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The space of Schwarz–Klein spherical

triangles

Alexandre Eremenko and Andrei Gabrielov

We describe the space of spherical triangles (in the sense of Schwarz and
Klein). It is a smooth connected orientable 3 manifold, homotopy equivalent
to the 1-skeleton of the cubic partition of the closed first octant in R3. The
angles and sides are real analytic functions on this manifold which embed it
to R6.
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1. Introduction

The word “triangle” can have two different meanings: a curve (Ptolemy,
Gauss, Möbius, Study) or a surface (Schwarz, Klein). In this paper we use it
in the sense of Schwarz and Klein. The references for the space of Gauss–Study
triangles are [1, 10].

Spherical triangles with arbitrarily large interior angles and sides occur in
the study of spherical metrics with conic singularities which recently attracted
substantial attention, [2–4, 7, 8]. Here we describe topology of the space of all
such triangles.

A spherical triangle ∆ is a closed oriented disk with three distinct marked
boundary points (corners) a1, a2, a3 equipped with a Riemannian metric of con-
stant curvature 1 with conic singularities with interior angles παi at ai and such
that the sides (ai, ai+1) are geodesic. Two such triangles ∆ and ∆′ are considered
equal if there is an orientation-preserving isometry ∆ → ∆′ mapping corners to
corners and preserving the labels.

We always assume that the cyclic order (a1, a2, a3) is consistent with the
positive orientation of ∂∆.

A developing map f : ∆ → C is associated with each triangle ∆. Here C is
the Riemann sphere with the standard Riemannian metric of curvature 1. The
side lengths of ∆ are the lengths of the images of the sides f([ai, ai+1]), counting
multiplicity. So the angles and side lengths of ∆ are positive numbers.

A spherical triangle is completely determined by these six positive numbers,
the angles and side lengths. This defines the topology, induced from R6, on the
set of all spherical triangles.
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We measure the angles in half-turns instead of radians, thus “an integer angle”
means an integer multiple of π radians. Similarly, the side lengths are measured
so that the length of a great circle is 2. We use notation (A,B,C) for the interior
angles of a triangle at its corners (A,B,C) = (a1, a2, a3), and (a, b, c) for the
lengths of its sides opposite the corners with angles (A,B,C).

The following characterization of angles of spherical triangles was proved
in [2].

Theorem A. The following assertions hold.

(i) If three positive numbers (A,B,C) are not integers, then they are the angles
of a spherical triangle if and only if

cos2 πA+ cos2 πB + cos2 πC + 2 cosπA cosπB cosπC − 1 < 0. (1.1)

A triangle with such angles is unique.

(ii) If exactly one of the angles (A,B,C), say A, is an integer then a triangle
with these angles exists if and only if either B +C or |B −C| is an integer
m of the opposite parity to A, and

m ≤ A− 1. (1.2)

For any such angles, a one-parametric family of triangles with these angles
exists. The length of the side opposite the integer corner is an integer, while
the length of the side opposite to one of the non-integer corners is not an
integer, and its fractional part can be chosen as a parameter. (In [2] it was
erroneously stated that in this case the triangle with given angles is unique.
The mistake was corrected in [8].)

(iii) If two angles are integers then all three are integers, and in this case a
triangle with the angles (A,B,C) exists if and only if A+B+C is odd, and

max(A,B,C) ≤ (A+B + C − 1)/2. (1.3)

There is a two-parametric family of triangles with such angles: any two side
lengths can be chosen as parameters. The ranges for the side lengths depend
on the angles and will be specified in Section 4 below.

Remark 1.1. Inequality (1.1) is equivalent to

cosπ
A+B + C

2
cosπ

A+B − C
2

cosπ
A+ C −B

2
cosπ

B + C −A
2

< 0. (1.4)

Yet another illuminating form of this inequality was discovered in [7]:

d1
(
(A,B,C),Z3

e

)
> 1, (1.5)

where Z3
e is the sublattice of Z3 consisting of points with even sum of coordinates,

and d1
(
(A,B,C), (M,N,K)

)
= |A−M |+ |B −N |+ |C −K|.
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We use Theorem A to describe the space X ⊂ R6 of all spherical triangles:

Theorem 1.2. The space X of all spherical triangles is a smooth, connected,
orientable real analytic 3-manifold, homotopy equivalent to the 1-skeleton of a
cubic partition of the closed first octant of R3.

The angles and side lengths of triangles, which define the embedding of X to
R6, are smooth (real analytic) functions on X .

The plan of the paper is as follows. In Section 2 we describe the set X ∈ R3 of
all possible triples (A,B,C) of angles of spherical triangles in X . The set X is the
union of open tetrahedra Tm,n,k, where (m,n, k) ∈ N3, some of their open edges,
and some of their vertices. In Section 3 we describe the edges and vertices of
the tetrahedra Tm,n,k belonging to X. An important difference appears between
balanced (satisfying the triangle inequality (3.1)) and unbalanced triangles. This
terminology was proposed in [6], see also [5]. In particular, only balanced vertices
of the tetrahedra Tm,n,k belong to X. In Section 4 we define the neighborhoods
Um,n,k ∈ X , homeomorphic to open balls in R3, of the sets of triangles in X
corresponding to the balanced vertices (m,n, k) ∈ X. The union U of these
neighborhoods is the set of all short-sided triangles (with all three sides shorter
than the full circle, see Definition 4.4). All balanced triangles are short-sided.
The covering of U by the charts Um,n,k defines the structure of an oriented three-
dimensional manifold on U . In Section 5 we define the charts Sm,n,k ⊂ X , where
either m− 1 = n+ k or n− 1 = m+ k or k− 1 = m+ n, corresponding to semi-
balanced edges in X (see Definition 3.1). Together with the charts Um,n,k, this
defines a covering of the whole set X , defining the structure of an oriented three-
dimensional manifold on X . In Section 6.1 we show that the set X is homotopy
equivalent to the 1-skeleton of a cubic partition of the closed first octant of R3.
The same is true for the set U ⊂ X of short-sided triangles, and for the set B ⊂
U of balanced triangles.

We thank Dmitry Panov for discussions of spherical triangles; he explained
to us their relevance for description of spherical metrics on tori, and stressed the
importance of the balanced condition (3.1).

2. Angles of spherical triangles

According to Theorem A, the set X of possible triples (A,B,C) of the angles
of spherical triangles consists of three parts: the open set X3 described in (i),
the one-dimensional set X1 described in (ii) and the set of isolated points X0

described in (iii). We have X3 = Y3 ∩R3
>0 where Y3 is invariant under the group

G (see [2]) consisting of transformations

(A,B,C) 7→ (±A+M,±B +N,±C +K), where (M,N,K) ∈ Z3
e.

