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We give a brief overview of the role of Aleksandrov’s estimates and
Pororelov’s ideas in our research.
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During my fifth year at the Moscow State University E.B. Dynkin in his
seminar was enthusiastically discussing a quite recent at that time theory of
dynamic programming of controlled Markov chains. Imaging a discrete set and
a random walk on it when at each time moment 0, 1, . . . you can choose the
probability distribution of the next step in a given in advance set of distributions.
After the choice is made you are given a reward depending on you current position
and the decision made and the chain goes to the next position according to the
chosen distribution. The mathematical expectation of the cumulative reward for
all times depend on the initial position and is called the value function. It turns
out that the value function satisfies the so-called Bellman’s equation, which is
written in terms of finite differences.

The continuous analog of this setting leads to Bellman’s equations which are
fully nonlinear second-order possibly degenerate elliptic equations. Therefore,
even in the continuous setting we had a perfect candidate for the solution: the
value function of the corresponding controlled diffusion process. This was only a
candidate, albeit a perfect one, because to prove that it is indeed a solution we
needed to know at least that it is twice differentiable and even this turned out to
be not a trivial task.

I decided to devote my years of post-graduate studies 1963–1966 to controlled
diffusion processes and fully nonlinear equations and I did not succeed in achiev-
ing any progress. The point is that exercising an optimal control leads as a rule
to Itô’s stochastic equations with discontinuous coefficients and even the theory
of stochastic equations with continuous coefficients was not developed at that
time.

Nevertheless, I kept thinking about Bellman’s equations. My enthusiasm
became even greater when I asked O.A. Oleinik what is known about solvability
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of fully nonlinear equations and she answered “Nothing apart from the Monge–
Ampère equations on the plane”. Naturally, I asked myself if the Monge–Ampère
equations are particular cases of Bellman’s equations. And it turned out that
they are!

By the way, in 1965 the book [2] by Bakelman just appeared.

A few years after I got my PhD degree I succeeded in proving that the value
function for controlled diffusion processes in a very general case has two bounded
derivatives. This, however, was still not enough to show that it solves indeed the
corresponding Bellman’s equation. Not only we needed Itô’s formula for functions
with two bounded, rather than continuous, derivatives but we also needed a kind
of property showing that Green’s functions of linear operators with no control on
the smoothness of their coefficients so to speak cannot vanish on sets of positive
measure.

Both properties would come almost for free if we knew that the Monge–
Ampère equations in the multidimensional space have smooth solutions.

More details are as follows. Let Rd be a d-dimensional Euclidean space of
points x = (x1, . . . , xd), Br = {x ∈ Rd : |x| < r}, and let δ ∈ (0, 1) be a fixed
number. Let wt, t ≥ 0, be a d-dimensional Wiener process, and σt, t ≥ 0,
an appropriately measurable process with values in the set of d × d-symmetric
matrices whose eigenvalues are between δ and δ−1. Define

xt =

∫ t

0
σs dws (1)

and let τ be the first exit time of xt from B1. What we needed is to know that
there exists a constant N and p ∈ (1,∞) such that for any f ≥ 0 and σt with the
described properties

I := E

∫ τ

0
f(xt) dt ≤ N‖f‖Lp(B1). (2)

Observe that if σt = σ(xt), so that (1), becomes a stochastic equation and
σ(x) is continuous, then I = u(0), where u is a unique W 2

p -solution of

aijDiju = −f (3)

in B1 with zero boundary condition, where a = (aij) = (1/2)σ2 and

Dij = DiDj , Di =
∂

∂xi
.

In that case (2) with N depending on the modulus of continuity of a and p >
d/2 follows from the classical Sobolev space theory of elliptic equations. In the
same case of a and p ≥ d estimate (2) with N depending only on d and δ is
the famous Aleksandrov–Bakelman estimate (Aleksandrov 1960, Bakelman 1961).
However for the needs of the theory of controlled diffusion processes we needed
this estimate for processes σt depending on the past of xt in an arbitrary way.
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The Aleksandrov-Bakelman estimate is only good for the Markovian case: σt =
σ(xt).

Since I was aware of the Monge–Ampère equations and works by Aleksandrov
I knew an obvious way how to prove the estimate we needed if we knew that the
solutions of the Monge–Ampère equation are smooth. The way was so obvious
and short that it took me seven years to abandon the attempts to go around the
missing smoothness properties and instead just repeat what Aleksandrov did at
the level of convex polyhedra and discrete measures as right-hand sides of the
simplest Monge–Ampère equation. This way was designed by Aleksandrov in [1]
(1958) a few years before the Aleksandrov–Bakelman estimates appeared. That is
why the estimates I proved for stochastic integrals I call Aleksandrov’s estimates.
They are not by any means the Aleksandrov–Bakelman or the Aleksandrov–
Bakelman–Pucci estimates.

