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In the present paper, we deal with the Dirichlet problem for a model
nonlinear elliptic second-order equation with degenerated (with respect to
the independent variables) coefficients, lower term, and L1-right-hand side.
The existence of an entropy solution to the problem under consideration is
proved.
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1. Introduction

Let n > 2 be an arbitrary fixed natural number, Ω be a bounded domain in
Rn and ∂Ω be a boundary of Ω.

We consider a problem on finding a function u : Ω→ R that satisfies (in some
sense) an equation

−
n∑
i=1

Di

(
ν(x)|Diu|p−2Diu

)
+ h(x)g(u) = f(x), x ∈ Ω, (1.1)

and a boundary condition
u
∣∣
∂Ω

= 0. (1.2)

Here and in the sequel we use a notation Di :=
∂

∂xi
, i = 1, . . . , n, and suppose

that p ∈ (1, n), ν : Ω→ R is a measurable function such that

ν ∈ L1
loc(Ω), ν > 0 a.e. in Ω, (1/ν)1/(p−1) ∈ L1(Ω), (1.3)

h ∈ L1(Ω), h > 0 in Ω, g : R → R is a continuous and non-decreasing function
such that g(0) = 0, f ∈ L1(Ω).

Our research presents an actual branch of the modern theory of partial differ-
ential equations. This area includes studying nonlinear equations and variational
inequalities with L1-data or measures as data. These investigations have been
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actively carried out since the 80s of the last century. Today the theory of nonlin-
ear isotropic nondegenerate (with respect to the independent variables) elliptic
second-order equations with L1-right-hand sides is built. So, the concepts of
the weak, entropy and renormalized solutions were introduced, the theorems on
the existence and uniqueness of these types of the solutions were proved, the
conditions of their belonging to some Lebesque and Sobolev spaces were ob-
tained. A significant contribution to the development of this theory was made
by Ph. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, F. Murat, M. Pierre,
J.L. Vázquez, J.-M. Rakotoson, A. Alvino, V. Ferone, A. Mercaldo, L. Orsina,
A. Porretta, S. Segura de León, G. Trombetti, A. Kovalevsky and others.

The main difficulty in studying the solvability of elliptic equations with L1-
right-hand sides is that the right-hand side does not generate a linear continuous
functional on the corresponding energy Sobolev space. As a result, the using of
the well-known theory of monotone operators is impossible. We need to clarify
a concept of the solution of such an equation. In the case of sufficiently regular
right-hand side, we say about a generalized solution. Otherwise, the natural
analogue of the generalized solution is a weak solution (i.e., the solution from
W 1,1 in sense of the integral identity). The existence of weak solutions of the
Dirichlet problem for nonlinear elliptic equations with L1-right-hand sides was
investigated by L. Boccardo, T. Gallouët in [5], [6].

An effective approach for studying the solvability of the Dirichlet problem for
nonlinear elliptic second-order equations with L1-right-hand sides was proposed
by Ph. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J. L. Vázquez
in [4]. The authors defined an entropy solution to the problem under considera-
tion and introduced new functional classes containing entropy solutions. These
classes are a natural extension of the corresponding energy Sobolev spaces. It
is found that if the equation coefficients satisfy the standard conditions of the
growth, coercitivity and strict monotonicity, then there exists a unique entropy
solution for all values of the parameter characterizing the rates of growth of the
coefficients with respect to the corresponding derivatives of unknown function.
The above-mentioned and other close investigations relate to the L1-theory of
nonlinear isotropic nondegenerate (with respect to the independent variables)
second-order equations. As for nonlinear elliptic second-order equations with
L1-data or measures as data with anisotropic or degenerate (with respect to the
independent variables) coefficients, we note the following. The existence of a weak
solution of the Dirichlet problem for a model elliptic equation with anisotropic
and nondegenerate (with respect to the independent variables) coefficients and
measure in the right-hand side was established by L. Boccardo, T. Gallouët,
P. Marcellini in [7]. The existence of weak solutions for a class of anisotropic and
nondegenerate (with respect to the independent variables) equations and locally
integrable data was proved by M. Bendahmane and K.H. Karlsen in [3]. The
solvability of the Dirichlet problem for elliptic equations with isotropic and de-
generate (with respect to the independent variables) coefficients and L1-data or
measures as data was studied by L. Aharouch, E. Azroul, A. Benkirane in [1],
Y. Atik, J.-M. Rakotoson in [2], A.C. Cavalheiro in [8], G.R. Cirmi in [9], F.Q. Li
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in [18].
The questions on the existence and properties of the solutions for anisotropic

and degenerate (with respect to the independent variables) second-order equa-
tions with L1-right-hand sides without lower terms were considered by A. Ko-
valevsky and Yu. Gorban in [16], [17]. Similar questions for the equations with
lower terms were later studied by Yu. Gorban in [10] (the existence of an entropy
solution), and [11] (the uniqueness of an entropy solution). Namely, in [10], the
problem considered is the Dirichlet problem for an equation

−
n∑
i=1

Di(ai(x,∇u)) = F (x, u), x ∈ Ω, (1.4)

with a boundary condition (1.2). Here:

• for each i ∈ {1, . . . , n}, ai : Ω × Rn → R is a Carathéodory function such
that for a.e. x ∈ Ω and for every ξ, ξ′ ∈ Rn, ξ 6= ξ′,

n∑
i=1

(1/νi(x))1/(qi−1)|ai(x, ξ)|qi/(qi−1) 6 ĉ1

n∑
i=1

νi(x)|ξi|qi + g1(x),

n∑
i=1

ai(x, ξ)ξi > ĉ2

n∑
i=1

νi(x)|ξi|qi − g2(x),

n∑
i=1

[ai(x, ξ)− ai(x, ξ′)] (ξi − ξ′i) > 0,

where 1 < qi < n, νi ∈ L1
loc(Ω), νi > 0 a.e. in Ω, (1/νi)

1/(qi−1) ∈ L1(Ω), ĉ1,
ĉ2 > 0 are constants, g1, g2 ∈ L1(Ω), g1, g2 > 0 in Ω;

• F : Ω× R→ R is a Carathéodory function such that for a.e. x ∈ Ω, F (x, ·)
is non-increasing on R, and for any s ∈ R, F (·, s) ∈ L1(Ω).

The main result of [10] is the statement (Theorem 4.1) that under the above
conditions there exists the so-called entropy solution of the Dirichlet problem
(1.4), (1.2). A general approach of [4] was used for proving it. One of the basic
steps of this approach is to get special uniform estimates for the solutions {ul},
l ∈ N, of the approximating Dirichlet problems:

meas{|ul| > k} 6 ĉ3k
−q̂, (1.5)

meas{ν1/qi
i |Diul| > k} 6 ĉ4k

−qiq̂/(1+q̂), i = 1, . . . , n, (1.6)

where k > 1 is an arbitrary real number, q̂ :=
n(q − 1)

(n− 1)q
, q is the harmonic

mean of q1, . . . , qn, ĉ3, ĉ4 are positive constants depending only on n, q1, . . . , qn,
ĉ1, ĉ2, ‖g1‖L1(Ω), ‖g2‖L1(Ω), ‖F (·, 0)‖L1(Ω), ‖F (·,−1)‖L1(Ω), ‖F (·, 1)‖L1(Ω),
‖1/νi‖L1/(qi−1)(Ω), and meas Ω.