The interior of a fundamental region of G can be described by the inequalities

A > 0, B > 0, C > 0, A+B < 1, A+ C < 1, B + C < 1. (2.1)
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The intersection of X3 with the region (2.1) is described by the additional in-
equality

A+B + C > 1. (2.2)

Conditions (2.1) and (2.2) define an open tetrahedron ∇ with vertices (1, 0, 0),
(0, 1, 0), (0, 0, 1), (12 ,

1
2 ,

1
2). Three transformations of the group G,

(A,B,C) 7→ (A, 1−B, 1− C),

(A,B,C) 7→ (1−A,B, 1− C),

(A,B,C) 7→ (1−A, 1−B,C),

(2.3)

map the tetrahedron ∇ onto three disjoint tetrahedra, each having a common
facet with ∇. The union of these four tetrahedra, with their common facets, the
vertex (12 ,

1
2 ,

1
2), and four edges adjacent to that vertex, is an open tetrahedron T0

with the vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), which is called a truncated
cube in [7]. The subgroup G0 of G preserving T0 consists of the identity and
transformations (2.3). It is the Klein Viergroup isomorphic to Z2 × Z2. The
group G1 consisting of transformations (A,B,C) 7→ ±(A,B,C) + (M,N,K),
where (M,N,K) ∈ Z3

e, is a normal subgroup of G such that G/G1 = G0. The
interior of a fundamental region of G1 is the open unit cube 0 < A < 1, 0 < B <
1, 0 < C < 1. Thus G1 maps T0 to one tetrahedron Tm,n,k in each unit cube

Qm,n,k = {m < A < m+ 1, n < B < n+ 1, k < C < k + 1, (m,n, k) ∈ Z3}.

The groupG2 of translations (A,B,C) 7→ (A+M,B+N,C+K) with (M,N,K) ∈
Z3
e is a normal subgroup of G1, and G1/G2 is generated by any involution

(A,B,C) 7→ (M − A,N − B,K − C), where (M,N,K) ∈ Z3
e, mapping T0,0,0

to TM−1,N−1,K−1. Vertices of the tetrahedra Tm,n,k belong to the set Z3
o ⊂ Z3 of

integer points with odd sum of coordinates. The set X3 is the union of the tetra-
hedra Tm,n,k with (m,n, k) ∈ N3. Two tetrahedra in adjacent unit cubes have a
common edge (which may belong or not belong to X1). Since three of the four
vertices of T0 have the same sum of angles A+B +C = 1, three vertices of each
tetrahedron Tm,n,k have the same sum, either m+n+k+1 or m+n+k+2 when
m+ n+ k is even or odd. It follows from (1.5) that the points (A,B,C) of open
facets of any tetrahedron Tm,n,k never correspond to spherical triangles, since the
angles A,B,C are non-integer and d1

(
(A,B,C),Z3

e

)
= 1 at these points.

Notation 2.1. We denote by Vm,n,k ⊂ X the set of triangles with the
angles (m,n, k) ∈ Z3

o corresponding to a vertex (m,n, k) ∈ X0. If L ⊂ X1 is an
open edge of a tetrahedron Tm,n,k, we denote by Lu,v,w ⊂ X the set of triangles
corresponding to L, where (u, v, w) is the midpoint of L. For example, L1, 1

2
, 1
2

is

the set of triangles with the angles A = 1, 0 < B < 1, 0 < C < 1 corresponding
to the edge L =

(
(1, 0, 0), (1, 1, 1)

)
of T0.

3. Edges and vertices of the tetrahedra Tm,n,k

To see which edges and vertices of the tetrahedra Tm,n,k correspond to spher-
ical triangles, we use inequalities (1.2) and (1.3). If all three angles A,B,C are
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integer then A+B+C is odd, and inequality (1.3) implies the triangle inequality

A ≤ B + C, B ≤ A+ C, C ≤ A+B. (3.1)

Inequalities (3.1) define a closed cone K in the first octant bounded by the planes
A = B+C, B = A+C, C = A+B. The edges of K are three rays {A = B, C =
0}, {A = C, B = 0}, {B = C, A = 0}. Klein calls spherical triangles with
the angles satisfying (3.1) “triangles of the first kind.” We prefer to call them
balanced following Mondello and Panov.

Definition 3.1. A point (A,B,C) in the first octant satisfying the inequal-
ity (3.1) is called balanced, otherwise it is unbalanced. A tetrahedron Tm,n,k is
balanced if all its vertices are balanced, unbalanced if all its vertices are unbal-
anced, and semi-balanced otherwise. An open edge L ∈ X1 of a tetrahedron
Tm,n,k is balanced if both its ends are balanced vertices, unbalanced if both its
ends are unbalanced vertices, and semi-balanced otherwise. An unbalanced end
(m,n, k) ∈ Zo of a semi-balanced edge is called a marginally unbalanced vertex.
Its angles satisfy either m− 1 = n+ k or n− 1 = m+ k or k − 1 = m+ n.

Remark 3.2. Theorem A (iii) says that X0 = K ∩ Z3
o, thus X0 is the set of

all balanced vertices. Note that balanced vertices do not belong to coordinate
planes, since (3.1) implies B = C when A = 0, thus (A,B,C) /∈ Zo. All triangles
corresponding to a balanced edge are balanced, all triangles corresponding to
an unbalanced edge are unbalanced. Triangles corresponding to the points of a
semi-balanced edge L between its balanced vertex and midpoint (including the
midpoint) are balanced, triangles corresponding to the points of L beyond its
midpoint are unbalanced. It is shown below that a semi-balanced tetrahedron in
X3 may be either pointed, with three edges in X1 meeting at a vertex V ∈ X0, or
not pointed, with two opposite edges in X1. All balanced tetrahedra are pointed,
and all unbalanced tetrahedra are not pointed. The set of balanced triangles in
a semi-balanced tetrahedron is described in Proposition 6.2 below.

To determine which edges of the tetrahedra Tm,n,k belong to X1, we consider
the edges of eight tetrahedra with a common vertex (m,n, k) ∈ Z3

o ∩ R3
>0. The

edges meeting at (m,n, k) are of two types: those on which the sum A+ B + C
is constant (first type) and those on which it is not (second type). An edge L of
the second type is upward with respect to the vertex (m,n, k) if A + B + C >
m + n + k on L and downward otherwise. It follows from Theorem A (ii) that
all edges of the first type belonging to X1 are unbalanced.

