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In the paper, the explicit approximate solutions of the Boltzmann equa-
tion for the hard spheres model are obtained. They have the form of function
series of Maxwellians with coefficient functions of a spatial coordinate and
time. Sufficient conditions for minimizing the uniform-integral error be-
tween the parts of the Boltzmann equation for the constructed distribution
are obtained.
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1. Statement of the problem

The Boltzmann kinetic equation plays an important role in the kinetic theory
of gases. In this paper, we consider this equation for a model of hard spheres
that describes particles of any gas which move translationally with a certain linear
velocity, collide by the laws of classical mechanics and can not rotate. For this
model, the equation has the form [1,3]

D(f) = Q(f, f), (1.1)

where the left-hand side of the equation is the differential operator

D(f) ≡ ∂f

∂t
+

(
V,
∂f

∂x

)
, (1.2)

(here (a, b) is the scalar product of the vectors a and b) and the right-hand side
of (1.1) is the collision integral, which for the hard spheres model is as follows

Q(f, f) ≡ d2

2

∫
R3

dV1

∫
Σ
dα|(V − V1, α)|

×
[
f(t, x, V ′1)f(t, x, V ′)− f(t, x, V )f(t, x, V1)

]
, (1.3)

where f(t, x, V ) is the distribution function of particles; the parameter t ∈ R is
time; V = (V 1, V 2, V 3) is a linear velocity; ∂f

∂x is the gradient of the function f
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of the spatial coordinate x ∈ R3, which determines the location of the particle
in space; d > 0 is the diameter of the molecule; α is the unit vector on the
unit spheres Σ, and V, V1, V

′, V ′1 are the velocities of particles before and after
collision, respectively, determined by the relations

V ′ = V − α(V − V1, α),

V ′1 = V1 + α(V − V1, α).

The only exact solution to equation (1.1), which is known explicitly up to now,
is the Maxwellian, which makes both parts of the Boltzmann equation equal to
zero. There are global Maxwellians, which, in the case of hard spheres, depend
only on the velocity V, and there are local Maxwellians, which, unlike global ones,
depend also on a spatial coordinate and time. The most general form of local
Maxwellians for the hard spheres model was obtained in [1, 4, 7, 10].

In [9], a global Maxwellian was considered as well as a local Maxwellian,
namely a screw, that depends on the spatial coordinate. We now consider
Maxwellians, which also depend on time, i.e., non-stationary and inhomogeneous
Maxwellians. From the physical point of view, they describe the motion of a gas
rotating about a given axis and moving in the direction perpendicular to the axis.
Analytically, these Maxwellians have the form [2,4, 7, 10]

Mi(t, x, V ) = ρi

(
βi
π

)3/2

e−βi(V−V i)
2

(1.4)

(here and in what follows, the index i ∈ N) with the density

ρi = ρ0ie
βiω

2
i r

2
i , (1.5)

where ρ0i is a nonnegative scalar constant, the parameter βi is the quantity inverse
to the absolute temperature

βi =
1

2Ti
, (1.6)

the vector ωi is the angular velocity of the gas flow as a whole with which it
rotates about some axis, and r2

i is the distance between the molecule and the
axis of rotation x0i

r2
i =

1

ω2
i

[ωi, x− x0i − u0it]
2, (1.7)

x0i =
1

ω2
i

[ωi, V̂i − u0i], (1.8)

(here [a, b] is the vector product of the vectors a and b) the vector u0i⊥ωi and it
is the linear velocity of the axis of the i−th rotating gas flow. By V̂i, we denote
the translational velocity of the flow included in the mass velocity

V i = V̂i + [ωi, x− u0it]. (1.9)
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In this paper, we obtain the approximate solutions for the equation under
study in the following form

f(t, x, V ) =
∞∑
i=1

ϕi(t, x)Mi(t, x, V ). (1.10)

The coefficient functions ϕi(t, x) are nonnegative smooth functions on R4 and
their norm

‖ϕi(t, x)‖ = sup
(t,x)∈R4

(
|ϕi(t, x)|+

∣∣∣∣∂ϕi(t, x)

∂t

∣∣∣∣+

∣∣∣∣∂ϕi(t, x)

∂x

∣∣∣∣) (1.11)

is not equal to zero.

The aim of the work is to find the form of the coefficient functions ϕi(t, x)
and the conditions for the hydrodynamic parameters of Maxwellians for which
the uniform-integral error [5]

∆ = ∆(βi) = sup
(t,x)∈R4

∫
R3

∣∣D(f)−Q(f, f)
∣∣dV (1.12)

can be arbitrarily small.

