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The paper deals with the existence of weak solutions to steady quasi-
Newtonian flows by means of the Galerkin approximations and the measure-
valued solutions, namely Young measures, which turned out to be a good
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1. Introduction and main result

Let Ω be a bounded open subset of Rn (n ≥ 2). In this paper, we deal with
the existence of weak solutions to the following steady quasi-Newtonian viscous
fluid:

−div σ(x, u,Du) + u · ∇u+∇π = f in Ω, (1.1)

div u = 0 in Ω, (1.2)

u = 0 on ∂Ω, (1.3)

where u : Ω→ Rm is the velocity field, π : Ω→ R is the pressure, σ : Ω× Rm ×
Mm×n → Mm×n is the Cauchy stress tensor, where Mm×n denotes the space
of m × n matrices equipped with the inner product AijBij with conventional
summation, and f are the given body forces.

Consider first the case when the convective term u∇u is assumed to be small
and thus neglected, and σ have a polynomial growth/coercivity condition with
respect to u and Du (the velocity gradient) with weak monotonicity. The problem{

−div σ(x, u,Du) = f in Ω,

u = 0 on ∂Ω
(1.4)

is known to be solved by Hungerbühler in [16] for f ∈ W−1,p′(Ω;Rm) (p′ =
p/(p − 1)), and Dolzmann [11] established the existence result for the measure
valued function f = µ and replaced the weak derivative Du by the approximately
differentiable apDu. We proved in [7] the existence result for (1.4) by using a
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different notion of monotonicity for σ(·) = a(x,Du) + φ(u). See also [8]. In the
same setting and with the additional convective term u.∇u, Arada and Sequeira
[1] proved the existence of weak solutions using polynomial growth and coercivity
conditions. They also used weak monotonicity assumptions on the stress tensor
σ.

In [3], the present authors studied the existence of solutions for the quasilinear
elliptic system (1.4) in Orlicz–Sobolev spaces by using the Young measure and
mild monotonicity assumptions on σ. See also [5, 6, 9] for the unsteady case.

The first mathematical investigations on the class of systems (1.1)–(1.3) go
back to O.A. Ladyzhenskaya [20, 21] and J.L. Lions [23]. They both considered
the unsteady case and showed the existence of a weak solution whenever the
coercivity parameter p of the nonlinear elliptic operator related to the stress
tensor satisfies p ≥ 3n+2

n+2 .

For σ(x, u,Du) = T (x,Du) in (1.1)–(1.3), Gwiazda et al. [13] showed the
existence result in the setting of Musielak–Orlicz when the source term f is equal
to divF , with F ∈ Mn×n and F ∈ LM (Ω). The authors used the concept of
Young measure to define the weak solution and they restricted the N-function to
satisfy the following condition: M(x, F ) ≥ c|F |q for F ∈ Mn×n, c > 0 and q ≥
3n
n+2 . They also proved that the mapping T belongs to some class of monotone
operators, namely the class (Sm). In [26], the author established the existence
of weak solutions for steady flows of non-Newtonian incompressible fluids with
the help of a general x-dependent convex function in generalized Orlicz spaces.
Later, Gwiazda et al. [14] proved the existence of weak solutions to the generalized
Stokes system in anisotropic Orlicz spaces.

The aim of the paper is to extend the result of [1] to a more general space
where the growth and coercivity of σ are not polynomial. Consequently, the
Lp-framework will not capture the described situation. For this reason, the ho-
mogeneous Orlicz–Sobolev spaces W 1

0,divLM (Ω;Rm) are a suitable framework to
explore the growth assumptions by means of a convex function, namely an N-
function. Further, we extend the result of [3] to a steady quasi-Newtonian given
by (1.1)–(1.3). We will prove the existence of weak solutions for problem (1.1)–
(1.3) based on the results of [3, 4]. The function spaces and notations will be
presented in detail in Section 2.

As mentioned above, our aim is to prove the existence result in the setting
of Orlicz spaces by using the concept of Young measure as a technical tool to
describe weak limits of sequences constructed by the Galerkin approximations due
to Landes (cf. [22]). This approach was widely used in the calculus of variations,
optimal control theory and non-linear partial differential equations.

Finally, we set the assumptions on the stress tensor σ. Consider two N-
functions M and P such that P grows essentially less rapidly than M and M,M ∈
∆2 (see Section 2).

(H0) (Continuity) σ : Ω × Rm × Mm×n → Mm×n is a Carathéodory function
(i.e., measurable with respect to x and continuous with respect to the last
variables).
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(H1) (Growth and Coercivity) There exist α, γ > 0, d1 ∈ EM (Ω) and d2 ∈ L1(Ω)
such that

|σ(x, s, F )| ≤ d1(x) +M
−1
P (γ|s|) +M

−1
M(γ|F |),

σ(x, s, F ) : F ≥ αM(|F |)− d2(x)

for a.e. x ∈ Ω and all (s, F ) ∈ Rm ×Mm×n.

