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On a Spectral Inverse Problem in
Perturbation Theory

V.A. Marchenko, A.V. Marchenko, and V.A. Zolotarev

_ We consider an inverse spectral problem for Sturm-Liouville operators
Hy defined on the interval [a,b] by a certain potential V € L2?[a,b] and
mixed separated boundary conditions. We show that if the L'-norm of V is
small enough, then there exists V,pp such that ||V — Vippllre = O(|V]|%1)
and we indicate an algorithm to find V,p,. The algorithm determines the
Fourier coefficients of V,p, with respect to eigenfunctions {¢x 0}72; of the
unperturbed operator Hy via eigenvalues {\ v }72 ; of the “perturbed” ope-
rator ﬁv, the values of its eigenfunctions {5 1 }72, at the endpoints of
[a,b], and values of {¢5 v}, and their derivatives at the middle of [a, D].
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1. Introduction

The perturbation theory of self-adjoined operators compares two operators,
one of which, ﬁ[(), is known and possesses good analytical properties (it is called
the unperturbed operator), while the second ﬁv = ﬁo + 17 the perturbed one,
differs from HO by a small term V called the perturbation. In what follows we
always denote objects related to a perturbed operator with an index @ = V' and
those for unperturbed operator with an index o = 0.

The direct problem of spectral theory is to find the spectral data (elgenvalues
{Erv}32, and Correspondmg eigenfunctions {¢, 1 }7° ) of Hv given those of Ho
and the perturbation V. In particular, spectral perturbation theory investigates
what impact small perturbations have on the spectral data, see, e.g., [1]. It is
convenient to define the smallness of the perturbation in terms of an appropriate
norm ||V|| of V. The direct problem of the first order perturbation theory is
then to find the spectral data of the perturbed operator up to terms of the order
o (IV1)

The inverse problem requires doing the opposite: given the spectral data of
the perturbed operator ﬁv one has to find the perturbation V. Note that if the
complete set of spectral data, i.e., all the eigenvalues and eigenfunctions of fIV
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are known, then the inverse problem is trivial, because we have by the spectral
theorem (in a simple case of discrete spectrum)

Hy =" Epy ey ® Gy (1.1)
K

In practice, however, the complete spectral data, ie., {Epv}32, and
{Wr,v}2,, of the perturbed operator usually are not known. Therefore a sig-
nificant part of the inverse problem studies consists in determining the properties
of perturbation that can be recovered given some incomplete spectral data and
specifying these data. In particular, the first order perturbation theory provides
linear in V relationships between the change in certain spectral data and the
change of the operator itself (perturbation ‘7) Of course one has to make certain
assumptions about the perturbation.

This paper deals with a particular case of the problem formulated above where
Hy is the ordinary differential operator of second order defined on a finite inter-
val of the real axis and having mixed boundary conditions (the Sturm-Liouville
operator)

Hy =-D2+V, (1.2)

where 13323 is the operator of the second derivative and Vis an operator of multi-
plication by a real-valued function V' called the potential. We consider the case
where the domains of ﬁo and ﬁv coincide.

We show, that the function V' can be recovered up to the second order of
magnitude in its norm provided certain partial spectral data of the perturbed
operator are known. These are all the eigenvalues, the values of corresponding
eigenfunctions at the ends of the interval and values of these eigenfunctions and
their derivatives in the middle of the interval (unlike the complete of set of spectral
data in (1.1)). The exact formulation of our results is given in the Main Theorem
at the end of Section 3.

We want to stress that we do not consider in this paper the problem of exis-
tence of a Sturm—Liouville operator with given spectral data. This is a separate
question. We will just assume that such an operator exists and we recover its
potential V' up to terms of the order O(||V[|?).

2. Definitions, notations, and spectral properties of the unper-
turbed operator

We denote by L?[a,b] a Hilbert space of functions f : [a,b] — C with the
inner product

1 b
= — dx.
(Bt = e [ @ @) ds
Consider the (unperturbed) Sturm-Liouville operator

Hy = —D? (2.1)
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acting in this space, where D2 is the operator of the second derivative with respect
to 2. The domain of Hy consists of functions y € L2[a,b] such that y” € L%[a, b]
and

y'(a) —h-y(a) =0, y (b)+hiy()=0, hg>0. (2.2)

Here and below we denote a derivative with respect to = by the apostrophe n

The operator HV of (1.2) is obtained from the operator Ho by adding to 1t
an operator V of multiplication by a real-valued function

Ve L*[a,b], (2.3)

called the potential. The domain of ﬁv coincides with that of ﬁg. Indeed, if
y" € L?[a,b], then y is bounded on [a, b], hence,

(Vo)(a)| < mase ly(o)] |V (@),

hence, Vy € L?[a,b] in view of (2.3).

