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Exact Solutions of Nonlinear Equations in
Mathematical Physics via Negative Power
Expansion Method

Bo Xu and Sheng Zhang

In this paper, a direct method called negative power expansion (NPE)
method is presented and extended to construct exact solutions of nonlin-
ear mathematical physical equations. The presented NPE method is also
effective for the coupled, variable-coefficient and some other special types of
equations. To illustrate the effectiveness, the (2 4+ 1)-dimensional dispersive
long wave (DLW) equations, Maccari’s equations, Tzitzeica—Dodd-Bullough
(TDB) equation, Sawada-Kotera (SK) equation with variable coefficients
and two lattice equations are considered. As a result, some exact solutions
are obtained including traveling wave solutions, non-traveling wave solutions
and semi-discrete solutions. This paper shows that the NPE method is a
simple and effective method for solving nonlinear equations in mathematical
physics.
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1. Introduction

Constructing exact solutions of nonlinear mathematical physical equations is
of theoretical and practical significance. Since the famous Korteweg—de Vries
(KdV) equation was solved in 1967 [7], a large number of exact solutions like [2—
7,10,11,13-16,18-20,22-28,31,33,34,36,38,41,43] of nonlinear partial differential
equations (PDEs) have been found. The exp-function method [10] proposed by He
and Wu has been widely used for constructing exact solutions of nonlinear PDEs.
As for the last development of this method, we would like to mention that the
exp-function method [10] has been adopted to construct solitary solutions, blowup
solutions and discontinuous solutions of the generalized Boussinesq equation [12],
the fractal Boussinesq equation [12] and the generalized KdV-Burgers equation
[9].

In the process of trying to solve the problem of “expansion of intermediate
expression” caused by ansatz solution of the exp-function method [10], Zhang
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and Li [32], and Zhang, You and Xu [37] respectively put forward the direct
algorithm of the exp-function method and the simplest exp-function method,
which are extended and uniformly called in this paper the negative power expan-
sion method or the NPE method for short. In [32,37], the KdV equation, the
(3+1)-dimensional Jimbo-Miwa (JM) and two special cases of the Mikhauilov—
Novikov—Wang (MNW) equations were taken as three examples of classical, high-
dimensional and high-order equations to test the validity of the primary form of
the NPE method. This paper will present and extend the NPE method to the
coupled, variable-coefficient and some other special types of equations, including
the (2+1)-dimensional DLW equations, Maccari’s equations, TDB equation, SK
equation with variable coefficients and two lattice equations.

The rest of this paper is organized as follows. In Section 2, we describe
the NPE method. In Section 3, we extend the NPE method to the coupled,
variable-coefficient and some other special types of equations. In Section 4, the
comparisons between the NPE method and the exp-function method are given.
In Section 5, some conclusions and discussions are given.

2. Description of the NPE method
For the given (m + 1)-dimensional nonlinear PDE

P(uvutvufﬁl?'"7u$m’ut$17"' y Uty » Utts Uy s - - 'auxmfbmv"') = 07 (21)

where P is a polynomial of the dependent variable u and its derivatives with
respect to the independent variables {t,z1, 22, -+ ,zy} or P can be transformed
into a polynomial after a suitable transformation of u. To determine u by the
NPE method, we take the following three steps:

Step 1. Supposing that the ansatz solution of (2.1) has the form

n
u=Ywd ", = +a, (2.2)
=0
where ¢ and w; (ugp # 0) are undetermined functions of {t,x1,z2,...,Zn}, a is

the embedded constant parameter, n is a nonnegative integer determined by bal-
ancing the highest order nonlinear terms and the highest order partial derivative
terms in (2.1).

Step 2. Substituting (2.2) into (2.1) and collecting all the coefficients of ¢ =7 (j =
0,1,2,...), then setting each coefficient of the same power of ¢ to zero to derive
a set of over-determined PDEs for & or some other undetermined parameters
introduced by using a necessary simplified form of £ and wu;.

Step 3. Solving the set of over-determined PDEs derived in Step 2 with the
help of Mathematica or Maple to determine £ and u;, and finally, to determine
(2.2), namely a solution of (2.1).

We note here that if a = 1, then the NPE method described above corresponds
to its primary form [32,37].
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Theorem 2.1. Let the highest order nonlinear term and the highest order
partial derivative term in (2.1) be ug‘? and (ug))q(ug))luh respectively. Then the

nonnegative integer n in (2.2) has the following formula

s—Ir—
n:h+l+q]iq1’ (23)
where h, I, p, q, v and s are all nonnegative integers.
Proof. From (2.2), we have
ul) = —n(—n—1) (~n—s+ugd "¢+, (2.4)

and therefore determine the highest negative orders of ¢ in ué‘?, (u;’?)q and (ug(fl))l
as

deg(ufy)) = —n—s, deg[(ul))] =q(—n—p), deg[({))]=1(-n—7). (2.5)

1

At the same time, we have deg(u”) = —hn. Thus,

deg|(u)(uf)) u"] = g(—n — p) + 1(=n — ) — hn. (2.6)

x1

(s) (p) (r)

So, when balancing ug;, and (uz ) (uz, )'u”, we have
—n—s=q(-n—3s)+1(-n—r)— hn, (2.7)
which is namely (2.3). O

Theorem 2.1 shows that the NPE method for determining the value of n in
(2.2) is different from that of the auxiliary equation methods [23, 25,27, 33-35,
38], in which the value of n is related to the auxiliary equations. The main
reason is that the expansions of the ansatz solutions for these two methods are
different. The ansatz solution (2.2) is a negative power expansion of ¢, while the
corresponding ansatz solution of an auxiliary equation method is a polynomial
expansion of ¢ which satisfies an auxiliary equation.

