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Tangent Bundles
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Considering pseudo-Riemannian g-natural metrics on tangent bundles,
we prove that the condition of being Ricci soliton is hereditary in the sense
that a Ricci soliton structure on the tangent bundle gives rise to a Ricci
soliton structure on the base manifold. Restricting ourselves to some class
of pseudo-Riemannian g-natural metrics, we show that the tangent bundle
is a Ricci soliton if and only if the base manifold is flat and the potential
vector field is a complete lift of a conformal vector field. We give then
a classification of conformal vector fields on the tangent bundle of a flat
Riemannian manifold equipped with these g-natural metrics. When unit
tangent bundles over a constant curvature Riemannian manifold are endowed
with pseudo-Riemannian Kaluza–Klein type metric, we give a classification
of Ricci soliton structures whose potential vector fields are fiber-preserving,
inferring the existence of some of them which are non Einstein.
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1. Introduction

Let M be a smooth manifold of dimension n ≥ 2. A Ricci soliton on M is a
triple (g, V, λ), where g is a pseudo-Riemannian metric on M , Ric the associated
Ricci tensor, V a vector field (called the potential vector field) and λ a real
constant, satisfying the equation

Ric +
1

2
LV g = λg, (1.1)

L being the Lie derivative. If there is a C∞-function on M such that Ric +
∇2f = λg for some real constant λ, then (M, g) is said gradient Ricci soliton,
where ∇ is the Levi-Civita connection of (M, g). A Ricci soliton is said to be
either shrinking, steady, or expanding, according on whether λ is negative, zero,
or positive, respectively. Ricci solitons are a natural generalization of Einstein
manifolds (an Einstein metric, together with a Killing vector field V , is a trivial
Ricci soliton). Furthermore, they are the self-similar solutions to the Ricci flow.
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Ricci solitons have been intensively studied in many contexts and from many
points of view (we may refer to [16, 17] for details on the geometry of Ricci
solitons). We are interested, in this paper, in the study of Ricci soliton structures
in the framework of the geometry of tangent bundles. Indeed, Metrics on tangent
and unit tangent sphere bundles have been an important source of examples
in Differential Geometry. In particular, g-natural metrics, which generalize the
Sasaki metric and still arise in a natural way from the metric of the base manifold,
have been intensively studied during the last decades. Unlike the Sasaki metric
which shows a very rigid behaviour, the large class of g-natural metrics provides
examples for several different interesting geometric properties (cf. [3,5,7–9,12,14,
15,21] and references therein).

In [2], the authors treated the problem of finding Ricci soliton structures
on the unit tangent bundle of a Riemannian manifold, endowed with a pseudo-
Riemannian Kaluza–Klein type metric, which is an interesting subclass of the
class of g-natural metrics that shares with the Sasaki metric the property of
preserving the orthogonality of horizontal and vertical distributions. They ob-
tain a rigidity result in dimension three, showing that there are no nontrivial
Ricci solitons among g-natural metrics of Kaluza–Klein type on the unit tangent
sphere bundle of any Riemannian surface. On the other hand, they proved that,
while Ricci solitons determined by tangential lifts remain trivial (i.e., an Einstein
manifold) in arbitrary dimension, horizontal lifts of vector fields related to the
geometry of flat base manifold (namely, homothetic vector fields) produce non-
trivial Ricci solitons metrics of Kaluza–Klein type. They also gave a complete
characterization of Gradient Ricci solitons of Kaluza–Klein type.

In this paper, we are interested in natural Ricci soliton structures on tangent
and unit tangent bundles of Riemannian manifolds, i.e,. those associated with
pseudo-Riemannian g-natural metrics. Our purpose is twofold. On one hand,
we investigate natural Ricci soliton structures on tangent bundles of Riemannian
manifolds. We prove that every natural Ricci soliton structure on the tangent
bundle gives rise to a Ricci soliton structure on the base manifold, confirming
the “heridity” phenomenon of g-natural metrics (cf. [9]). Restricting ourselves
g-natural metrics which are linear combinations of the three classical lifts (Sasaki,
horizontal and vertical) of the base metric with constant coefficients, we give a
complete characterization of Ricci soliton structures on the tangent bundle. We
prove, in particular, that the existence of such structures requires the flatness of
the base manifold, which constitutes a kind of rigidity of such metrics. Further-
more, this ensures the existence of non-trivial natural Ricci soliton structures on
the tangent bundle of a Riemannian manifold.

On the other hand, we are looking for nontrivial natural Ricci solitons struc-
tures on the unit tangent bundle when the base manifold is of constant sectional
curvature which is not necessarily zero. In this sense, we prove that the complete
lift to the unit tangent bundle of a non-zero homothetic vector field on the base
manifold is the potential vector field of a non trivial Ricci soliton structure on the
unit tangent bundle endowed with an appropriately chosen pseudo-Riemannian
Kaluza–Klein type metric. Furthermore, we shall give a complete classification of
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fiber-preserving vector fields on the unit tangent bundle which are the potential
vector fields of Ricci soliton structures on the unit tangent bundle endowed with
a pseudo-Riemannian Kaluza–Klein type metric.

Finally, it is worth mentioning that the existence of natural Ricci soliton
structures either on tangent bundles (Theorems 4.1 and 4.4) or on unit tangent
bundles (Theorem 5.4) requires the existence of non-zero homothetic vector fields
on the base manifold, which could presuppose some topological restrictions to the
base manifold.

Hereafter, we will use the Einstein’ summation convention.

2. Preliminaries

2.1. Basic formulas on tangent bundles. Let (M, g) be an n-dimensional
Riemannian manifold and ∇ the Levi-Civita connection of g. We shall denote by
Mx the tangent space of M at a point x ∈M . The tangent space of TM at any
point (x, u) ∈ TM splits into the horizontal and vertical subspaces with respect
to ∇:

(TM)(x,u) = H(x,u) ⊕ V(x,u).

For (x, u) ∈ TM and X ∈Mx, there exists a unique vector Xh ∈ H(x,u) such

that p∗X
h = X, where p : TM → M is the natural projection. We call Xh the

horizontal lift of X to the point (x, u) ∈ TM . The vertical lift of a vector X ∈
Mx to (x, u) ∈ TM is the vector Xv ∈ V(x,u) such that Xv (df) = Xf for all
functions f on M . Here we consider 1-forms df on M as functions on TM (i.e.,
(df) (x, u) = uf).

Observe that the map X → Xh is an isomorphism between the vector spaces
Mx and H(x,u). Similarly, the map X → Xv is an isomorphism between the

vector spaces Mx and V(x,u). Obviously, each tangent vector Z̃ ∈ (TM)(x,u) can

be written in the form Z̃ = Xh + Y v, where X,Y ∈Mx are uniquely determined
vectors.

Horizontal and vertical lifts of vector fields on M are defined in a correspond-
ing way. Each system of local coordinates {

(
U ;xi, i = 1, . . . , n

)
} in M induces

on TM a system of local coordinates {
(
p−1 (U) ;xi, ui, i = 1, . . . , n

)
}. Let X =∑

iX
i
(
∂
∂xi

)
x

be the local expression in {
(
U ;xi, i = 1, . . . , n

)
} of a vector X in

Mx, x ∈M . Then, the horizontal lift Xh and the vertical lift Xv of X to (x, u) ∈
TM are given, with respect to the induced coordinates, by:

Xh =
∑

Xi

(
∂

∂xi

)
(x,u)

−
∑

Γijku
jXk

(
∂

∂ui

)
(x,u)

(2.1)

and

Xv =
∑

Xi

(
∂

∂ui

)
(x,u)

, (2.2)

where
(

Γijk

)
denote the Christoffel’s symbols of g.
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Let K : TTM → TM be the connection map corresponding to the Levi-
Civita connection ∇ of (M, g). Note that K is characterized by K

(
Xh
)

= 0 and
K (Xv) = X for all X ∈ TM .

The canonical vertical vector field U on TM is defined, in terms of local co-
ordinates, by U =

∑
i u

i∂/∂ui. Here U does not depend on the choice of local co-
ordinates and is defined globally on TM . For a vector u =

∑
i u

i
(
∂/∂xi

)
x
∈Mx,

we see that uv(x,u) =
∑

i u
i
(
∂/∂xi

)v
(x,u)

= U(x,u) and uh(x,u) =
∑

i u
i
(
∂/∂xi

)h
(x,u)

(which is also known as the geodesic vector field).
There are three other interesting vector fields on the tangent bundle obtained

by lifting operations of geometric objects on M : for any vector field X and a
(1, 1)-tensor field P on M , we define the vector fields Xc, ιP and ∗P on TM , by

Xc
(x,u) = Xh

(x,u) + (∇uX)v(x,u) ,

(ιP )(x,u) = [P (u)]v(x,u),

(∗P )(x,u) = [P (u)]h(x,u)

for all (x, u) ∈ TM . Xc is called the complete lift of X. It is easy to see that
Xc = Xh + ι (∇X).