(H2) (Monotonicity) σ satisfies one of the following conditions:

(a) For all (x, s) ∈ Ω × Rm, F 7→ σ(x, s, F ) is a C1-function and it is
monotone, i.e., for all (x, s) ∈ Ω× Rm and F,G ∈Mm×n, we have(

σ(x, s, F )− σ(x, s,G)
)

: (F −G) ≥ 0.

(b) There exists a function W : Ω×Rm×Mm×n → R such that σ(x, s, F ) =
∂W
∂F (x, s, F ), and F → W (x, s, F ) is convex and C1 for all (x, s) ∈ Ω×
Rm.

(c) σ is strictly monotone, i.e., σ is monotone and(
σ(x, s, F )− σ(x, s,G)

)
: (F −G) = 0⇒ F = G.

(d) σ is strictly M -quasimonotone, i.e.,∫
Ω

∫
Mm×n

(
σ(x, s, λ)− σ(x, s, λ)

)
: (λ− λ)dνx(λ) dx > 0,

where λ = 〈νx, id〉, and ν = {νx}x∈Ω is any family of Young measures
generated by a bounded sequence in LM (Ω) and not a Dirac measure
for a.e. x ∈ Ω.

Now, a function u ∈W 1
0,divLM (Ω;Rm) is said to be a weak solution of problem

(1.1)–(1.3) if for all ϕ ∈W 1
0,divLM (Ω;Rm),∫

Ω

(
σ(x, u,Du) : Dϕ+ u · ∇u · ϕ

)
dx = 〈f, ϕ〉

holds, where 〈·, ·〉 is the duality pairing of W 1
0,divLM (Ω;Rm) and its dual.

Our main result reads as follows:

Theorem 1.1. If σ satisfies the conditions (H0)–(H2), then problem (1.1)–
(1.3) has a weak solution for every f ∈W−1

divLM (Ω;Rm).

The present paper is organized as follows. In Section 2, we recall the definition
of an N-function, the spaces of Orlicz and Orlicz–Sobolev altogether with some of
their properties. We end this section by recalling the definition of Young measures
and some of their useful properties. Section 3 is devoted to the construction of the
approximate solution by the Galerkin method. Section 4 concerns the existence of
a Young measure related to the Orlicz–Sobolev space and a proof of the div-curl
inequality. In the last section, the proof of the main theorem is given.
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2. Preliminaries

In the first subsection we recall some definitions and well-known facts about
N-functions, Orlicz and Orlicz–Sobolev spaces. For more details, we refer readers
to [12,18,19]. The second subsection is devoted to a brief overview about Young
measures. The reader not familiar with the theory of measure-valued solutions
should refer to [2, 10,15,25] for more details.

2.1. Notation and properties of Orlicz–Sobolev spaces. Let M :
R+ := [0,+∞) → R+ be an N-function, i.e., M is continuous convex, with

M(τ) > 0 for τ > 0, M(τ)
τ → 0 (respectively +∞) as τ → 0+ (respectively τ →

+∞). Thus, M admits the representation

M(τ) =

∫ τ

0
m(s) ds,

where m : R+ → R+ is nondecreasing right continuous, with m(0) = 0, m(τ) >
0 for τ > 0 and m(τ)→ +∞ as τ → +∞. The N-function M conjugate to M is
defined by

M(τ) =

∫ τ

0
m(s) ds,

where, m(τ) = sup{s, m(s) ≤ τ}. Clearly, M = M and one has Young’s inequal-
ity

τs ≤M(τ) +M(s)

for all s, τ > 0. The N-function M is said to satisfy the ∆2 condition (resp. near
infinity) if there exists k > 0 (resp. τ0 > 0) such that

M(2τ) ≤ kM(τ)

for all τ ≥ 0 (resp. τ ≥ τ0).
Let Ω be an open subset of Rn and M be an N-function. The Orlicz class

LM (Ω;Rm) is defined as the set of measurable functions u : Ω→ Rm such that∫
Ω
M(|u(x)|) dx <∞.

The Orlicz space LM (Ω;Rm) is the set of (equivalence classes of) measurable
functions u : Ω→ Rm such that u

β ∈ LM (Ω;Rm) for some β > 0. It is a Banach
space under the norm

‖u‖M = inf

{
β > 0 :

∫
Ω
M

(
|u(x)|
β

)
dx ≤ 1

}
.

The closure in LM (Ω;Rm) of the bounded measurable functions with compact
support in Ω is denoted by EM (Ω;Rm). The equality EM (Ω;Rm) = LM (Ω;Rm)
holds if and only if M satisfies the ∆2 condition for all τ or for τ large according
to whether Ω has a finite measure or not. The dual space of EM (Ω;Rm) can be
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identified with LM (Ω;Rm) by means of the pairing
∫

Ω u(x)v(x)dx, and the dual
norm on LM (Ω;Rm) is equivalent to ‖.‖M . We recall Hölder’s inequality∫

Ω
|u(x)v(x)| dx ≤ 2‖u‖M ‖v‖M

for all u ∈ LM (Ω;Rm) and all v ∈ LM (Ω;Rm). The space LM (Ω;Rm) is reflexive
if and only if M and M satisfy the ∆2 condition for all τ or for all τ large
according to whether Ω has a finite measure or not. We say that uk converges to
u for the modular convergence in LM (Ω;Rm) if for some β > 0,∫

Ω
M

(
|uk − u|

β

)
dx→ 0 as k →∞.