In the present paper, we deal with a partial case of equation (1.4):

qi = p, νi = ν, ai(x, ξ) = ν(x)|ξi|p−2ξi, (x, ξ) ∈ Ω× Rn, i = 1, . . . , n,



Entropy Solutions of the Dirichlet Problem 57

F (x, s) = f(x)− h(x)g(s), (x, s) ∈ Ω× R.

The main result of our paper is the theorem on the existence of entropy
solutions to the problem (1.1), (1.2). The approach from [4], mentioned above,
was applied. A model case allows us to clarify some results of [10]. It concerns
uniform estimates (1.5), (1.6). Such inequalities are used for proving the results
on the existence and uniqueness of different types of solutions for equations and
variational inequalities with L1-data or measures as data. Besides, estimates
(1.5), (1.6) are used in studying summability properties of solutions (see, for
example, [14, § 6]). In our simple case, we can obtain an explicit form of the
constants ĉ3, ĉ4 and write down their explicit forms depending on the input
parameters. It allows to improve the summability of entropy solutions in a model
and more complicated cases.

2. Preliminaries

In this section, we introduce some concepts and present the results similar to
those from [15] which will be used in the sequel.

We set

p̂ :=
n(p− 1)

(n− 1)p
, cp,ν := 1 + ‖(1/ν)1/(p−1)‖L1(Ω).

Let W 1,p(ν,Ω) be a linear space of all functions u ∈ W 1,1(Ω) such that
ν|Diu|p ∈ L1(Ω). The mapping

‖u‖1,p,ν =

∫
Ω
|u| dx+

n∑
i=1

(∫
Ω
ν|Diu|p dx

)1/p

is a norm in W 1,p(ν,Ω), and, in view of the second inclusion of (1.3), W 1,p(ν,Ω)
is a Banach space. Moreover, by virtue of the first inclusion of (1.3), we have
C∞0 (Ω) ⊂W 1,p(ν,Ω).

We denote by
◦
W 1,p(ν,Ω) the closure of the set C∞0 (Ω) in the space W 1,p(ν,Ω).

Proposition 2.1. The space
◦
W 1,p(ν,Ω) has the following properties:

(i)
◦
W 1,p(ν,Ω) ⊂

◦
W 1,1(Ω), and for every function u ∈

◦
W 1,p(ν,Ω), we have

‖u‖W 1,1(Ω) 6 cp,ν‖u‖1,p,ν ;

(ii) if uj → u weakly in
◦
W 1,p(ν,Ω), then uj → u strongly in L1(Ω);

(iii)
◦
W 1,p(ν,Ω) is a reflexive space.

Proof. Let u ∈ W 1,p(ν,Ω). Using an inclusion u ∈ W 1,1(Ω) and the Hölder
inequality, we establish
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‖u‖W 1,1(Ω) =

∫
Ω
|u| dx+

n∑
i=1

∫
Ω

(1/ν)1/p ν1/p |Diu| dx 6
∫

Ω
|u| dx

+

n∑
i=1

(∫
Ω

(1/ν)1/(p−1)dx

)(p−1)/p(∫
Ω
ν|Diu|p dx

)1/p

6 cp,ν‖u‖1,p,ν .

So, assertion (i) is true. From this fact and the compactness of the embedding
◦
W 1,1(Ω) in L1(Ω) we deduce (ii). Finally, the proof of (iii) can be found in
[14].

Further, for every k > 0, let Tk : R→ R be a function such that

Tk(s) =

{
s if |s| 6 k,

k sign s if |s| > k.

By analogy with known results for nonweighted Sobolev spaces (see, for in-

stance, [12, Chapter 2]), we have: if u ∈
◦
W 1,p(ν,Ω) and k > 0, then Tk(u) ∈

◦
W 1,p(ν,Ω) and for every i ∈ {1, . . . , n},

DiTk(u) = Diu 1{|u|<k} a. e. in Ω. (2.1)

By
◦
T 1,p(ν,Ω), we denote the set of all functions u : Ω→ R such that for every

k > 0 we have Tk(u) ∈
◦
W 1,p(ν,Ω).

Clearly,
◦
W 1,p(ν,Ω) ⊂

◦
T 1,p(ν,Ω). (2.2)

Definition 2.2. For a function u ∈
◦
T 1,p(ν,Ω) we take

δu(x) := (δ1u(x), . . . , δnu(x)), x ∈ Ω,

where for every i ∈ {1, . . . , n} we put

δiu(x) := lim
k→∞

DiTk(u)(x) for a. e. x ∈ Ω.

Proposition 2.3. Let u ∈
◦
T 1,p(ν,Ω). Then for every k > 0 we have

DiTk(u) = δiu 1{|u|<k} a. e. in Ω, i = 1, . . . , n.

The proof of this proposition is in [13].

From (2.1), (2.2) and Proposition 2.3, it follows that for u ∈
◦
W 1,p(ν,Ω) we

have δiu = Diu a.e. in Ω, i = 1, . . . , n.

Proposition 2.4. Let u ∈
◦
T 1,p(ν,Ω) and v ∈

◦
W 1,p(ν,Ω)∩L∞(Ω). Then u−

v ∈
◦
T 1,p(ν,Ω), and for every k > 0,

DiTk(u− v) = δiu−Div a.e. in {|u− v| < k}, i = 1, . . . , n.
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The proof of this proposition can be found in [14].

Proposition 2.5. Let u ∈
◦
T 1,p(ν,Ω) and w ∈

◦
T 1,p(ν,Ω)∩L∞(Ω). Then for

every k > 0 we have ν |δiu|p−2δiuDiTk(u− w) ∈ L1(Ω), i = 1, . . . , n.

Proof. First of all, we note that there exists a measure zero set E ⊂ Ω such
that

∀x ∈ Ω \ E |w(x)| 6 ‖w‖L∞(Ω).

Fix k > 0, i ∈ {1, . . . , n}. From the definition of the truncated function Tk it
follows that

ν |δiu|p−2δiuDiTk(u− w) = 0 a. e. in {|u− w| > k}. (2.3)

Put k1 = k + ‖w‖L∞(Ω). Using an inclusion {|u − w| < k} \ E ⊂ {|u| < k1}
and Proposition 2.3, we obtain

DiTk1(u) = δiu a. e. in {|u− w| < k}.