Edges adjacent to a balanced vertex. Let V = (m,n, k) ∈ X0 be a
balanced vertex. Then edges of the first type adjacent to V do not belong to X1,
while six edges of the second type belong to X1: three upward edges from V to
(m,n+1, k+1), (m+1, n, k+1) and (m+1, n+1, k), and three downward edges
from V to (m,n − 1, k − 1), (m − 1, n, k − 1) and (m − 1, n − 1, k). There are
four upward (with A+ B + C > m+ n+ k) and four downward (with A+ B +
C < m + n + k) tetrahedra adjacent to V . This is summarized in the following
statement.
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Proposition 3.3. Six edges of the second type adjacent to a balanced vertex
V = (m,n, k) (three upward and three downward) belong to X1. All upward
edges adjacent to V are balanced. Tetrahedra Tm,n,k and Tm−1,n−1,k−1 adjacent
to V are pointed. Each of them has three edges in X1 adjacent to V . Each of the
remaining six tetrahedra adjacent to V has exactly one edge (V, V ′) in X1 adjacent
to V , common either with Tm,n,k or with Tm−1,n−1,k−1. If the edge (V, V ′) is
balanced, the tetrahedron is pointed, having two more edges in X1 adjacent to V ′.
Otherwise, the tetrahedron is not pointed and has two opposite edges in X1.

Edges adjacent to an unbalanced vertex. Let V = (m,n, k) ∈ Z3
o ∩R3

>0

be an unbalanced vertex such that m+ n ≤ k − 1. Then V /∈ X0, and the edges
meeting at V belong to X1 if and only if C = k on those edges: the edges of the
first type from V to (m − 1, n + 1, k) and to (m + 1, n − 1, k), and the edges of
the second type from V to (m + 1, n + 1, k) and to (m − 1, n − 1, k). Therefore
exactly four of the twelve edges meeting at V belong to X1. Each of these four
edges is common to two tetrahedra adjacent to V , so there are four pairs of these
tetrahedra. Two of these pairs, (Tm−1,n,k−1, Tm−1,n,k) and (Tm,n−1,k−1, Tm,n−1,k),
have common edges of the first type (see Fig. 3.1 for m+n < k−1 and Fig. 3.3 for
m+n = k−1). Two other pairs, (Tm−1,n−1,k−1, Tm−1,n−1,k) and (Tm,n,k−1, Tm,n,k),
have common edges of the second type (see Fig. 3.2 and Fig. 3.4). If m+n < k−
1 then all eight tetrahedra are unbalanced, and each of them has two opposite
edges in X1. If m+n = k− 1 then vertices (m+ 1, n+ 1, k), (m,n+ 1, k− 1) and
(m+ 1, n, k − 1), shown as black dots in Fig. 3.3 and Fig. 3.4, are balanced. All
other vertices of the tetrahedra adjacent to V are unbalanced. The tetrahedron
Tm,n,k−1 in Fig. 3.4 is pointed, with three edges in X1 meeting at its vertex (m+
1, n + 1, k). Each of the other seven tetrahedra in Fig. 3.3 and Fig. 3.4 has two
opposite edges in X1. This is summarized in the following statement.

Proposition 3.4. If V = (m,n, k) ∈ Z3
o ∩ R3

>0 is an unbalanced vertex then
four edges adjacent to V , the angle max(m,n, k) being constant on those edges,
belong to X1. Two of these edges are of the second type (one upward and one
downward) and the other two are of the first type. If V is marginally unbalanced
then there are four semi-balanced and four unbalanced tetrahedra adjacent to V .
Two of the semi-balanced tetrahedra, one of them pointed and another one not
pointed, have a common semi-balanced upward edge in X1 adjacent to V . The
other two semi-balanced tetrahedra are not pointed, have no common edges, and
their edges adjacent to V are unbalanced, of the first type. If V is not marginally
unbalanced, all eight tetrahedra adjacent to V are unbalanced.

Remark 3.5. Note that every unbalanced edge in X1 is an edge of at least one
unbalanced tetrahedron. Each of the unbalanced edges in Figs. 3.1–3.4 belongs to
an unbalanced tetrahedron shown in those figures, except the edge

(
(m,n+1, k+

1), (m+ 1, n, k+ 1)
)

in Fig. 3.4 which is common to a semi-balanced tetrahedron
Tm,n,k and an unbalanced tetrahedron Tm,n,k+1 with the vertices (m,n, k+2) and
(m+ 1, n+ 1, k + 2) not shown in Fig. 3.4.
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(m,n+1,k+1)

(m,n+1,k-1)

(m,n-1,k-1)

(m,n-1,k+1)(m-1,n,k+1)

(m+1,n,k+1)

(m+1,n,k-1)

(m-1,n,k-1)

(m-1,n+1,k) (m+1,n-1,k)

Fig. 3.1: Tetrahedra adjacent to edges in X1 of the first type meeting at a vertex
(m,n, k) with m+ n < k − 1. Edges in X1 are shown in bold line.

(m+1,n+1,k)

(m-1,n-1,k)

(m,n+1,k+1)

(m,n+1,k-1)

(m,n-1,k-1)

(m,n-1,k+1)(m-1,n,k+1)

(m+1,n,k+1)

(m+1,n,k-1)

(m-1,n,k-1)

Fig. 3.2: Tetrahedra adjacent to edges in X1 of the second type meeting at a
vertex (m,n, k) with m+ n < k − 1. Edges in X1 are shown in bold line.

4. Neighborhoods of balanced vertices

In this section we define a covering of the set U of short-sided triangles (see
Definition 4.4 below) by the open neighborhoods Um,n,k (see Notation 4.6) of the
sets Vm,n,k of triangles corresponding to balanced vertices (m,n, k). Each set
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(m,n+1,k+1)

(m,n+1,k-1)

(m,n-1,k-1)

(m,n-1,k+1)(m-1,n,k+1)

(m+1,n,k+1)

(m+1,n,k-1)

(m-1,n,k-1)

(m-1,n+1,k) (m+1,n-1,k)

Fig. 3.3: Tetrahedra adjacent to edges in X1 of the first type meeting at a
marginally unbalanced vertex (m,n, k) with m + n = k − 1. Balanced vertices
are shown as black dots.

(m+1,n+1,k)

(m-1,n-1,k)

(m,n+1,k+1)

(m,n+1,k-1)

(m,n-1,k-1)

(m,n-1,k+1)(m-1,n,k+1)

(m+1,n,k+1)

(m+1,n,k-1)

(m-1,n,k-1)

Fig. 3.4: Tetrahedra adjacent to edges in X1 of the second type meeting at a
marginally unbalanced vertex (m,n, k) with m + n = k − 1. Balanced vertices
are shown as black dots.

Um,n,k is homeomorphic to an open ball in R3.

Lemma 4.1. Let U ⊂ X be the union of the sets of triangles corresponding to
the vertex V = (1, 1, 1), edges in X1 meeting at V , and tetrahedra in X3 adjacent
to V . Then U is an open neighborhood of the set V1,1,1 in X consisting of all
triangles with the angles A,B,C satisfying the inequalities

0 < A < 2, 0 < B < 2, 0 < C < 2. (4.1)
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In addition, the angles and side lengths of triangles in U satisfy

1 < A+B + C < 5, a < 2, b < 2, c < 2, (4.2)

with at most one side length being ≥ 1.

