+ k=1 mod 4, corresponding to the odd values of p + ¢ + r. O

5. Sequences of unbalanced tetrahedra in X3 and edges in X

Proposition 5.1. Let Ly be a semi-balanced edge in X1. Then there is a
unique not pointed tetrahedron Vg in X3 with the edge Lo, and a unique infinite
sequence

Vo,L1,V1,La, Vo, ... (5.1)

of tetrahedra V; in X3 and edges L; in X1, where Vj_1 and V; have a common
edge L;j, for each j > 0. The tetrahedra V; and edges L; are unbalanced for j >
0. Each unbalanced tetrahedron in X3, and each unbalanced edge in X1, belongs
to exactly one such sequence.

Proof. First we construct the sequence (5.1). Let W = (m,n,k) be a
marginally unbalanced vertex such that m — 1 = n + k, and let Ly = ((m, n -+
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1,k 4 1), (m,n,k)) be a semi-balanced edge in X; of the second type, with one
end at W. Then Ly is a common edge of a pointed semi-balanced tetrahedron
Trn—1n% (With two more edges in Xy, from (m,n+ 1,k +1) to (m — 1,n,k+1)
and (m —1,n+1,k)) and a non-pointed semi-balanced tetrahedron Vo = T}, , &
with one unbalanced edge L1 = ((m +1L,nk+1),(m+1,n+1, k)) in X4, of the
first type. The edge L; is common for the tetrahedron Vg and an unbalanced
tetrahedron Vi = T, 11, % which has an unbalanced edge Ly = ((m +2,n +
1,k+1),(m+2,n, k)) in X1, of the second type. Extending this construction,
we obtain the sequence (5.1) consisting of unbalanced edges L; = ((m +j4,n,k+
1),(m+j,n+ 1,k)) of the first type for odd j, unbalanced edges L; = ((m +
jn+1,k+1),(m+j,n, k:)) of the second type for even j, and the tetrahedra
Vj = Tytjnk, unbalanced for j > 0.

The cases n — 1 =m + k and k£ — 1 = m + n are similar.

Now we show that each unbalanced tetrahedron in X3 and each unbalanced
edge in X belong to exactly one sequence (5.1). According to Remark 3.5 each
unbalanced edge in X is an edge of an unbalanced tetrahedron, and each un-
balanced tetrahedron V = T, ,,  in X3 with m > n + k + 1 has two opposite
unbalanced edges in X7, either L = ((m,n, E+1),(m,n+1, k)) and L' = ((m +
ILn+1L,k+1),(m+ l,n,k)) or L = ((m—i— Ln,k+1),(m+1,n+ 1,k)) and
L' = ((m, n+1,k+1),(m,n, k:)), depending on the parity of m+n+k. Then V,
L and L' belong to a sequence (5.1) associated with a semi-balanced edge Ly =
(n+k+1,n+1,k+1),(n+k+1,n,k)). The casesn >m-+k+1and k >m+
n + 1 are similar. O

Proposition 5.2. The set S C X of triangles corresponding to the tetrahedra
V;j for j >0 and edges L; for j > 0 in a sequence (5.1) is homeomorphic to an
open ball in R3. All triangles in S except those in Vg are long-sided.

Proof. We start with the case W = (1,1,1) and Ly = ((1,1,1),(1,0,0)).
Triangles corresponding to the edges L; and tetrahedra V; of the sequence (5.1)
can be constructed as follows. Let D C C be a hemisphere bounded by a great
circle G. For a fixed point B € G, let C € G be an opposite point, and let BC be
an arc of GG oriented from B to C consistently with the orientation of G = 0D.
Let us choose an arbitrary point A € D\ G, and let G be the great circle passing
through A and B (and also through C, since C is opposite to B). Connecting
A with B and C by the arcs of G inside D, we get a triangle d5 1 C D with
the vertices (A,B,C), angles A =1, B=C < landsidesa=1,b+c=1
(as in Fig. 4.2 e)) corresponding to the edge Lg. Since the point A is uniquely
determined by the angle B < 1 between G and G and the length ¢ < 1 of the arc
AB, each triangle corresponding to the edge Lg is equal to exactly one triangle
OA1-

Next we fix a point A € D\ G, and allow the point C to move along the circle
G, increasing the angle A between the arc AB and the arc AC C D of a great
circle Gy passing through A and C, so that 1 < A < 2. Then we get triangles
dA, 4 with the vertices (A,B,C), angles 1 < A< 2, B<1,C <1, and sides 1 <
a <2 b<1 c<1(asin Fig. 4.2 g)). Each of these triangles belongs to the
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tetrahedron Vo = T7 o9. Conversely, for a fixed point B € G, the point A € D\
G is uniquely determined by the angles (A, B,C') € T1,0,0. Thus each triangle in
T1,0,0 is equal to exactly one triangle da 4 with 1 < A < 2, for some A € D\ G.

