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The Interaction of an Infinite Number of
Eddy Flows for the Hard Spheres Model
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In the paper, the explicit approximate solutions of the Boltzmann equa-
tion for the hard spheres model are obtained. They have the form of function
series of Maxwellians with coefficient functions of a spatial coordinate and
time. Sufficient conditions for minimizing the uniform-integral error be-
tween the parts of the Boltzmann equation for the constructed distribution
are obtained.
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1. Statement of the problem

The Boltzmann kinetic equation plays an important role in the kinetic theory
of gases. In this paper, we consider this equation for a model of hard spheres
that describes particles of any gas which move translationally with a certain linear
velocity, collide by the laws of classical mechanics and can not rotate. For this
model, the equation has the form [1,3]

D(f) = Q(f, f), (1.1)
where the left-hand side of the equation is the differential operator
af af
D(f)=— V, 1.2
=%+ (). (1.2

(here (a,b) is the scalar product of the vectors a and b) and the right-hand side
of (1.1) is the collision integral, which for the hard spheres model is as follows

ai.n=% [ o [ daltv-vi.o)
< |t VDfGa V) - fte Ve W), (1)

where f(t,z,V) is the distribution function of particles; the parameter ¢t € R is
time; V = (V1, V2 V3) is a linear velocity; % is the gradient of the function f
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of the spatial coordinate z € R3, which determines the location of the particle
in space; d > 0 is the diameter of the molecule; « is the unit vector on the
unit spheres 3, and V, V1, V', V[ are the velocities of particles before and after
collision, respectively, determined by the relations

V=V —a(V -V, ),
Vi=Vi+a(V - Wi,a).

The only exact solution to equation (1.1), which is known explicitly up to now,
is the Maxwellian, which makes both parts of the Boltzmann equation equal to
zero. There are global Maxwellians, which, in the case of hard spheres, depend
only on the velocity V, and there are local Maxwellians, which, unlike global ones,
depend also on a spatial coordinate and time. The most general form of local
Maxwellians for the hard spheres model was obtained in [1,4,7,10].

In [9], a global Maxwellian was considered as well as a local Maxwellian,
namely a screw, that depends on the spatial coordinate. We now consider
Maxwellians, which also depend on time, i.e., non-stationary and inhomogeneous
Maxwellians. From the physical point of view, they describe the motion of a gas
rotating about a given axis and moving in the direction perpendicular to the axis.
Analytically, these Maxwellians have the form [2,4,7,10]

B; 3/2 —
Mi(t,z,V) = p; <> e HV=Va) (1.4)
T
(here and in what follows, the index ¢ € N) with the density

pi = poie® it (1.5)

where po; is a nonnegative scalar constant, the parameter f3; is the quantity inverse

to the absolute temperature
1

2T,
the vector w; is the angular velocity of the gas flow as a whole with which it

rotates about some axis, and 7“12 is the distance between the molecule and the
axis of rotation xg;

Bi = (1.6)

1

Ti2 = —Q[wi,x — Xo; — uOit]2, (17)
wj
1 ~

To; = ﬁ[wiv Vi — ol (1.8)

)

(here [a, b] is the vector product of the vectors a and b) the vector ug; Lw; and it
is the linear velocity of the axis of the i—th rotating gas flow. By V;, we denote
the translational velocity of the flow included in the mass velocity

Vi = ‘7; + [wi,x — ’U,Oit]. (19)
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In this paper, we obtain the approximate solutions for the equation under
study in the following form

Fltz, V) =" eilt,z)Mi(t, V). (1.10)
=1

The coefficient functions ;(¢,x) are nonnegative smooth functions on R* and

their norm
> (1.11)

The aim of the work is to find the form of the coefficient functions ¢;(¢, z)
and the conditions for the hydrodynamic parameters of Maxwellians for which

the uniform-integral error [5]

0 % t,ZL'
et = s (ool + | 2200
(t,z)eR*

0pi(t,x)
ox

il

is not equal to zero.

A=AB)= sup AJMﬁ—Q%ﬁWV (1.12)

(t,z)ER*

can be arbitrarily small.