To give more details on the matter consider the following simplest Monge–
Ampère equation

det(−Diju) = fd, (4)

in B1 with zero boundary condition on ∂B1, where f ≥ 0 is a given function.
Equation (4) is considered only on concave functions u: (Diju) ≤ 0. A simple
argument based on the inequality between arithmetic and geometric means shows
that (4) together with the condition (Diju) ≤ 0 is equivalent to the single equation

sup
a∈A,
tr a=1

 d∑
i,j=1

aijDiju+ d
d
√

det a f

 = 0, (5)

where A is the set of symmetric nonnegative matrices a = (aij). Observe that
(5) (and hence (4)) is a very particular case of Bellman’s equations.

A.D. Aleksandrov in [1] obtained a very general result which implied the
existence and uniqueness of concave solutions vanishing on ∂B1 of (4) understood
in a generalized sense. He also proved that for such a solution

u ≤ N(d)

∫
B1

fd(x) dx, (6)

with an explicit and sharp expression of N(d). Now imagine that the solution u
is smooth. Then for

at = (1/2)σ2
t

by Itô’s formula we have

u(0) = E

∫ τ

0

(
−

d∑
i,j=1

aijt Diju(xt)
)
dt.

Owing to (5) the integrand is greater than

d d
√

det atf(xt),
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which along with (6) yields

dE

∫ τ

0

d
√

det atf(xt) dt ≤ N(d)

∫
B1

fd(x) dx. (7)

This proves (2) with p = d.
In 1971 I succeeded in publishing a self-contained proof of (7) (with not

so sharp N(d)) by considering equation (4) in the space of convex polyhedra
following the interpretation of Aleksandrov and a beautiful idea of Pogorelov
which I learned about from the proof of Theorem 47 in Bakelman’s book [2] and
which, actually, is also explained in Aleksandrov’s [1]. The same Pogorelov’s idea
was later used while deriving the Aleksandrov estimates in the parabolic case.

In a sense I was lucky having written this proof before 1971 because in 1971
A.V. Pogorelov published his results [6, 7] showing that the concave generalized
solutions of (4) are indeed smooth. I was lucky not only because I got (7) by
my methods and after Pogorelov’s papers the above much shorter proof became
available and I would not even think about writing my proof. There was another
very disturbing reason. Imagine I used Pogorelov’s results and built the whole
rather vast theory of controlled diffusion processes based on them, as I did using
my estimate in a book published in 1977, and then read in the same 1977 in
the paper by Shiu Yuen Cheng and Shing Tung Yau [3] that the arguments of
Pogorelov contain several very serious gaps. If somebody had discovered it while I
was developing my theory taking as a base Pogorelov’s results, my theory would
go out of window and I would not get my Doctor of Sciences degree in 1973.
Pogorelov’s articles were published in Doklady, where the number of allowed
pages were very restricted, and they, naturally, could not contain all details. So
some criticism was unavoidable. In 1975 A.V. Pogorelov published his book [8]
where he gave all details of the proofs. When Cheng and Yau criticized in 1977
his earlier work they were, probably, unaware of Pogorelov’s book.

Anyhow, my way of proving Aleksandrov’s estimate for stochastic integrals is
way shorter and simpler than going first through [8] and then applying its results
to deriving the estimate.

After estimate (7) was obtained and the theory of time homogeneous con-
trolled diffusion processes was developed the next natural step was to consider
time-inhomogeneous case. In that case a crucial role plays the estimate

E

∫ τ

0

d+1
√

det atf(t, xt) dt ≤ N(d)

∫ ∞
0

∫
B1

fd+1(t, x) dxdt. (8)

Similarly to the above arguments about the simplest Monge–Ampère equa-
tion there was an idea to find a parabolic Monge–Ampère equation. In 1973 I
suggested the following

∂tudet(−Diju) = fd+1 (∂t = ∂/∂t) (9)

in C1 := (0,∞) × B1 with zero boundary condition for x ∈ ∂B1 and for t = 0.
It was natural to consider (9) in the class of functions that are concave in x and
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increasing in t. In this class (9) is equivalent to the parabolic Bellman’s equation

sup
(r,a)∈Γ

( d∑
i,j=1

aijDiju− r∂tu+ (d+ 1)
d+1
√
r det a f

)
= 0, (10)

where Γ = {(r, a) : r ∈ (0,∞), a ∈ A, r + tr a = 1}. At that time there were no
geometric interpretation of (9) and beautiful idea of Aleksandrov how to estimate
the maximum of solution of the elliptic Monge–Ampère equation did not have
any analogs.