Furthermore, if M ∈ ∆2 (near infinity only if |Ω| < ∞), then the modular
convergence coincides with the norm convergence.

The Orlicz–Sobolev space W 1LM (Ω;Rm) is the set of all u ∈ LM (Ω;Rm)
such that Du ∈ LM (Ω;Mm×n), where Du is a matrix-valued function in which
all components are distributional partial derivatives of u. It is a Banach space
endowed with the norm

‖u‖W 1LM (Ω;Rm) := ‖u‖1,M = ‖u‖M + ‖Du‖M .

The symbol C∞0 (Ω;Rm) denotes the space of all C∞-functions u : Ω → Rm
with a compact support in Ω. Note that if |Ω| < ∞ and M satisfies the ∆2

condition near infinity, then

W 1
0LM (Ω;Rm) = C∞0 (Ω;Rm)

W 1LM (Ω;Rm)
,

and W−1LM (Ω;Rm) =
(
W 1

0LM (Ω;Rm)
)∗

. Furthermore, for an N-function M ,
the embedding W 1LM (Ω;Rm) ↪→ LM (Ω;Rm) is continuous. As M satisfies the
∆2 condition, we have the following Poincaré inequality: there exists θ > 0 such
that for all u ∈W 1

0LM (Ω;Rm),∫
Ω
M(|u|) dx ≤ θ

∫
Ω
M(|Du|) dx. (2.1)

Note that if M,M ∈ ∆2, then the spaces W 1LM (Ω;Rm) and W−1LM (Ω;Rm)
are reflexive and separable.
By W 1

0,divLM (Ω;Rm), we denote the Orlicz–Sobolev space with free divergence,
i.e.,

W 1
0,divLM (Ω;Rm) =

{
v ∈W 1

0LM (Ω;Rm) : div v = 0
}
.

The Orlicz–Sobolev space W−1
divEM (Ω;Rm) is a dual space of W 1

0,divLM (Ω;Rm).
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2.2. A review on Young measures. In the following, C0(Rm) denotes the
closure of the space of continuous functions on Rm with compact support with
respect to the ‖ · ‖∞-norm. Its dual space can be identified with M(Rm), the
space of signed Radon measures with finite mass. The related duality pairing is
given by

〈ν, f〉 =

∫
Rm

f(λ) dν(λ).

Note that id(λ) = λ, and thus 〈ν, id〉 =
∫
Rm λ dν(λ).

Lemma 2.1. Assume that the sequence {wj}j≥1 is bounded in L∞(Ω;Rm).
Then there exists a subsequence {wk}k and a Borel probability measure νx on Rm
for a. e. x ∈ Ω such that for a. e. g ∈ C(Rm) we have

g(wk) ⇀
∗ g weakly in L∞(Ω),

where

g(w) =

∫
Rm

g(λ) dνx(λ),

and ν = {νx}x∈Ω are called the family of Young measures associated with the
subsequence {wk}k.

The following lemmas are considered as applications of the fundamental the-
orem on Young measures (cf. [10]) which will be needed in the sequel.

Lemma 2.2 ([17]). If |Ω| < ∞ and νx is the Young measure generated by
the (whole) sequence wj, then there holds

wj → w in measure ⇔ νx = δw(x) for a.e. x ∈ Ω.

Lemma 2.3 ([17]). Let g : Ω×Rm×Mm×n → R be a Carathéodory function
and wk : Ω → Rm be a sequence of measurable functions such that wk → w in
measure and Dwk generates the Young measure νx with ‖νx‖M(Mm×n) = 1 for a.
e. x ∈ Ω. Then

lim inf
k→∞

∫
Ω
g(x,wk, Dwk) dx ≥

∫
Ω

∫
Mm×n

g(x,w, λ)dνx(λ) dx,

provided that the negative part g−(x,wk, Dwk) is equiintegrable.

The next lemma describes limits points of gradients sequences by means of
Young measures, which turns out to be an appropriate tool for overcoming the
difficulty arising when the weak convergence does not behave as one desires.

Lemma 2.4 ([4]). The following assertions hold.

(1) If the sequence {Duk} is bounded in LM (Ω;Mm×n), then there is a Young
measure νx generated by {Duk} satisfying ‖νx‖M(Mm×n) = 1 and the weak
L1-limit of Duk is

∫
Mm×n λ dνx(λ).
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(2) νx satisfies
〈νx, id〉 = Du(x) for a.e. x ∈ Ω.