Operators fAIa, a =0,V are self-adjoint, bounded from below and have a sim-
ple discrete spectrum (see [2, Lemma 3.3.1], [3, Chap. V, Section 19, Theorem 5],
or Section 4 of the paper). Denote their eigenvalues

Eio<Eyq<---. (2.4)
It is convenient to introduce the spectral parameter A related to E as
Mea = V/Ekar k=1,2,..., a=0,V.
The eigenfunctions of }AIa are non-zero solutions of the differential equation

—y" (@) + V(2) y (z) = A oy () (2.5)

satisfying boundary conditions (2.2) which are the same for a = 0,V (recall that
a = 0 corresponds to V = 0).
On the other hand, for any A € C and z € [a, b] the analog

—y" (2) +V (2) y () = Ny (z) (2.6)
of (2.5) admits a unique solution ¢, satisfying the initial conditions
Vo (Na)=1, ¢l (N\a)=nh_. (2.7)
If, in addition, we have
Yo (A1) + hipa (X, 0) =0, (2.8)

then ¢, satisfies both boundary conditions (2 2), hence, is the eigenfunction of
H corresponding to the eigenvalue Fj, o, = )\ o f Hoy a=0,V.
The function

Qo (A) = 90/01 (A, b) + hapa (A b) a=0,V, AeC, (2.9)
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is called the characteristic function of ﬁ[a. The squares of its zeros {)\kya}zozl are

eigenvalues (2.4) of H,, and corresponding solutions {0aAr,arx)}rey of (2.6)-
(2.8) form an orthogonal (but not an orthonormal because of normalization (2.7))
basis in L?[a, b]. They are related to the complete system {1y o} 7o, of orthonor-

mal eigenfunctions of ﬁa by an equality

k:
Yha = T, Ppa(@) = PaMhar D). (2.10)
lok,0ll£2(a,
It is easy to verify that the substitution
r=a+ (b—a)xi, z€la,b], x1€]0,1], (2.11)

transforms unitarily the space L2[a,b] in L2[0,1] and the operator Hy into the
operator

Hy, = -D2 +Vi(z1), Vi(z)=(b—-a)’V(a+(b—a)z)
with the boundary conditions
y(0)— (b—a)hy(0) =0, o (1)+ (b—a)hyy(1)=0. (2.12)

This observation allows us to confine ourselves to the interval [0, 1]. Note for the
future purpose that eigenvalues of the operator Hy, are

Eyy, = (b—a)’ Eyy (2.13)
and its eigenfunctions are

¢k,V1 (Il) = I/Jk’v (CL + (b — a) Il) . (2.14)

Analogous formulas are true for the unperturbed operator.

In what follows we will consider without loss of generality the Sturm-Liouville
operators (1.2) acting in L?[0, 1] with the domain consisting of twice differentiable
functions y with 3’ € L?[0, 1] satisfying boundary conditions

Y (0)—h_y(0)=0, ¥ (1)+hsyy(l)=0, hg>0. (2.15)

Note that the condition A+ > 0 excludes the Dirichlet and the von Neumann
boundary conditions, however, our results can be extended to these cases as well.

We will remind now some basic properties of the spectral data of the unper-
turbed operator ﬁo. For more details and proofs see, e.g., [2,3].

Direct calculations show that the operator ﬁo is positively defined. Therefore
all its eigenvalues Fj o, k = 1,2,... are strictly positive and the corresponding
Ak = \/m , k=1,2,... are real.

The equation (2.6) is now

-y (z) = Ay (), E= A2, (2.16)
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and its solution for A # 0 (real, if A is real) and initial data (cf. (2.8))
oo (M0) =1, (A 0) = h_ (2.17)

are .
sin A\x

1
o (A, z) = cos Az + h_ = §C+()\, x), (2.18)

where

Cr(\ ) = (emB_ (A)ie—WB_(—A)), Bi(N):=1+hyfir.  (2.19)

The characteristic function (2.20) of Hy is
QO ()‘) = @6 (>‘7 1) + thSOO (>‘7 1) = pCOS)‘ - ()‘ - q2/>‘) Sin)‘a (220)

where we denote
p:h_+h+>0,q:\/h_h+>0. (221)

The function Qg is an even entire function of A. It is not hard to find (see,
e.g., [2,3] and Section 4 of the paper) that

o all zeros {\; 0}, of Qo are real and simple;
e there is one and only one zero Ay in the interval ((k — 1)7, kn), k=1,2,..;

e if k is large enough then we have the bounds

L hothe  (hothi) he by

S (k+1)m)?

< Ao < km+ (2.22)

To compare spectral data of the perturbed and the unperturbed operators one
first needs to establish a one to one correspondence between their eigenvalues.
The explicit construction of the correspondence is given in Section 4. Here and
in the next section we will just give certain facts that allow us to formulate the
main result of the paper, see Theorem 3.1 in the next section.

We shall see below that a convenient measure of the perturbation “smallness”
is the norm

1
IVllz10,1y 22/0 V(@) [dz < [[V|2(0,)- (2.23)

It is also technically convenient to define an equivalent (for small ||V'|| ;1) quantity

0= HVHLl[o,l] exXp {”VHLl[o,l]} ) (2.24)

which appears naturally in our estimates. In the rest of the text we assume that
the perturbation V is “small enough”, namely

) RiMip
0< : 2.25
‘0<mm{2<1+h—)(1+a+h+)’p}’ (225)
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where p is the positive root of the quadratic equation
(I+h)p(+p+hy)—p=0, (2.26)

and R is the positive root of the quadratic equation
Ri(Ri+Mo+h-+hy+2+h_hy)—Ao=0. (2.27)

Note that the condition (2.25) is sufficient but not necessary for our considerations
to be valid.

3. The main theorem

The central part in the recovering of the potential V' is the comparison of two
functions ¢g and ¢y defined by (2.7). Consider their difference

zZ =y — o (3.1)
that satisfies the equation

—" (N x) = Nz (\2) = -V (2) oy (\ )
—V@):a) - V@ pha) (32

and the zero initial conditions
2(X,0) =0, 2'(A\0)=0.