Proof. It follows from Section 2 that the union of the vertex V , edges in X1

meeting at V and tetrahedra in X3 adjacent to V coincides with the intersection
of the set X with the open cube (0, 2)3 defined by the inequalities (4.1). Thus U
is the preimage of X ∩ (0, 2)3 in X , which is an open neighborhood in X of the
preimage V1,1,1 of V .

Each triangle corresponding to V is a hemisphere with three distinct marked
points (A,B,C) at the boundary. The set V1,1,1 of these triangles can be
parametrized by any two of the side lengths (a, b, c), since a+ b+ c = 2.

There are six edges in X1 meeting at V (see Proposition 3.3). Three upward
edges connect V with the balanced vertices (1, 2, 2), (2, 1, 2) and (2, 2, 1), and
three downward edges connect it with the unbalanced vertices (1, 0, 0), (0, 1, 0)
and (0, 0, 1).

Triangles in L 3
2
,1, 3

2
(see Fig. 4.1 b)) corresponding to the upward edge from

V to (2, 1, 2) have the angles 1 < A = C < 2, B = 1 and side lengths a+ c = 1,
b = 1. The set L 3

2
,1, 3

2
can be parametrized by the angle A and either a or c. The

limits of these triangles in V1,1,1 have the side lengths a+ c = 1, b = 1. This edge
is common to the tetrahedra T1,0,1 and T1,1,1. Triangles corresponding to these
two tetrahedra are shown in Figs. 4.1 a) and 4.1 d). The angles of triangles in
T1,0,1 satisfy the inequalities 1 < A < 2, 1 < C < 2, B < 1, 3 < A + B + C <
5, and the side lengths are 1 < b < 2, a < 1, c < 1, a + b + c > 2. The limits of
these triangles in V1,1,1 have side lengths 1 ≤ b < 2, a+ c = 2− b ≤ 1. The angles
of triangles in T1,1,1 satisfy the inequalities 1 < A < 2, 1 < B < 2, 1 < C < 2,
A+B + C < 5, and the side lengths are a < 1, b < 1, c < 1, a+ b+ c < 2. The
limits of these triangles in V1,1,1 have all side lengths ≤ 1. Both tetrahedra are
pointed: T1,1,1 has three edges in X1 meeting at V , and T1,0,1 has three edges in
X1 meeting at (2, 1, 2) (see Fig. 4.3 a).

Triangles corresponding to the edges from V to (2, 2, 1) and (1, 2, 2) are shown
in Figs. 4.1 c) and 4.1 e). They have the angles 1 < A = B < 2, C = 1 and
1 < B = C < 2, A = 1, respectively, and side lengths satisfying a+ b = 1, c = 1
(respectively, b + c = 1, a = 1). The limits of these triangles in V1,1,1 have the
side lengths a + b = 1, c = 1 (respectively, b + c = 1, a = 1). These two edges
are common for T1,1,1 and the tetrahedra T1,1,0 and T0,1,1, respectively. Triangles
corresponding to these two tetrahedra are shown in Figs. 4.1 f) 4.1 g).

Triangles in L 1
2
,1, 1

2
(see Fig. 4.2 b)) corresponding to the downward edge from

V to (0, 1, 0) have the angles 0 < A = C < 1, B = 1 and side lengths a+ c = 1,
b = 1. The set L 1

2
,1, 1

2
can be parametrized by the angle A and either a or c. The

limits of these triangles in V1,1,1 have the side lengths a+ c = 1, b = 1. This edge
is common to the tetrahedra T0,1,0 and T0,0,0. Triangles corresponding to these
tetrahedra are shown in Figs. 4.2 a) and 4.2 d). The angles of triangles in T0,1,0
satisfy the inequalities A < 1, C < 1, 1 < B < 2, A + B + C < 3, and the side
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c
c

c

c

c

c

c

Fig. 4.1: Triangles with A+B+C > 3 in a neighborhood U of the vertex (1, 1, 1).
When two sides of a triangle are mapped to the same circle, that circle is shown
in dual color/style.

A

A

A

A

A

A

A

B B

B

B
B

BB

C

C
C

C
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c

c
c

c

c
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a

a

a
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b b

b
b

b

b
b

Fig. 4.2: Triangles with A+B+C < 3 in a neighborhood U of the vertex (1, 1, 1).
When two sides of a triangle are mapped to the same circle, that circle is shown
in dual color/style.

lengths are 1 < b < 2, a < 1, c < 1, a + b + c > 2. The limits of these triangles
in V1,1,1 have the side lengths 1 ≤ b < 2, a + c = 2 − b ≤ 1. All angles and side
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a)

b)

Fig. 4.3: The upward (a) and downward (b) tetrahedra adjacent to the vertex
(1, 1, 1) in Lemma 4.1. Edges in X1 are shown in bold line.
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(3,3,5)

(4,5,4)

(5,4,4)

(5,5,5)

(4,4,5)

r
p

q

Fig. 4.4: The sets Λ0 and Λ1 of balanced vertices and edges in R3
p,q,r.

lengths of triangles in T0,0,0 are less than 1, A + B + C > 1, a + b + c < 2. The
limits of these triangles in V1,1,1 have all side lengths ≤ 1. The tetrahedron T0,0,0
is pointed (with three edges in X1 meeting at V ), while the tetrahedron T0,1,0 is
not pointed (see Fig. 4.3 b)).

Triangles corresponding to the edges from V to (0, 0, 1) and (1, 0, 0) are shown
in Figs. 4.2 c) and 4.2 e). They have the angles A = B < 1, C = 1 and B =
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C < 1, A = 1, respectively, and side lengths a + b = 1, c = 1 (respectively, b +
c = 1, a = 1). The limits of these triangles in V1,1,1 have the side lengths a +
b = 1, c = 1 (respectively, b + c = 1, a = 1). These two edges are common for
T0,0,0 and the tetrahedra T0,0,1 and T1,0,0, respectively. Triangles corresponding
to these tetrahedra are shown in Figs. 4.2 f) and 4.2 g).

Remark 4.2. The involution τ : (A,B,C) 7→ (2 − A, 2 − B, 2 − C) maps the
tetrahedron T0 = T0,0,0 to the tetrahedron T1 = T1,1,1, and the tetrahedra T1,0,0,
T0,1,0 and T0,0,1 to the tetrahedra T0,1,1, T1,0,1 and T1,1,0, respectively. For each

triangle ∆ ⊂ C in one of these tetrahedra, the triangle τ(∆) = C \∆ is reflection
symmetric to the complementary to ∆ triangle. In particular, τ preserves the
side lengths of triangles, and can be extended to the neighborhood U of V1,1,1.