From the latter quality and Proposition 2.4, we deduce

ν|δiu|p−2δiuDiTk(u− w) = ν|DiTk1(u)|p−2DiTk1(u)(DiTk1(u)−Diw)

= ν|DiTk1(u)|p − ν|DiTk1(u)|p−2DiTk1(u)Diw a. e. in {|u− w| < k},

and thus∣∣ν |δiu|p−2δiuDiTk(u− w)
∣∣ 6 ν |DiTk1(u)|p + ν |DiTk1(u)|p−1|Diw|

a. e. in {|u− w| < k}. (2.4)

We apply the Young inequality to estimate the second term on the right-hand
side of (2.4):

ν |DiTk1(u)|p−1|Diw| = ν1/pν(p−1)/p |DiTk1(u)|p−1|Diw|
6 ν |DiTk1(u)|p + ν |Diw|p a. e. in {|u− w| < k}. (2.5)

Taking into account (2.4), (2.5) and the summability of the functions
ν |DiTk1(u)|p and ν |Diw|p in Ω, we infer that a function ν |δiu|p−2δiuDiTk(u −
w) is summable a. e. in {|u − w| < k}. This fact and (2.3) provide the required
result.

Proposition 2.6. There exists a positive constant c0 depending on n, p, and

‖(1/ν)1/(p−1)‖L1(Ω) such that for every function u ∈
◦
W 1,p(ν,Ω),(∫

Ω
|u|n/(n−1)dx

)(n−1)/n

6 c0

n∏
i=1

(∫
Ω
ν|Diu|pdx

)1/np

.

The proof of this proposition is in [14].
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3. Existence of the entropy solution to the Dirichlet problem
(1.1), (1.2)

In this section, we define an entropy solution of the problem (1.1), (1.2) and
prove its existence.

Definition 3.1. An entropy solution of the Dirichlet problem (1.1), (1.2) is

a function u ∈
◦
T 1,p(ν,Ω) such that:

(i) hg(u) ∈ L1(Ω);

(ii) for every w ∈
◦
W 1,p(ν,Ω) ∩ L∞, (Ω) and k > 1,∫

Ω

n∑
i=1

ν |δiu|p−2δiuDiTk(u− w) dx+

+

∫
Ω
hg(u)Tk(u− w) dx 6

∫
Ω
f Tk(u− w) dx. (3.1)

Note that Definition 3.1 is well-defined. From Proposition 2.5, it follows that
the first left-hand integral in (3.1) is finite. Using (i) and the boundedness of
Tk(u − w), we obtain that the second left-hand integral in (3.1) is also finite.
Finally, by virtue of the inclusion f ∈ L1(Ω) and the boundedness of Tk(u− w),
we deduce that the right-hand integral in (3.1) is finite too.

Theorem 3.2. Under the above assumptions, there exists an entropy solution
of the Dirichlet problem (1.1), (1.2).

Proof. We will use the approach proposed in [4] to study the solvability of the
nondegenerate (with respect to the independent variables) isotropic second-order
equations with L1-right-hand sides. The proof is in 9 steps.

Step 1. For every l ∈ N, we put

gl(s) := Tl(g(s)), s ∈ R; hl(x) = Tl(h(x)), fl(x) := Tl(f(x)), x ∈ Ω;

Fl(v)(x) := hl(x)gl(v(x)), x ∈ Ω, v : Ω→ R is an arbitrary function.

Clearly, {hl} ⊂ L∞(Ω), {fl} ⊂ L∞(Ω),

∀ l ∈ N ‖hl‖L1(Ω) 6 ‖h‖L1(Ω), ‖fl‖L1(Ω) 6 ‖f‖L1(Ω), (3.2)

lim
l→∞

‖hl − h‖L1(Ω) = 0, lim
l→∞

‖fl − f‖L1(Ω) = 0, (3.3)

Fl(v)(x)v(x) > 0 for a.e. x ∈ Ω, v : Ω→ R is an arbitrary function. (3.4)

From the properties of the higher part of equation (1.1), assertion (3.4) and
the results from [19] on the solvability of equations with monotone operators, we

deduce that for all l ∈ N there exists a unique function ul ∈
◦
W 1,p(ν,Ω) such that∫

Ω

{
n∑
i=1

ν |Diul|p−2DiulDiw + Fl(ul)w

}
dx =

∫
Ω
fl w dx (3.5)
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for every function w ∈
◦
W 1,p(ν,Ω).

By ci, i = 1, 2, . . . , we denote the positive constants depending only on n, p,
‖f‖L1(Ω), ‖h‖L1(Ω), ‖(1/ν)1/(p−1)‖L1(Ω) and meas Ω.

Let us show that for every k, l ∈ N the following inequalities hold:∫
{|ul|<k}

n∑
i=1

ν|Diul|p dx 6 c1k, (3.6)∫
{|ul|>k}

|Fl(ul)| dx 6 c2. (3.7)

In fact, let k, l ∈ N. As ul ∈
◦
W 1,p(ν,Ω), we have Tk(ul) ∈

◦
W 1,p(ν,Ω). Choosing

w = Tk(ul) as a test function in (3.5) and taking into account (2.1), we get∫
{|ul|<k}

n∑
i=1

ν |Diul|p dx+

∫
Ω
Fl(ul)Tk(ul) dx =

∫
Ω
flTk(ul) dx.

In view of (3.2), from the latter equality we obtain∫
{|ul|<k}

n∑
i=1

ν |Diul|p dx+

∫
Ω
Fl(ul)Tk(ul) dx 6 k‖f‖L1(Ω). (3.8)

Assertion (3.4) and the properties of the function Tk imply that

Fl(ul)Tk(ul) > 0 a.e. in Ω, (3.9)

Fl(ul)Tk(ul) = k|Fl(ul)| a.e. in {|ul| > k}. (3.10)

The estimate (3.6) follows from (3.9) and (3.8). Finally, inequality (3.7)
follows from (3.10) and (3.8).

Step 2. Now we show that for every k, l ∈ N,

meas{|ul| > k} 6 c3k
−p̂, (3.11)

meas{ν1/p|Diul| > k} 6 c4k
−pp̂/(1+p̂), i = 1, . . . , n. (3.12)

In fact, let k, l ∈ N. We have |Tk(ul)| = k on {|ul| > k}; then

kn/(n−1) meas{|ul| > k} 6
∫

Ω
|Tk(ul)|n/(n−1)dx. (3.13)

Using Proposition 2.6, (2.1) and (3.6), we obtain(∫
Ω
|Tk(ul)|n/(n−1)dx

)(n−1)/n

6 c0

n∏
i=1

(∫
{|ul|<k}

ν|Diul|pdx
)1/np

6 c0(c1k)1/p.

Inequality (3.11) follows from the latter estimate and (3.13).
Next, we fix i ∈ {1, . . . , n} and set

k∗ := kp/(1+p̂), G := {|ul| < k∗, ν
1/p |Diul| > k}.
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We have

meas{ν1/p |Diul| > k} 6 meas {|ul| > k∗}+ measG. (3.14)

From (3.11), it follows that

meas{|ul| > k∗} 6 c3k
−p̂
∗ . (3.15)

Moreover, in view of the definition of the set G and (3.6), we get

kp measG 6
∫
{|ul|<k∗}

ν |Diul|p dx 6 c1k∗.