2. The main results

We now formulate and prove the next theorem. The parameter (5; is defined
by the relation (1.6), and the function A has the form (1.12).
Theorem 2.1. Let the coefficient functions have the form

2

pilt, ) = Y;(t, x)e P (2.1)

where 1;(t,x) = 0 are smooth nonnegative functions and their norm (1.11) is not
equal to zero. Let all function series with one of the following common terms

A ] e
converge uniformly on the R* after multiplying by po;. Also let
wi = weil; M, (2.3)
where m; > %.
Then there exists a function A’ such that
A <A, (2.4)

and
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a) ifm; > %, then

i (o O
ot (Vz’ oz )‘

+ 27Td Z P0i POy

3,j=1
i#£]

lim A’ = 0i Sup
Bi—+00 ;p ’ tZ‘)ER4

sup  (Yi9);); (2.5)

(t z)eR*

b) if m; =1, then in the right-hand side of (2.5) there is the additional term

4 & ~
FZPOZ‘ [WOi,Vi*Um} sup ;; (2.6)
i1

(t,z)eR*

~

c) z'fi <m; < % and vectors wy;, (VZ — u0i> are parallel

woi || ( - UO1> s (2.7)
then assertion (2.5) is also true;

d) ifm; =1 and

NH
—
o
oo
N—

Wi = wOZS'LIB

where s; are positive constants and, in addztwn, require the validity of (2.7),
then in the right-hand side of (2.5) there is the additional term

4 o0
7= 2 poisity sup ((Jol + o — uoit]) ) (2.9)
=1

(t,x)ER*

Remark 2.2. The notation §; — 4+00 means that for any number i there is
the inequality 8; > B, where 8 — +00.

Proof. The following inequality was obtained in details in [9]

- e, (220N, g
D(f) - < : ,
v - Q<L [ a3 +(v.52)|+8
dpzpj / q = =
S=2 eip; | dq dQI€ ¢ +V;=V;|. (2.10)
b VA
l#ﬂ

To the conditions imposed in [9], we add a condition of uniform convergence of
all function series with a common term of one of the functions (2.2) additionally
multiplied by a constant nonnegative factor pg; that ensures the existence of
(2.10). We use the derivatives of the coefficient functions obtained in [§]

8{;2’ R ((’Mn +2ﬁm{ 2 (2, ug;) — tw?ul; — ([wi,ffi},um)}> . (2.11)
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aaiz = 6_137,0-) r <8¢Z + 25ﬂpz {Wz wz, ) wZQ(.%' — Xo; — ugit)}> . (2.12)

Let us substitute (2.11), (2.12) into inequality (2.10)

[ avipt) - as. ) <3 (ﬂi)w/ B2
R3 ’ h im1 ! ™ R3

+ 2855 { (l' uOZ) twizu(Q)i - ([w% ‘7%] )}

+ (V. 2Biti {wi(wi, ¥) — wi (& — 0; — ugit) })

s <V’ 8x>

e PiTiqv + 8.

Remembering the form (1.5) for the density of p;, we can get the estimate

- ST A N R s (v.22)
Lo e« o () [ave (v

ot oz
+ 2611#1{ 2(z, ug;) — tw u%z ([wij‘//\;],um)

+ (V,wi(wi, ) — w?(x — zo; — uoit, V) + S.

Now perform the change of variables

p = /B (V—Vz) = V= b +V;
. : —3/2
with the Jacobian 8; *'~. Thus, we get

— *3/200 . -p
Lo =@l <5 [ ave

+25ﬂbz{ 2 (2, upi) — twiud; — ([wi,‘Afi],uOO

+ Vi, wiwi, 95)) — Wiz — 20 — uoit, 2 +Vi)}‘ +8,

*(f% VB

which can be written in the form

_ 73/200 , —p?
[ avipn-ai.pl < Xon/R

+26ﬂ/},{ (:1: o) — tw?u%i — ([wZ,YA/] UOZ>

o; P = O
ot (\/E”"’ax)