Using the variation of parameters method to solve the equation, we obtain

A
+ /m MV (t) z (A, t) dt, (3.3)
0

(A ) :/OxSMMV(WO (A1) dt

A

and, after the differentiation in =z,

2 (\z) = /Owcos)\(x —t)V (t) o (A, ) dt
+ /93 cos A (z —1t)V (t) z (A, t) dt. (3.4)
0

It follows from (3.3), (3.4) that for small V' the second terms on the right
are of the higher order in V' than the first terms (see Lemma 4.2 for the proof).
Omitting these terms, we obtain the system

Tsin\ (xz —t)

v ()‘7 .’L') = %o ()\7 CU) + /0 fv (t) ©o ()\7 t) dt,

S () = o (O z) + /0 " eosA(m— 1)V (1) go (A1) di, (3.5)
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relating the unknown perturbation V' to certain known entities:

sin A (z — t)

wo (A, 1), 5y , cosA(z—1),

and, for A = A, v, to the spectral data

s v ey, ), 0y kv, )

of the perturbed operator, which we assume to be observable.
It is convenient to introduce the function

V(1) = /0 " MY (1) dt (3.6)

allowing us to write (3.5) as

C_(A\z)V (0,z) + €*B_ (=A\)V (=2\,z) — e MB_ (A\)V (2, 2)
= 4id{ov (A, z) —po (N, @)},
CeM )V (0,2) + e B_ (=A) V (=2\,2) + e M B_ (\) V (2, z)
=4\ {gpvl (A, 1) — oo’ (N, x)} , (3.7)

where C (A, z) and By () are defined in (2.19).

These equations can be resolved with respect to 1% (£2\, ). We shall do it a
bit later and meanwhile explain the use of V (£2), z).

It follows from (2.10) and (2.18), (2.19) that we have for every k =1,2,...

1
Vi : = /0 V(t) o (£) dt

1
= ool o)™ | VOC Oty

= R{V (A0, 1) B- (Ao)} lnoll 220, (3.8)

with ¢y defined in (2.10). Taking into account that their norms ||90/€,0||L2[0’1],
k=1,2,..., can be calculated explicitly using (2.18), we conclude that the col-
lection {V (Ak0,1)}52, determines uniquely the Fourier coefficients {Vj 0}, of
the potential with respect to the complete system {1y o}7°; of the eigenfunctions
of ﬁg, see (2.10). This indicates that (3.7) with A = Ao, K =1,2,.... could be
used to recover the potential up to the terms of the order o(||V]|).

However, in order to use this indication, we need to settle the following items:

(i) Equations (3.7) with A = A\p 9, K = 1,2, ..., contain 1% (2Ak0,2), k=1,2,...
but not V (Ago,2), k =1,2,..., hence, determine the integrals

1
/ V() Upo(a)dr, k=1,2,...,
0
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where the functions

1 —-1/2
Ui () = ¢(2Ak,0,2) </ g02(2)\k70,x) d:c> , k=1,2,...,
0
are not, eigenfunctions of ﬁo, since (2Ag0)?, k = 1,2,..., are not, the

eigenvalues of ﬁo. According to (2.22), these numbers are asymptotically
close to the “half” {(2A0)%}32, of the set {(Ag0)?}52, of all eigenvalues of
Hy, hence, functions {¥j, 0 }7° ; cannot form, even asymptotically, a complete
system.

(ii) The right hand sides of (3.7) with A\ = Ay, k = 1,2,..., contain ¢y (Mg 0, 2)
and ¢, (Ar,0, ) but not eigenfunctions ¢y (Ag,1, x) of the perturbed opera-
tor Hy and their derivatives assumed to be known.

(ili) Equations (3.7) contain the term V (0, z) =V

Let us consider the items of the above list. ThlS requires certain estimates
that are proved in Section 4.

Item (i) of the list can be settled by using an observation presented at the
end of Section 2. Indeed, applying the argument leading to (2.9)—(2.15) to the
intervals [0,1] and [0,1/2] instead of [a,b] and [0, 1], we find that the collection

{(2)\k 0) }k ) is the spectrum of the (unperturbed) self-adjoint operator HO _

defined by the operation —% and appropriate boundary conditions (see (2.12)
and (3.10)) on the interval [0,1/2]. Likewise, the same collection is the spectrum
of the self-adjoint operator lLAIO,Jr defined by the operation —j—; and appropriate
boundary conditions (see (2.12)) on the interval [1/2, 1]. It suffices to transform
L?[0,1/2] unitarily to L?[1/2,1] by the shift [0,1/2] >z — z +1/2 € [1/2,1].

Thus, we can use the analogs of (3.7), (3.8) for the intervals [0,1/2] and [1/2, 1]
to find all the Fourier coefficients of the restrictions

Vo= V’[O,l/Q]’ Vi= V|[1/2,1] (3.9)

of V with respect to the complete sets {1/1250}20:1 of eigenfunctions of operators
ﬁo,i- According to (3.7), (3.8), this requires collections {TN/ (2X1,0,1/2) }:Ozl and
{ 1% (2Ak0,1) }20:1 which, in turn, are determined by the collections

{ov v, 1/2) 5 {evQuv.1/2) 12, and{ovev. 1)}

These collections and the spectrum {Ek,v = )‘z,v}:}:l of ﬁIV form the set of
spectral data needed to restore V up to the terms of the order o(V).