Inequality (3.12) follows from the latter estimate and (3.14), (3.15).

Step 3. Assertions (2.1) and (3.6) imply that for every k > 1 the sequence

{Tk(ul)} is bounded in
◦
W 1,p(ν,Ω). As the space

◦
W 1,p(ν,Ω) is reflexive, then there

exists a sequence {zk} ⊂
◦
W 1,p(ν,Ω) and a subsequence of the sequence {ul} (we

denote it by {ul}) such that

∀ k ∈ N Tk(ul)→ zk weakly in
◦
W 1,p(ν,Ω). (3.16)

Step 4. Let us show that the sequence {ul} is fundamental on measure.

Indeed, let k, l, j ∈ N. We fix t > 0 and set

G′ = {|ul| < k, |uj | < k, |ul − uj | > t}.

It is clear that

meas{|ul − uj | > t} 6 meas{|ul| > k}+ meas{|uj | > k}+ measG′. (3.17)

As t 6 |Tk(ul)− Tk(uj)| on G′, we obtain

t measG′ 6
∫

Ω
|Tk(ul)− Tk(uj)| dx.

This inequality, (3.11) and (3.17) imply that for every k, l, j ∈ N,

meas{|ul − uj | > t} 6 2c3k
−p̂ + t−1

∫
Ω
|Tk(ul)− Tk(uj)| dx. (3.18)

Let ε > 0. We fix k ∈ N such that

2c3k
−p̂ 6 ε/2. (3.19)

Taking into account (3.16) and Proposition 2.1, we infer a strong convergence
Tk(ul) → zk in L1(Ω). Then there exists N ∈ N such that for every l, j ∈ N,
l, j > N, ∫

Ω
|Tk(ul)− Tk(uj)| dx 6 εt/2.
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From this inequality, (3.18) and (3.19), we deduce that for every l, j ∈ N, l, j > N,

meas{|ul − uj | > t} 6 ε.

This means that the sequence {ul} is fundamental on measure.
Step 5. Now we show that for every i ∈ {1, . . . , n} the sequence {ν1/pDiul}

is fundamental on measure.
For every t > 0 and l, j ∈ N, we put

Nt(l, j) = meas

{ n∑
i=1

ν1/p |Diul −Diuj | > t

}
.

Besides, for every t > 0, q, k, l, j ∈ N, we set

Et,q,k(l, j) =

{
n∑
i=1

ν1/p|Diul −Diuj | > t,

n∑
i=1

ν1/p|Diul| 6 q,
n∑
i=1

ν1/p|Diuj | 6 q, |ul − uj | <
1

k

}
.

Using (3.12), we establish that for every t > 0, q, k, l, j ∈ N,

Nt(l, j) 6 2c4n
n+1q−pp̂/(1+p̂) + meas{|ul − uj | > 1/k}+ measEt,q,k(l, j). (3.20)

Further, we get one estimate for some integrals over Et,q,k(l, j). So we intro-
duce now auxiliary functions and sets.

Let for every x ∈ Ω, Φx : Rn × Rn → R be a function such that for every
pair (ξ, ξ′) ∈ Rn × Rn,

Φx(ξ, ξ′) =

n∑
i=1

ν(x)
[
|ξi|p−2ξi − |ξi′|p−2ξ′i)

]
(ξi − ξ′i).

Note that from the definition of Φx it follows that

(i) for every x ∈ Ω \ E, the function Φx is continuous on Rn × Rn;

(ii) for every x ∈ Ω \ E and ξ, ξ′ ∈ Rn, ξ 6= ξ′, we have Φx(ξ, ξ′) > 0.

Put for every t > 0, q > t, and x ∈ Ω,

Gt,q(x) =

{
(ξ, ξ′) ∈ Rn × Rn :

n∑
i=1

ν1/p(x)|ξi| 6 q,

n∑
i=1

ν1/p(x)|ξ′i| 6 q,
n∑
i=1

ν1/p(x)|ξi − ξ′i| > t

}
.

As ν > 0 a.e. in Ω, then there exists a set Ẽ ⊂ Ω, meas Ẽ = 0, such that the set
Gt,q(x) is nonempty for every t > 0, q > t, and x ∈ Ω \ Ẽ.
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Let for every t > 0 and q > t, µt,q : Ω→ R be a function such that

µt,q(x) =

 min
Gt,q(x)

Φx if x ∈ Ω \ Ẽ

0 if x ∈ Ẽ
.

For every t > 0 and q > t, we have µt,q > 0 a.e. in Ω, and µt,q ∈ L1(Ω).
Let t > 0, q > t + 1, and k, l, j ∈ N. We fix x ∈ Et,q,k(l, j) \ Ẽ, and set

ξ = ∇ul(x), ξ′ = ∇uj(x). As (ξ, ξ′) ∈ Gt,q(x), then µt,q(x) 6 Φx(ξ, ξ′). This
inequality and the definition of the function Φx imply that

µt,q(x) 6
n∑
i=1

ν
[
|Diul(x)|p−2Diul(x)− |Diuj(x)|p−2Diuj(x)

]
(Diul(x)−Diuj(x)).

Then, taking into account the nonnegativity of the right-hand side of the latter
inequality and (2.1), we obtain∫

Et,q,k(l,j)
µt,q dx 6

∫
Ω

{
n∑
i=1

ν
[
|Diul|p−2Diul

− |Diuj |p−2Diuj
]
DiT1/k(ul − uj)

}
dx. (3.21)

In view of (3.5), we have∫
Ω

{
n∑
i=1

ν|Diul|p−2DiulDiT1/k(ul − uj)

}
dx

=

∫
Ω
fl T1/k(ul − uj) dx−

∫
Ω
Fl(ul)T1/k(ul − uj) dx,∫

Ω

{
n∑
i=1

ν|Diuj |p−2DiujDiT1/k(uj − ul)

}
dx

=

∫
Ω
fj T1/k(uj − ul) dx−

∫
Ω
Fj(uj)T1/k(uj − ul) dx.

From these equalities and (3.21), it follows that∫
Et,q,k(l,j)

µt,q dx 6
1

k

∫
Ω
|fl − fj | dx+

1

k

∫
Ω
|Fl(ul)− Fj(uj)| dx. (3.22)

As h > 0 in Ω, from the definitions of Fl and Fj , and (3.7), we infer that for
every l, j ∈ N,∫

Ω
|Fl(ul)− Fj(uj)| dx 6 2c2 + 4(g(1)− g(−1))‖h‖L1(Ω).