2. The main results

We now formulate and prove the next theorem. The parameter βi is defined
by the relation (1.6), and the function ∆ has the form (1.12).

Theorem 2.1. Let the coefficient functions have the form

ϕi(t, x) = ψi(t, x)e−βiω
2
i r

2
i , (2.1)

where ψi(t, x) > 0 are smooth nonnegative functions and their norm (1.11) is not
equal to zero. Let all function series with one of the following common terms

ψi, |x|ψi, tψi,

∣∣∣∣∂ψi∂x

∣∣∣∣ , ∣∣∣∣∂ψi∂t
∣∣∣∣ , |x|

∣∣∣∣∂ψi∂x

∣∣∣∣ , t

∣∣∣∣∂ψi∂t
∣∣∣∣ (2.2)

converge uniformly on the R4 after multiplying by ρ0i. Also let

ωi = ω0iβ
−mi
i , (2.3)

where mi > 1
4 .

Then there exists a function ∆′ such that

∆ 6 ∆′, (2.4)

and
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a) if mi >
1
2 , then

lim
βi→+∞

∆′ =
∞∑
i=1

ρ0i sup
(t,x)∈R4

∣∣∣∣∂ψi∂t +

(
V̂i,

∂ψi
∂x

)∣∣∣∣
+ 2πd2

∞∑
i,j=1
i 6=j

ρ0iρ0j

∣∣∣V̂i − V̂j∣∣∣ sup
(t,x)∈R4

(ψiψj); (2.5)

b) if mi = 1
2 , then in the right-hand side of (2.5) there is the additional term

4√
π

∞∑
i=1

ρ0i

∣∣∣[ω0i, V̂i − u0i

]∣∣∣ sup
(t,x)∈R4

ψi; (2.6)

c) if 1
4 < mi <

1
2 and vectors ω0i,

(
V̂i − u0i

)
are parallel

ω0i ‖
(
V̂i − u0i

)
, (2.7)

then assertion (2.5) is also true;

d) if mi = 1
4 and

ωi = ω0isiβ
− 1

4
i , (2.8)

where si are positive constants and, in addition, require the validity of (2.7),
then in the right-hand side of (2.5) there is the additional term

4√
π

∞∑
i=1

ρ0is
2
iω

2
0i sup

(t,x)∈R4

((|x|+ |x− u0it|)ψi) . (2.9)

Remark 2.2. The notation βi → +∞ means that for any number i there is
the inequality βi > β, where β → +∞.

Proof. The following inequality was obtained in details in [9]∫
R3

dV |D(f)−Q(f, f)| 6
∞∑
i=1

∫
R3

dVMi

∣∣∣∣∂ϕi∂t +

(
V,
∂ϕi
∂x

)∣∣∣∣+ S̃,

S̃ = 2
∞∑

i,j=1
i 6=j

d2ρiρj
π2

ϕiϕj

∫
R3

dq

∫
R3

dq1e
−q2−q21

∣∣∣∣∣ q√
βi
− q1√

βj
+ V i − V j

∣∣∣∣∣ . (2.10)

To the conditions imposed in [9], we add a condition of uniform convergence of
all function series with a common term of one of the functions (2.2) additionally
multiplied by a constant nonnegative factor ρ0i that ensures the existence of
(2.10). We use the derivatives of the coefficient functions obtained in [8]

∂ϕi
∂t

= e−βiω
2
i r

2
i

(
∂ψi
∂t

+ 2βiψi

{
ω2
i (x, u0i)− tω2

i u
2
0i −

(
[ωi, V̂i], u0i

)})
, (2.11)
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∂ϕi
∂x

= e−βiω
2
i r

2
i

(
∂ψi
∂x

+ 2βiψi
{
ωi(ωi, x)− ω2

i (x− x0i − u0it)
})

. (2.12)

Let us substitute (2.11), (2.12) into inequality (2.10)∫
R3

dV
∣∣D(f)−Q(f, f)

∣∣ 6 ∞∑
i=1

ρi

(
βi
π

)3/2 ∫
R3

e−βi(V−V )2
∣∣∣∣∂ψi∂t +

(
V,
∂ψi
∂x

)
+ 2βiψi

{
ω2
i (x, u0i)− tω2

i u
2
0i −

(
[ωi, V̂i], u0i

)}
+
(
V, 2βiψi

{
ωi(ωi, x)− ω2

i (x− x0i − u0it)
}) ∣∣∣∣ e−βiω2

i r
2
i dV + S̃.