The Riemannian curvature R of g is defined by

R (X,Y ) = [∇X ,∇Y ] − ∇[X,Y ]. (2.3)

2.2. g-natural metrics on tangent bundles. There are three distin-
guished constructions of metrics on the tangent bundle TM

(a) the Sasaki metric gs is defined by

gs(x,u)

(
Xh, Y h

)
= g (X,Y ) , gs(x,u)

(
Xh, Y v

)
= 0,

gs(x,u)

(
Xv, Y h

)
= 0, gs(x,u)

(
Xv, Y v

)
= g (X,Y )

for all X,Y ∈Mx;

(b) the horizontal lift gh of g is a pseudo-Riemannian metric on TM, given by

gh(x,u)

(
Xh, Y h

)
= 0, gh(x,u)

(
Xh, Y v

)
= g (X,Y ) ,

gh(x,u)

(
Xv, Y h

)
= g (X,Y ) , gh(x,u)

(
Xv, Y v

)
= 0

for all X,Y ∈Mx;

(c) the vertical lift gv of g is a degenerate metric on TM, given by

gv(x,u)

(
Xh, Y h

)
= g (X,Y ) , gv(x,u)

(
Xh, Y v

)
= 0,

gv(x,u)

(
Xv, Y h

)
= 0, gv(x,u)

(
Xv, Y v

)
= 0

for all X,Y ∈Mx.
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Starting from a Riemannian manifold (M, g), a natural construction leads to
introduce a wide class of metrics, called g-natural, on the tangent bundle TM
[19], [20]. Such metrics are the image of g under first order natural operators
D : S2

+T
∗  

(
S2T ∗

)
T , which transform Riemannian metrics on manifolds into

metrics on their tangent bundles, where S2
+T
∗ and S2T ∗ denote the bundle func-

tors of all Riemannian metrics and all symmetric (0, 2)-tensors over n-manifolds
respectively.

Given an arbitrary g-natural metric G on the tangent bundle TM of a Rie-
mannian manifold (M, g), there exist six smooth functions αi, βi : R+ → R, i =
1, 2, 3, such that (see [9])

G(x,u)

(
Xh, Y h

)
= (α1 + α3)

(
r2
)
gx (X,Y )

+ (β1 + β3)
(
r2
)
gx (X,u) gx (Y, u) ,

G(x,u)

(
Xh, Y v

)
= G(x,u)

(
Xv, Y h

)
= α2

(
r2
)
gx (X,Y ) + β2

(
r2
)
gx (X,u) gx (Y, u) ,

G(x,u) (Xv, Y v) = α1

(
r2
)
gx (X,Y ) + β1

(
r2
)
gx (X,u) gx (Y, u)

(2.4)

for every u, X, Y ∈Mx, where r2 = gx (u, u). Put

φi (t) = αi (t) + tβi (t) , α (t) = α1 (t) (α1 + α3) (t)− α2
2 (t) ,

φ (t) = φ1 (t) (φ1 + φ3) (t)− φ2
2 (t)

for all t ∈ R+. It it easily seen that G is

• non-degenerate if and only if

α (t) 6= 0, φ (t) 6= 0 for all t ∈ R+;

• Riemannian if and only if

α1 (t) > 0, φ1 (t) > 0, α (t) > 0, φ (t) > 0 for all t ∈ R+.

The wide class of g-natural metrics includes several well known metrics (Rie-
mannian and not) on TM . In particular:

• the Sasaki metric gS is obtained for α1 = 1 and α2 = α3 = β1 = β2 = β3 =
0;

• Kaluza–Klein metrics, as commonly defined on principal bundles (see, e.
g., [23]), are obtained for α2 = β2 = β1 + β3 = 0;

• metrics of Kaluza–Klein type are defined by the geometric condition of or-
thogonality between horizontal and vertical distributions [13, 15]. Thus, a
g-natural metric G is of Kaluza–Klein type if α2 = β2 = 0.
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2.3. g-natural metrics on unit tangent bundles. The unit tangent
bundle over a Riemannian manifold (M, g) is the hypersurface of TM , given by

T1M = {(x, u) ∈ TM | gx (u, u) = 1}.

We will denote by p1 : T1M → M the bundle projection. The tangent space of
T1M at a point (x, u) ∈ T1M is given by

(T1M)(x,u) = {Xh + Y v/X ∈Mx, Y ∈ {u}⊥ ⊂Mx}. (2.5)

By definition, g-natural metrics on the unit tangent bundle are the metrics
induced on the hypersurface T1M by corresponding g-natural metrics on TM .
As proved in [7] for the Riemannian case, and extended to pseudo-Riemannian
settings in [12], they are completely determined by the values of the four real
constants

a := α1 (1) , b := α2 (1) , c := α3 (1) , d := (β1 + β3) (1)

and admit the following explicit description.

Theorem 2.1 ([7]). Let (M, g) be a Riemannian manifold. For every pseudo-
Riemannian metric G̃ on T1M induced from a g-natural metric G on TM , there
exist four constants a, b, c and d, satisfying the inequalities

a 6= 0, α := a (a+ c)− b2 6= 0, ϕ := a+ c+ d 6= 0

(in particular, they are Riemannian if a, α, ϕ > 0), such that
G̃(x,u)

(
Xh

1 , X
h
2

)
= (a+ c) gx (X1, X2) + dgx (X1, u) gx (X2, u) ,

G̃(x,u)

(
Xh

1 , Y
v

1

)
= bgx (X1, Y1) ,

G̃(x,u)

(
Y v

1 , Y
v

2

)
= agx (Y1, Y2)

(2.6)

for all (x, u) ∈ T1M , X1, X2 ∈Mx and Y1, Y2 ∈ {u}⊥ ⊂Mx.

In particular, the Sasaki metric on T1M corresponds to the case where a = 1
and b = c = d = 0; Kaluza–Klein metrics are obtained when b = d = 0; metrics
of Kaluza–Klein type are given by the case b = 0. In the remaining part of the
paper, we shall restrict ourselves to the latter type of g-natural metrics on T1M .

Since G must be nondegenerate, throughout the paper we implicitly assume
that inequalities a 6= 0, a+ c 6= 0 and ϕ := a+ c+ d 6= 0 hold (they are exactly
the special case of inequalities from Theorem 2.1 for b = 0).

For any vector field Z on TM , we define its tangential component t{Z} at
points of T1M , by t{Z} := Z|T1M −G (Z|T1M , N)N , obtaining a vector field on
T1M . When Z is the horizontal, the vertical or the complete lift of a vector field
X on M or the vector field ιP for a (1, 1)-tensor field P on M , then we obtain,
respectively, the following special vector fields on T1M :
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a) the horizontal lift to T1M of X, denoted also Xh, and given by Xh :=
Xh|T1M , since Xh is orthogonal to N everywhere on T1M ;

b) the tangential lift Xt with respect to G of X, defined as the tangential
component vector field of the vertical lift Xv of X, that is,

Xt
(x,u) = [X − gx (u,X)u]v(x,u) +

b

ϕ
gx (u,X)uh(x,u) (2.7)

for all (x, u) ∈ T1M . If Xx ∈Mx is orthogonal to u, then Xt
(x,u) = Xv

(x,u);

c) the complete lift to T1M of X, denoted by X c̄, is given by

X c̄
(x,u) = Xh

(x,u) + (∇uX)t(x,u) (2.8)

for all (x, u) ∈ T1M . It is worth mentioning that the complete lift Xc on
TM , restricted to T1M , coincides with X c̄ if and only if X is a Killing vector
field on M ;

d) the vector field ι̃P on T1M , given by

(ι̃P )(x,u) = [P (u)]t(x,u) (2.9)

for all (x, u) ∈ T1M .

We will make use of the following relations, which are easy to check:

Xh (f ◦ p1) = X (f) ◦ p1, (2.10)

Xt (f ◦ p1) = 0, (2.11)

Xh
(x,u) (g (Y, ·)) = g (∇XxY, u) (2.12)

Xt
(x,u) (g (Y, ·)) = g (Xx, Yx)− g (Xx, u) g (Yx, u) (2.13)

for all X,Y ∈ X (M), f ∈ C∞ (M) and (x, u) ∈ T1M .

Convention 2.2. Because ut(x,u) = 0 for (x, u) ∈ T1M , which means that

the tangent space (T1M)(x,u) coincides with the set{
Xh + Y t/X ∈Mx, Y ∈ {u}⊥ ⊂Mx

}
, (2.14)

the operation of tangential lift from Mx to a point (x, u) ∈ T1M will be always
applied only to vectors of Mx which are orthogonal to u.

Assuming that (M, g) is of constant curvature κ for a g-natural metric G̃ of
Kaluza–Klein type, the following formulas are deduced from the expressions of

the Levi-Civita connection of
(
T1M, G̃

)
given in [6]:
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Proposition 2.3. If (M, g) is a Riemannian manifold of constant sectional
curvature κ and G̃ is a pseudo-Riemannian g-natural metric of Kaluza–Klein type

on T1M , then the Levi-Civita connection ∇̃ of
(
T1M, G̃

)
is given by

(
∇̃XhY h

)
(x,u)

={∇XY }h(x,u) +
1

2a

{
− (aκ+ d) g (Yx, u)Xx

+ (aκ− d) g (Xx, u)Yx}t(x,u) ,(
∇̃XhY t

)
(x,u)

=

{
d− aκ

2 (a+ c)
g (Xx, u)Yx +

1

2ϕ

[
(aκ+ d) g (Xx, Yx)

+
d (aκ+ d− 2ϕ)

a+ c
g (Xx, u) g (Yx, u)

]
u

}h
(x,u)

+ {∇XY }t(x,u),(
∇̃XtY h

)
(x,u)

=

{
d− aκ

2 (a+ c)
g (Yx, u)Xx +

1

2ϕ

[
(aκ+ d) g (Xx, Yx)

+
d (aκ+ d− 2ϕ)

a+ c
g (Xx, u) g (Yx, u)

]
u

}h
(x,u)

,(
∇̃XtY t

)
(x,u)

=− {g (Yx, u)Xx}t(x,u)

for all x ∈M , (x, u) ∈ T1M and all arbitrary vector fields X, Y ∈ X (M).