We pass now to the details of the above scheme. Consider the operator Hy —
defined on the interval [0, 1/2] by the operation —j—; and the boundary conditions
(cf. (2.12))

y' (0) —2h_y (0) =0, ¢ (1/2)+2hyy(1/2)=0. (3.10)
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Its spectrum is {(2)\;@,0)2 }20:1 and if ¢, (A, x) is the unique solution of (2.6)
satisfying the initial conditions

0
(/70 ( )\k,Ovo) ) 8(13800 ()\,JJ) 0 h
ct. .15), (2.17), an .10)), then its orthonormal eigenfunctions (cf. 1
f. (2.1 2.17 d (3.10)), then i h 1 eigenf i f. (2.14
and (2.18))
_ Pr0 (T) _ _
’(/}h() (l’) = _L? gpk’(] (1‘) :gDO ()\k,[)vx)’ k= 1727"'7
||80k70”L2[0,1/2}
o7 (\z) = {eMB_ (\) + e 2rep_ (—/\)} /2 (3.11)

form an orthonormal basis in L2[0,1/2]. Thus, we can write the L[Z0 1 /g-COnVerg-
ing series (see (2.18), (3.6) and (3.11))

Z Vioo Yo (2) 4 (3.12)
k=1

where

1

Vo /O V(1) b (1) di

)

= (Ierglizonm) BB w0 V20 1/2))  (313)

that can be viewed as a “candidate” for the first order approximation of the
restriction V_ = Vg 1/9
Since the norm [[¢} [ £2[0,1/2) can be easily found by using the analogs of (2.14)
and (2.18) for [0,1/2], we get the formula for V_ in terms of {V (£2X.0, 1/2)}%2,.
Analogous formula holds for V4. = V|, , ;. Indeed, if we know 1% (2Xk0,1/2)

and V (2Mk0,1), then we can also find
1 P20 12V (1) dt = €0 (V (£2X40,1) — V (£2Mp0, 1/2
() ( k,05 ) ( k,05 /) )
1/2

and use then the analogs of (2.14) and (2.18) for [1/2, 1] to calculate the Fourier
coefficients {V;/} of V of (3.9) with respect to the complete orthonormal system

{wzo}zo:l of eigenfunctions of the operator ﬁ0,+~

Consider now item (ii) of the above list, i.e., the fact that the right hand sides
of (3.7) with A = Ago, £ = 1,2,..., contain ¢y (Ago,2), K = 1,2,..., but not
the eigenfunctions ¢y (Agv,x), k =1,2,..., of the perturbed operator fIV (see
(2.5)-(2.8)) assumed to be known. To this purpose set A = Ay in (3.7) and
estimate the corresponding errors in the Fourier coefficients (3.13). To this end
we will use Lemma 4.4 (see (4.17)) implying:

/a: (eZi()\k,vf)\k,O)t _ 1) eZi)\k,otV (t) dt‘
0

V (2001, 2) — V (220, x)‘ -
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<2y — /\my/ WV (0)]dt < 40> (1+h_) (1 +0 +he) o,
0

Hence, we have

2V ollerollzzo,1/2) = B— (o) V (220, 1/2)+ B (= Aio) V (=20, 1/2)
= B_ (Me0) V (@M, 1/2)+ B (=\o) V (=2 v, 1/2)+ Dy,
where
ID4] < 1B (o)l [T (2k0,1/2) = V (20, 1/2)|
+1B- (~X0)l |V (=200, 1/2) = V (=20, 1/2)]
<80% (1+h_) (140 +hy)[B- (M)l /Aro
<802 (1+h_) (140 +hy)(1+h_/Mo) /Mo

Thus, the squared L?[0,1/2] norm of the error in the right-hand side of (3.12)
due to the replacement Ay o by Ay v is

2
>0 ad 14+ h_/\
S IR ool < 1608 (14 h )2 1+ o+ Ry )? S <(/“”
k=1

=\ Awollegoll

AN

> -2
<160 (1 +h)? (1+ 0 +he)® (L+ hofAne)* (Ak,ouga,;ou)
k=1

It follows from (2.22) that Ao > (k — 1) 7. Besides, it can be verified by explicit
integration that
||801;0||%2[0,1/2} >1/8.

These bounds and (2.24) imply that the norm of the error generated by replace-
ment A\, o by Agv is O(||VH%1[O71/2]) and thus can be neglected.

An analogous estimate holds for V. = V\[l /2.1] and the corresponding Fourier
coefficients. Thus, we settled the second item of the list given after formula (3.8).

The last item (iii) of the above list can be settled by considering the limit of
equations (3.6) as A = Ay — +00. Indeed, the second of these equations and
(2.19) yields

I (e (0 2) = o () = 2R (B (-) V (20, )
V(0,z) = .

9R(ePB_ (\))

Set here A = 2\, v and use again (2.19) to write the denominator as

v p (2Ak,v) + e~ veER (=2 v) = 2cos 2\, vz + sin 2\ v .