Remembering the form (1.5) for the density of ρi, we can get the estimate∫
R3

dV
∣∣D(f)−Q(f, f)

∣∣ 6 ∞∑
i=1

ρ0i

(
βi
π

)3/2 ∫
R3

dV e−βi(V−V )2
∣∣∣∣∂ψi∂t +

(
V,
∂ψi
∂x

)
+ 2βiψi

{
ω2
i (x, u0i)− tω2

i u
2
0i −

(
[ωi, V̂i], u0i

)
+ (V, ωi(ωi, x))− ω2

i (x− x0i − u0it, V )
} ∣∣∣∣+ S̃.

Now perform the change of variables

p =
√
βi
(
V − V i

)
⇒ V =

p√
βi

+ V i

with the Jacobian β
−3/2
i . Thus, we get∫

R3

dV
∣∣D(f)−Q(f, f)

∣∣ 6 π−3/2
∞∑
i=1

ρ0i

∫
R3

dpe−p
2

∣∣∣∣∂ψi∂t +

(
p√
βi

+ V i,
∂ψi
∂x

)
+ 2βiψi

{
ω2
i (x, u0i)− tω2

i u
2
0i −

(
[ωi, V̂i], u0i

)
+

(
p√
βi

+ V i, ωi(ωi, x)

)
− ω2

i (x− x0i − u0it,
p√
βi

+ V i)

}∣∣∣∣+ S̃,

which can be written in the form∫
R3

dV
∣∣D(f)−Q(f, f)

∣∣ 6 π−3/2
∞∑
i=1

ρ0i

∫
R3

e−p
2

∣∣∣∣∂ψi∂t +

(
p√
βi

+ V i,
∂ψi
∂x

)
+ 2βiψi

{
ω2
i (x, u0i)− tω2

i u
2
0i −

(
[ωi, V̂i], u0i

)
+
(
V̂i, ωi

)
(ωi, x)−

(
V i, x− x0i − u0it

)
ω2
i

+

(
p√
βi
, ωi

)
(ωi, x)− ω2

i

(
p√
βi
, x− x0i − u0it

)}∣∣∣∣ dp+ S̃.
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Let us show that under the sign of the integral, after the identical transformations,
the addends with the first degree of the variable βi vanish. Indeed,

ω2
i (x, u0i)− tω2

i u
2
0i −

(
[ωi, V̂i], u0i

)
+
(
V̂i, ωi

)
(ωi, x)

− ω2
i

(
V̂i + [ωi, x− u0it], x− x0i − u0it

)
= ω2

i (x, u0i)− tω2
i u

2
0i −

(
[ωi, V̂i], u0i

)
+
(
V̂i, ωi

)
(ωi, x)

− ω2
i

(
V̂i, x− x0i − u0it

)
+
(

[ωi, x− u0it], [ωi, V̂i − u0i]
)

= ω2
i (x, u0i)− tω2

i u
2
0i −

(
[ωi, V̂i], u0i

)
+
(
V̂i, ωi

)
(ωi, x)

− ω2
i

(
V̂i, x− u0it

)
+
(
V̂i, [ωi, V̂i − u0i]

)
+ ω2

i

(
x− u0it, V̂i − u0i

)
−
(
ωi, V̂i

)
(x, ωi)

= ω2
i (x, u0i)− tω2

i u
2
0i − ω2

i

(
V̂i, x

)
+ ω2

i

(
V̂i, u0i

)
t

+ ω2
i

(
x, V̂i

)
− ω2

i (x, u0i)− ω2
i

(
u0i, V̂i

)
t+ ω2

i u
2
0it,

which is evidently equal to zero. Thus, we get∫
R3

∣∣D(f)−Q(f, f)
∣∣dV

6 π−3/2
∞∑
i=1

ρ0i

∫
R3

e−p
2

∣∣∣∣∂ψi∂t +

(
p√
βi

+ V̂i + [ωi, x− u0it],
∂ψi
∂x

)
+2
√
βiψi

(
(p, ωi)(ωi, x)− ω2

i (p, x− x0i − u0it)
)∣∣∣ dp+ S̃

6 π−3/2
∞∑
i=1

ρ0i

∫
R3

e−p
2

∣∣∣∣∂ψi∂t +

(
p√
βi

+ V̂i + [ωi, x− u0it],
∂ψi
∂x

)
+2
√
βiψi

(
(p, ωi)(ωi, x)− ω2

i (p, x− u0it)
)

+
(
p,
[
ωi, V̂i − u0i

])∣∣∣ dp+ S̃.