Using Proposition 2.3, we can prove the following lemma.

Lemma 2.4. For all ξ ∈ X (M), (x, u) ∈ TM and X,Y ∈ TxM , we have(
LξtG̃

)
(x,u)

(
Xh, Y h

)
= d{g (ξx, X) g (Y, u) + g (ξx, Y ) g (X,u)

− 2g (ξx, u) g (X,u) g (Y, u)},(
LξtG̃

)
(x,u)

(
Xh, Y t

)
= a{g (∇Xξ, Y )− g (Y, u) g (∇Xξ, u)},(

LξtG̃
)

(x,u)

(
Xt, Y t

)
=− 2ag (ξx, u) {g (X,Y )− g (X,u) g (Y, u)}.

Lemma 2.5. For all ξ ∈ X (M), (x, u) ∈ TM and X,Y ∈ TxM , we have(
LξhG̃

)
(x,u)

(
Xh, Y h

)
= (a+ c) {g (∇Xξ, Y ) + g (∇Y ξ,X)},

+ d{g (∇Xξ, u) g (Y, u) + g (∇Y ξ, u) g (X,u)},(
LξhG̃

)
(x,u)

(
Xh, Y t

)
= aκ{g (ξx, Y ) g (X,u)− g (ξx, u) g (X,Y )},(

LξhG̃
)

(x,u)

(
Xt, Y t

)
= 0.

Next, the Ricci tensor R̃ic of
(
T1M, G̃

)
is given by the following.
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Proposition 2.6 ([8]). If (M, g) is a space of constant sectional curvature κ
and G̃ is a pseudo-Riemannian g-natural metric of Kaluza–Klein type on T1M ,

then the Ricci tensor R̃ic of
(
T1M, G̃

)
is given by

R̃ic(x,u)

(
Xh, Y h

)
=

1

2aϕ

[
−a2κ2 + 2 (n− 1) aϕκ+ d (d− 2ϕ)

]
g (X,Y )

+
1

2a (a+ c)ϕ

[
− a2 ((n− 2)ϕ+ d)κ2 + d (2n (a+ c)ϕ

+ (n− 1) dϕ− d (a+ c))
]
g (X,u) g (Y, u) , (2.15)

R̃ic(x,u)

(
Xh, Y t

)
= 0, (2.16)

R̃ic(x,u)

(
Xt, Y t

)
=

1

2 (a+ c)ϕ

[
a2κ2 + 2 (n− 2) (a+ c)ϕ− d2

]
g (X,Y )

(2.17)

for all x ∈ M , (x, u) ∈ T1M and all arbitrary vectors X, Y ∈ Mx satisfying
Convention 2.2.

3. Natural Ricci solitons on tangent bundles

Theorem 3.1. Let (M, g) be a Riemannian manifold of dimension n ≥ 3
and G be a pseudo-Riemannian g-natural metric on TM whose functions αi, βi
i = 1, 2, 3 satisfy α1 (0) (α1 + α3) (0) − 2α2

2 (0) 6= 0. If
(
TM,G,Z, λ̄

)
is a Ricci

Soliton, then (M, g, Z0, λ) is a Ricci soliton with

Z0 (x) =
α (0)

[α1 (α1 + α3)− 2α2
2] (0)

{(α1 + α3) (0)dπ (Z(x, 0)) + α2(0)K (Z(x, 0))};

λ =
(α1 + α3)

[
λ̄α+ β1 + β3 + n (α1 + α3)′

]
α1 (α1 + α3)− 2α2

2

(0) ,

where K is the connection map.

Proof. Fix x ∈ M and let (E1, . . . , En) be an orthonormal basis of (Mx, gx).
We will distinguish two cases:

Case 1: (α1 + α3) (0) 6= 0. If we put

Fi =
1√

| (α1 + α3) (0) |
Ehi (x, 0) ,

Fi+n =
1√

|α (0) (α1 + α3) (0) |

[
α2 (0)Ehi (x, 0)− (α1 + α3) (0)Evi (x, 0)

]
,

i = 1, . . . , n, then we obtain an orthonormal basis {F1, . . . , F2n} of the tangent

space
(

(TM)(x,0) , G(x,0)

)
. If we put εI := G (FI , FI), I = 1, . . . , 2n, then the

Ricci curvature of (TM,G) at (x, 0) is then given by

Ric(x,0) (V,W ) =

2n∑
I=1

εIG(x,0)

(
R̄ (V, FI)FI ,W

)
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for every V,W ∈ (TM)(x,0).

Taking V = Xh and W = Y h for X,Y ∈Mx, then simple calculation gives

Ric(x,0)

(
Xh, Y h

)
=

1

α (0)

n∑
i=1

{
α1 (0)G(x,0)

(
R̄
(
Xh, Ehi

)
Ehi , Y

h
)

+ (α1 + α3) (0)G(x,0)

(
R̄
(
Xh, Evi

)
Evi , Y

h
)

− α2 (0)
[
G(x,0)

(
R̄
(
Xh, Ehi

)
Evi , Y

h
)

+ G(x,0)

(
R̄
(
Xh, Evi

)
Ehi , Y

h
)]}

. (3.1)

But, restricting the Riemannian curvature R̄ of (TM,G) to the zero section
(cf. [9, Proposition 3.1]), we obtain

G(x,0)

(
R̄
(
Xh, Ehi

)
Ehi , Y

h
)

= (α1 + α3) (0) g (R (X,Ei)Ei, Y ) ,

G(x,0)

(
R̄
(
Xh, Ehi

)
Evi , Y

h
)

= α2 (0) g (R (X,Ei)Ei, Y ) ,

G(x,0)

(
R̄
(
Xh, Evi

)
Ehi , Y

h
)

= α2 (0) g (R (X,Ei)Ei, Y ) ,

G(x,0)

(
R̄
(
Xh, Evi

)
Evi , Y

h
)

= − (α1 + α3)′ (0) g (X,Y )

− (β1 + β3) (0) g (X,Ei) g (Y,Ei) .

Replacing from the last identities into (3.1), we deduce that

Ric(x,0)

(
Xh, Y h

)
=

1

α (0)

n∑
i=1

{[
α1 (α1 + α3)− 2α2

2

]
(0) g (R (X,Ei)Ei, Y )

−
(
α1 + α3 (0)

[
(α1 + α3)′ (0) g (X,Y )

+ (β1 + β3) (0) g (X,Ei) g (Y,Ei)
]}
.

Since (E1, . . . , En) is an orthonormal basis of (Mx, gx), we deduce that

Ric(x,0)

(
Xh, Y h

)
=

1

α (0)

[(
(α1 + α3)− 2α2

2

)
(0) Ric (X,Y )

− (α1 + α3) (0)
(
(β1 + β3) (0) (3.2)

+ n (α1 + α3)′ (0)
)
g (X,Y )

]
. (3.3)

Now, if
(
TM,G,Z, λ̄

)
is a Ricci Soliton, then we have in particular:

R̄ic(x,0)

(
Xh, Y h

)
+

1

2
(LZG)(x,0)

(
Xh, Y h

)
= λ̄G(x,0)

(
Xh, Y h

)
. (3.4)

Expressing Z, in an induced local system
(
p−1 (U) ;xi, ui, i = 1, . . . , n

)
of TM ,

as Z =
∑n

l=1

[
Al ∂

∂xl
+Bl ∂

∂ul

]
, and restricting the Levi-Civita connection ∇̄ of

(TM,G) to the zero section (cf. [9, Proposition 1.5]) , we obtain

(LZG)(x,0)

(
Xh, Y h

)
= G(x,0)

(
Xh, ∇̄Y hZ

)
+G(x,0)

(
Y h, ∇̄XhZ

)
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= (α1 + α3) (0)

[
g

(
X,Y

(
Al (x, 0)

) ∂

∂xl

∣∣∣∣
x

)
+ g

(
Y,X

(
Al (x, 0)

) ∂

∂xl

∣∣∣∣
x

)
+Al (x, 0)

(
g

(
X,∇Y

∂

∂xl

)
+ g

(
Y,∇X

∂

∂xl

))]
+ α2 (0) [g

(
X,Y

(
Bl (x, 0)

) ∂

∂xl

∣∣∣∣
x

)
+ g

(
Y,X

(
Bl (x, 0)

) ∂

∂xl

∣∣∣∣
x

)
+Bl (x, 0)

(
g

(
X,∇Y

∂

∂xl

)
+ g

(
Y,∇X

∂

∂xl

))]
. (3.5)

Setting, for every x ∈ U ,

W (x) =
[
(α1 + α3) (0)Al (x, 0) + α2 (0)Bl (x, 0)

] ∂

∂xl

∣∣∣∣
x

,

then W is a vector field on U, and (3.5) becomes

(LZG)(x,0)

(
Xh, Y h

)
= (LW g)x (X,Y ) . (3.6)

Substituting from (3.2) and (3.6) into (3.4), we deduce, under(
α1 (α1 + α3)− 2α2

2

)
(0) 6= 0,

that

Ric (X,Y ) +
1

2
LZ0g (X,Y ) = λg (X,Y )

for every X,Y ∈Mx, where

Z0 =
α (0)(

α1 (α1 + α3)− 2α2
2

)
(0)

W

and

λ =
(α1 + α3)

[
λ̄α+ β1 + β3 + n (α1 + α3)′

]
α1 (α1 + α3)− 2α2

2

(0) .