If we continue moving the point C along G increasing the angle A, we get C =
B when A = 2, and a triangle da o with the angles A =2, B+ C =1 and sides
a =2, b= c < 1 corresponding to an unbalanced edge L1 = ((2,07 1), (2, 1,0))
of the first type. It is easy to check that each triangle corresponding to L is
equal to exactly one triangle da o for some A € D\ G. In particular, all triangles
corresponding to L; are long-sided.

Moving the point C further along G and increasing the angle A accordingly,
we obtain a family of triangles o 4 with vertices (A, B, C), angles A > 1, B < 1,
C <landsidesa >1,b <1, c <1 corresponding to all edges L; and tetrahedra
V; of the sequence (5.1) associated with the semi-balanced edge Lo. For j > 0
these triangles are long-sided, with a = j + 1 for triangles corresponding to L;
and j+ 1 < a < j+ 2 for triangles in V.

For a balanced vertex (m,n,k) with m + 1 = n + k and a semi-balanced
edge Lo = ((m,n, k),(m,n—1k— 1)), we fix a point B € G = 9D and define
a triangle 6a 4k, for some point A € D\ G and angle A > 1, as a triangle
da,4 with n — 1 hemispheres attached to its side AB and k& — 1 hemispheres
attached to its side AC. Then 6a 4k has the angles (A +m — 1, B,C) where
A+4m—-1>mn—-1<B<n k—1<C<k andsidesa >1,b<1if k
isodd, 1l <b< 2ifkiseven, c < lifnisodd, 1 < ¢ < 2if nis even. It is
easy to check that these triangles 6o 41 are in one-to-one correspondence with
triangles corresponding to the edges L; and tetrahedra V; of the sequence (5.1) in
Proposition 5.1 associated with the semi-balanced edge Lo = ((m7 n, k), (m,n —
1,k— 1)) For j > 0 all these triangles are long-sided.

This construction identifies the set S with the product (D\ G) x (1, c0) home-
omorphic to an open ball in R3.

The cases of balanced vertices (m,n,k) with n+1 = m + k and k + 1
m + n, and semi-balanced edges Lo = ((m,n, k),(m —1,nk — 1)) and Lg
((m,n, k),(m—1,n—1, k)), are similar. O

6. Homotopy type of the set X of spherical triangles

According to Proposition 4.5, the set X of balanced vertices (m, n, k) can be
identified with the set Ag of the integer points (p,q,r) € N in the first octant
of Rg,q,r so that (m,n,k) = (¢+r+1L,p+r+1,p+q+1). It follows from
Proposition 3.3 that an edge in X; with one end at a balanced vertex (m,n, k)
has its other end either at an unbalanced vertex or at a balanced vertex identified
with (p/,¢/,7") = (p £ 1,¢+ 1,7 £ 1) € N3. Thus the union of X, and the set
By of balanced edges in X1 can be identified with the 1-skeleton A; of the cubic
partition of the first octant of R? = (see Fig. 4.4).

Theorem 6.1. The set X of all spherical triangles is homotopy equivalent to

Ay
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Proof. According to the proof of Proposition 5.2, the set S of triangles in
the sequence (5.1) associated with a semi-balanced edge Lo = ((m,n, k), (m,n —
1,k —1)) can be parametrized by (A, A) € (D \ D) x (1,00) where A is a point
in the interior of a hemisphere D and A is the angle at A. The union of S and
the set Ly of triangles corresponding to Ly can be parametrized by (A, A) €
(D \ 0D) x [1,00), and the union of Ly and the set of triangles in the semi-
balanced tetrahedron V( can be parameterized by (A, A) € (D\9dD) x [1,2). A
homeomorphism [1,00) — [1,2) defines a homeomorphism Lo US — Ly U V.
Applying this homeomorphism to the sequences (5.1) corresponding to all semi-
balanced edges in X7, we obtain a homeomorphism X — U where U is the set of
all short-sided triangles (see Definition 4.4 and Theorem 4.7) corresponding to all
balanced vertices in Xy, balanced and semi-balanced edges in X;, and balanced
and semi-balanced tetrahedra in X3. This homeomorphism is identity on the
triangles corresponding to all vertices in Xy and all balanced and semi-balanced
edges in X;.

Next, the union of the set of triangles in each tetrahedron V C U, the sets of
triangles corresponding to the edges of V in X; adjacent to its balanced vertices,
and the sets of triangles corresponding to the balanced vertices of V, is retractable
to the union of the sets of triangles corresponding to the balanced vertices and
balanced edges of V. Moreover, this retraction can be made compatible on the
common edges of the tetrahedra in U, thus the set U/ is retractable to the union
Xp of the sets of triangles corresponding to all balanced edges and vertices. Since
projection of the set Xp to XogU B is a compact-covering map with contractible
fibers, Vietoris-Begle mapping theorem (see [9]) implies that Xp is homotopy
equivalent to Xy U By, which can be identified with A;.