Using the latter estimate and (3.22), we find that for every t > 0, q > t + 1,
k, l, j ∈ N, the following inequality holds:∫

Et,q,k(l,j)
µt,q dx 6

1

k

∫
Ω
|fl − fj | dx+

2

k

(
c2 + 2g(1)− 2g(−1)

)
‖h‖L1(Ω). (3.23)
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The sequence {ul} is fundamental on measure. Then there exists an increasing
sequence {nk} ⊂ N such that for every k, l, j ∈ N, l, j > nk, we have

meas{|ul − uj | > 1/k} 6 1/k. (3.24)

Let t > 0 and ε > 0. We fix q > t+ n such that

2c4n
n+1q−pp̂/(1+p̂) 6 ε/4. (3.25)

Put for every k ∈ N,
αk = sup

l,j>nk

measEt,q,k(l, j).

Let us show that αk → 0. Assume the converse. Then there exists τ > 0, an
increasing sequence {ks} ⊂ N and the sequences {ls}, {js} ⊂ N such that for
every s ∈ N we have ls, js > nks and

measEt,q,ks(ls, js) > τ. (3.26)

Assume Gs = Et,q,ks(ls, js), s ∈ N. In view of (3.23) and (3.2), for every s ∈ N
we get ∫

Gs

µt,q dx 6
2

ks

(
c5 + 2g(1)− 2g(−1)

)
‖h‖L1(Ω).

It means that

lim
s→∞

∫
Gs

µt,q dx = 0.

From this assertion, taking into account µt,q ∈ L1(Ω) and µt,q > 0 a.e. in Ω, we
infer that measGs → 0. This fact contradicts to (3.26). Hence we conclude that
αk → 0.

Finally, we fix k ∈ N such that the inequalities hold:

1/k 6 ε/4, αk 6 ε/2. (3.27)

Let l, j ∈ N, l, j > nk. From (3.20), (3.24), (3.25) and (3.27), it follows that
Nt(l, j) 6 ε. It means that for every i ∈ {1, . . . , n} the sequence {ν1/pDiul} is
fundamental on measure.

Step 6. From the results of Steps 4, 5 and by F. Riesz’s theorem, we get the
following facts: there exist measurable functions u : Ω→ R and vi : Ω→ R, i =
1, n, such that the sequence {ul} converges to u on measure, and for every i ∈
{1, . . . , n} the sequence {ν1/pDiul} converges to vi on measure. As is generally
known, we can extract the subsequences converging almost everywhere in Ω to
the corresponding functions. We may assume without loss of generality that

ul → u a.e. in Ω, (3.28)

∀ i ∈ {1, . . . , n} ν1/pDiul → vi a.e. in Ω. (3.29)

From (3.28), (3.16) and Proposition 2.1, we deduce that for every k ∈ N,

Tk(u) ∈
◦
W 1,p(ν,Ω), (3.30)
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Tk(ul)→ Tk(u) weakly in
◦
W 1,p(ν,Ω). (3.31)

Let us show that u ∈
◦
T 1,p(ν,Ω). Indeed, let k > 0. Take r ∈ N, r > k. In

view of (3.30), we have Tr(u) ∈
◦
W 1,p(ν,Ω). Hence, by inclusion (2.2), we obtain

Tk(Tr(u)) ∈
◦
W 1,p(ν,Ω). This fact and the equality Tk(u) = Tk(Tr(u)) imply that

Tk(u) ∈
◦
W 1,p(ν,Ω). Therefore, u ∈

◦
T 1,p(ν,Ω).

Step 7. Now we show that

∀ i ∈ {1, . . . , n} Diul → δiu a.e. in Ω. (3.32)

In fact, let i ∈ {1, . . . , n}. In view of (3.28), there exists a set E′ ⊂ Ω,
measE′ = 0, such that

∀x ∈ Ω \ E′ : ul(x)→ u(x), (3.33)

and in view of (3.29), there exists a set E′′ ⊂ Ω, measE′′ = 0, such that

∀x ∈ Ω \ E′′ ν1/p(x)Diul(x)→ vi(x). (3.34)

Fix k ∈ N. By (2.1), if l ∈ N, then there exists a set E(l) ⊂ Ω, measE(l) = 0,
such that

∀x ∈ {|ul| < k} \ E(l) : DiTk(ul)(x) = Diul(x). (3.35)

We denote by Ê a union of sets E′, E′′ and E(l), l ∈ N. Clearly, meas Ê = 0. Let
x ∈ {|u| < k} \ Ê. In view of (3.33), there exists l0 ∈ N such that for every l ∈
N, l > l0, we have |ul(x)| < k. Let l ∈ N, l > l0. Then x ∈ {|ul| < k} \ E(l) and,
according to (3.35), we get

ν1/p(x)DiTk(ul)(x) = ν1/p(x)Diul(x).

From this equality and (3.34), we deduce that ν1/pDiTk(ul)(x)→ vi(x) . Thus,

ν1/pDiTk(ul)→ vi a.e. in {|u| < k}. (3.36)

Besides, in view of (2.1) and (3.6), for every l ∈ N,∫
Ω
ν|DiTk(ul)|p dx 6 c1k. (3.37)

Using Fatou’s lemma, from (3.36) and (3.37) we infer that the function |vi|p is
summable on {|u| < k}.

Further, let ϕ : Ω→ R be a measurable function such that |ϕ| 6 1 in Ω, and
let ε > 0. As the function |vi| is summable on {|u| < k}, then there exists ε1 ∈
(0, ε) such that for every measurable set G ⊂ {|u| < k}, measG 6 ε1, we have∫

G
|vi| dx 6 ε. (3.38)
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Moreover, in view of (3.36) and Egorov’s theorem, there exists a measurable set
Ω′ ⊂ {|u| < k} such that

meas({|u| < k} \ Ω′) 6 ε1, (3.39)

ν1/pDiTk(ul)→ vi uniformly in Ω′. (3.40)

From (3.38) and (3.39), we infer that∫
{|u|<k}\Ω′

|vi| dx 6 ε. (3.41)

From (3.40), we deduce that there exists l1 ∈ N such that for every l ∈ N, l >
l1, the following inequality holds:∫

Ω′
|ν1/pDiTk(ul)− vi| dx 6 ε. (3.42)

Let l ∈ N, l > l1. Using (3.41), (3.42), the Hölder inequality, (3.39) and (3.37),
we get∣∣∣∣∣
∫
{|u|<k}

[ ν1/pDiTk(ul)− vi]ϕdx

∣∣∣∣∣ 6 2ε+

∫
{|u|<k}\Ω′

ν1/p|DiTk(ul)| dx

6 2ε+ ε(p−1)/p

(∫
Ω
ν|DiTk(ul)|pdx

)1/p

6 2ε+ ε(p−1)/p(c1k)1/p.

As ε is an arbitrary constant, from the latter estimate it follows that

lim
l→∞

∫
{|u|<k}

[ ν1/pDiTk(ul)− vi]ϕdx = 0. (3.43)

On the other hand, let F :
◦
W 1,p(ν,Ω)→ R be a functional such that for every

function v ∈
◦
W 1,p(ν,Ω),

〈F, v〉 =

∫
{|u|<k}

(
ν1/pDiv

)
ϕdx.