Case 2: (α1 + α3) (0) = 0. In this case α2 (0) 6= 0. We put

Fi =
1√

2|α2 (0) |

[
Ehi + Evi

]
, and Fn+i =

1√
2|α2 (0) |

[
Ehi − Evi

]
,

i = 1, . . . , n. As in the first case, {FI ; I = 1, . . . , 2n} is an orthonormal basis of(
(TM)(x,0) , G(x,0)

)
, and in a similar way we obtain

Ric(x,0)

(
Xh, Y h

)
= 2Ric (X,Y ) ,
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and then Ric (X,Y ) + 1
2LZ′0g (X,Y ) = 0 for any x ∈ M and X, Y ∈ Mx, where

Z ′0 (x) := −α2 (0)Bl (x, 0) ∂
∂xl

∣∣
x
, i.e. (TM,G,Z ′0, 0) is a Ricci Soliton. Remark

that, for (α1 + α3) (0) = 0, we obtain λ̄ = 0 and Z0 = Z ′0. This completes our
proof.

Corollary 3.2. Let (M, g) be a Riemannian manifold of dimension n ≥ 3
and G be a pseudo-Riemannian g-natural metric on TM whose functions αi, βi
i = 1, 2, 3 satisfy α1 (0) (α1 + α3) (0)− 2α2

2 (0) 6= 0. If
(
TM,G, f̄ , λ̄

)
is a gradient

type Ricci soliton, then (M, g, f, λ) is a gradient type Ricci soliton with

f (x) =
α (0)

α1 (0) (α1 + α3) (0)− 2α2
2 (0)

f̄ (x, 0) for all x ∈M ;

λ =
(α1 + α3)

[
λ̄α+ β1 + β3 + n (α1 + α3)′

]
α1 (α1 + α3)− 2α2

2

(0) .

4. g-natural metrics of the form ags + bgh + cgv

Theorem 4.1. Let (M, g) be a Riemannian manifold of dimension n ≥ 2,
G = ags + bgh + cgv such that a 6= 0, a + c 6= 0 and a (a+ c) − b2 6= 0, Z be a
vector field on TM and λ̄ ∈ R. Then

(
TM,G,Z, λ̄

)
is a Ricci Soliton if and only

if

1. (M, g) flat;

2. Z is a homothetic vector field on (TM,G), with homothety factor λ̄.

Proof. Let
(
TM,G,Z, λ̄

)
be a Ricci Soliton. For x in M , let

(
x1, . . . , xn

)
be a normal coordinate system at x, and

(
π−1 (U) , x1, . . . , xn, u1, . . . , un

)
be its

induced coordinate system on TM . With respect to these induced coordinates,
Z can be expressed as Z =

∑n
l=1

[
Al ∂

∂xl
+Bl ∂

∂ul

]
. We have in particular

Ric

(
∂

∂ui
,
∂

∂uj

)
+

1

2
(LZG)

(
∂

∂ui
,
∂

∂uj

)
= λ̄G

(
∂

∂ui
,
∂

∂uj

)
(4.1)

for i, j = 1, . . . , n. Using the expression of the Levi-Civita connection (cf. [10,
p.32]) and the fact that

(
x1, . . . , xn

)
is normal at x, we have

(LZG)(x,u)

(
∂

∂ui
,
∂

∂uj

)
= G(x,u)

(
∂

∂ui
,∇ ∂

∂uj
Z

)
+G(x,u)

(
∂

∂uj
,∇ ∂

∂ui
Z

)
=

∂

∂uj

∣∣∣∣
(x,u)

(
bAi + aBi

)
+

n∑
l=1

AlG(x,u)

(
∂

∂ui
,∇ ∂

∂uj

(
∂

∂xl

)h)

+
∂

∂ui

∣∣∣∣
(x,u)

(
bAj + aBj

)
+

n∑
l=1

AlG(x,u)

(
∂

∂uj
,∇ ∂

∂ui

(
∂

∂xl

)h)

=
∂

∂uj

∣∣∣∣
(x,u)

(
bAi + aBi

)
+

∂

∂ui

∣∣∣∣
(x,u)

(
bAj + aBj

)
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for all (x, u) ∈ Mx. On the other hand, using [10, Proposition 3.1] and the fact
that

(
x1, . . . , xn

)
is normal at x, we have

Ric(x,u)

(
∂

∂ui
,
∂

∂uj

)
=

a4

4α2

n∑
l=1

g

(
R

(
u,

∂

∂xi

∣∣∣∣
x

)
∂

∂xl

∣∣∣∣
x

, R

(
u,

∂

∂xj

∣∣∣∣
x

)
∂

∂xl

∣∣∣∣
x

)
.

So we get

∂

∂uj

∣∣∣∣
(x,u)

(
bAi + aBi

)
+

∂

∂ui

∣∣∣∣
(x,u)

(
bAj + aBj

)
= 2

{
λ̄aδij −

a4

4α2

n∑
l=1

g

(
R

(
u,

∂

∂xi

∣∣∣∣
x

)
∂

∂xl

∣∣∣∣
x

, R

(
u,

∂

∂xj

∣∣∣∣
x

)
∂

∂xl

∣∣∣∣
x

)}
. (4.2)

Let us define the functions Di, i = 1, . . . , n, on Mx by

Di =
2α2

a4

[
λ̄aui −

(
bAi + aBi

)]
.

So (4.2) reduces to

∂Di

∂uj

∣∣∣∣
(x,u)

+
∂Dj

∂ui

∣∣∣∣
(x,u)

=
n∑
l=1

g

(
R

(
u,

∂

∂xi

∣∣∣∣
x

)
∂

∂xl

∣∣∣∣
x

, R

(
u,

∂

∂xj

∣∣∣∣
x

)
∂

∂xl

∣∣∣∣
x

)
, (4.3)

wherei, j = 1, . . . , n.

For i = j, we get

∂Di

∂ui

∣∣∣∣
(x,u)

=
n∑
l=1

1

2
g

(
R

(
u,

∂

∂xi

∣∣∣∣
x

)
∂

∂xl

∣∣∣∣
x

, R

(
u,

∂

∂xi

∣∣∣∣
x

)
∂

∂xl

∣∣∣∣
x

)

=
1

2

n∑
l=1

∑
s 6=i,t 6=i

usutg

(
R

(
∂

∂xs

∣∣∣∣
x

,
∂

∂xi

∣∣∣∣
x

)
∂

∂xl

∣∣∣∣
x

, R

(
∂

∂xt

∣∣∣∣
x

,
∂

∂xi

∣∣∣∣
x

)
∂

∂xl

∣∣∣∣
x

)
.

Hence

Di =
1

2

n∑
l=1

∑
s 6=i
t6=i,r

usutur

× g
(
R

(
∂

∂xs

∣∣∣∣
x

,
∂

∂xr

∣∣∣∣
x

)
∂

∂xl

∣∣∣∣
x

, R

(
∂

∂xt

∣∣∣∣
x

,
∂

∂xr

∣∣∣∣
x

)
∂

∂xl

∣∣∣∣
x

)
+ fi,

with fi is a C∞ function on Mx which does not depend on ui.

For i 6= j, deriving equation (4.3) twice with respect to uj and ui and summing
up, we obtain

∂2

∂2uj

(
∂Di

∂ui

)
+

∂2

∂2ui

(
∂Dj

∂uj

)
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=
n∑
l=1

∂

∂ui

(
∂

∂uj

(
g

(
R

(
u,

∂

∂xi

∣∣∣∣
x

)
∂

∂xl

∣∣∣∣
x

, R

(
u,

∂

∂xj

∣∣∣∣
x

)
∂

∂xl

∣∣∣∣
x

)))
,

which gives

2
n∑
l=1

∥∥∥∥R( ∂

∂xi
,
∂

∂xj

)
∂

∂xl

∥∥∥∥2

= −
n∑
l=1

∥∥∥∥R( ∂

∂xi
,
∂

∂xj

)
∂

∂xl

∥∥∥∥2

Hence the Riemannian curvature R is zero, i.e. (M, g) is flat. We deduce that
(TM,G) is flat and Z is a homothetic vector field, with homothety factor λ̄.

The converse is easy to prove.

Remark 4.2. Note that for a Riemannian g-natural metric of the form G =
ags + bgh + cgv on TM , the flatness of (M, g) is equivalent to that of (TM,G)
(cf. [10, Theorem 1.4]) .