However, the direct integration of both parts of (9) over C1, using integration
by parts and taking into account simple but very useful formulas

d∑
i=1

DiAij =
d∑
i=1

DiAji = 0, j = 1, . . . , d,

where Aij are the co-factors of Diju in det(−Diju), yields∫
C
fd+1 d dt = (1/d)

∫
C
∂tu

d∑
i,j=1

AijDiju dxdt

= −(1/d)

∫
C

d∑
i,j=1

Aij(∂tDiu)Dju dx dt

= (1/d)

∫
C

d∑
i,j=1

Aij(∂tDiju)u dx dt

= (1/d)

∫
C
u∂t det(−Diju) dx dt

= (1/d)

∫
B1

v det(−Dijv) dx− (1/d)

∫
C
fd+1 dx dt,

where v(x) = u(∞, x). Then a rather simple analytic fact is that the functional∫
B1

v det(−Dijv) dx

is increasing on the set of concave v vanishing on ∂B1 and this allows one to use
the same cone as in Aleksandrov’s elliptic estimate while estimating v and thus
u.

Indeed, if u ≥ v are smooth concave functions vanishing on ∂B1, then for t ∈
[0, 1] and

It =

∫
B1

(tu+ (1− t)v) det
(
−Dij(tu+ (1− t)v)

)
dx

we have

d

dt
It =

∫
B1

(u− v) det
(
−Dij(tu+ (1− t)v)

)
dx
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+

∫
B1

(tu+ (1− t)v)Dij(u− v)Aij dx,

where the first integral is obviously positive and the second one equals d times
the first one which is proved by integrating by parts. Hence I1 ≥ I0, which is our
analytic fact.

Again the trouble in this argument is that we did not know that (9) or (10)
have sufficiently smooth solutions. Actually, after the theory of controlled diffu-
sion processes was developed for elliptic case it occurred that it is possible to prove
the basic estimate (8) using this theory and replacing (9) with a similar equation
considered in all Rd+1 on so-called λ-concave functions. Then we obtained a suf-
ficiently smooth solution and performing the integration by parts similar to what
is done above arrived at (8). Now the theory of controlled diffusion processes
started to look somewhat entangled: first consider time-homogeneous processes,
develop the theory guaranteeing that a modified equation (9) has a sufficiently
smooth solution and thus obtain the basic estimate (8) and then by actually
repeating what was done for time-homogeneous processes deal with the case of
time-inhomogeneous ones.

I decided to avoid this circle by considering directly an analog of (9) on
concave polyhedra in x piecewise linear and increasing in t. This lead to the
following result.

Theorem 1. Let Q be a convex, open, bounded set in Rd, and let measures
µ0, µ1, . . . be concentrated in a closed set F ⊂ Q. Then there exists an increasing
sequence of functions z0, z1, . . . that are concave, continuous on Q̄, equal to zero
on ∂Q, and such that z0 = 0 and in Q and for i = 0, 1, . . . we have

µi(dx) = (zi+1(x)− zi(x))ω(zi+1, dx),

where, for concave z and set E, ω(z, E) is the volume of the normal image of E
produced by z.

The proof of this result resides exclusively on the alluded before brilliant
Pogorelov’s idea of treating equations for polyhedra, when we first replace the
µi’s with measures concentrated on a finite number of points.

I submitted an article containing this result and its consequences for the
theory of parabolic equations thus extending the Aleksandrov estimates in 1973
to Siberian Mathematical Journal. To me the result was a breakthrough, but I
am not a geometer and it took three long years before it was published.

As a latest development in this story I state a recent result [5] published in
2019.

Theorem 2. Let a(x) = (aij(x)) be a d × d-symmetric nonnegative definite
matrix-valued measurable function on B1 such that tra > 0 in B1. Let α ∈ [0, (d+
1)/2) and u ∈W 2

d,loc(B1) ∩ C(B̄1). Introduce

Lu = aijDiju.
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Then, for any x0 ∈ B, (0/0 := 0)

u(x0) ≤ sup
∂B1

u+N(d, α)ψβ(x0)
(∫

B1

ψαILu<0(det a)−1|Lu|d dx
)1/d

, (11)

where ψ(x) = 1− |x|2 and β = (d+ 1− 2α)/(2d).

Acknowledgments. The author would like to thank very much the orga-
nizers of the conference in honor of A.V. Pogorelov for inviting him.
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Про метод Погорєлова i оцiнки Александрова
N.V. Krylov

Ми даємо короткий огляд ролi оцiнок Александрова та iдей Погорє-
лова у наших дослiдженнях.

Ключовi слова: оцiнка Александрова, метод Погорєлова, рiвняння
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