It is easy to see that F ∈ (
◦
W 1,p(ν,Ω))∗. Hence, by virtue of (3.31), we have

〈F, Tk(ul)〉 → 〈F, Tk(u)〉.

This fact and the definition of the functional F imply that

lim
l→∞

∫
{|u|<k}

(
ν1/pDiTk(ul)

)
ϕdx =

∫
{|u|<k}

(
ν1/pDiTk(u)

)
ϕdx. (3.44)

From (3.43) and (3.44), we deduce that∫
{|u|<k}

[
vi − ν1/pDiTk(u)

]
ϕdx = 0.
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In turn, from this equality and Proposition 2.1, we infer that

vi = ν1/pδiu a.e. in {|u| < k}.

Since k ∈ N is an arbitrary number, from the latter assertion it follows that

vi = ν1/pδiu a.e. in Ω. (3.45)

Taking into account that ν > 0 a.e. in Ω, from (3.29) and (3.45), we obtain that
Diul → δiu a.e. in Ω. Thus, (3.32) is proved. Then

∀ i ∈ {1, . . . , n} ν |Diul|p−2Diul → ν |δiu|p−2δiu a.e. in Ω. (3.46)

Step 8. Let us show that the following assertions are fulfilled:

hg(u) ∈ L1(Ω), (3.47)

Fl(ul)→ hg(u) strongly in L1(Ω). (3.48)

Indeed, in view of (3.28), we have

Fl(ul)→ hg(u) a.e. in Ω. (3.49)

Moreover, using (3.7) and the conditions on the functions h, g, we get for every
l ∈ N, ∫

Ω
|Fl(ul)| dx 6 c6.

From this fact, (3.49), an inclusion h ∈ L1(Ω) and Fatou’s lemma, we obtain
(3.47).

Now let us prove (3.48). Firstly, we establish that for every k, l ∈ N the
following estimate holds:∫

{|ul|>2k}
|Fl(ul)| dx 6

∫
{|ul|>k}

|f | dx+ ‖fl − f‖L1(Ω). (3.50)

Let z ∈ C1(R) be a function such that 0 6 z 6 1 on R, z = 0 on [−1; 1], z =
1 on (−∞;−2] ∪ [2; +∞), and for every s ∈ R, z′(s) sign s > 0.

Fix arbitrary k, l ∈ N, and denote by zk : R → R a function such that for
every s ∈ R,

zk(s) = T1

( s
k

)
z
( s
k

)
. (3.51)

From the properties of the functions T1 and z, it follows that for every s ∈ R,

|zk(s)| 6 1. (3.52)

Besides,

∀s ∈ R |s| 6 k ⇒ zk(s) = 0; (3.53)

∀s ∈ R |s| > 2k ⇒ |zk(s)| = 1. (3.54)
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Definition (3.51) implies that zk(ul) ∈
◦
W 1,p(ν,Ω), and

Dizk(ul) = k−1z′
(ul
k

)
T1

(ul
k

)
Diul a.e. in Ω, i = 1, . . . , n. (3.55)

Substituting w = zk(ul) into (3.5) and taking into account (3.52), (3.53), we get

∫
Ω

{
n∑
i=1

ν |Diul|p−2DiulDizk(ul)

}
dx+

∫
Ω
Fl(ul) zk(ul) dx

6
∫
{|ul|>k}

|f | dx+ ‖fl − f‖L1(Ω). (3.56)

We denote by I ′k,l the first integral in the left-hand side of (3.56). In view of the
definition of the function z

∀s ∈ R
(
|s| 6 k or |s| > 2k

)
⇒ |z′(s)| = 0. (3.57)

Using (3.55) and (3.57), we establish that

I ′k,l =
1

k

∫
{k6|ul|62k}

[
z′
(ul
k

)
T1

(ul
k

){ n∑
i=1

ν |Diul|p
}]

dx. (3.58)

From the property of the truncated function and our condition z′(s) sign s > 0,
∀s ∈ R, it follows that almost everywhere in {k 6 |ul| 6 2k},

z′
(ul
k

)
T1

(ul
k

)
= z′

(ul
k

)
sign

(ul
k

)
> 0.

Taking into account this fact and our condition (3.58), we deduce that

I ′k,l > 0.

This and (3.56) imply∫
Ω
Fl(ul)zk(ul) dx 6

∫
{|ul|>k}

|f | dx+ ‖fl − f‖L1(Ω). (3.59)

Note that in view of (3.4) and the definition of the function zk, we have

Fl(ul)zk(ul) > 0 a.e. in Ω,

and in view of (3.54), we get

Fl(ul)zk(ul) = |Fl(ul)| a.e. in {|ul| > 2k}.

Then ∫
Ω
Fl(ul)zk(ul) dx >

∫
{|ul|>2k}

|Fl(ul)| dx.

Finally, assertion (3.50) is derived from the latter inequality and (3.59).
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Next, we fix an arbitrary ε > 0. It is clear that there exists ε1 > 0 such that
for every measurable set G ⊂ Ω, measG 6 ε1,∫

G
|f | dx 6 ε,

∫
G
|h||g(u)| dx 6 ε.

We fix k ∈ N such that the following inequalities hold:

c3k
−p 6 ε1. (3.60)

As h ∈ L1(Ω), we infer that the function h (g(2k)− g(−2k)) belongs to L1(Ω).
Hence, there exists ε2 > 0 such that for every measurable set G ⊂ Ω, measG 6
ε2, ∫

G
|h| (g(2k)− g(−2k)) dx 6 ε.

In view of (3.49), there exists a measurable set Ω1 ⊂ Ω such that

meas(Ω \ Ω1) 6 min(ε1, ε2), (3.61)

and Fl(ul) → hg(u) uniformly in Ω1. Then there exists L1 ∈ N such that for
every l ∈ N, l > L1, ∫

Ω1

|Fl(ul)− hg(u)| dx 6 ε. (3.62)

Besides, in view of (3.3), there exists L2 ∈ N such that for every l ∈ N, l > L2,

‖hl − h‖L1(Ω) 6 ε, ‖fl − f‖L1(Ω) 6 ε. (3.63)

Now fix l ∈ N, l > max(L1, L2). Using (3.61) and (3.62), we obtain

‖Fl(ul)− hg(u)‖L1(Ω)

6
∫
{|ul|>2k}

|Fl(ul)| dx+

∫
(Ω\Ω1)∩{|ul|<2k}

|Fl(ul)| dx+ 2ε. (3.64)

By virtue of (3.11) and (3.60), we get meas{|ul| > k} 6 ε1. Then∫
{|ul|>k}

|f | dx 6 ε. (3.65)

From (3.50), (3.63) and (3.65), we deduce∫
{|ul|>2k}

|Fl(ul)| dx 6 3ε. (3.66)

In view of the definition of the function Fl, we have

|Fl(ul)| 6 |h| (g(2k)− g(−2k)) a.e. in {|ul| < 2k}. (3.67)

According to the (3.61), we find∫
Ω\Ω1

|h| (g(2k)− g(−2k)) dx 6 ε. (3.68)
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From (3.67) and (3.68), it follows that∫
(Ω\Ω1)∩{|ul|<2k}

|Fl(ul)| dx 6 ε. (3.69)

Using (3.64), (3.66) and (3.69), we infer

‖Fl(ul)− hg(u)‖L1(Ω) 6 6ε.