+ (‘Z‘Mi) (wiyz) = (Vi, @ — 20i — ugit) w

2

+ (\/]%’wi) (wi, ) — w; (\/]%,x — 20i — Uoz‘t) H dp + S.
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Let us show that under the sign of the integral, after the identical transformations,
the addends with the first degree of the variable 8; vanish. Indeed,

w?(m,uoi) - th‘QU(Q)z‘ - ([Wia ‘71‘]7“01:) + (‘Z‘Mi) (wi, @)
—w? <‘7; + [wi, z — ugit], x — xo; — uol-t)
= wi(z, up;) — twiud; — ([wi, T?i],uol) + <T7i,wl-) (wi, )
— w? (‘72,:(: — X0i — u0it) + ([wi,:c — ug;t], [wi, Vi — uoz-])
= wi(z, up;) — twiud; — ([wi, Vi],uol-) + (‘Z,wi) (wi, )
—wy (‘7“36 - Uoﬂf) + (‘7@', [ws, Vi - Uod)
+ w? (a: — up;t, ‘A/Z - uOi) — (wi, ‘A/Z) (z,w;)

= wj (z, ug;) — twiug; — w; (Vz,ff) + w? (Vz‘7u0i) t

)

o (w,7) = wBlo,uor) — w? (uwor, V) ¢+ whud,

which is evidently equal to zero. Thus, we get

[, 1pth - Q. plav
< WB/QEPOZ' /R3 e ¥ 85? + (\/]% + Vi + wi, @ — ugit], E?;/;)

+2¢/Biti ((p, wi) (wi, ) — w2 (p, T — 20; — ugit)) ‘ dp+S

<7T_3/22001/36_p2 3¢i+< P +‘2+[wi,$—u0it],a%>
i=1 R

ot VBi ox
+2+/B; ((p,wi) (wi, ) — Wi (p, & — uggt)) + (p, [wi, Vi — um‘])‘ dp + 8.

The existence of a supremum with respect to a spatial coordinate and time
is guaranteed by the assumption of the theorem that the series with common
members of the form (2.2) converge uniformly over all admissible values. Then,
passing to the supremum in the last inequality, we get

s ~ ;i p o~ o,
AéA/ﬁ 3/2 1/ 61’2 sup +( +V,+ Wi, T — Ugst], ——
iz; Po R3 (t,z)ER* ot VB [ 0it] o

+ 2¢/Biti ((p, wi) (wi, @) — Wi (p, — ugit)) + ( 7 {wzaVz - UOzD 'dp

+ poy 2 P0iPOj
4,j=1
i#]
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—2—q2| 4 q1 94
X sup T,Z)Z'?,ZJ‘/ dq/ dgre”? ™% ——+V;=Vi].
(t,2)€R* ( T Jrs " Jrs VBi  \/B; ’
Applying condition (2.3) of the theorem, we obtain
_a/o B O,
A<A =q3/? pOi/GPQ sup !
ZZ; R3 (t,z)era | Ot
-~ - O; - ~
+(L2 4, + 87" [woi, T — uoit], 90 + 8, (p, [wou‘/% - UOZ*D

+ 2v/Bis (5{2% (p, woi) (woi, ) — wi; B, 2™ (pyx — Uoﬁ)) dp

242 & 22| ¢ qQ
+—5 2 Poipoj Sup ww-/ dq/ dgre”® % - —=
us ”Z=1 T bryers ( T rs T Ure VBi  \/B;
i#j
+V— ‘AG + B; " [woi,  — ugit] — Bj_mj [woj, x — Uoﬂ]D . (2.13)

In order pass to the limit in the last equality, we first introduce the notation

1

Yi = 55
"B

after which we have

’_ 73200 ) —p? ;i
A<LAN =7 /;POz/Rsep sup (’Ei?t

(t,z)eR*
~ ) o
+ (Pﬁ+ Vi+ " [woi, @ — uoit], ;;)
om;—1 2m;—1
+ 29, (%m 2 (p, woi) (woi, @) —wiy; 2 (pox — uOit))
gL N
+ Vi 2 ( ) |:w0i7‘/:i - u02:|) dp)

2d0? & 2 9
+ 5 D poipoj Sup (wi% /R3 dQ/RS dgre” " "M g\ — a1/

ig=1 (t,z)eR*
i#]
=+ ‘7@ — ‘//\} =+ ’)/imi [OJOZ', X — uOit] — 'y;nj [WOJ’,ZU — Uojt]‘ > . (2.14)