Proposition 4.3. The neighborhood U of V1,1,1 in Lemma 4.1 is a three-
dimensional real analytic manifold homeomorphic to an open ball in R3. The
angles A,B,C and side lengths a, b, c of triangles in U are real analytic functions
on U . They define an embedding of U to R6 as a real analytic submanifold.

Proof. Let D ⊂ C be a hemisphere bounded by a great circle G, with a
marked point B ∈ G. For a point C ∈ G \B, let BC be the arc of G of length
a < 2 from B to C oriented consistently with the orientation of G = ∂D. Let B′

and C′ be the points of G opposite to B and C, and let C′B′ be the arc of G
such that either BC ⊆ C′B′ or C′B′ ⊆ BC. Let ΓC = BC∪C′B′. Then G \ΓC

is a non-empty open arc of G of length min(a, 2 − a). For a point A ∈ C \ ΓC,
let ∆AC ⊂ C be a spherical triangle with the sides AB and AC of lengths c <
1 and b < 1, respectively, and the side BC ⊂ G. The set UA of triangles ∆AC

is an open subset of U , parametrized by the length a ∈ (0, 2) of the arc BC and
the point A ∈ C \ ΓC.

Let us show that there is one-to-one correspondence between triangles ∆AC ∈
UA and spherical triangles with the angles satisfying (4.1) and the side lengths
a < 2, b < 1, c < 1. Since the sides AB and AC of ∆AC have lengths less than
1, they do not intersect G at any points other than B and C, respectively. Since
BC is oriented from B to C in ∂D, this implies that D is a proper subset of ∆AC

when A /∈ D, ∆AC = D when A ∈ G \ ΓC, and ∆AC is a proper subset of D
when A ∈ D \G. Accordingly, each triangle ∆AC may be of the following types:

(i) Triangle in V1,1,1 with the sides b < 1 and c < 1, when A ∈ G \ ΓC;

(ii) Triangle in L1, 1
2
, 1
2

corresponding to the edge
(
(1, 1, 1), (1, 0, 0)

)
when A ∈

D \G and a = 1 (see Fig. 4.2 e));

(iii) Triangle in L1, 3
2
, 3
2

corresponding to the edge
(
(1, 1, 1), (1, 2, 2)

)
, when A /∈

D and a = 1 (see Fig. 4.1 e)).

(iv) Triangle in T0,0,0, when A ∈ D \G and a < 1 (see Fig. 4.2 d));

(v) Triangle in T1,0,0, when A ∈ D \G and a > 1 (see Fig. 4.2 g));



The space of Schwarz–Klein spherical triangles 275

(vi) Triangle in T1,1,1, when A /∈ D and a < 1 (see Fig. 4.1 d));

(vii) Triangle in T0,1,1, when A /∈ D and a > 1 (see Fig. 4.1 g));

Conversely, each triangle in (i)–(vii) can be realized as a unique triangle
∆AC ∈ UA, for a fixed point B ∈ G, and for some points C ∈ G \ B and
A ∈ C \ ΓC.

Finally, UA is projected to an open interval (0, 2) of the values of a, with the
fiber C \ ΓC homeomorphic to an open disk and continuously depending on a.
Thus UA is homeomorphic to an open ball in R3.

By a cyclic permutation of the labels (A,B,C), we define the sets UB and UC

of triangles with the angles satisfying (4.1) and sides satisfying b < 2, a < 1, c <
1 and c < 2, a < 1, b < 1, respectively. The same arguments as above show that
each of these two sets is homeomorphic to an open ball in R3. The intersection
UA∩UB = UA∩UC = UB∩UC consists of triangles in U with all three side lengths
less than 1, corresponding to triangles in V1,1,1 with max(a, b, c) < 1, T0,0,0 and
T1,1,1. The set of such triangles, also homeomorphic to an open ball in R3, can
be parametrized, as a subset of UA, by the length a ∈ (0, 1) of the side BC and
the point A ∈ C \ ΓC. Since triangles in U have at most one side length ≥ 1, we
have U = UA ∪ UB ∪ UC . Thus U is homeomorphic to an open ball in R3.

To prove that U is embedded in R6 as a real analytic manifold, we show this
first for embedding of the chart UA of U , parametrized by the length a ∈ (0, 2)
of the side BC and the point A ∈ C \ ΓC.

We realize C as the unit sphere in R3
x,y,z and G as the unit circle in the xy-

plane, and set B = (1, 0, 0), C = (s, t, 0) where s2 + t2 = 1, A = (u, v, w) where
u2 + v2 + w2 = 1. The opposite points of B and C in G are B′ = (−1, 0, 0) and
C′ = (−s,−t, 0). Then

ΓC = {(x, y, 0) ∈ G : y > 0 or sy < tx}. (4.3)

The sides AB, BC and CA belong to the circles in the planes through the origin
of R3 with the normals (0,−w, v), (0, 0, 1) and (tw,−sw, sv − tu), respectively.
All three normals are non-zero vectors for any point in UA, as A /∈ ΓC implies
that v 6= 0, sv 6= tu when w = 0, and (s, t) is a unit vector. Thus all three
planes depend analytically on parameters in UA, and the angles A,B,C between
any two of these planes are real analytic functions on UA. The side lengths b <
1 and c < 1 are also real analytic functions of parameters in UA, as cos(πc) =
u, cos(πb) = su+ tv. The mapping from UA to R3

a,b,c is nondegenerate when

ds∧du∧d(su+ tv)∧d(s2 + t2)∧d(u2 +v2 +w2) = 4t2w ds∧dt∧du∧dv∧dw 6= 0.

When w = 0, all corners A,B,C are on the unit circle in the xy-plane, all angles
A,B,C are equal to 1, and the sides a, b, c satisfy a+ b+ c = 2. For fixed a and b
we have ∂C/∂w = −1/(π2b) 6= 0 when w = 0, thus the mapping of UA to R3

a,b,C

is nondegenerate in this case. When t = 0, we have C = (−1, 0, 0), a = 1, b +
c = 1, A = 1, and 0 < B = C < 2 is the angle between the vectors (0, v, w) =
A − (u, 0, 0) and (0,−1, 0) counterclockwise in the yz-plane. Note that u 6= ±1
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since A 6= B and A 6= C. Thus the mapping from UA to R3
a,b,C is nondegenerate

in this case. This proves that UA is embedded in R6 as a real analytic manifold.
Embedding of the charts UB and UC of U is obtained by cyclic permutations

of the corners A,B,C, angles A,B,C and side lengths a, b, c. Also, the common
intersection of any two of the charts UA, UB and UC of U is mapped to itself
by these cyclic permutations, which act as linear transformations of R6. Thus
transition maps between the three charts of U are real analytic.