Combining the homeomorphism X — U, retraction of U to Xp and projection
of Xp to Xy U By, we complete the proof of Theorem 6.1. O

Proposition 6.2. If a semi-balanced tetrahedron T is pointed then its subset
of balanced triangles is the intersection of T with the convex hull of its balanced
vertices and midpoints of all its edges (midpoints of edges of T with both ends at
balanced vertices may be excluded, as they are not vertices of the convex hull).
If T is not pointed then its subset of balanced triangles is the intersection of T
with the convex hull of its single balanced vertex V' and midpoints of all its edges
adjacent to V.

Proof. The set of balanced triangles in T is Tp = T'N K, where K is the
closed cone in the first octant of R? defined by the inequalities (3.1). If T is
pointed then it has three edges in X; with a common end at a balanced vertex
V = (m,n, k) and other ends at P = (m,n—1,k—1),Q@ =(m—1,n,k—1) and
R=(m—1,n—1,k). We may assume that m + 1 = n + k. Then the vertex P
is unbalanced, thus the edge V P is semi-balanced. Its midpoint is vp = (m,n —
Lk 4.

Consider first the case when both vertices @) and R are balanced. Then T
has two balanced edges V@ and V R, an edge QR not in X; with both ends at
balanced vertices, and two edges PQ and PR not in X7, with midpoints pg =
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(m_l n_%a

5 k—1) and pr = (m— %, n—1,k— %) All three midpoints vp, pq, pr
belong to the face A = B+ C of K, thus T is the intersection of T" with the the
convex hull of V, Q, R, vp, pq, pr.

Next, consider the case when two vertices of T', say P and @, are unbalanced,
and R is balanced. This happens when m = n > k = 1. Then T has two semi-
balanced edges VP and V@, with midpoints vp = (m,n — %, %) and vg = (m —
Lon, %), and three edges PQ, PR and QR not in X, with midpoints pg = (m —
%,n— %,O), pr=(m— %,n— 1,%) and gr = (m —1,n — %,%) Since m = n, the
points vp, pq and pr belong to the facet A = B + C of K, and the points vq, pq
and gr belong to the facet B = A + C of K. Thus Ty is the intersection of T
with the convex hull of V, R, vp, vq, pq, pr, qr.

The remaining case 7' = Ty 0,0, (m,n,k) = (1,1,1) is left as an exercise. The
set of balanced triangles in that case is the intersection of T" with the convex hull
Of(lalal)a(17%7%)a(%a1a%)7(%7%> )a(07%a%)>(%70>%)7(%a%7 »

If T is not pointed then there is a single balanced vertex V = (m,n, k) of T
We may assume that m + 1 = n + k and that a single semi-balanced edge of T’
connects V' with an unbalanced vertex P = (m,n — 1,k — 1). Then T has two
more unbalanced vertices @ = (m + 1,n,k —1) and R = (m+ 1,n — 1,k). The
midpoints of the edges VP, VQ and VR are vp = (m,n — %, k— %), vg = (m+
%,n, k— %) and vr = (m + %,n - %, k). All of them belong to the facet A = B +
C of K. Thus Tg is the intersection of 1" with the convex hull of V, vp,vq,vr. O

Corollary 6.3. The set of balanced triangles is homotopy equivalent to A;.

Proof. Description of the sets of balanced triangles in semi-balanced tetrahe-
dra in Proposition 6.2 allows one to define retraction of the set U of short-sided
triangles to the set Xp of triangles corresponding to balanced edges and vertices
in the proof of Theorem 6.1 as a composition of retraction of U to the set of
balanced triangles and retraction of the set of balanced triangles to Xp. O
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IIpoctip chepnuanx TpukyTHuKiB llIBapra—Kusitna
Alexandre Eremenko and Andrei Gabrielov
Omnwmcannii npoctip cepruanux TpukyTHUKIB y cerci [IBapra i Kirsiitaa.
LoBeieno, 1o 11e TIIaJKA TPUBUMIPHII OPIEHTOBAHII MHOTOBHJI, TOMOTOITI-

9HO eKBiBaJeHTHHUI 1-0CTOBY KyOIiYHOTO pO3OMUTTS MEPITOTO OKTAaHTa. KyTu
i croponn — pificHi anagiTHaHi GyHKIHT HA TTLOMY MHOTOBHI.

KirouoBi ciioBa: cpepudHa reoMerpist, TPUKY THUKHI
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