Ak v

It follows then from (2.22), (4.17), the above formula with x = 1,1/2, and k& —
oo that

2 cos (2)\&\/) + h sin (2)\]@7\/) =240 (k_l) ,

kV



On a Spectral Inverse Problem in Perturbation Theory 105

208 (Av) + 3 — sin (Axv) =2(-1)"+o (k™).

k,V

These asymptotic relations and our basic assumption (2.2), implying in view of
the Riemann—Lebesgue lemma that limy o, V (+£2\, 2) = 0, lead to the formula

V(0,2) = lim (=1)* 22y {¢} Oy, @) — 0 Ay, o)}, 2 =1/2,1. (3.14)

k—o0

Note that:

e In what follows we will need the values V (0,z) for = 1/2,1 only and we
assume that for these cases the quantities @y (A\pv,x) and ¢, (A, z) are
observed (¢}, (A,v, 1) can be found from ¢y (A, 1) and boundary condition
for x =1).

e We do not discuss in this paper the existence of the limit (3.14).This is a prob-
lem of the existence of a perturbation V' corresponding to observed spectral
data.

We will express now V (2M\gv,x), x = 1/2,1, via the observable spectral data.
Writing (3.7) in the matrix form we get for each Apo, k =1,2,....

V(2\z) \ (R (x)
" <‘7<—2A,x>> = (i) +o )

Y <—emB_ (\) B (—)\))’

where

e—i)\acB_ (}\) ei)\mB_ (_)\)

and

Ity (l‘) 4 {()OIV ()‘7 l’) - 906 ()‘7 SU)} - C—i—()‘? 'T)‘7 (07 .’L‘)

<R1 (:c)> ~ (zm {ov (ha) — o (A o)} — C_(\a)V (O,ar)) (315)
where Ct (A, z) are given by (2.19). We are only interested in values A = Ay
and z = 1/2,1 and for these values all the terms in (3.15) are known, since they
are either observable or calculable.

We have

-1 _ 1 —_e TR (=) eirzp (=)
M= 2B_ (\) B_ (=) ( eTMB_(\) e Mp_ ()\)> . (3.16)

A direct calculation and (2.19) shows that the Hilbert-Schmidt norm of M~!
does not exceed 2. Therefore we get M 10O (0'2) =0 (02) and then

<‘7V((_22AA’2)) =M @;) +0 (0?). (3.17)

The above allows us now to formulate the main theorem.
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Theorem 3.1. Let ffo be the self-adzjoined Sturm-Liouville operator acting in
L?[0,1] and defined by the operation —dd? and the boundary conditions (2.2), Hy

be the self-adjoined Sturm—Liouville operator —% + V with the same domain,

where V is the operator of multiplication by a real-valued function V € L?[0,1].
If the morm ||V ||p1o,1) satisfies (2.25)—(2.27), then we have

V = Vapp + O (IIV3110.) (3.18)

where Vgp, can be explicitly calculated (see (3.19)) given the following partial
spectral data of the perturbed operator Hy :

(i) all the eigenvalues {Ey v = /\%7‘/}20:1 of the operator Hy,
(i) the values of its eigenfunctions {pv (Ar,v, )}, at the points x =0,1/2,1,

(iii) the values of the derivatives of its eigenfunctions {¢y, (Ak,v,1/2)}32, at the
point x = 1/2 (see (2.5)(2.8)).

The function Vo, is given by the L?-converging series

kajﬂwkio (), 0<z< %
Vapp (%) k=1 | 510

= 00
ZV,:WZO(%% % <z<1
k=1

where {wio}z"zl are eigenfunctions of the operator —% defined on the intervals
[0,1/2] and [1/2,1] respectively and boundary conditions y' — 2h_y = 0 at the
left end of the intervals and y' + 2h, y = 0 at their right ends. The coefficients
{Vfo};é";l can be calculated by formula (3.13) and its analog for Hy 4 and integrals

V (2N, z) of (3.6) for x =1,1/2 by using formulas (3.14)—(3.17).

Remark 3.2. The following assertions hold:

(i) It follows from formulas (2.11)—(2.14), that the theorem holds for any finite
interval with appropriate changes of constants.

(ii) It follows from the proof of the theorem that in order to find the potential
Vapp it suffices to know the eigenvalues of the perturbed operator but not the
values of its eigenfunctions at the points (0,1/2, 1) and their derivative at the
point 1/2, but the ratio of these numbers and the values of the eigenfunctions
at z = 0, thus four sets of numbers are required.

4. Auxiliary results

We will start with proving estimates for the function z introduced in (3.1).
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Lemma 4.1. Assume that the perturbation V is small enough, so that con-

ditions (2.25)—(2.27) hold. Consider the function z introduced in (3.1). We have
forany \=a+if € C:

| <o (14 h_)coshfz,
|z/ (A z)| <o (14 0) (14 h_)coshBz. (4.1)

Proof. It is possible to prove the above bounds by using transformation op-
erators and following [2, Section 2]. We present here a direct proof based on
equations (3.3)—(3.4). Write the equation (3.3) in symbolic form

<I—I/(\'>zzl?<po, (4.2)

where .
(Ru) (o) = [ =Dy gy oy,
0

ie., K is a Volterra type operator. Thus, the operator I — K is invertible and
its inverse is given by the series > o¢ K*. We will need below a certain bound on
the norm of (I - K )_1. To this end we consider individual terms of the series.
Write the kernel of K k which is of the Volterra type for any k, in the form
Ky, (x,t,\) V (t). Then for K¥ = K K*~1, we have