The existence of a supremum with respect to a spatial coordinate and time
is guaranteed by the assumption of the theorem that the series with common
members of the form (2.2) converge uniformly over all admissible values. Then,
passing to the supremum in the last inequality, we get

∆ 6 ∆′π−3/2
∞∑
i=1

ρ0i

∫
R3

e−p
2

sup
(t,x)∈R4

∣∣∣∣∂ψi∂t +

(
p√
βi

+ V̂i + [ωi, x− u0it],
∂ψi
∂x

)
+ 2

√
βiψi

(
(p, ωi)(ωi, x)− ω2

i (p, x− u0it)
)

+
(
p,
[
ωi, V̂i − u0i

]) ∣∣∣∣ dp
+

2d2

π2

∞∑
i,j=1
i 6=j

ρ0iρ0j
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× sup
(t,x)∈R4

(
ψiψj

∫
R3

dq

∫
R3

dq1e
−q2−q21

∣∣∣∣∣ q√
βi
− q1√

βj
+ V i − V j

∣∣∣∣∣
)
.

Applying condition (2.3) of the theorem, we obtain

∆ 6 ∆′ = π−3/2
∞∑
i=1

ρ0i

∫
R3

e−p
2

sup
(t,x)∈R4

∣∣∣∣∂ψi∂t
+

(
p√
βi

+ V̂i + β−mi
i [ω0i, x− u0it],

∂ψi
∂x

)
+ β−mi

i

(
p,
[
ω0i, V̂i − u0i

])
+ 2

√
βiψi

(
β−2mi
i (p, ω0i)(ω0i, x)− ω2

0iβ
−2mi
i (p, x− u0it)

)∣∣∣ dp
+

2d2

π2

∞∑
i,j=1
i 6=j

ρ0iρ0j sup
(t,x)∈R4

(
ψiψj

∫
R3

dq

∫
R3

dq1e
−q2−q21

∣∣∣∣∣ q√
βi
− q1√

βj

+ V̂i − V̂j + β−mi
i [ω0i, x− u0it]− β

−mj

j [ω0j , x− u0jt]

∣∣∣∣) . (2.13)

In order pass to the limit in the last equality, we first introduce the notation

γi =
1

βi
,

after which we have

∆ 6 ∆′ = π−3/2
∞∑
i=1

ρ0i

∫
R3

e−p
2

sup
(t,x)∈R4

(∣∣∣∣∂ψi∂t
+

(
p
√
γi + V̂i + γmi

i [ω0i, x− u0it],
∂ψi
∂x

)
+ 2ψi

(
γ

2mi− 1
2

i (p, ω0i)(ω0i, x)− ω2
0iγ

2mi− 1
2

i (p, x− u0it)

)
+ γ

mi− 1
2

i

(
p,
[
ω0i, V̂i − u0i

])∣∣∣∣ dp)
+

2d2

π2

∞∑
i,j=1
i 6=j

ρ0iρ0j sup
(t,x)∈R4

(
ψiψj

∫
R3

dq

∫
R3

dq1e
−q2−q21

∣∣∣q√γi − q1
√
γj

+ V̂i − V̂j + γmi
i [ω0i, x− u0it]− γ

mj

j [ω0j , x− u0jt]
∣∣∣ ) . (2.14)

The limiting passage in (2.13), as βi → +∞, is equivalent to γi → +0 in (2.14).
It requires the continuity of expression (2.14) at zero provided by the condition
of uniform convergence and an obvious estimate |γi| 6 1

β
(see Remark 2.2). Here

we use the lemma from [6] about the continuity of the supremum with respect
to the parameter and the theorems about the continuity of integral and func-
tion series with respect to the parameter. Performing the limit transition (2.13)
for mi >

1
2 , we obtain Proposition (2.5), and in case mi = 1

2 , the term (2.6)
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appears. Considering the value mi from the interval
(

1
4 ,

1
2

)
and basing on (2.14),

we conclude that the low temperature limit ∆′ exists only when (2.7) is applied.
After minor transformations the low temperature limit ∆′ coincides with the
expression (2.5).