Remark 2.5. Notice that a Young measure νx is called a W 1LM -gradient
Young measure if it is associated to a sequence of gradients {Dwj} such that
{wj} is bounded in W 1LM (Ω). It is called homogeneous if νx = µ for a.e. x ∈ Ω.

3. Galerkin approximation

Let V1 ⊂ V2 ⊂ · · · ⊂ W 1
0,divLM (Ω;Rm) be a sequence of finite dimensional

subspaces with the property that ∪
i∈N

Vi is dense in W 1
0,divLM (Ω;Rm). The se-

quence (Vi) exists because W 1
0,divLM (Ω;Rm) is separable (M ∈ ∆2). We define

the operator

T : W 1
0,divLM (Ω;Rm)→W−1

divLM (Ω;Rm),

u 7→
(
w 7→

∫
Ω
σ(x, u,Du) : Dwdx+

∫
Ω
u · ∇u · w dx− 〈f, w〉

)
.

In the sequel, we will use a positive constant c which can change values from line
to line.

Lemma 3.1. For an arbitrary u ∈ W 1
0,divLM (Ω;Rm), the functional T (u) is

linear and bounded.

Proof. T (u) is trivially linear for the arbitrary u ∈W 1
0,divLM (Ω;Rm). By the

growth condition in (H1), W 1
0,divLM (Ω;Rm) ↪→ LM (Ω;Rm) and P �M , we have∫

Ω
M(|σ(x, u,Du)|) dx ≤ c

∫
Ω

(
M(d1(x)) + P (γ|u|) +M(γ|Du|)

)
dx <∞.

Next, assume that

|u⊗ u| ≤M−1
P (|u|) +M

−1
M(|u|),

which gives ∫
Ω
M(|u⊗ u|) dx ≤ c

∫
Ω

(
P (|u|) +M(|u|)

)
dx.

Then, by Hölder’s inequality, it follows that

|〈T (u), w〉| =
∣∣∣∣∫

Ω
σ(x, u,Du) : Dwdx+

∫
Ω
u · ∇u · w dx− 〈f, w〉

∣∣∣∣
≤ 2‖|σ(x, u,Du)|‖M ‖Dw‖M +

∫
Ω
|u · ∇u · w| dx+ 2‖f‖−1,M ‖w‖1,M .

Since ∫
Ω
|u · ∇u · w|dx =

∫
Ω
|(u⊗ u) · ∇w| dx ≤ c‖u⊗ u‖M‖Dw‖M ,

we get
|〈T (u), w〉| ≤ c‖w‖1,M .

This implies that T (u) is well-defined and bounded.
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Lemma 3.2. The restriction of T to a finite linear subspace V of
W 1

0,divLM (Ω;Rm) is continuous.

Proof. Let r be the dimension of a subspace V of W 1
0,divLM (Ω;Rm), (ei)

r
i=1

be a basis of V and let (uk = aikei) be a sequence in V which converges to u = aiei
in V (with conventional summation). Then (ak) converges to a in Rr and uk →
u and Duk → Du a. e. On the other hand, ‖uk‖M and ‖Duk‖M are bounded by
a constant c. Thus, the continuity assumption in (H0) allows one to deduce that
σ(x, uk, Duk) : Dw → σ(x, u,Du) : Dw a. e. Also, (uk ⊗ uk) · ∇w → (u ⊗ u) ·
∇w a. e. Hence, by the growth condition in (H1), the Hölder inequality and the
Vitali theorem, it follows for w ∈W 1

0,divLM (Ω;Rm) that

‖T (uk)− T (u)‖−1,M = sup
‖w‖1,M≡1

|〈T (uk), w〉 − 〈T (u), w〉|

= sup
‖w‖1,M≡1

∣∣∣ ∫
Ω

(
σ(x, uk, Duk)− σ(x, u,Du)

)
: Dwdx

+

∫
Ω

(uk ⊗ uk − u⊗ u) · ∇wdx
∣∣∣

≤ c
(∥∥|σ(x, uk, Duk)− σ(x, u,Du)|

∥∥
M,Ω

+ ‖uk ⊗ uk − u⊗ u‖M,Ω

)
≤ c.

We fix some k and assume that the dimension of Vk is r and e1, . . . , er is a
basis of Vk. For simplicity, we write

∑
1≤i≤r aiei = aiei and define the map

G : Rr → Rr,


a1

a2
...
ar

 7→

〈T (aiei), e1〉
〈T (aiei), e2〉

...
〈T (aiei), er〉

 .

Lemma 3.3. G is continuous and

G(a) · a→ +∞ as ‖a‖Rr → +∞.