Ky (,,\) = /t K (@5 )V (5) Kit (5,1 2) ds, (4.3)

where
sin A (x — s)

Ky (z,s,\) = ;

for A # 0. (4.4)

Let us prove the estimate

ok
]Kk(x,t,/\)lg(zk_l)! kkt) coshf(x—t), A=a+ifeC, k>1, (4.5)

where
o (z) = /0 WV (@) da, (4.6)

hence, we have

oc=0(1) e W (4.7)
for o of (2.24). From (4.4), we have
| K1 (2, t,\)| < |z —t|coshf(x —t), A=a+ip € C\ {0}, (4.8)

ie., (4.5) for k =1 and A # 0. Next, (4.3) and the induction assumptions (4.5)
and (4.8) yield

[ Kt (2,8, 0))]
< kk(kl_l)l/t (z —s) (s — t)* oF 1 (s) |V (s)| cosh B (z — s) cosh B (s — t) ds.

Note that
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1. for any s € [t,z] and 8 € R we have

cosh 8 (z — s)cosh (s —t) < cosh 8 (x —t).

2. the function f(s) = (z — s) (s — t)* is strictly positive for t < s < z, f (t) =
f(x)=0and

k
max £(s) = f(s0) = — (2 — )L, s = (hx +5) [k + 1).

sE[t,x] o (k + 1)k+1

This and (4.6) imply that

(z— ) cosh B (x —t) [* ,_
K (o8, 0] £ e TS [T oW @l ds

 (x— £ ok (2) cosh B (x — t)
k! kU (kDR

ie., (4.5) for k+1 and X # 0.

For the case A = 0, we have K (z,s,\) = (z —t), hence, factors with cosh
are replaced by 1 in all above formulas and the rest of the proof is still valid.
This yields (4.5) for all £ > 1 and all A € C.

The kernel of the operator (I — I?)flf? is

(Z Ky, (l‘, t, A)) 14 (t) ’
1

where the series converges absolutely and uniformly in z, ¢ € [0, 1] and A belonging
to any compact subset of C. According (4.5)—(4.8), we have

ZKk x,t,\)

1)
< (x —t)exp {U (x)}coshB(x—t). (4.9)

SZ x—t" . 1( )coshﬁ(:c—t)
n=1

Now we can get an estimate for z (A, z). From (4.2), we have

z(A,x)=<(I—f?) ch0> /{Zkam} (1) o (N, 1) dt.

This, the bound (see (2.18))
lo (A, )] = |cos At + h_sin At/ A| < (1 + h_) cosh f3t, (4.10)

and (4.9) yields the first inequality in (4.1):

|z(A\,z)| < /OJ: (. —t) €@ (14 h_) |V (t)| cosh 8 (z — t) cosh Bt dt
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<(14h_)e”@® coshﬁx/ [V (t)| dt = (1 +h_) o () e”® cosh B
0

Note that since cosh (8z) and o (z) do not decrease in = > 0, we can immediately
get the uniform bound

lz(\2)] < (14 h_)o (1) e’ cosh 8 = (14 h_) o cosh 3.

The only term depending on V in this formula is o = o (1) e”™®) (see (4.6)—(4.7)),
thus it is a natural measure of the perturbation smallness (see (2.24)).

To obtain the second inequality in (4.1), we consider the terms in the right-
hand side of (3.4). By using again (4.10), we get for the first term

/IV(t) o (A, t)cos A (z —t) dt' <(1 —i—h_)coshﬂx/x |V ()| dt
0 0

=o(x)(1+h_)coshpx <o (1+ h_)coshfz

and for the second term

/JCV(t)z()\,x) cos A\ (x —t) dt' < (1+ h_)cosh px /xa(t) D |V ()| dt
0 0

< o2 (x) €@ (1 + h_) cosh Bz
< 0%(1+ h_)coshfz. (4.11)

and, as a result, the second bound in (4.1):

|2/ (A 2)| <o(1
o(1

h_) cosh Bz + 0% (14 h_) cosh Bz
o) (1 + h_)cosh pz.

_|_
_|_
For A = 0, the formula (3.4) is

z’(O,z:):/OxV(t)goo(O,a:)dt—l—/OxV(t)z(O,m)dt,

and it leads to the bounds (4.1) for A = 0 by a simple version of the above
argument. [

An immediate consequence of the lemma is

Lemma 4.2. Assume that the perturbation V is small enough, so that con-
ditions (2.25)—(2.27) hold. Then we have for any A € R

/mcos)\(m—t)V(t)z()\,t) dt‘ <(1+h_)o?,
0

A

/”SMMv(t)z(A,t) dt‘ <(1+h)o™ (4.12)
0
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Proof. The first inequality coincides with (4.11) and is proved in Lemma 4.1.
The second inequality follows directly from (4.1). Indeed, we have

/OISMMV@,Z(M) dt‘ <

: /OIV(t)z(/\,t)dt‘

§(1+h)a/z\V(t)|dt§(l—|—h)02. 0
0

The lemma provides the justification of the passage from (3.3)—(3.4) to (3.5).

Lemma 4.3. Assume that the perturbation V is small enough, so that con-
ditions (2.25)~(2.27) hold. Then the characteristic function Qv (2.9) of the per-
turbed operator Hy has

(i) a single zero in every interval (km,(k+ 1)7), k € Z,
(ii) mo other zeros.