The limiting passage in (2.13), as §; — +00, is equivalent to 7; — +0 in (2.14).
It requires the continuity of expression (2.14) at zero provided by the condition
of uniform convergence and an obvious estimate |v;| < % (see Remark 2.2). Here

we use the lemma from [6] about the continuity of the supremum with respect
to the parameter and the theorems about the continuity of integral and func-
tion series with respect to the parameter. Performing the limit transition (2.13)
for m; > 3, we obtain Proposition (2.5), and in case m; = 3, the term (2.6)
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appears. Considering the value m; from the interval ( I 2) and basing on (2.14),
we conclude that the low temperature limit A’ exists only when (2.7) is applied.
After minor transformations the low temperature limit A’ coincides with the
expression (2.5).

For the case m; = 1, let us change the condition (2.3) for (2.8). Then,
substituting (2.8) into (2.14) and passing to the limit 4; — +0, which corresponds
to B; — 400, we get the equality

— — 81% 3%
1 A, B 3/2 2/ p2 < (‘/:L’ >
pim A =T ZPO AU (el

+ 2¢; ( '(P, woq ) (Woi, ) — W(z)i 2(p.x — uoit))| dp

+ 27d? Z poipo; |V sup  (¥i¢);)
i1 (t,x)eR*
i#j

that does not exceed

;i < 3%)‘ 2
E poi  Sup + ( Vi, + 27d E P0i P sup (¢i;
’ (t,x)er4 | OF 0 ) - (t,x)eR“( i)
175]

+ 7 mes wii sup (] + o — uoit])v)

(t,x)ER*
Thus, all the statements of Theorem 2.1 are checked in details. O
We now give sufficient conditions for minimizing the deviation (1.12).

Corollary 2.3. Let the functions ¢;(t,x) have the form

Yi(t,z) = C; (90 - ‘Zt> (2.15)
B st = s ([ 7)) 216

and let the functions C; and E; satisfy the conditions of Theorem 2.1. Also let
one of the following conditions be true

V.=V, (2.17)
supp @; Nsuppp; =0 (i # j), (2.18)
d—=0. (2.19)

Then the following assertions hold.

(i) Ifm; > 3, then the error (1.12) can be made arbitrarily small.

(i) Ifm; € (%, 3] and the condition (2.7) of Theorem 2.1 is fulfilled, then (1.12)
1s infinitesimally small.
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(iii) If m; = i, the condition (2.7) of Theorem 2.1 is fulfilled, and
si — 40, (2.20)
then (1.12) is infinitesimally small.

Proof. Let us compute the derivatives of the functions ;(¢, x) from (2.15)
0 -~ 0
i _ (7 C() i o 2.21
ot < )7 Ox ! (221)
If the functions 1;(t, z) have the form (2.16), then

0 G o E)

(2.22)

As it is easy to see, for m; > %, the derivatives (2.21) or (2.22) make equal to zero
the first sum in (2.5), and under one of the conditions (2.17), (2.18) or (2.19),
the second sum in the expression for the low-temperature limit A’ is also equal
to zero. For m; = %, the condition of collinearity (2.7) vanishes the additional
term (2.6). For m; = 1, (2.9) is equal to zero by the condition (2.20). O

Below is a theorem that contains another approach for obtaining coefficient
functions in the distribution (1.10).

Theorem 2.4. Let all function series with a common term of (2.2) after
multiplying by a factor B! retain the convergence uniformly on R*. Also let
the condition (2.3) remain true for m; > 3 and (2.7) be valid.