Proof. Let uj = aijei ∈ Vk, u0 = ai0ei ∈ Vk. Since T is continuous on a finite
dimensional subspace and

|(G(aj)−G(a))l| = |〈T (aijei)− T (ai0ei), el〉|
≤ ‖T (uj)− T (u0)‖−1,M .‖el‖1,M ,

it follows that G is continuous.
Now take u = aiei ∈ Vk. Then ‖a‖Rr → +∞ is equivalent to ‖u‖1,M → +∞

and
G(a) · a = 〈T (aiei), aiei〉 = 〈T (u), u〉.

The coercivity condition in (H1) implies

I ≡
∫

Ω
σ(x, u,Du) : Dudx ≥ α

∫
Ω
M(|Du|) dx− c.
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Next, observe that

II ≡
∫

Ω
u · ∇u · u dx =

1

2

∫
Ω
uj

∂

∂xj
|u|2 dx = −1

2

∫
Ω

div u|u|2 dx = 0,

by the condition (1.2). Finally, from Young’s inequality and (2.1), we have

III ≡
∫

Ω
|fu| dx =

α

2θ

∫
Ω

2θ

α
|fu| dx

≤ α

2θ

∫
Ω
M

(
2θ

α
|f |
)
dx+

α

2θ

∫
Ω
M(|u|) dx

≤ c+
α

2

∫
Ω
M(|Du|) dx.

Hence,

G(a) · a = 〈T (u), u〉 ≥ α
∫

Ω
M(|Du|) dx− α

2

∫
Ω
M(|Du|) dx− c

=
α

2

∫
Ω
M(|Du|) dx− c→ +∞ as ‖u‖1,M → +∞,

that is, T is coercive.

Lemma 3.4. For all k ∈ N, there exists uk ∈ Vk such that

〈T (uk), w〉 = 0 for all w ∈ Vk.

Proof. By Lemma 3.3, we have G(a) · a→ +∞ as ‖a‖Rr → +∞. Then there
exists R > 0 such that for all a ∈ ∂BR(0) ⊂ Rr we have G(a) · a > 0. The usual
topological argument [24] gives that G(x) = 0 has a solution x ∈ BR(0). Hence,
for all k ∈ N, there exists uk ∈ Vk such that 〈T (uk), w〉 = 0 for all w ∈ Vk.

As a consequence of Lemma 3.4, the sequence (uk) is uniformly bounded in
W 1

0,divLM (Ω;Rm). To see this, suppose that (uk) is not uniformly bounded. Since
T is coercive, then there is R > 0 for which 〈T (u), u〉 > 1 whenever ‖u‖1,M >
R. This gives a contradiction with the Galerkin approximation uk which satisfies
Lemma 3.4.

According to Lemma 2.1, there exists a Young measure νx generated by Duk
in LM (Ω;Mm×n) satisfying the properties of Lemma 2.4.

4. Div-curl inequality

The following lemma is the key step to passing to the limit in the approximat-
ing equations and proving that the weak limit u of the Galerkin approximations
uk is a solution of (1.1)–(1.3).

Lemma 4.1 (div-curl inequality). Assume that Duk generates a Young mea-
sure νx. Then the following inequality holds:∫

Ω

∫
Mm×n

(
σ(x, u, λ)− σ(x, u,Du)

)
: (λ−Du)dνx(λ) dx ≤ 0. (4.1)
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Proof. We consider the sequence

Ik : =
(
σ(x, uk, Duk)− σ(x, u,Du)

)
: (Duk −Du)

= σ(x, uk, Duk) : (Duk −Du)− σ(x, u,Du) : (Duk −Du)

= : Ik,1 + Ik,2.

Let us start with the sequence Ik,2. Since∫
Ω
M(|σ(x, u,Du)|) dx ≤ c

∫
Ω

(
M(d1(x)) + P (γ|u|) +M(γ|Du|)

)
dx <∞

by the growth condition in (H1) and P �M , then σ ∈ LM (Ω;Mm×n). It follows
according to Lemma 2.4 that

lim inf
k→∞

∫
Ω
Ik,2 dx =

∫
Ω

∫
Mm×n

σ(x, u,Du) : (λ−Du)dνx(λ) dx

=

∫
Ω
σ(x, u,Du) :

(∫
Mm×n

λdνx(λ)−Du
)
dx = 0.

For the sequence Ik,1, take a measurable subset Ω′ ⊂ Ω, and by the Hölder
inequality we have∫

Ω′
|σ(x, uk, Duk) : Duk| dx ≤ 2

∥∥|σ(x, uk, Duk)|
∥∥
M,Ω′

(∫
Ω′
M(|Duk|)

)
dx.

Since {uk} is bounded in W 1
0,divLM (Ω;Rm), then, by the growth condition in

(H1) and W 1
0LM (Ω) ↪→ LM (Ω),∫

Ω
M(|σ(x, uk, Duk)|) dx ≤ c

∫
Ω
M(d1(x)) + P (γ|uk|) +M(γ|Duk|) dx < c.