Definition 4.4. A spherical triangle ∆ is called short-sided if all its sides are
shorter than the full circle (have length less than 2). Otherwise, ∆ is long-sided.
At most one side of a triangle ∆ may be long. If the side BC of a triangle ∆
is short, a hemisphere can be attached to BC, increasing the angles B and C of
∆ by 1, and replacing the side length a of BC by 2 − a. This operation can be
repeated, attaching several hemispheres to BC. Similarly, hemispheres can be
attached to short sides AC and BC of ∆. The triangle ∆(p, q, r) obtained by
attaching p hemispheres to the side BC of a triangle ∆ with angles (A,B,C) and
side lengths (a, b, c), q hemispheres to its side AC and r hemispheres to its side
AB has the angles (A+ q + r,B + p+ r, C + p+ q) and side lengths

(
(−1)p(a−

1) + 1, (−1)q(b−1) + 1, (−1)r(c−1) + 1
)
. The value 0 for p, q or r means that no

hemispheres are attached to the corresponding side of ∆. If a side of ∆ is long
then hemispheres cannot be attached to that side, thus the corresponding value
of p, q or r must be 0.

Proposition 4.5 (See [3, Section 10]). For a balanced vertex (m,n, k) ∈ X0

there exists a unique solution (p, q, r) ∈ N3 of the system

q + r = m− 1, p+ r = n− 1, p+ q = k − 1. (4.4)

This identifies X0 with the set Λ0 of integer points in the first octant of R3
p,q,r,

where the origin (p, q, r) = (0, 0, 0) corresponds to the vertex (m,n, k) = (1, 1, 1)
(see Fig. 4.4). A triangle ∆(p, q, r) with integer angles (m,n, k) can be obtained
from a hemisphere ∆ with distinct boundary points (A,B,C) by attaching p hemi-
spheres to the side BC, q hemispheres to the side AC, and r hemispheres to the
side AB. The developing map of ∆(p, q, r) is a rational function with three crit-
ical points at A, B and C of multiplicities m− 1, n− 1 and k − 1.

Let S be the commutative semigroup of G1 generated by translations
(A,B,C) 7→ (A,B + 1, C + 1), (A,B,C) 7→ (A + 1, B,C + 1), (A,B,C) 7→
(A+ 1, B + 1, C). For each balanced vertex W = (m,n, k), translation by (m−
1, n− 1, k− 1) in S maps the vertex V = (1, 1, 1) to W , and the edges in X1 and
tetrahedra in X0 adjacent to V to the edges and tetrahedra adjacent to W .

Notation 4.6. Let Um,n,k be the neighborhood of the set Vm,n,k consisting of
triangles with the angles (A,B,C) such that m − 1 < A < m + 1, n − 1 < B <
n+ 1, k − 1 < C < k + 1.

Since all triangles in the neighborhood U of the set V1,1,1 are short-sided,
Proposition 4.5 implies that this action can be extended to the mapping from
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U = U1,1,1 to Um,n,k by attaching p hemispheres to the side BC, q hemispheres
to the side AC, and r hemispheres to the side AB of each triangle ∆ ∈ U , where
(p, q, r) satisfies (4.4).

The sides of the resulting triangle are either of the same length a, b, c as
the corresponding sides of ∆ or of the complementary length 2− a, 2− b, 2− c,
depending on the parity of the numbers p, q, r. For example, the sides of triangles
in U1,2,2 are (2− a, b, c), since (p, q, r) = (1, 0, 0) in that case. In particular, all
triangles in each set Um,n,k are short-sided.

Theorem 4.7. The set of all short-sided spherical triangles is an orientable
three-dimensional manifold in R6 consisting of triangles corresponding to all bal-
anced vertices in X0, balanced and semi-balanced edges in X1, and balanced and
semi-balanced tetrahedra in X3. It is the union U of the sets Um,n,k corresponding
to all balanced vertices (m,n, k).

Proof. It will be shown in the next section that all triangles in X \ U are
long-sided (have one side of length ≥ 2). Since U is a three-dimensional manifold
covered by charts Um,n,k, it is enough to show that U is orientable.

The set U = U1,1,1 is the union U = UA ∪UB ∪UC of three open subsets sets,
each of them naturally oriented as a subset of (0, 2)×C (see proof of Proposition
4.3). It is easy to check (selecting the point A either at the center of D or at
the center of C \ D in the proof of Proposition 4.3) that these orientations are
compatible on the intersections UA ∩ UB = UA ∩ UC = UB ∩ UC (opposite to
the orientation of R3

A,B,C on the tetrahedra T0,0,0 and T1,1,1). Thus the set U is
oriented. Note that this orientation of U is compatible with the orientation of
R3
A,B,C on all tetrahedra adjacent to (1, 1, 1) except T0,0,0 and T1,1,1.

A generator (A,B,C) 7→ (A,B + 1, C + 1) of S maps the set U1,1,1 to the
set U1,2,2 which intersects with U1,1,1 over T0,1,1 ∪ T1,1,1 ∪ L1, 3

2
, 3
2
. This mapping

defines orientation of U1,2,2 such that orientations of U1,1,1 ∩ U1,2,2 induced from
U1,1,1 and U1,2,2 are opposite. Orientation of the set U can be defined by reversing
orientations of all sets Um,n,k induced from the orientation of U1,1,1 when m +
n+ k ≡ 1 mod 4, corresponding to the odd values of p+ q + r.

5. Sequences of unbalanced tetrahedra in X3 and edges in X1

Proposition 5.1. Let L0 be a semi-balanced edge in X1. Then there is a
unique not pointed tetrahedron ∇0 in X3 with the edge L0, and a unique infinite
sequence

∇0, L1,∇1, L2,∇2, . . . (5.1)

of tetrahedra ∇j in X3 and edges Lj in X1, where ∇j−1 and ∇j have a common
edge Lj, for each j > 0. The tetrahedra ∇j and edges Lj are unbalanced for j >
0. Each unbalanced tetrahedron in X3, and each unbalanced edge in X1, belongs
to exactly one such sequence.

Proof. First we construct the sequence (5.1). Let W = (m,n, k) be a
marginally unbalanced vertex such that m − 1 = n + k, and let L0 =

(
(m,n +
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1, k + 1), (m,n, k)
)

be a semi-balanced edge in X1 of the second type, with one
end at W . Then L0 is a common edge of a pointed semi-balanced tetrahedron
Tm−1,n,k (with two more edges in X1, from (m,n+ 1, k + 1) to (m− 1, n, k + 1)
and (m− 1, n+ 1, k)) and a non-pointed semi-balanced tetrahedron ∇0 = Tm,n,k

with one unbalanced edge L1 =
(
(m+ 1, n, k+ 1), (m+ 1, n+ 1, k)

)
in X1, of the

first type. The edge L1 is common for the tetrahedron ∇0 and an unbalanced
tetrahedron ∇1 = Tm+1,n,k which has an unbalanced edge L2 =

(
(m + 2, n +

1, k + 1), (m + 2, n, k)
)

in X1, of the second type. Extending this construction,
we obtain the sequence (5.1) consisting of unbalanced edges Lj =

(
(m+ j, n, k+

1), (m + j, n + 1, k)
)

of the first type for odd j, unbalanced edges Lj =
(
(m +

j, n + 1, k + 1), (m + j, n, k)
)

of the second type for even j, and the tetrahedra
∇j = Tm+j,n,k, unbalanced for j > 0.