Proof. Note first of all that since the operator fAIV is self-adjoint, all his
eigenvalues {Ej v }72, are real, hence, all the roots A; 1 of the characteristic
equation Qy (A) = 0 are located either on the real or on the imaginary axis. Due
to the symmetry of Qv () it suffices to consider only the right half-plane.

We will follow the proof of Lemma 1.3.1 in [2] and use the Rouché theorem
according to which if two functions f and g are analytic in a simply connected
closed domain G with a piece-wise smooth boundary 0G and satisfy the inequality

[fF ) [>1g (N[>0, AedG,

then f and f + g have the same number of zeroes (counting multiplicity) inside
0G. Set f = Qo, g = Qv — Qo and consider the collection {G}}32, of rectangles
with vertices at (kﬂrj:il, (k+ 1)7T:|:z'l)7 [ > 0, hence, 0G|}, consists of four intervals
(k7r + iﬁ), ((k +1)m+ iﬁ), (a + il), parametrized by real numbers o and 3 with
kr<a<(k+1)m —1<B<IL

We will prove that if [ is large enough, then

Qo (M) > Qv (A) = Qo (N)], A € IGy. (4.13)

Since (o has a single zero in every domain Gy, (see (2.22)), the same is true for
Qv by the Rouché theorem, thus this single zero is located in (km, (k + 1)7).
We are left with the proof of (4.13). We will begin with the proof of the
bound
|Qo (A\)| > pcosh B, X € 0G. (4.14)

By using (2.20)—(2.21), we obtain for every vertical interval {\ = kr + i3, |5] <
l}:
2

peos (kr +iB) — ((lm i) — M) sin (km + w)’

> sinh 3

|Qo (km +iB)| =

2
q
2 2

(km)™ + 5

pcosh B+ <1+
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2
—ikm <1 = Z) sinhﬁ‘
(km)” + 2
> pcosh B+ Bsinh 8 > pcosh 3,

while for every horizontal interval [km +il, (k+ 1)m £ dl], \=t+il, 1 >0, kn <
t < (k+ 1)m we have
[Qo(A) | =[pcos X — (A= ¢?/A)sinA| > |(A = ¢*/A)| | sin A| — p| cos A
= |(t £il) — ¢*/(t +4l)| | sin(t +4l)| — p| cos(t + il)|
> |l — q2/l|\/cosh2l — cos?t — pV/sinh? [ + cos? ¢
> |l — ¢*/l|sinhl — pcoshl.

Since
lim (I —¢* ") tanh (1) = +oo,

=400

we get for sufficiently large [
|l — ¢*/l|sinhl — pcoshl > pcoshl.

The above proves (4.14) for the whole contour 9Gy.
Next from (2.9) and (3.1), it follows that

QV ()‘) - QO (A) = 90§/ ()‘v 1) + h-HOV (>‘7 1) - {906 ()‘7 1) + h+§00 (>‘7 1)}
=2 (N1 +hiz(N1).

This and (4.1) yield

Qv (X) = Qo (W) < |& (A )| + Ry |2 (A, 1))
<o(l+h_)(14+0+hy)coshp (4.15)

and taking into account (2.25)—(2.26) according to which o < p < p, we obtain

Qv (A) = Qo (M) <pcoshB <[Qo(N)], A€ IGy. (4.16)

We conclude that if [ is large enough, the Rouché theorem is applicable, hence
Qv has a single zero in every domain Gy, k=0,1,....
Set now A = if. According to (4.16), we have

|Qo (M) > Qv (A) — Qo (V)]

and since Q¢ has no pure imaginary zeros, Qv has the same property, hence, the
perturbed operator Hy is positively definite. O

Lemma 4.4. Assume that the perturbation V is small enough, so that con-
ditions (2.25)—(2.27) hold. Then the zeros of Qv and Qg located in the every
interval (km,(k+ 1)m), k=0,1,... satisfy the bound

|)\k,V — /\k,0’ S 20 (1 + h_) (1 +o0+ h+) />\k,0- (4.17)
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Proof. The idea is to prove a bound |Qq (A)| > const |X — A; o] for real A’s
close to Ay and combine it with (4.15). This will enable us to find a small
interval containing Ao, and such that the function Qv takes different signs at
its endpoints. This and Lemma 4.3 will imply that Qy has a unique zero inside
the interval.

It is convenient to denote

Qo ()

D = —— 4.18
Let us prove first that
D1 (Ako)| = Ao + ¢/ Ae0 = Aro- (4.19)
Denoting
F) =X =hohi/A=X—=¢*/), (4.20)
we write Qg of (2.20)—(2.21) as
Qo (A) =pcos A — f(A)sin A, (4.21)
hence,
Dy (N) = —sinX (p+ f/ (A) + f (N) cot )
and

/ 2
(D1 ()\))2 :sin2/\(p+f’ (\) +f()\)cot)\)2 _ (p+ f(A\)+ f(A)cot N .