Thus
∥∥|σ(x, uk, Duk)|

∥∥
M,Ω′

is bounded. Note that the term
∫

Ω′M(|Du|) dx
is arbitrarily small if the measure of Ω′ is chosen small enough. Conse-
quently, the equiintegrability of I−k,1 follows. Since (uk) is uniformly bounded

in W 1
0,divLM (Ω;Rm), then uk → u in LM (Ω;Rm) (up to a subsequence). Hence,∫

Ω
M(|uk − u|)dx ≥

∫
{x∈Ω;|uk−u|≥ε}

M(|uk − u|) dx

≥ c
∫
{x∈Ω;|uk−u|≥ε}

|uk − u| dx

≥ cε
∣∣{x ∈ Ω; |uk − u| ≥ ε}

∣∣
for some positive ε, and c is the constant of the embedding LM ⊂ L1. Therefore,
uk → u in measure. By virtue of Lemma 2.3, one gets

I := lim inf
k→∞

∫
Ω
Ik dx = lim inf

k→∞

∫
Ω
Ik,1 dx
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= lim inf
k→∞

∫
Ω
σ(x, uk, Duk) : (Duk −Du) dx

≥
∫

Ω

∫
Mm×n

σ(x, u, λ) : (λ−Du)dνx(λ) dx.

We will see next that I ≤ 0. Define dist(u, Vk) = inf
v∈Vk
‖u − v‖1,M and fix ε > 0.

Then there exists k0 ∈ N such that dist(u, Vk) < ε for all k > k0, or, equivalently,

dist(uk − u, Vk) = inf
v∈Vk
‖uk − u− v‖1,M = inf

w∈Vk
‖u− w‖1,M = dist(u, Vk) < ε

for any k > k0. Then, for vk ∈ Vk, we can estimate I as follows:

I = lim inf
k→∞

∫
Ω
σ(x, uk, Duk) : (Duk −Du) dx

= lim inf
k→∞

∫
Ω
σ(x, uk, Duk) : D(uk − u− vk) + σ(x, uk, Duk) : Dvk dx

≤ lim inf
k→∞

(
2
∥∥|σ(x, uk, Duk)|

∥∥
M,Ω
‖D(uk − u− vk)‖M,Ω

+〈f, vk〉 −
∫

Ω
(uk ⊗ uk).∇vk dx

)
.

The term
∥∥|σ(x, uk, Duk)|

∥∥
M,Ω

is uniformly bounded in k by the growth condition

in (H1). On the other hand, by choosing vk ∈ Vk in such a way that ‖uk − u −
vk‖1,M < 2ε for any k > k0, the term ‖D(uk − u − vk)‖M,Ω is bounded by 2ε.
Furthermore, we have

|〈f, vk〉| = |〈f, vk − (uk − u)〉+ 〈f, uk − u〉|
≤ |〈f, vk − (uk − u)〉|+ |〈f, uk − u〉|
≤ 2ε‖f‖−1,M + o(k)

and ∣∣∣∣∫
Ω

(uk ⊗ uk)∇vkdx
∣∣∣∣ =

∣∣∣∣∫
Ω

(uk ⊗ uk) ·
(
∇(vk − uk + uk)

)
dx

∣∣∣∣
≤
∫

Ω
|(uk ⊗ uk) · ∇uk| dx︸ ︷︷ ︸

=0

+

∫
Ω
|(uk ⊗ uk) · ∇(vk − uk)| dx

≤
∫

Ω
|(uk ⊗ uk) · ∇(vk − u)| dx+

∫
Ω
|(uk ⊗ uk) · ∇(u− uk)| dx

≤ 2‖uk ⊗ uk‖M,Ω

[
‖D(vk − u)‖M,Ω + ‖D(u− uk)‖M,Ω

]
. (4.2)

Similarly to the proof of Lemma 3.1, we have ‖uk ⊗ uk‖M is bounded since (uk)
is bounded. Hence, the right-hand side in (4.2) tends to zero as k → +∞. Since
ε is arbitrary, this proves that I ≤ 0. Note that∫

Ω

∫
Mm×n

σ(x, u,Du) : (λ−Du)dνx(λ) dx = 0

together with I ≤ 0, equation (4.1) follows.
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Remark 4.2. The naming “div-curl inequality” can be explained in the fol-
lowing way. Suppose for a moment that div σ(x, uk, Duk) = 0 for all k and that
σ(x, uk, Duk) : Duk is equiintegrable. Hence, the weak limit of σ(x, uk, Duk) :
Duk in L1(Ω) is given by

∫
Mm×n σ(x, u, λ) : λdνx(λ). Furthermore, by the

usual div-curl lemma, it follows that
∫

Ω σ(x, uk, Duk) : Dukdx converges to∫
Ω

∫
Mm×n σ(x, u, λ) : λdνx(λ) and then the lemma follows with the equality.

Lemma 4.3. If equation (4.1) holds, then νx satisfies(
σ(x, u, λ)− σ(x, u,Du)

)
: (λ−Du) = 0 on supp νx.

Proof. We have∫
Ω

∫
Mm×n

(
σ(x, u, λ)− σ(x, u,Du)

)
: (λ−Du)dνx(λ) dx ≤ 0.