The cases n− 1 = m+ k and k − 1 = m+ n are similar.

Now we show that each unbalanced tetrahedron in X3 and each unbalanced
edge in X1 belong to exactly one sequence (5.1). According to Remark 3.5 each
unbalanced edge in X1 is an edge of an unbalanced tetrahedron, and each un-
balanced tetrahedron ∇ = Tm,n,k in X3 with m > n + k + 1 has two opposite
unbalanced edges in X1, either L =

(
(m,n, k+ 1), (m,n+ 1, k)

)
and L′ =

(
(m+

1, n + 1, k + 1), (m + 1, n, k)
)

or L =
(
(m + 1, n, k + 1), (m + 1, n + 1, k)

)
and

L′ =
(
(m,n+ 1, k+ 1), (m,n, k)

)
, depending on the parity of m+n+k. Then ∇,

L and L′ belong to a sequence (5.1) associated with a semi-balanced edge L0 =(
(n+ k+ 1, n+ 1, k+ 1), (n+ k+ 1, n, k)

)
. The cases n > m+ k+ 1 and k > m+

n+ 1 are similar.

Proposition 5.2. The set S ⊂ X of triangles corresponding to the tetrahedra
∇j for j ≥ 0 and edges Lj for j > 0 in a sequence (5.1) is homeomorphic to an
open ball in R3. All triangles in S except those in ∇0 are long-sided.

Proof. We start with the case W = (1, 1, 1) and L0 =
(
(1, 1, 1), (1, 0, 0)

)
.

Triangles corresponding to the edges Lj and tetrahedra ∇j of the sequence (5.1)
can be constructed as follows. Let D ⊂ C be a hemisphere bounded by a great
circle G. For a fixed point B ∈ G, let C ∈ G be an opposite point, and let BC be
an arc of G oriented from B to C consistently with the orientation of G = ∂D.
Let us choose an arbitrary point A ∈ D\G, and let G1 be the great circle passing
through A and B (and also through C, since C is opposite to B). Connecting
A with B and C by the arcs of G1 inside D, we get a triangle δA,1 ⊂ D with
the vertices (A,B,C), angles A = 1, B = C < 1 and sides a = 1, b + c = 1
(as in Fig. 4.2 e)) corresponding to the edge L0. Since the point A is uniquely
determined by the angle B < 1 between G and G1 and the length c < 1 of the arc
AB, each triangle corresponding to the edge L0 is equal to exactly one triangle
δA,1.

Next we fix a point A ∈ D\G, and allow the point C to move along the circle
G, increasing the angle A between the arc AB and the arc AC ⊂ D of a great
circle G2 passing through A and C, so that 1 < A < 2. Then we get triangles
δA,A with the vertices (A,B,C), angles 1 < A < 2, B < 1, C < 1, and sides 1 <
a < 2, b < 1, c < 1 (as in Fig. 4.2 g)). Each of these triangles belongs to the
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tetrahedron ∇0 = T1,0,0. Conversely, for a fixed point B ∈ G, the point A ∈ D \
G is uniquely determined by the angles (A,B,C) ∈ T1,0,0. Thus each triangle in
T1,0,0 is equal to exactly one triangle δA,A with 1 < A < 2, for some A ∈ D \G.

If we continue moving the point C along G increasing the angle A, we get C =
B when A = 2, and a triangle δA,2 with the angles A = 2, B + C = 1 and sides
a = 2, b = c < 1 corresponding to an unbalanced edge L1 =

(
(2, 0, 1), (2, 1, 0)

)
of the first type. It is easy to check that each triangle corresponding to L1 is
equal to exactly one triangle δA,2 for some A ∈ D \G. In particular, all triangles
corresponding to L1 are long-sided.

Moving the point C further along G and increasing the angle A accordingly,
we obtain a family of triangles δA,A with vertices (A,B,C), angles A ≥ 1, B < 1,
C < 1 and sides a ≥ 1, b < 1, c < 1 corresponding to all edges Lj and tetrahedra
∇j of the sequence (5.1) associated with the semi-balanced edge L0. For j > 0
these triangles are long-sided, with a = j + 1 for triangles corresponding to Lj

and j + 1 < a < j + 2 for triangles in ∇j .

For a balanced vertex (m,n, k) with m + 1 = n + k and a semi-balanced
edge L0 =

(
(m,n, k), (m,n − 1, k − 1)

)
, we fix a point B ∈ G = ∂D and define

a triangle δA,A,n,k, for some point A ∈ D \ G and angle A ≥ 1, as a triangle
δA,A with n − 1 hemispheres attached to its side AB and k − 1 hemispheres
attached to its side AC. Then δA,A,n,k has the angles (A + m − 1, B,C) where
A + m − 1 ≥ m, n − 1 < B < n, k − 1 < C < k, and sides a ≥ 1, b < 1 if k
is odd, 1 < b < 2 if k is even, c < 1 if n is odd, 1 < c < 2 if n is even. It is
easy to check that these triangles δA,A,n,k are in one-to-one correspondence with
triangles corresponding to the edges Lj and tetrahedra ∇j of the sequence (5.1) in
Proposition 5.1 associated with the semi-balanced edge L0 =

(
(m,n, k), (m,n −

1, k − 1)
)
. For j > 0 all these triangles are long-sided.

This construction identifies the set S with the product (D\G)×(1,∞) home-
omorphic to an open ball in R3.

The cases of balanced vertices (m,n, k) with n + 1 = m + k and k + 1 =
m + n, and semi-balanced edges L0 =

(
(m,n, k), (m − 1, n, k − 1)

)
and L0 =(

(m,n, k), (m− 1, n− 1, k)
)
, are similar.

6. Homotopy type of the set X of spherical triangles

According to Proposition 4.5, the set X0 of balanced vertices (m,n, k) can be
identified with the set Λ0 of the integer points (p, q, r) ∈ N3 in the first octant
of R3

p,q,r so that (m,n, k) = (q + r + 1, p + r + 1, p + q + 1). It follows from
Proposition 3.3 that an edge in X1 with one end at a balanced vertex (m,n, k)
has its other end either at an unbalanced vertex or at a balanced vertex identified
with (p′, q′, r′) = (p ± 1, q ± 1, r ± 1) ∈ N3. Thus the union of X0 and the set
B1 of balanced edges in X1 can be identified with the 1-skeleton Λ1 of the cubic
partition of the first octant of R3

p,q,r (see Fig. 4.4).