To classify completely Ricci solitons for G = ags + bgh + cgv, a 6= 0, a+ c 6=
0 and a (a+ c)− b2 6= 0, it is sufficient to characterize homothetic vector field on
(TM,G). We start with the following lemma which gives a local characterization
of the Lie derivative with respect to an arbitrary vector field on TM :

Lemma 4.3. Let (M, g) be a flat Riemannian manifold and G = ags+ bgh+
cgv. Then for all Z ∈ X (TM) and X,Y ∈ X (M), we have

LZG
(
Xh, Y h

)
=
[
(a+ c)Ai + bBi

]
L ∂

∂xi
g (X,Y )

+
[
(a+ c)Xh

(
Ai
)

+ bXh
(
Bi
)]
g

(
∂

∂xi
, Y

)
+
[
(a+ c)Y h

(
Ai
)

+ bY h
(
Bi
)]
g

(
X,

∂

∂xi

)
,

LZG
(
Xh, Y v

)
=
[
biAi + aBi

]
g
(
∇ ∂

∂xi
X,Y

)
+
[
bXh

(
Ai
)

+ aXh
(
Bi
)]
g

(
∂

∂xi
, Y

)
+
[
(a+ c)Y v

(
Ai
)

+ bY v
(
Bi
)]
g

(
X,

∂

∂xi

)
,

LZG (Xv, Y v) =
[
bXv

(
Ai
)

+ aXv
(
Bi
)]
g

(
∂

∂xi
, Y

)
+
[
bY v

(
Ai
)

+ aY v
(
Bi
)]
g

(
X,

∂

∂xi

)
,

where Z = Ai
(
∂
∂xi

)h
+Bi

(
∂
∂xi

)v
.

For a vector field ξ on M , we denote by C (ξ) the (1, 1)-tensor field on M
defined by g (C (ξ)Y,Z) = −g (Y,∇Zξ) for all vector fields Y and Z on M .
Locally, if ξ = ξi ∂

∂xi
, then C (ξ)ij = −gikgjlξl;k, whereξl;k are the local components

of the (1, 1)-tensor field ∇ξ. We denote also by I the identity (1, 1)-tensor field
on M . Then we have
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Theorem 4.4. Let (TM,G) be the tangent bundle of a flat Riemannian man-
ifold (M, g) with G = ags + bgh + cgv, and Z be a vector field on TM. Z is a
homothetic vector field on (TM,G) if and only if Z is expressed as

Z =
1

α

{
[aζ − bξ]h + ∗[aC (ξ)− bP + λabI]

+[(a+ c) ξ − bζ]v + ι
[
(a+ c)P − bC (ξ) + λ

(
α− b2

)
I
]}
, (4.4)

where

1. ζ is a homothetic vector field on M satisfying Lζg = 2λ (a+ c) g;

2. P is a (1, 1) tensor field on M which is skew-symmetric and parallel;

3. ξ is a vector field on (M, g) satisfying ∇2ξ (U, V ) +∇2ξ (V,U) = 0 for any
U, V ∈ X (M) .

Proof. Suppose that Z is a homothetic vector field, then there is a constant
λ such that

LZG = 2λG. (4.5)

Taking, in the third equation of Lemma 4.3, X = ∂
∂xi

and Y = ∂
∂xj

and taking
into account (4.5), we obtain

2λagij = b

[
∂Ai
∂uj

+
∂Aj
∂ui

]
+ a

[
∂Bi
∂uj

+
∂Bj
∂ui

]
, i, j = 1, . . . , n, (4.6)

where Ai := gikA
k and Bi := gikB

k. Putting

Wi := bAi + aBi − λaui, (4.7)

where ui := giku
k, it is easy to see that (4.6) is equivalent to

∂Wi

∂uj
+
∂Wj

∂ui
= 0, i, j = 1, . . . , n. (4.8)

For i = j, (4.8) gives
∂Wi

∂ui
= 0, i = 1, . . . , n. (4.9)

Deriving (4.8) with respect to uj and taking into account (4.9), we obtain

∂2wi

(uj)2 = 0 for all i, j = 1, . . . , n.

It follows that there are functions ξi, Pij , i, j = 1, . . . , n, such that

Wi = ξi + Piku
k, i = 1, . . . , n. (4.10)

Equation (4.8) is equivalent to

Pij + Pji = 0, i, j = 1, . . . , n. (4.11)
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Now we put
V i := (a+ c)Ai + bBi, i = 1, . . . , n. (4.12)

Taking, in the second equation of Lemma 4.3, X = ∂
∂xi

and Y = ∂
∂xj

and taking
into account (4.5), (4.10) and (4.12), we obtain

2λbgij = gjkξ
k
;i + gjkP

k
l;iu

l + gik
∂V k

∂uj
, i, j = 1, . . . , n, (4.13)

where ξi := gikξk, P
i
j := gikPkj and ξi;j and P ij;k are the local components of

the differentials ∇ξ and ∇P of the local vector field ξ := ξi ∂
∂xi

and the local

(1, 1)-tensor field P := P ij
∂
∂xi
⊗ dxj , respectively, given by

ξi;j =
∂ξi

∂xj
+ Γijkξ

k, P ij;k =
∂ξk

P ij
+ ΓiklP

l
j − ΓlkjP

i
l .

It follows then, from (4.13), that

∂V i

∂uj
= 2λbδij − gilgjkξk;l − gimgjkP kl;mul, i, j = 1, . . . , n. (4.14)

We deduce that

V i = ζi + 2λbui − gilgjkξk;luj + T ijku
juk, (4.15)

where ζi and T ijk are C∞-functions such that T ijk are symmetric in j and k.
Substituting from (4.15) into (4.14), we obtain

2T ijk = −gimgjlP lk;m.

But we deduce from (4.11) that −gimgjlP lk;m is skew-symmetric, and hence

P ij;k = 0, i, j, k = 1, . . . , n. (4.16)

It follows then that

V i = ζi + 2λbui − gilgjkξk;luj , i = 1, . . . , n,

or, in other words,

V i = ζi + 2λbui + C (ξ)ij u
j , i = 1, . . . , n, (4.17)

where C (ξ) is the (1, 1)-tensor field given in Theorem (4.4), given locally by
C (ξ)ij = −gilgjkξk;l.

Finally, taking, in the first equation of Lemma 4.3, X = ∂
∂xi

and Y = ∂
∂xj

and
taking into account (4.5) and (4.17), we obtain

2λ (a+ c) gij = gikζ
k
j + gjkζ

k
i +

(
gikC (ξ)kl;j + gjkC (ξ)kl;i

)
ul

= gikζ
k
;j + gjkζ

k
;i − glm

(
ξm;ij + ξm;ji

)
ul, i, j = 1, . . . , n. (4.18)
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We deduce that

2λ (a+ c) gij = gikζ
k
;j + gjkζ

k
;i, i, j = 1, . . . , n, (4.19)

i.e. ζ is a homothetic vector field of homothety factor λ (a+ c), and

ξm;ij + ξm;ji = 0, i, j = 1, . . . , n, (4.20)

i.e. ∇2ξ is skew-symmetric.
Now, substituting from (4.10) and (4.17) into (4.7) and (4.12), we obtain

Ai =
1

α
{aζi − bξi + [aC (ξ)ij − bP

i
j + λabIij ]u

j},

Bi =
1

α
{−bζi + (a+ c) ξi + [−bC (ξ)ij + (a+ c)P ij + λ

(
α− b2

)
Iij ]u

j},
(4.21)

i = 1, . . . , n. We deduce that Z is expressed as (4.4).
The converse is easy to prove.

5. Ricci solitons of Kaluza–Klein type on unit tangent sphere
bundles

In this section, we suppose that (M, g) is a Riemannian manifold of constant
sectional curvature and that its unit tangent sphere bundle T1M is endowed with
a g-natural metric G̃ of Kaluza–Klein type. We now characterize vector fields V
on T1M , which, together with a metric G̃ of Kaluza–Klein type, give rise to a
Ricci soliton. A routine calculation, using Propositions 2.3 and 2.6, yields the
following

Proposition 5.1. Let (M, g) be a Riemannian manifold of constant sectional
curvature κ, G̃ be a pseudo-Riemannian g-natural metric of Kaluza–Klein type

on T1M , V be a vector field on T1M and λ ∈ R. Then
(
G̃, V, λ

)
is a Ricci soliton

if and only if the following equations are satisfied:

(
LV G̃

)
(x,u)

(
Xh, Y h

)
= 2 (a+ c) (λ− ν) g (X,Y )

+ 2 (λd− θ) g (X,u) g (Y, u) ,(
LV G̃

)
(x,u)

(
Xh, Y t

)
= 0,(

LV G̃
)

(x,u)

(
Xt, Y t

)
= 2a[λ− µ]g (X,Y )

(5.1)

for all x ∈M , (x, u) ∈ T1M and X, Y ∈Mx satisfying Convention 2.2, where

µ =
1

2a (a+ c)ϕ

[
a2κ2 + 2 (n− 2) (a+ c)ϕ− d2

]
,

ν =
1

2a (a+ c)ϕ

[
−a2κ2 + 2 (n− 1) aϕκ+ d (d− 2ϕ)

]
,

θ =
1

2a (a+ c)ϕ

[
−a2 ((n− 2)ϕ+ d)κ2

+d (2n (a+ c)ϕ+ (n− 1) dϕ− d (a+ c))
]
,

(5.2)
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or, in other words

LV G̃ = 2a[λ− µ]g̃s + 2[a (µ− ν) + c (λ− ν)]g̃v + 2[λd− θ]k̃v,

where g̃s, g̃v and k̃v are the induced metrics on T1M from gs, gv and kv, respec-
tively.