For the case mi = 1
4 , let us change the condition (2.3) for (2.8). Then,

substituting (2.8) into (2.14) and passing to the limit γi → +0, which corresponds
to βi → +∞, we get the equality

lim
βi→+∞

∆′ = π−3/2
∞∑
i=1

ρ0i

∫
R3

e−p
2

sup
(t,x)∈R4

(∣∣∣∣∂ψi∂t +

(
V̂i,

∂ψi
∂x

)
+ 2ψi

(
s2
i (p, ω0i)(ω0i, x)− ω2

0is
2
i (p, x− u0it)

)∣∣ dp
+ 2πd2

∞∑
i,j=1
i 6=j

ρ0iρ0j

∣∣∣V̂i − V̂j∣∣∣ sup
(t,x)∈R4

(ψiψj)

that does not exceed

∞∑
i=1

ρ0i sup
(t,x)∈R4

∣∣∣∣∂ψi∂t +

(
V̂i,

∂ψi
∂x

)∣∣∣∣+ 2πd2
∞∑

i,j=1
i 6=j

ρ0iρ0j

∣∣∣V̂i − V̂j∣∣∣ sup
(t,x)∈R4

(ψiψj)

+
4√
π

∞∑
i=1

ρ0is
2
iω

2
0i sup

(t,x)∈R4

((|x|+ |x− u0it|)ψi) .

Thus, all the statements of Theorem 2.1 are checked in details.

We now give sufficient conditions for minimizing the deviation (1.12).

Corollary 2.3. Let the functions ψi(t, x) have the form

ψi(t, x) = Ci

(
x− V̂it

)
(2.15)

or
ψi(t, x) = Ei

([
x, V̂i

])
, (2.16)

and let the functions Ci and Ei satisfy the conditions of Theorem 2.1. Also let
one of the following conditions be true

V i = V j , (2.17)

suppϕi ∩ suppϕj = ∅ (i 6= j), (2.18)

d→ 0. (2.19)

Then the following assertions hold.

(i) If mi >
1
2 , then the error (1.12) can be made arbitrarily small.

(ii) If mi ∈
(

1
4 ,

1
2

]
and the condition (2.7) of Theorem 2.1 is fulfilled, then (1.12)

is infinitesimally small.
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(iii) If mi = 1
4 , the condition (2.7) of Theorem 2.1 is fulfilled, and

si → +0, (2.20)

then (1.12) is infinitesimally small.

Proof. Let us compute the derivatives of the functions ψi(t, x) from (2.15)

∂ψi
∂t

= −
(
V̂i, C

′
i

)
,

∂ψi
∂x

= C ′i. (2.21)

If the functions ψi(t, x) have the form (2.16), then

∂ψi
∂t

= 0,
∂ψi
∂x

=
[
E′i, V̂i

]
. (2.22)

As it is easy to see, for mi >
1
2 , the derivatives (2.21) or (2.22) make equal to zero

the first sum in (2.5), and under one of the conditions (2.17), (2.18) or (2.19),
the second sum in the expression for the low-temperature limit ∆′ is also equal
to zero. For mi = 1

2 , the condition of collinearity (2.7) vanishes the additional
term (2.6). For mi = 1

4 , (2.9) is equal to zero by the condition (2.20).

Below is a theorem that contains another approach for obtaining coefficient
functions in the distribution (1.10).

Theorem 2.4. Let all function series with a common term of (2.2) after
multiplying by a factor eβiω

2
i r

2
i retain the convergence uniformly on R4. Also let

the condition (2.3) remain true for mi > 1
2 and (2.7) be valid.

Then there exists a value ∆′, for which (2.4) is true, and

lim
βi→+∞

∆′ =
∞∑
i=1

ρ0i sup
(t,x)∈R4

(
µi(t, x)

∣∣∣∣∂ϕi∂t +

(
V̂i,

∂ϕi
∂x

)∣∣∣∣)

+ 2πd2
∞∑

i,j=1
i 6=j

ρ0iρ0j

∣∣∣V̂i − V̂j∣∣∣ sup
(t,x)∈R4

(µi(t, x)µj(t, x)ϕiϕj), (2.23)

where

µi(t, x) =

{
e[ω0i,x−u0it]2 , mi = 1

2

1, mi >
1
2

.