Then there exists a value A’, for which (2.4) is true, and

0p; =~ 0p;
ot T <V 8x>D

V= V| s (ult)u(t,o)eies),  (2:23)

lim A= ZP{M( sup <Nz‘(ta$)
i1

Bi—+oo ) eRs

o0
+ 27 d? Z PO PO;

17]21 (t7.’,U)ER4
i#j
where
e[u)()zwaf*uoitf7 m; = %
Mi(tax) = 1 ) 1
: m; > 3

Proof. By substituting the Maxwellians M; into the inequality (2.10), we have

[ av|pth - a1
R3

Bi 3/2 Biw2r2 —B;(V=V)?
<Y poi (=) P | ave?
: ™ R3
=1
oo

2d? 2.2, 5 92 2
T Z poipoje” i oo
i,j=1
i#]

dpi I
ot + (V’ Oz )‘
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 — 4q q1 7. T
x [ dq | dge 0| = -2 1V, -V,
/R3 RS VBi /B ’

The passage to the supremum with respect to the variables (¢, x) is taken due to
the condition of uniform convergence of the functional series. Then we use the

inequality (2.4) to obtain
[e9) 3/2 —o | O, Ow:
A =S o ( ) sup <€6iwfr$ / Qe B2 |90 <V’ 9"%) D
; (t,;B)GR4 R3 ot ox

2d° - (eﬂiwfr%ﬂjwm

i#]
—2—q2| 4 q1 T

X dq/ dgre 4% ——4V;=V5 . (2.25
foa ], VBB )
After performing the change of variables p = v/3; (V — Vi) , we have

T3 Z poipoj Sup 7 pip;
> 2,2 2
A=) pem? sup (6/3 i / dpe™?
i=1 R?

(2.24)

Bi
™

17‘7:1 (t,I)ER4

(t,z)eR* ot \/E’ Ox

2d2 > 4202 42,2
+r D oo swp (AT

™ l,]:l (t,x)E]R4

i#£]
—2—q2 | 4 q1 7T

X dq/ dpe @ | — — —4+V, =V, | |. (2.26)

/]R3 R3 VB \/Bi tY

The passage to the low-temperature limit is taken in the same way as in the proof
of Theorem 2.1 and we can calculate the limit of the new factor

2,2 2 2
lim ePwimi — lim ePfilwir—moi—uwoit]” — iy ePilwie—uoit]
Bi—r+o0 Bi—r+o0 Bi—r+o0
2
1—2m, [woi,z—up;t] 1
= lim fi lwose—uat]? € i ? .
Bi—r+00 1, m; > 5

Further, computing the limit of (2.26) for 3; — 400, we obtain the assertion of
Theorem 2.4. ]

3. Conclusions

Some approximate solutions of the Boltzmann equation for a model of hard
spheres in the form of a function series with Maxwell modes that describe the
eddy gas motion are constructed in the paper. The explicit form of the coeffi-
cient functions in the infinite-modal Maxwell distribution is obtained. For the
constructed expressions, sufficient conditions for minimizing the uniform-integral
error between the parts of the equation under consideration are found.
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From a physical point of view, the constructed distribution describes the
interaction of an unlimited number of eddy-like Maxwellian flows in a gas of hard
spheres. These flows rotate around axes and move translationally. In this case,
the rotation of all flows slows down simultaneously with the cooling of the gas.
The solutions are approximate, but with an arbitrary degree of accuracy.
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Bzaemozisi HeCKiHYE€HHOro 4YncJjia CMEPYOIIOAiIOHNX Tediii
JJIs MOJIeJIi TBEPAUX KYJIb

0.0. Hukalov and V.D. Gordevskyy

Y crarTi ozmepkaHO HAOJIMKeHI pO3B’sa3KU piBHAHHA Bosbiivana s
MOJIeJIi TBEpAUX KyJb Y SBHOMY BUIVIANi. BoHH MaroTh BUIVISA (DyHKIHO-
HAJIbHOTO PsiIy MAKCBEJUIaHIB 3 KOeMIIEHTHUMHI (DYHKINSIMUA ITPOCTOPOBOT
koopauHaTu Ta dacy. OmepkaHo JOCTATHI yMOBM MiHiIMi3aIlil piBHOMipHO-
IHTerpaJbpHOTO BIAXWIy MiXK YacTUHAMU DiBHsHHS BosbiiMana mjis mo0ymo-
BAHOT'O PO3IOJILITY.

Kurrouosi ciioBa: piBHsiHHsT BosibliMaHa, TBepIi KyJii, CMepPYOIo IiOHi Tedil,
HECKiHYeHHO MOJAJIbHUI PO3ITOILT
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