Remark 5.2. With the same hypotheses of Proposition 5.1, if
(
G̃, V, λ

)
is a

Ricci soliton then

• V is a conformal vector field on
(
T1M, G̃

)
if and only if θ = µd and µ = ν,

• V is a Killing vector field on
(
T1M, G̃

)
if and only if θ = λd and λ = µ = ν.

5.1. Case when the potential vector field is a complete lift vector
field Recall that if ξ is a vector field on M , then its complete lift ξc̄ to T1M
can be expressed as ξc̄ = Xh + [ι (∇ξ)]t. Using Lemmas 2.4 and 2.5, we have

Lemma 5.3 ( [1]). For all ξ ∈ X (M), (x, u) ∈ T1M and X,Y ∈ TxM , we
have(
Lξc̄G̃

)
(x,u)

(
Xh, Y h

)
= (a+ c) (Lξg)x (X,Y ) + d{(Lξg)x (Y, u) g (X,u)

+ (Lξg)x (X,u) g (Y, u)− (Lξg)x (u, u) g (Y, u) g (X,u) ,(
Lξc̄G̃

)
(x,u)

(
Xh, Y t

)
= ag

(
R (ξx, X)u+∇2ξ (u,X) , Y

)
,(

Lξc̄G̃
)

(x,u)

(
Xt, Y t

)
= a

[
(Lξg)x (X,Y )− (Lξg)x (u, u) g (X,Y )

]
.

Theorem 5.4. Let (M, g) be a Riemannian manifold of constant sectional
curvature κ, G̃ be a pseudo-Riemannian g-natural metric of Kaluza–Klein type

on T1M , ξ be a vector field on M and λ ∈ R. Then,
(
G̃, ξc̄, λ

)
is a Ricci soliton

if and only if the two following assertions hold

1. ξ is a homothetic vector field on M , with Lξg = 2λ0g, where λ0 ∈ R;

2. one of the following cases occurs

i) n = 2, d = 0, λ =
aκ2

2 (a+ c)2 and λ0 = κ
aκ− (a+ c)

(a+ c)2 ;

ii) n = 2, d 6= 0, κ =
2ϕ− d
a

and λ = λ0 =
2

a
;

iii) n 6= 2, d = 0, κ = 0 and λ0 = λ =
n− 2

a
;

iv) n 6= 2, d 6= 0, κ = − 1

a (n− 2)
[(n− 1) d ±

√
d2 + 2n (n− 2)ϕd], λ = µ

and λ0 = µ− ν, where µ and ν are given by (5.2).
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Proof. Suppose that
(
G̃, ξc̄, λ

)
is a Ricci soliton. For all (x, u) ∈ TM and

X,Y ∈ Mx. Substituting from the first equation of Lemma 5.3 into the first
equation of (5.1) and taking X = Y ⊥ u, we obtain

g (∇Xξ,X) = (λ− ν) g (X,X) . (5.3)

Then ξ is a homothetic vector field with Lξg = 2 (λ− ν) g. Substituting from the
third equation of Lemma 5.3 into (5.1), we obtain

λ = µ =
1

2a (a+ c)ϕ

[
a2κ2 + 2 (n− 2) (a+ c)ϕ− d2

]
. (5.4)

We deduce that ξ is a homothetic vector field, i.e. Lξg = 2λ0g, with

λ0 = µ− ν. (5.5)

Substituting from the first equation of Lemma 5.3 into the first equation of (5.1),
we obtain

νd = θ. (5.6)

Thus

(n− 2) a2ϕκ2 + 2 (n− 1) adϕκ+ d
[
d2 − (n+ 1) dϕ+ (a+ c) (d− 2nϕ)

]
= 0,

i.e.,

(n− 2) a2κ2 + 2 (n− 1) adκ− nd (2ϕ− d) = 0. (5.7)

Then we can distinguish the following situations:

i) n = 2 and d = 0: substituting into (5.2), we get µ = a
2

(
κ
a+c

)2
and ν =

κ
2(a+c)2 [−aκ+ 2 (a+ c)]. Then we have, by virtue of (5.4) and (5.5), λ = aκ

2(a+c)2

and λ0 = κ
(a+c)2 [aκ− (a+ c)].

ii) n = 2 and d 6= 0: (5.7) yields κ = 2ϕ−d
a . Substituting into (5.2), we get

µ = 2
a and ν = 0. Replacing in (5.4) and (5.5), we obtain λ = λ0 = 2

a .

iii) n 6= 2 and d = 0: then we have, from (5.6), θ = 0. Using (5.2), we
obtain κ = 0 and thus substituting into (5.2), we get µ = (n− 2) a+c

aϕ and ν = 0.

Replacing in (5.4) and (5.5), we obtain λ = λ0 = n−2
a .

iv) n 6= 2 and d 6= 0: from equation (5.7) we obtain

[κ+
(n− 1) d

(n− 2) a
]2 =

d

(n− 2)2 a2
[d2 + 2n (n− 2)ϕd]. (5.8)

We deduce that κ = − 1
a(n−2) [(n− 1) d±

√
d2 + 2n (n− 2)ϕd].

Conversely, by a routine calculation, we can check that in any case i)–iv) of
2 of the theorem, we get

λ = µ, λ− ν = λ0, λd− θ = λ0d. (5.9)
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On the other hand, it is well known that, for any homothetic vector field ξ on
M , we have

R (ξ,X)Y +∇2ξ (Y,X) = 0 (5.10)

for any X,Y ∈ X (M). Substituting from the identity Lξg = 2λ0g and (5.10) into
Lemma 5.3, and using (5.9), we obtain(
Lξc̄G̃

)
(x,u)

(
Xh, Y h

)
= 2λ0 (a+ c) g (X,Y ) + 2λ0dg (Y, u) g (X,u)

= 2 (a+ c) (λ− ν) g (X,Y ) + 2 (λd− θ) g (X,u) g (Y, u) ,(
Lξc̄G̃

)
(x,u)

(
Xh, Y t

)
= 0,(

Lξc̄G̃
)

(x,u)

(
Xt, Y t

)
= 0 = 2a[λ− µ]g (X,Y ) ,

which is no other than (5.1), i.e.
(
G̃, ξc̄, λ

)
is a Ricci soliton.

Remarks 5.5. Let (M, g) be a Riemannian manifold of constant sectional
curvature κ, G̃ be a pseudo-Riemannian g-natural metric on T1M of Kaluza-
Klein type, ξ be a vector field on M and λ ∈ R.

1.
(
T1M, G̃

)
is an Einstein manifold if and only if ξ is a Killing vector field on

M , i.e. λ0 = 0.

2. For n = 2 and d = 0,
(
G̃, ξc̄, λ

)
is shrinking, steady or expanding according

to a < 0, κ = 0 or a > 0, respectively.

3. For n = 2 and d 6= 0,
(
G̃, ξc̄, λ

)
is shrinking or expanding according to a <

0 or a > 0, respectively.

4. For n 6= 2 and d = 0,
(
G̃, ξc̄, λ

)
is shrinking or expanding according to a <

0 or a > 0, respectively.

5. For n 6= 2 and d 6= 0,
(
G̃, ξc̄, λ

)
is shrinking, steady, or expanding according

to µ is negative, zero or positive, respectively.

6. In the case 2 iv) of Theorem 5.4, we should have d2 + 2n (n− 2)ϕd ≥ 0, i.e.
one of the following situations occurs

• a+ c < 0 and d ∈]−∞, 0] ∪ [
−2n (n− 2) (a+ c)

2n (n− 2) + 1
,+∞[,

• a+ c > 0 and d ∈]−∞, −2n (n− 2) (a+ c)

2n (n− 2) + 1
] ∪ [0,+∞[.



Natural Ricci Solitons on Tangent and Unit Tangent Bundles 23

5.2. Necessary conditions on potential vector fields. Since T1M is a
closed submanifold of TM , then for any vector field V on T1M , there is a vector
field V on TM which extends V . For a local coordinates system

(
U, x1, . . . , xn

)
of M , V can be expressed in the induced coordinates system of TM as

V �p−1(U)= Ai
(
∂

∂xi

)h
+Bi

(
∂

∂xi

)v
,

where Ai and Bi are smooth functions on p−1 (U). Since V is tangent to T1M at
any point of T1M , we should have gij (x)Bi (x, u)uj = 0 for all (x, u) ∈ p−1

1 (U) =
p−1 (U) ∩ T1M expressed locally as u = ui ∂

∂xi
, i.e.,

Bi (x, u)ui = 0, (5.11)

where we put ui := gij (x)uj . If we denote the restrictions to p−1
1 (U) of Ai and

Bi by the same notations, then we can write

V �p−1
1 (U)= Ai

(
∂
∂xi

)h
+Bi

(
∂
∂xi

)t
. (5.12)

Using Lemmas 2.4 and 2.5, we can prove the following lemma.