Proof. By substituting the Maxwellians Mi into the inequality (2.10), we have∫
R3

dV
∣∣∣D(f)−Q(f, f)

∣∣∣
6
∞∑
i=1

ρ0i

(
βi
π

)3/2

eβiω
2
i r

2
i

∫
R3

dV e−βi(V−V )2
∣∣∣∣∂ϕi∂t +

(
V,
∂ϕi
∂x

)∣∣∣∣
+

2d2

π2

∞∑
i,j=1
i 6=j

ρ0iρ0je
βiω

2
i r

2
i +βjω

2
j r

2
jϕiϕj
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×
∫
R3

dq

∫
R3

dq1e
−q2−q21

∣∣∣∣∣ q√
βi
− q1√

βj
+ V i − V j

∣∣∣∣∣ . (2.24)

The passage to the supremum with respect to the variables (t, x) is taken due to
the condition of uniform convergence of the functional series. Then we use the
inequality (2.4) to obtain

∆′ =
∞∑
i=1

ρ0i

(
βi
π

)3/2

sup
(t,x)∈R4

(
eβiω

2
i r

2
i

∫
R3

dV e−βi(V−V )2
∣∣∣∣∂ϕi∂t +

(
V,
∂ϕi
∂x

)∣∣∣∣)

+
2d2

π2

∞∑
i,j=1
i 6=j

ρ0iρ0j sup
(t,x)∈R4

(
eβiω

2
i r

2
i +βjω

2
j r

2
jϕiϕj

×
∫
R3

dq

∫
R3

dq1e
−q2−q21

∣∣∣∣∣ q√
βi
− q1√

βj
+ V i − V j

∣∣∣∣∣
)
. (2.25)

After performing the change of variables p =
√
βi
(
V − V i

)
, we have

∆′ =

∞∑
i=1

ρ0iπ
−3/2 sup

(t,x)∈R4

(
eβiω

2
i r

2
i

∫
R3

dpe−p
2

∣∣∣∣∂ϕi∂t +

(
V i +

p√
βi
,
∂ϕi
∂x

)∣∣∣∣)

+
2d2

π2

∞∑
i,j=1
i 6=j

ρ0iρ0j sup
(t,x)∈R4

(
eβiω

2
i r

2
i +βjω

2
j r

2
jϕiϕj

×
∫
R3

dq

∫
R3

dq1e
−q2−q21

∣∣∣∣∣ q√
βi
− q1√

βj
+ V i − V j

∣∣∣∣∣
)
. (2.26)

The passage to the low-temperature limit is taken in the same way as in the proof
of Theorem 2.1 and we can calculate the limit of the new factor

lim
βi→+∞

eβiω
2
i r

2
i = lim

βi→+∞
eβi[ωi,x−x0i−u0it]2 = lim

βi→+∞
eβi[ωi,x−u0it]2

= lim
βi→+∞

eβ
1−2mi
i [ω0i,x−u0it]2 =

{
e[ω0i,x−u0it]2 mi = 1

2

1, mi >
1
2

.

Further, computing the limit of (2.26) for βi → +∞, we obtain the assertion of
Theorem 2.4.

3. Conclusions

Some approximate solutions of the Boltzmann equation for a model of hard
spheres in the form of a function series with Maxwell modes that describe the
eddy gas motion are constructed in the paper. The explicit form of the coeffi-
cient functions in the infinite-modal Maxwell distribution is obtained. For the
constructed expressions, sufficient conditions for minimizing the uniform-integral
error between the parts of the equation under consideration are found.



The Interaction of an Infinite Number of Eddy Flows 173

From a physical point of view, the constructed distribution describes the
interaction of an unlimited number of eddy-like Maxwellian flows in a gas of hard
spheres. These flows rotate around axes and move translationally. In this case,
the rotation of all flows slows down simultaneously with the cooling of the gas.
The solutions are approximate, but with an arbitrary degree of accuracy.
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Взаємодiя нескiнченного числа смерчоподiбних течiй
для моделi твердих куль
O.O. Hukalov and V.D. Gordevskyy

У статтi одержано наближенi розв’язки рiвняння Больцмана для
моделi твердих куль у явному виглядi. Вони мають вигляд функцiо-
нального ряду максвеллiанiв з коефiцiєнтними функцiями просторової
координати та часу. Одержано достатнi умови мiнiмiзацiї рiвномiрно-
iнтегрального вiдхилу мiж частинами рiвняння Больцмана для побудо-
ваного розподiлу.

Ключовi слова: рiвняння Больцмана, твердi кулi, смерчоподiбнi течiї,
нескiнченно модальний розподiл
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