By the monotonicity of σ, the above integrand is nonnegative. Hence, it must
vanish with respect to the product measure dνx(λ)⊗ dx. It follows for a. e. x ∈
Ω that (

σ(x, u, λ)− σ(x, u,Du)
)

: (λ−Du) = 0 on supp νx.

5. Proof of Theorem 1.1

Now we can prove Theorem 1.1 by considering the conditions (a)–(d) listed
in (H2).

Case(a). By ∇, we denote the derivative with respect to the third variable
of σ. We claim that for a. e. x ∈ Ω and all µ ∈Mm×n,

σ(x, u, λ) : µ = σ(x, u,Du) : µ+
(
∇σ(x, u,Du)µ

)
: (Du− λ)

holds on supp νx. Due to the monotonicity of σ, we have for all τ ∈ R,(
σ(x, u, λ)− σ(x, u,Du+ τµ)

)
: (λ−Du− τµ) ≥ 0.

By virtue of Lemma 4.3, we have

−σ(x, u, λ) : τµ ≥ −σ(x, u,Du) : (λ−Du) + σ(x, u,Du+ τµ) : (λ−Du− τµ)

= τ
[
(∇σ(x, u,Du)µ) : (λ−Du)− σ(x, u,Du) : µ

]
+ o(τ ],

where we have used the fact that

σ(x, u,Du+ τµ) = σ(x, u,Du) +∇σ(x, u,Du)τµ+ o(τ).

Since τ is arbitrary in R, our claim follows for all µ ∈ supp νx. As {σ(x, uk, Duk)}
is bounded and equiintegrable, then its weak L1-limit is given by

σ =

∫
supp νx

σ(x, u, λ)dνx(λ).
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Therefore, due to our claim, one gets

σ =

∫
supp νx

σ(x, u,Du) dνx(λ)

+
(
∇σ(x, u,Du)

)t ∫
supp νx

(Du− λ) dνx(λ) = σ(x, u,Du).

It follows from the reflexivity of LM (Ω) that {σ(x, uk, Duk)} is weakly convergent
in LM (Ω) and its weak limit is σ(x, u,Du).

Case(b). Let show that for a. e. x ∈ Ω, supp νx ⊂ Kx, where

Kx := {λ ∈Mm×n : W (x, u, λ) = W (x, u,Du) + σ(x, u,Du) : (λ−Du)}.

If λ ∈ supp νx, then Lemma 4.3 implies

(1− τ)
(
σ(x, u, λ)− σ(x, u,Du)

)
: (λ−Du) = 0 for all τ ∈ [0, 1]. (5.1)

Due to the monotonicity of σ, one has

(1− τ)
(
σ(x, u,Du+ τ(λ−Du))− σ(x, u, λ)

)
: (Du− λ) ≥ 0. (5.2)

Subtracting (5.1) from (5.2), we get

(1− τ)
(
σ(x, u,Du+ τ(λ−Du))− σ(x, u,Du)

)
: (Du− λ) ≥ 0 for all τ ∈ [0, 1],

which implies by the monotonicity of σ that(
σ(x, u,Du+ τ(λ−Du))− σ(x, u,Du)

)
: (λ−Du) = 0.

Thus,

σ(x, u,Du) : (λ−Du) = σ(x, u,Du+ τ(λ−Du)) : (λ−Du) for all τ ∈ [0, 1].

Due to (H2)(b), we have then

W (x, u, λ) = W (x, u,Du) + σ(x, u,Du) : (λ−Du).

Hence λ ∈ Kx. The convexity of W allows one to write

W (x, u, λ) ≥W (x, u,Du) + σ(x, u,Du) : (λ−Du). (5.3)

Put A(λ) (respectively, B(λ)) the left- (respectively, the right-) hand side in (5.3).
By the continuity and differentiability of λ 7→ A(λ), it follows that for ρ ∈Mm×n

and τ ∈ R,

A(λ+ τρ)−A(λ)

τ
≥ B(λ+ τρ)−B(λ)

τ
if τ > 0,

A(λ+ τρ)−A(λ)

τ
≤ B(λ+ τρ)−B(λ)

τ
if τ < 0.
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Thus DA = DB, which gives

σ(x, u, λ) = σ(x, u,Du) for all λ ∈ Kx ⊃ supp νx.

Hence,

σ =

∫
Mm×n

σ(x, u, λ) dνx(λ)

=

∫
supp νx

σ(x, u,Du) dνx(λ) = σ(x, u,Du).
(5.4)

Now consider the Carathéodory function g(x, u, ρ) = |σ(x, u, ρ) − σ(x)|. The
sequence gk(x) := g(x, uk(x), Duk(x)) is equiintegrable. Then

gk ⇀ g weakly in L1(Ω),

where

g(x) =

∫
Rm×Mm×n

|σ(x, s, λ)− σ(x)| dδu(x)(s)⊗ dνx(λ)

=

∫
Mm×n

|σ(x, u, λ)− σ(x)| dνx(λ) = 0

by (5.4). As gk ≥ 0, then gk → 0 in L1(Ω). Thus, for v ∈W 1
0,divLM (Ω;Rm),∫

Ω

(
σ(x, uk, Duk)− σ(x, u,Du)) : Dv dx→ 0 as k →∞.