Lemma 5.6. For all (x, u) ∈ T1M, X, Y ∈Mx, we have(
LV G̃

)
(x,u)

(
Xh, Y h

)
= (a+ c)

[
Ai
(
L ∂

∂xi
g
)
x

(X,Y )

+Xh
(
Ai
)
g

(
∂

∂xi

∣∣∣∣
x

, Y

)
+ Y h

(
Ai
)
g

(
X,

∂

∂xi

∣∣∣∣
x

)]
+ d

{
Bi

[
g

(
X,

∂

∂xi

∣∣∣∣
x

)
g (Y, u) + g

(
∂

∂xi

∣∣∣∣
x

, Y

)
g (X,u)

]
+Ai

[
g

(
∇X

∂

∂xi
, u

)
g (Y, u) + g

(
∇Y

∂

∂xi
, u

)
g (X,u)

]
+Xh

(
Ai
)
g

(
∂

∂xi

∣∣∣∣
x

, u

)
g (Y, u) + Y h

(
Ai
)
g

(
∂

∂xi

∣∣∣∣
x

, u

)
g (X,u)

}
,(

LV G̃
)

(x,u)

(
Xh, Y t

)
= a

[
Xh
(
Bi
)
g

(
∂

∂xi

∣∣∣∣
x

, Y

)
+Big

(
∇X

∂

∂xi
, Y

)
+kAi

(
g (X,u) g

(
∂

∂xi

∣∣∣∣
x

, Y

)
− g (X,Y ) g

(
∂

∂xi

∣∣∣∣
x

, u

))]
+ (a+ c)Y t

(
Ai
)
g

(
X,

∂

∂xi

∣∣∣∣
x

)
+ dY t

(
Ai
)
g (X,u) g

(
∂

∂xi

∣∣∣∣
x

, u

)
,(

LV G̃
)

(x,u)

(
Xt, Y t

)
= a

[
Y t
(
Bi
)
g

(
X,

∂

∂xi

∣∣∣∣
x

)
+Xt

(
Bi
)
g

(
Y,

∂

∂xi

∣∣∣∣
x

)]
.

We put

W = V −Al
(
∂

∂xl

)h
.
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W is a fiber-preserving vector field, and we have, from Lemma 5.6,

LW G̃
(
Xt, Y t

)
= LV G̃

(
Xt, Y t

)
.

Using (5.1), we deduce that

LW G̃
(
Xt, Y t

)
= 2[λ− µ]G̃

(
Xt, Y t

)
,

In the same way, we remark that

LW g̃s
(
Xt, Y t

)
= 2[λ− µ]g̃s

(
Xt, Y t

)
. (5.13)

We shall extend fiber-preserving vector fields on T1M to vector fields on TM,
using the techniques used in [22]. Let Z be a fiber-preserving vector field on T1M.
Then it is known that Z is projectable to a vector field Z on M, i.e., such that
(dp1)u (Zu) = Zx for all x ∈ M and u ∈ SxM. For all r > 0, let us define the
immersions jr : T1M → TM and j0 : M → TM, respectively, by jr (u) = ru for
all u ∈ T1M, and j0 (x) = 0x for all x ∈ M, where 0x denotes the zero vector in

Mx. We define a vector field Z on TM extending Z by (cf. [22])

Zru :=

{
(djr)u (Zu) for r > 0

(dj0)x (Zx) for r = 0

for all x ∈ M and u ∈ SxM := Mx ∪ T1M . We denote by Z the restriction of Z
to TM \σ0, which is clearly a vector field on TM \σ0,, where σ0 := j0 (M) is the
zero section of TM.

Lemma 5.7 ([1]). Let Z, X and Y be fiber-preserving vector fields on T1M .
Then(
LZg

s
(
X,Y

))
ru

=
(
1− r2

)
(a+ c)

(
LZg (X,Y )

)
x

+ r2 (LZ g̃s (X,Y ))u (5.14)

for all x ∈M , u ∈ SxM and r > 0.

Now, fixing u ∈ SxM and taking, in (5.14), Z = W and X = Y = T t for T ∈
X (M) such that 0 6= Tx ⊥ u, and using Lemma 5.7, we obtain

LW ru
gs (T vru, T

v
ru) = LZu g̃

s (T vu , T
v
u ) .

Since, by (5.13), we have LZu g̃
s (T vu , T

v
u ) = 2[λ− µ]g (Tx, Tx), then

LW ru
gs (T vru, T

v
ru) = 2[λ− µ]g (Tx, Tx)

for all r > 0. When r → 0, we have by continuity

L
Z0
gs (T v0 , T

v
0 ) = 2[λ− µ]g (Tx, Tx) .

But since Z0 = 0, then 2[λ− µ]g (Tx, Tx) = 0, and consequently

λ = µ =
1

2a (a+ c)ϕ
[a2κ2 + 2 (n− 2) (a+ c)ϕ− d2]
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and L
Z
gs (T vru, T

v
ru) = 0. Using the third identity of Lemma 4.3 for G = gs, we

obtain easily, as in the proof of Theorem 4.4,

Bi = Qiju
j + ζi, i = 1, . . . , n, (5.15)

where Qji , ζ
l are smooth functions such that

gikQ
k
j + gjkQ

k
i = 0, i, j = 1, . . . , n. (5.16)

Moreover since Biui = 0, then Qijuju
i + ζiui = 0. Replacing u by −u in the last

identity, we deduce that ζi = 0 for all i = 1, . . . , n, and (5.15) becomes Bi =
Qiju

j . Considering the (1, 1)-tensor field Q on M whose components are Qij , then
we have W(x,u) = Q (u) for all (x, u) ∈ T1M , or equivalently t{V } = ι̃ (Q), with
Q is skew-symmetric. This completes the proof of the following proposition.

Proposition 5.8. Let (M, g) be a Riemannian manifold of constant sectional
curvature κ, G̃ be a psuedo-Riemannian g-natural metric on T1M of Kaluza–

Klein type, V be a vector field on T1M and λ ∈ R. If
(
V, G̃, λ

)
is a Ricci soliton

on T1M then we have

1. λ =
1

2a (a+ c)ϕ
[a2κ2 + 2 (n− 2) (a+ c)ϕ− d2];

2. t{V } = ι̃ (Q), where Q is a skew-symmetric (1, 1)-tensor field.

5.3. Case when the potential vector field is fiber-preserving. In this
section, we shall give necessary and sufficient conditions for the unit tangent
bundle of a constant curvature Riemannian manifold, endowed with a pseudo-
Riemannian Kaluza–Klein type metric, to be a Ricci soliton with a fiber preserv-
ing potential vector field.

Theorem 5.9. Let (M, g) be an n-dimensional Riemannian manifold of con-
stant sectional curvature κ, G̃ be a pseudo-Riemannian g-natural metric on T1M
of Kaluza–Klein type, V be a fiber-preserving vector field on T1M and λ ∈ R.

Then
(
G̃, V, λ

)
is a Ricci soliton on T1M if and only if there are:

1. A conformal vector field ξ on M , with Lξg = 2λ0g;

2. A parallel (1, 1)-tensor field P on M , with P − (λ− ν) I is skew-symmetric;

such that one of the following cases occurs:

i) n = 2, d = 0, λ =
ak2

2 (a+ c)2 , λ0 = k
ak − (a+ c)

(a+ c)2 and V = ξc̄ + ĩP ;

ii) n = 2, d 6= 0, k =
2ϕ− d
a

, λ = λ0 = 2
a and V = ξc̄;

iii) n 6= 2, d = 0, k = 0, λ0 = λ =
n− 2

a
and V = ξc̄ + ĩP ;
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iv) n 6= 2, d 6= 0, k = − 1

a (n− 2)
[(n− 1) d±

√
d2 + 2n (n− 2)ϕd], λ = µ, λ0 =

µ− ν and V = ξc̄;

where I is the identity (1, 1)-tensor field on M and µ and ν are given by (5.2).

Proof. Let V be a fiber-preserving vector field on T1M . Then

h{[V,Xt] (x, u)} = 0 (5.17)

for all (x, u) ∈ T1M and X ∈ Mx, where h stands for horizontal component.
Using the identity Bi (x, u)ui = 0, we obtain h{[V,Xt] (x, u)} = h{−Xt

(
Al
)
∂
∂l
}.

Then h{[V,Xt] (x, u)} = 0 if and only if

Xt
(
Al
)

= 0

for all (x, u) ∈ T1M and X ∈ Mx. It follows that, for X ⊥ u,, we have(
dAl
)

(x,u)

(
Xt

(x,u)

)
= 0 for all X ⊥ u. If we denote by Alx the restriction of

Al to the fiber SxM := T1M ∩Mx, we then have(
dAlx

)
(x,u)

(
Xt

(x,u)

)
=
(
dAl
)

(x,u)

(
Xt
)

= 0 (5.18)

for all X ∈ Mx such that g (X,u) = 0. But dAlx is a linear form defined on the
tangent space

(SxM)(x,u) = {Xt
(x,u)/X ∈Mx, g (X,u) = 0}.