1+ cot? A
It follows from (4.21) that cot Ago = p~1 f (Ar), hence,
(D) Og))? = B L2 Ok) £ 21 o)’
’ p? + % (Ako0)
(2" (Aeo))”

_ 2 2 / \PJ \1k0))
- p + f ()‘k,O) + 2pf (/\k,O) + p2 + f2 ()\ki)) *

Now, since pf’ (X) = p (1 + ¢*/A%) > 0 by (4.20), we get

2
(D1 (Meo))? > p% + (Mo — 62/ M)

and using then the definitions for p and ¢ from (2.21), we obtain

2
P°+ (Mo — ¢/ Mko)” = (he —hy)? + Ao+ 2h_hy + (h-hy)? /N
2
> (Ao +a*/ o)

hence, (4.19).
Next, we will prove that if |A — A | is small enough, then

A — Akl S A= Ak ol
2

Qo) .

|D1 (Ak0)] Ak,05 (4.22)



On a Spectral Inverse Problem in Perturbation Theory 113

where we used (4.18)—(4.19) to obtain the second inequality.
Consider the Taylor expansion for Qg at Ay o:

(A — o)

5 Dy (1), g € [N Aol -

Qo (A) = Qo (Mk,0) + (A — Ago) D1 (Ago) +
Taking into account that Qo (Ag,0) = 0, we obtain in view of (4.19)

B (>\_>\k,0) Dy (N)
Q0 ) = A = Aeoll Dy (o) | !H 2 Di(wo)

(A= Aeo) Da2(p)
2 D1 (Ak0)

> Aol A = Agol |1+

Let us find now a conditions for |\ — A; o] under which the last factor of the
second line is larger than 1/2, thus

|Qo (M) > Ao |A — Akl /2. (4.23)

It suffices to have
(A= Ako) D2 (p)
2 D1 (Akp)

Inequality (4.19) provides a lower estimate for the denominator D; (Ag ). Fur-
thermore, write (2.20) as

<1/2. (4.24)

1
Qo (A\) =pcosA— )\sin)\+q2/ cos \EdE,
0

implying

D2 ()] = ‘w‘

1
= ‘—p cos,u—2cosu+usin,u—q2/ §2cosu§d§’
0
<pH+2+p+¢" < A= Arol +F Mo +p+2+ 6

Plugging this bound and (4.19) in (4.24), we get a condition on |\ — Ak | that is
sufficient for (4.23) to hold:

Ak,0
IN—=Akol + Ao +p+2+ ¢

A= Arol <

In turn, this inequality, hence, (4.24) holds if
Ae A, Ar = Ao £ Ry,
where Ry, is a positive root of the quadratic equation (cf. (2.27))

Ak,0

R, = .
T Ret Mo+ p+2+ ¢
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Combining (4.15) and (4.23) and taking into account that Ao < Ag, we find
that condition (cf. (2.25))

R0

o(L+ho) (140 +hy) < 2R,

leads to the inequality

Qv () = QoA S o (L ho) (10 +hy) < 250 < 1@ (0s)

implying that sign (Qv (A+)) = sign (Qo (A+))-
Now set 7— = max {(k — 1) m, A_}, 74 = min {km, Ay} to have

Ao € [To, ] = A, A N (B = 1) m, kn).
According to (4.16), sign (Q (V, km)) = sign (Q (0, k7)) for all k, therefore

sign (Qy (1+)) = sign (Qo (11)) -

This, (4.19) and (4.23) yield that both functions @y and Qv have a single root
in an interval [u_, puy] C [(k — 1) 7, knl.

The requirement for o is easy to make uniform in k. Indeed, it suffices to
note that Rx\. o is monotone increasing in £ and set

Rihp
(1+h)1+0+hy)

o< 5
Since A\pv € [7—, 7] = A, A4 N [(k — 1) 7w, kr], we get |[A\gv — Ako| < Ry and

repeating the same calculations we obtain

0=|Qv (Ae,v)| = Qo (Ae,v) + Qv (Ae,v) — Qo (Ar,v)]
> Qo (Mev)| — Qv (Me,v) — Qo (Mi,v)|

1
> 3 Ak, v — k0

Moo= (L+h_)(1+0+hy),

hence, (4.17). O
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IIpo obGepHeHy cnieKTpajibHY 33JIavdy B Teopil 30ypeHb
V.A. Marchenko, A.V. Marchenko, and V.A. Zolotarev

Mu posrispaemo obepHeHy CHEKTpasbHy 3ajady JUld  OLepaTopib
Irypma—Jliysiwia Hy Busnadenux Ha inTepBaii [a,b] megxkum noreniia-
nom V€ L%[a,b] Ta sMimanuMm posiTeHEMH KpaifoBEMH yMoBamm. Mn
noBOAMMO, 1110 skIo L'-HopMa V e mocnTh MasIomo, To icHye Vapp TaKwHii, 10
|V = Vappllzz = O(|V||3.1), i Mu BKasyemo aaropurs st moutyKy Vapp. Lleit
aaropuT™M BusHavae Koedirientn Pyp’e V,p, BigHOCHO BIacHMX (QYHKITIH
{¥r,0}52, He3bypeHOrO OlEpaTOpA ﬁo Jepe3 BiacHi 3HadeHHS {Ap v 5o,
36y PEHoro orneparopa ﬁv, 3HadeHHs fioro BiaacHuX QYHKUIIR {1y v }72, B
KIiHIgx BiAPisKy [a,b] i Besmuammm {1y, v 152, Ta ix moxigui B cepenuni [a, b].

KirrowoBi ciioBa: crieKTpaJjibHa Teopis, MOTeHIia, obepHeHa 3a/1a19a, Teo-
pist 30ypeHb
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