Case(c). Due to the strict monotonicity and Lemma 4.3, it follows that νx
is a Dirac measure. Assume that νx = δϕ(x). Then

ϕ(x) =

∫
Mm×n

λ dδϕ(x)(λ) =

∫
Mm×n

λ dνx(λ) = Du(x).

Thus νx = δDu(x). According to Lemma 2.2, we have

Duk → Du in measure as k →∞,

which implies σ(x, uk, Duk) → σ(x, u,Du) a. e. Since σ(x, uk, Duk) is bounded
and equiintegrable (by the growth condition in (H1)), it follows by the Vitali
theorem that σ(x, uk, Duk) converges to σ(x, u,Du) in L1(Ω).

Case(d). Suppose that νx is not a Dirac mass on Ω′ ⊂ Ω of positive measure.
On the one hand, due to the assumption (d), we have for a.e. x ∈ Ω′,∫

Mm×n

σ(x, u, λ) : λ dνx(λ)

>

∫
Mm×n

σ(x, u, λ) : λ dνx(λ) +

∫
Mm×n

σ(x, u, λ) : (λ− λ) dνx(λ)

=

∫
Mm×n

σ(x, u, λ) : Dudνx(λ),
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where we have used λ = Du(x) and∫
Mm×n

σ(x, u, λ) : (λ− λ) dνx(λ)

= σ(x, u, λ) :

∫
Mm×n

λ dνx(λ)− σ(x, u, λ) : λ

∫
Mm×n

dνx(λ) = 0.

On the other hand, by virtue of Lemma 4.1, we deduce∫
Ω

∫
Mm×n

σ(x, u, λ) : Dudνx(λ) dx ≥
∫

Ω

∫
Mm×n

σ(x, u, λ) : λdνx(λ) dx

>

∫
Ω

∫
Mm×n

σ(x, u, λ) : Dudνx(λ) dx,

which is a contradiction. Consequently, νx = δDu(x) for a.e. x ∈ Ω. We follow
then the proof of the Case (c).

In conclusion, let v ∈ W 1
0,divLM (Ω;Rm). Since

⋃
i∈N Vi is dense in

W 1
0,divLM (Ω;Rm), there exists a sequence vk ∈

⋃
i∈N Vi such that vk → v in

W 1
0,divLM (Ω;Rm) as k →∞. We have

〈T (uk), vk〉 − 〈T (u), v〉 =

∫
Ω
σ(x, uk, Duk) : Dvk dx+

∫
Ω

(uk · ∇uk)vk dx− 〈f, vk〉

−
∫

Ω
σ(x, u,Du) : Dvdx−

∫
Ω

(u · ∇u)vdx+ 〈f, v〉

=

∫
Ω
σ(x, uk, Duk) : (Dvk −Dv) dx

+

∫
Ω

(
σ(x, uk, Duk)− σ(x, u,Du)

)
: Dv dx

+

∫
Ω

(
uk · ∇uk)vk − (u.∇u)v

)
dx− 〈f, vk − v〉.

According to all cases in (H2) and uk · ∇uk → u · ∇u, the right-hand side of the
above equality tends to zero as k tends to infinity. By virtue of Lemma 3.4, it
follows that

〈T (u), v〉 = 0 for all v ∈W 1
0,divLM (Ω;Rm).
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[19] A. Kufner, O. John, and S. Fućık, Function Spaces, Academia, Prague, 1977.

[20] O.A. Ladyzhenskaya, Modification of the Navier–Stokes equations for the large ve-
locity gradients, in: Boundary Value Problems of Mathematical Physics and Related
Aspects of Function Theory II. Consultants Bureau, New York, 1968, 57–59.

[21] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow,
Gordon and Beach, New York, 1969.

[22] R. Landes, On Galerkins method in the existence theory of quasilinear elliptic equa-
tions, J. Funct. Anal. 39 (1980), 123–148.
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Про стацiонарнi течiї квазiньютонiвських рiдин у
просторах Орлича–Соболева
Farah Balaadich and Elhoussine Azroul

Стаття присвячена дослiдженню iснуванню слабких розв’язкiв для
стацiонарних квазiньютонiвських течiй за допомогою наближень Га-
льоркiна i розв’язкiв у просторах мiр, а саме, мiр Янга, якi виявили-
ся хорошим iнструментом для опису слабких розв’язкiв нашої задачi в
просторах Орлича.

Ключовi слова: квазiньютонiвська рiдина, простори Орлича, слабка
монотоннiсть, слабкий розв’язок, мiри Янга
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