Therefore, ‖Fl(ul)− hg(u)‖L1(Ω) → 0. Assertion (3.48) is proved.

Step 9. Let w ∈
◦
W 1,p(ν,Ω) ∩ L∞(Ω), k > 1. Now we show that

∫
Ω

n∑
i=1

ν |δiu|p−2δiuDiTk(u− w) dx

+

∫
Ω
hg(u)Tk(u− w)dx 6

∫
Ω
f Tk(u− w)dx. (3.70)

Put

H = {|u− w| < k}, H0 = {|u− w| = k},

and let for every l ∈ N,

Hl = {|ul − w| < k} \H0, El = {|ul − w| < k} ∩H0.

First of all, we prove that for every function ϕ ∈ L1(Ω),∫
Hl

ϕdx→
∫
H
ϕdx. (3.71)

Indeed, let ϕ ∈ L1(Ω). For every j ∈ N put

H(j) = {|u− w| < k − 1/j}, H̃(j) = {|u− w| > k + 1/j}.

We have

meas
(
H \H(j)

)
→ 0, meas

(
{|u− w| > k} \ H̃(j)

)
→ 0. (3.72)

We fix an arbitrary ε > 0. In view of the property of Lebesgue integral absolute
continuity and (3.72), there exists j ∈ N such that∫

H\H(j)

|ϕ| dx 6 ε/4,

∫
{|u−w|>k}\H̃(j)

|ϕ| dx 6 ε/4. (3.73)

Moreover, in view of absolute continuity of Lebesgue integral, (3.28) and Egorov’s
theorem, there exists a measurable set Ω′ ⊂ Ω such that∫

Ω\Ω′
|ϕ| dx 6 ε/4, (3.74)
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ul → u uniformly in Ω′. (3.75)

Assertion (3.75) means that we can find l0 ∈ N such that for every l ∈ N, l >
l0, and x ∈ Ω′,

|ul(x)− u(x)| < 1/j. (3.76)

Let l ∈ N, l > l0. From (3.76), it follows that(
H(j) \Hl

)
∩ Ω′ = ∅, {|ul − w| < k} ∩ H̃(j) ∩ Ω′ = ∅.

Then

H \Hl ⊂
(
H \H(j)

)
∪
(
Ω \ Ω′

)
, Hl \H ⊂

(
{|u− w| > k} \ H̃(j)

)
∪
(
Ω \ Ω′

)
.

These inclusions, (3.73) and (3.74) imply that∫
H\Hl

|ϕ| dx 6 ε/2,

∫
Hl\H

|ϕ| dx 6 ε/2.

Hence, ∣∣∣∣ ∫
Hl

ϕdx−
∫
H
ϕdx

∣∣∣∣ 6 ε.

The latter estimate means that (3.71) is true.
Further, put

k1 = k + ‖w‖L∞(Ω), ϕ1 =
n∑
i=1

ν |DiTk1+1(u)|p−2DiTk1+1(u)Diw,

and for every l ∈ N,

ψl =
n∑
i=1

ν |Diul|p,

S′l =

∫
Hl

{ n∑
i=1

ν
[
|Diul|p−2Diul − |DiTk1+1(u)|p−2DiTk1+1(u)

]
Diw

}
dx,

S′′l =

∫
El

{ n∑
i=1

ν|Diw|p−2Diw [Diul −Diw]

}
dx.

We fix an arbitrary l ∈ N. In view of (3.5), we have∫
Ω

n∑
i=1

ν |Diul|p−2DiulDiTk(ul − w) dx =

∫
Ω

(fl − Fl(ul))Tk(ul − w) dx. (3.77)

Taking into account (2.1) and the fact that for almost every x ∈ Ω and every
ξ, ξ′ ∈ Rn, ξ 6= ξ′,

n∑
i=1

ν(x)
[
|ξi|p−2ξi − |ξ′i|p−2ξ′i

]
(ξi − ξ′i) > 0,
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we infer∫
Ω

{ n∑
i=1

ν |Diul|p−2DiulDiTk(ul − w)

}
dx

>
∫
Hl

{ n∑
i=1

ν |Diul|p−2Diul [Diul −Diw]

}
dx+ S′′l .

From this inequality and (3.77) we obtain∫
Hl

{ n∑
i=1

ν |Diul|p
}
dx 6

∫
Hl

{ n∑
i=1

ν |Diul|p−2DiulDiw

}
dx

+

∫
Ω

(fl − Fl(ul))Tk(ul − w) dx− S′′l .

Hence, for every l ∈ N,∫
Hl

ψl dx 6
∫

Ω
(fl − Fl(ul))Tk(ul − w) dx+

∫
Hl

ϕ1 dx+ S′l − S′′l . (3.78)

Note that by virtue of (3.3) and (3.28), we get fl Tk(ul − w) → f Tk(u − w)
strongly in L1(Ω). Therefore,∫

Ω
fl Tk(ul − w) dx→

∫
Ω
f Tk(u− w) dx. (3.79)

Besides, in view of (3.48) and (3.28), we obtain

Fl(x, ul)Tk(ul − w)→ (f − F (x, u))Tk(u− w) strongly in L1(Ω).

Hence, ∫
Ω
Fl(ul)Tk(ul − w) dx→

∫
Ω
hg(u)Tk(u− w) dx. (3.80)

As u ∈
◦
T 1,p(ν,Ω), then we have Tk(u) ∈

◦
W 1,p(ν,Ω). Besides, w ∈

◦
W 1,p(ν,Ω).