Thus, by (5.18) it follows that
(
dAlx

)
(x,u)

vanishes identically on (SxM)(x,u). We

conclude that the restriction Alx is constant on SxM . Therefore, for any x ∈M,
there is a C∞-function ξl on M , such that

Al(x,u) = ξl (x) .

i.e., π∗ (V ) = ξ, where ξ is the vector field on M given locally by ξ =∑n
i=1 ξ

i
(
∂
∂xi

)
. It follows then that h{V } = ξh. But, by Proposition 5.8, we

have t{V } = ι̃Q for some skew symmetric (1, 1)-tensor field Q on M . We deduce
that V is given by V = ξh + ι̃Q. It is easy to see from Lemma 5.6 that, for all
(x, u) ∈ T1M, X, Y ∈Mx, we have

(
LV G̃

)
(x,u)

(
Xh, Y h

)
= (a+ c) (Lξg)x (X,Y )

+ d[g (∇Xξ, u) g (Y, u) + g (∇Y ξ, u) g (X,u)

+ g (Q (u) , X) g (Y, u) + g (Q (u) , Y ) g (X,u)];(
LV G̃

)
(x,u)

(
Xh, Y t

)
= ag (R (ξx, X)u+∇XQ (u) , Y ) ;(

LV G̃
)

(x,u)

(
Xt, Y t

)
= a[g (Q (X) , Y ) + g (Q (Y ) , X)].

(5.19)
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Putting, in the first equation of (5.19), X = Y = u and using (5.1), we get

Lξg (X,X) = 2 (λ− ν) ‖X‖2

for all X ⊥ u. Since u is arbitrary, the previous identity holds for all X ∈ TM .
Then, by bilinearity, we get

Lξg (X,Y ) = 2 (λ− ν) g (X,Y ) (5.20)

for all x ∈ M and X,Y ∈ Mx. Taking X = u and Y ⊥ u into the first equation
of (5.19) we obtain, by virtue of (5.1) and (5.20),

d [g (Q (u) , Y ) + g (∇Y ξ, u)] = 0 (5.21)

for all Y ⊥ u. So, we have two possibilities:
Case 1: If d 6= 0, then from (5.21) we obtain g (Q (u) , Y ) = −g (∇Y ξ, u) for

all Y ⊥ u. But we have, by (5.20), g (∇Y ξ, u) + g (∇Y ξ, u) = 2 (λ− ν) g (Y, u) =
0 for all Y ⊥ u. It follows that

g (Q (u)−∇uξ, Y ) = 0 (5.22)

for all Y ⊥ u. Now, since Q is skew-symmetric, then we have, by virtue of (5.20),

g (Q (u)−∇uξ, u) = −g (∇uξ, u) = (ν − λ) (5.23)

for all (x, u) ∈ T1M . Combining (5.22) and (5.23), we obtain Q (u) = ∇uξ +
(ν − λ)u, and consequently (ι̃Q)(x,u) = (∇uξ)t(x,u) , since ut(x,u) = 0. We deduce

then that V(x,u) = ξh(x,u) + (∇uξ)t = ξc̄(x,u), i.e.

V = ξc̄. (5.24)

Case 2: If d = 0, then we consider the (1, 1) tensor field P given by P (X) =
Q (X)−∇Xξ for all X ∈ TM . Then V can be expressed as V = ξc̄ + ĩP . Recall
that, by (5.20), ξ is homothetic and hence (5.10) holds. Then the system (5.19)
reduces to

(
LV G̃

)
(x,u)

(
Xh, Y h

)
=2 (a+ c) (λ− ν) gx (X,Y ) ;(

LV G̃
)

(x,u)

(
Xh, Y t

)
=ag (∇XP (u) , Y ) ;(

LV G̃
)

(x,u)

(
Xt, Y t

)
=a[g (P (X) , Y ) + g (P (Y ) , X)].

(5.25)

Comparing with (5.1), we obtain

θ = 0, ∇P = 0, and g (P (X) , Y ) + g (P (Y ) , X) = 2 (λ− ν) g (X,Y ) .

Now θ = 0 means by (5.2) that either n = 2 or k = 0.
The converse is straightforward.



28 Mohamed Tahar Kadaoui Abbassi and Noura Amri

References

[1] M.T.K. Abbassi and N. Amri, On conformal vector field on unit tangent sphere
bundles with g-natural metrics, Czech. Math. J. 71 (146) (2021), 75–109.

[2] M.T.K. Abbassi and N. Amri, G. Calvaruso, Kaluza–Klein type Ricci Solitons on
Unit Tangent Sphere Bundles, Diff. Geom. Appl. 59 (2018), 184–203.

[3] M.T.K. Abbassi and G. Calvaruso, g-natural contact metrics on unit tangent sphere
bundles, Monaths. Math. 151 (2007), 89–109.

[4] M.T.K. Abbassi and G. Calvaruso, g-natural metrics of constant curvature on unit
tangent sphere bundles, Arch. Math. (Brno) 48 (2012), 81–95.

[5] M.T.K. Abbassi, G. Calvaruso, and D. Perrone, Harmonic sections of tangent bun-
dles equipped with Riemannian g-natural metrics, Quart. J. Math. 62 (2011) ,
259–288.

[6] M.T.K. Abbassi and O. Kowalski, On g-natural metrics with constant scalar cur-
vature on unit tangent sphere bundles, Topics in Almost Hermitian Geometry and
related fields, Proc. of the Int. Conf. in Honor of K. Sekigawa’s 60th birthday, World
Scientific, 2005, 1–29.

[7] M.T.K. Abbassi and O. Kowalski, Naturality of homogeneous metrics on Stiefel
manifolds SO (m+ 1) /SO (m− 1), Diff. Geom. Appl. 28 (2010), 131–139.

[8] K.M.T. Abbassi and O. Kowalski, On Einstein Riemannian g-natural metrics on
unit tangent sphere bundles, Ann. Global. Anal. Geom. 38 (2010), 11–20.

[9] M.T.K. Abbassi and M. Sarih, On some hereditary properties of Riemannian g-
natural metrics on tangent bundles of Riemannian manifolds, Diff. Geom. Appl. 22
(2005), 19–47.

[10] M.T.K. Abbassi and M. Sarih, On Riemannian g-natural metrics of the form a.gs +
b.gh + c.gv on the tangent bundle of a Riemannian manifold (M, g), Mediterr. J.
Math. 2 (2005), 19–43.

[11] M. Brozos-Vazquez, G. Calvaruso, E. Garcia-Rio, and S. Gavino-Fernandez, Three-
dimensional Lorentzian homogeneous Ricci solitons, Israel J. Math. 188 (2012) ,
385–403.

[12] G. Calvaruso and V. Martin-Molina, Paracontact metric structures on the unit
tangent sphere bundle, Ann. Mat. Pura Appl. 194 (2015), 1359–1380.

[13] G. Calvaruso and D. Perrone, Homogeneous and H-contact unit tangent sphere
bundles, Austral. J. Math. 88 (2010), 323–337.

[14] G. Calvaruso and D. Perrone, Geometry of Kaluza–Klein metrics on the sphere S3,
Ann. Mat. Pura Appl. 192 (2013) , 879–900.

[15] G. Calvaruso and D. Perrone, Metrics of Kaluza–Klein type on the anti-de Sitter
space H3

1, Math. Nachr. 287 (2014), 885–902.

[16] H. D. Cao, Geometry of Ricci solitons, Chinese Ann. Math. Ser. B 27B (2006),
121-–142.

[17] B. Chow and D. Knopf, The Ricci Flow: An Introduction, Mathematical Surveys
and Monographs, 110, Amer. Math. Soc., Providence RI, 2004.

[18] G. Hall, Symmetries and curvature structure in general relativity, World Sci. Lect.
Notes in Physics, 46, 2004.



Natural Ricci Solitons on Tangent and Unit Tangent Bundles 29
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Природнi солiтони Рiччi на дотичних та одиничних
дотичних розшаруваннях

Mohamed Tahar Kadaoui Abbassi and Noura Amri

Розглядаючи псевдорiмановi g-природнi метрики на дотичних роз-
шаруваннях, ми доводимо, що умова бути солiтоном Рiччi є спадковою
в тому сенсi, що структура солiтона Рiччi на дотичному розшаруваннi
породжує структуру солiтона Рiччi на базовому многовидi. Обмежую-
чись одним класом псевдорiманових g-природних метрик, ми показує-
мо, що дотичне розшарування є солiтоном Рiччi тодi i тiльки тодi, коли
базовий многовид є плоским, а потенцiальне векторне поле є повним
пiдйомом конформного векторного поля. Потiм ми надаємо класифiка-
цiю конформних векторних полiв на дотичному розшаруваннi плоского
рiманового многовиду, спорядженого згаданими g-природнiми метрика-
ми. Коли одиничнi дотичнi рзшарування над рiмановим многовидом з
постiйною кривиною надiленi псевдорiмановою метрикою типу Калуци–
Клейна, ми даємо класифiкацiю структур солiтонiв Рiччi, потенцiальнi
векторнi поля яких зберiгають шари, роблячи висновок про iснування
таких структур, що не є ейнштейновими.

Ключовi слова: дотичне розшарування, одиничне дотичне (сфери-
чне) розшарування, g-природнi метрики, метрики типу Калуци–Клейна,
солiтони Рiччi
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