Theorem 6.1. The set X of all spherical triangles is homotopy equivalent to
Λ1.
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Proof. According to the proof of Proposition 5.2, the set S of triangles in
the sequence (5.1) associated with a semi-balanced edge L0 =

(
(m,n, k), (m,n−

1, k− 1)
)

can be parametrized by (A, A) ∈ (D \ ∂D)× (1,∞) where A is a point
in the interior of a hemisphere D and A is the angle at A. The union of S and
the set L0 of triangles corresponding to L0 can be parametrized by (A, A) ∈
(D \ ∂D) × [1,∞), and the union of L0 and the set of triangles in the semi-
balanced tetrahedron ∇0 can be parameterized by (A, A) ∈ (D \ ∂D)× [1, 2). A
homeomorphism [1,∞) → [1, 2) defines a homeomorphism L0 ∪ S → L0 ∪ ∇0.
Applying this homeomorphism to the sequences (5.1) corresponding to all semi-
balanced edges in X1, we obtain a homeomorphism X → U where U is the set of
all short-sided triangles (see Definition 4.4 and Theorem 4.7) corresponding to all
balanced vertices in X0, balanced and semi-balanced edges in X1, and balanced
and semi-balanced tetrahedra in X3. This homeomorphism is identity on the
triangles corresponding to all vertices in X0 and all balanced and semi-balanced
edges in X1.

Next, the union of the set of triangles in each tetrahedron ∇ ⊂ U , the sets of
triangles corresponding to the edges of ∇ in X1 adjacent to its balanced vertices,
and the sets of triangles corresponding to the balanced vertices of∇, is retractable
to the union of the sets of triangles corresponding to the balanced vertices and
balanced edges of ∇. Moreover, this retraction can be made compatible on the
common edges of the tetrahedra in U , thus the set U is retractable to the union
XB of the sets of triangles corresponding to all balanced edges and vertices. Since
projection of the set XB to X0 ∪B1 is a compact-covering map with contractible
fibers, Vietoris-Begle mapping theorem (see [9]) implies that XB is homotopy
equivalent to X0 ∪B1, which can be identified with Λ1.

Combining the homeomorphism X → U , retraction of U to XB and projection
of XB to X0 ∪B1, we complete the proof of Theorem 6.1.

Proposition 6.2. If a semi-balanced tetrahedron T is pointed then its subset
of balanced triangles is the intersection of T with the convex hull of its balanced
vertices and midpoints of all its edges (midpoints of edges of T with both ends at
balanced vertices may be excluded, as they are not vertices of the convex hull).
If T is not pointed then its subset of balanced triangles is the intersection of T
with the convex hull of its single balanced vertex V and midpoints of all its edges
adjacent to V .

Proof. The set of balanced triangles in T is TB = T ∩ K, where K is the
closed cone in the first octant of R3 defined by the inequalities (3.1). If T is
pointed then it has three edges in X1 with a common end at a balanced vertex
V = (m,n, k) and other ends at P = (m,n− 1, k− 1), Q = (m− 1, n, k − 1) and
R = (m − 1, n− 1, k). We may assume that m + 1 = n + k. Then the vertex P
is unbalanced, thus the edge V P is semi-balanced. Its midpoint is vp = (m,n−
1
2 , k −

1
2).

Consider first the case when both vertices Q and R are balanced. Then T
has two balanced edges V Q and V R, an edge QR not in X1 with both ends at
balanced vertices, and two edges PQ and PR not in X1, with midpoints pq =
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(m− 1
2 , n−

1
2 , k−1) and pr = (m− 1

2 , n−1, k− 1
2). All three midpoints vp, pq, pr

belong to the face A = B+C of K, thus TB is the intersection of T with the the
convex hull of V,Q,R, vp, pq, pr.

Next, consider the case when two vertices of T , say P and Q, are unbalanced,
and R is balanced. This happens when m = n > k = 1. Then T has two semi-
balanced edges V P and V Q, with midpoints vp = (m,n − 1

2 ,
1
2) and vq = (m −

1
2 , n,

1
2), and three edges PQ, PR and QR not in X1, with midpoints pq = (m−

1
2 , n−

1
2 , 0), pr = (m− 1

2 , n− 1, 12) and qr = (m− 1, n− 1
2 ,

1
2). Since m = n, the

points vp, pq and pr belong to the facet A = B + C of K, and the points vq, pq
and qr belong to the facet B = A + C of K. Thus TB is the intersection of T
with the convex hull of V,R, vp, vq, pq, pr, qr.

The remaining case T = T0,0,0, (m,n, k) = (1, 1, 1) is left as an exercise. The
set of balanced triangles in that case is the intersection of T with the convex hull
of (1, 1, 1), (1, 12 ,

1
2), (12 , 1,

1
2), (12 ,

1
2 , 1), (0, 12 ,

1
2), (12 , 0,

1
2), (12 ,

1
2 , 0).

If T is not pointed then there is a single balanced vertex V = (m,n, k) of T .
We may assume that m + 1 = n + k and that a single semi-balanced edge of T
connects V with an unbalanced vertex P = (m,n − 1, k − 1). Then T has two
more unbalanced vertices Q = (m + 1, n, k − 1) and R = (m + 1, n − 1, k). The
midpoints of the edges V P , V Q and V R are vp = (m,n− 1

2 , k −
1
2), vq = (m+

1
2 , n, k−

1
2) and vr = (m+ 1

2 , n−
1
2 , k). All of them belong to the facet A = B +

C of K. Thus TB is the intersection of T with the convex hull of V, vp, vq, vr.

Corollary 6.3. The set of balanced triangles is homotopy equivalent to Λ1.

Proof. Description of the sets of balanced triangles in semi-balanced tetrahe-
dra in Proposition 6.2 allows one to define retraction of the set U of short-sided
triangles to the set XB of triangles corresponding to balanced edges and vertices
in the proof of Theorem 6.1 as a composition of retraction of U to the set of
balanced triangles and retraction of the set of balanced triangles to XB.
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Простiр сферичних трикутникiв Шварца–Кляйна
Alexandre Eremenko and Andrei Gabrielov

Описаний простiр сферичних трикутникiв у сенсi Шварца i Кляйна.
Доведено, що це гладкий тривимiрний орiєнтований многовид, гомотопi-
чно еквiвалентний 1-остову кубiчного розбиття першого октанта. Кути
i сторони — дiйснi аналiтичнi функцiї на цьому многовидi.

Ключовi слова: сферична геометрiя, трикутники
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