From two latter inclusions and the Young inequality, we imply ϕ1 ∈ L1(Ω). Thus,
using (3.71), we deduce that ∫

Hl

ϕ1 dx→
∫
H
ϕ1 dx. (3.81)

Now we prove that
S′l → 0. (3.82)

Indeed, let ε ∈ (0, 1). In view of the property of Lebesgue integral absolute
continuity, (3.28), (3.46) and Egorov’s theorem, there exists a measurable set
Ω1 ⊂ Ω such that ∫

Ω\Ω1

|ϕ1| dx 6 ε, (3.83)
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ul → u uniformly in Ω1, (3.84)
n∑
i=1

ν |Diul|p−2DiulDiw →
n∑
i=1

ν |δiu|p−2δiuDiw uniformly in Ω1. (3.85)

Assertion (3.84) means that we can find l0 ∈ N such that for every l ∈ N, l > l0,
and x ∈ Ω1,

|ul(x)− u(x)| 6 ε. (3.86)

Moreover, in view of (3.85), there exists l1 ∈ N such that for every l ∈ N, l > l1,∫
Ω1

∣∣∣∣∣
n∑
i=1

ν |Diul|p−2DiulDiw −
n∑
i=1

ν |δiu|p−2δiuDiw

∣∣∣∣∣ dx 6 ε. (3.87)

Let l ∈ N, l > max(l0, l1). As w ∈ L∞(Ω), there exists a set Ê ⊂ Ω, meas Ê =
0, such that for every x ∈ Ω \ Ê we have |w(x)| 6 ‖w‖L∞(Ω). From this fact

and (3.86), it follows that (Hl ∩ Ω1) \ Ê ⊂ {|u| < k1 + 1}. Using this inclusion,
Proposition 2.3, and (3.87), we obtain∫

Hl∩Ω1

∣∣∣∣∣
n∑
i=1

ν |Diul|p−2DiulDiw − ϕ1

∣∣∣∣∣ dx 6 ε.

The latter inequality and (3.83) imply that

|S′l| 6 2ε+
n∑
i=1

∫
Hl\Ω1

ν |Diul|p−1 |Diw| dx. (3.88)

Taking into account the Hölder inequality, an inclusion Hl \ Ê ⊂ {|ul| < k1},
(3.6) and (3.83), we establish that for every i ∈ {1, . . . , n},∫

Hl\Ω1

ν |Diul|p−1 |Diw| dx 6 (c1k1 + 1)ε.

From this and (3.88) we deduce

|S′l| 6 2ε+ n(c1k1 + 1)ε.

Thus, (3.82) is true.

Further, we show that

S′′l → 0. (3.89)

It suffices to take measH0 > 0. Let i ∈ {1, . . . , n}. As u ∈
◦
T 1,p(ν,Ω) and w ∈

◦
W 1,p(ν,Ω) ∩ L∞(Ω), by virtue of Proposition 2.4, we have u − w ∈

◦
T 1,p(ν,Ω).

Hence, from Proposition 2.3 it follows that

DiTk(u− w) = 0 a.e. in H0. (3.90)
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On the other hand, for almost every x ∈ H0, the inequality |u(x)| < k1 + 1 holds.
So, Tk(u− w) = Tk1+1(u)− w a.e. in H0. Therefore,

DiTk(u− w) = DiTk1+1(u)−Diw a.e. in H0.

Then, taking into account (3.90), we get DiTk1+1(u) = Diw a.e. in H0. This and
Proposition 2.3 imply δiu = Diw a.e. in H0. From this result and (3.32) we infer
that for every i ∈ {1, . . . , n} Diul → Diw a.e. in H0. Hence,

n∑
i=1

ν |Diw|p−2Diw [Diul −Diw]→ 0 a.e. in H0. (3.91)

Next, we put

ϕ2 =
n∑
i=1

ν |Diw|p.

As w ∈
◦
W 1,p(ν,Ω), the function ϕ2 is summable on Ω.

We fix an arbitrary ε > 0. In view of the property of Lebesgue integral
absolute continuity, (3.91) and Egorov’s theorem, there exists a measurable set
Ω2 ⊂ H0 such that ∫

H0\Ω2

ϕ2 dx 6 ε, (3.92)

n∑
i=1

ν |Diw|p−2Diw [Diul −Diw]→ 0 uniformly in Ω2.

The latter property means that me can find l0 ∈ N such that for every l ∈ N,
l > l0, ∫

Ω2

∣∣∣∣∣
n∑
i=1

ν |Diw|p−2Diw [Diul −Diw]

∣∣∣∣∣ dx 6 ε. (3.93)

Let l ∈ N, l > l0. Using (3.92) and (3.93), we infer that

|S′′l | 6 2ε+
n∑
i=1

∫
El\Ω2

ν |Diw|p−1 |Diul| dx. (3.94)

By the virtue of the Hölder inequality, (3.92) and (3.6), we deduce that for every
i ∈ {1, . . . , n},∫

El\Ω2

ν |Diw|p−1 |Diul| dx

6

(∫
El\Ω2

ϕ2 dx

)(p−1)/p(∫
{|ul|<k1}

ν|Diul|pdx

)1/p

6 ε(p−1)/p(c1k1)1/p.

This fact along with (3.94) and an arbitrariness of ε implies that (3.89) is true.
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Further, let χ : Ω → R be a characteristic function of the set H, and let for
every l ∈ N, χl : Ω→ R be a characteristic function of the set Hl. We have

lim
l→∞

χl > χ a.e. in Ω. (3.95)

Indeed, in view of (3.28) there exists a set E0 ⊂ Ω, measE0 = 0, such that for
every x ∈ Ω \ E0 ul(x) → u(x). Let x ∈ Ω \ E0. If x 6∈ H, then χ(x) = 0.
Hence, χ(x) 6 χl(x), for all l ∈ N. Let x ∈ H. As ul(x)→ u(x), there exists l1 ∈
N such that for every l ∈ N, l > l1, we have |ul(x) − u(x)| < k − |u(x) − w(x)|.
Then, for arbitrary l ∈ N, l > l1, we get |ul(x) − w(x)| < k. Therefore, x ∈ Hl

and χl(x) = 1 = χ(x). Thus, in any case we have χ(x) 6 lim
l→∞

χl(x) and assertion

(3.95) holds.

From (3.95) and (3.32) it follows that

lim
l→∞

(ψlχl) >
n∑
i=1

ν|δiu|pχ a.e. in Ω. (3.96)

Using (3.78)–(3.82), (3.89), Fatou’s lemma and (3.96), we establish that the
function (

∑n
i=1 ν|δiu|p)χ is summable in Ω and∫

Ω

{ n∑
i=1

ν|δiu|p
}
χdx 6

∫
Ω

(f − hg(u))Tk(u− w) dx+

∫
H
ϕ1 dx.

From the latter inequality and Propositions 2.3 and 2.4 we obtain (3.70). From

this fact, an inclusion u ∈
◦
T 1,p(ν,Ω), and when the conditions (i), (ii) of Defi-

nition 3.1 are satisfied, we deduce that u is an entropy solution to the Dirichlet
problem (1.1), (1.2).
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Ентропiйнi розв’язки задачi Дiрiхле для деяких
нелiнiйних елiптичних вироджених рiвнянь другого

порядку
Yuliya Gorban and Anastasiia Soloviova

У роботi дослiджено розв’язнiсть задачi Дiрiхле для модельного не-
лiнiйного елiптичного рiвняння другого порядку з iзотропними i ви-
родженими (за незалежними змiнними) коефiцiєнтами, молодшим чле-
ном та L1-правою частиною. Встановлено умови iснування ентропiйного
розв’язку розглянутої задачi.

Ключовi слова: виродженi елiптичнi рiвняння, L1-права частина, за-
дача Дiрiхле, ентропiйний розв’язок, iснування розв’язкiв
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