For the KdV equation [1],

up + 06Uy + Ugpr = 0, (2.8)

we can express its solution by

ug uy
u:(e£+a)2+e£+a+uQ, §=kx+ct+w, (2.9)

where k, ¢ and w are arbitrary constants and the functions ug, w1 and ue are
determined as
k3 +c

ug = —2k%e*,  up = 2k%e8,  wuy = — o (2.10)
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When a = +1, we can write (2.9) as

k2 K3 k2 k3
u:—sech2§— +C, u:——csch2§— +C,
2 2 6k 2 2 6k
respectively. When a = 0, (2.9) is a constant solution u = —(k3+c)/6k. Selecting
k = ik and ¢ = i¢, here and thereafter i> = —1, we obtain two trigonometric

function solutions from (2.11),

(2.11)

P B 2 B¢
u:—?se02§+ ok c’ UZ—ECSCQg—F o ‘ (2.12)
Similarly, for the high-order equation [37],
U = — Wiz + 49Uz Upprr + 1duus, + 84UppUprr — 70u§;
9 224 4
— 252U Uy — DOU Uppy + ?u Ug, (2.13)
which is a special case of the MNW equation [21], we have
3k? 3k? k2 k7
ug = 7625, Uy = —765, U = ga Cc= @7 (2]‘4)
and hence obtain a solution
3k2e?¢ 3k2ef k2 K7
= — — =k —t . 2.15
“ 2(ef + a)? 2(e§+a)+8’ ¢ SRIPTIR (2.15)

As a high-dimensional model, the (341)-dimensional Jimbo-Miwa (JM) equa-
tion [32],

Uggry + FUyUgr + SUzlgy + 2Uyt — 3Ug, = 0, (2.16)
expresses its ansatz solution by
v %+u1’ ¢:a+ekz+n’ (2.17)

where k is a constant to be determined later, ug, u; and n are undetermined
functions of {x,y,z,t}. We substitute (2.17) into the JM equation (2.16) and
then set the coefficients of ¢/ (j = 0,1,2,...,5) to be zeros. A set of PDEs is
derived, from which we have

/ 3
w=2het, w= B LA 4L [fgaa, e
n=fi(y,2) + fa(z) + pt, (2.19)

and therefore obtain a solution of the JM equation (2.16),

2ke* 1 k3 + 2 1
V(U P RUSEVSRCEY

u_1+e5

where £ = kx + fi(y, 2) + f2(2) + pt, f1(y, 2), f2(z) are smooth functions of the
indicated variables, fi(z) = dfs(z)/dz, k is a non-zero constant, and p is an
arbitrary constant.
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3. Extensions of the NPE method to other equations

3.1. Coupled equations. We first consider the (2+1)-dimensional DLW
equations [35],

1
Uyt + Hyy + §(u2)w =0, (3.1)
Hy + (uH 4 u + ugy)z = 0. (3.2)
Here we denote deg H = m and deg u = n. Balancing uH and u,, we have —n —
m = —n — 2, i.e, m = 2. At the same time, balancing H,, and (u?),, yields
—m —2=—-2n—2,ie,n=1. We suppose
Hy H;
H=—+—+ Ho, 3.3
0]
5 (3.4)

where ¢ = e +a, £ = kx +1ly+ct+w, k, [, c and w are undetermined constants,
while Hy, Hy, Ha, ug and u; are undetermined functions. Substituting (3.3) and
(3.4) into the DLW equations (3.1) and (3.2), then setting each of the coefficients
of 77(j =0,1,2,---,4) to be zero, we derive two sets of PDEs:

o 6k%eX Hy + 3kle2§u(2) =0,
¢73 D= QerEHO + 2k%e® Hy + 20le2€u0 — klefu% + 2/<:le25u0u1 — 2ke5u0uoy
— 4keS Hoy — 2lefugugy = 0,
d>_2 . — k%eSHy — cle§u0 — /@leguoul — leﬁuot — ceguoy — kesulu()y — keguouly
— 2ke5H1x — lefuluol, + UgyUoz — lefuoulx + UoUozy + Hoze = 0,
¢t Uyt + UtyUoy + UoyUts + UL UOzy + UULzy + Hize = 0,
¢°: Ulyt + UlyUlz + UIULgy + Hope = 0,
¢~ — 6k21e3 uy — ket Hyup = 0,
3 — 2ce* Hy + 6k%1e*ug — 2ke® Hyug — 2ke® Houy + 2k*e®ug, + Hozug
+ 4kle* gy + Hougz = 0,
™% — cebHy — ketug — k?leSug — ke® Hyug — ke® Hyug + Hor — k*eSugy
+u1Hop + ugHiz — 2kle§u0x + Hyiuoe + Hou1g — 2ke’5u0xy — lefuogm =0,
¢~ Hyp + uiHip + uoHay + uor + Hotoy + Hiung + topey = 0,
¢° 1 Hoy + Hoguy + uty + Houg + izay = 0.
Solving the above sets of PDEs, we have

HO = —2kle25, H1 = 2]6165, H2 = —1, ug = :|:2k‘e5, up =

and obtain the solutions of the DLW equations (3.1) and (3.2),

2kle* 2klet +k% —¢
H=-— 3.6
(e5—|—a)2+eﬁ+&Jr ko7 (3:6)
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2ket +k2 — ¢
— 4+ )
U Era + A (3.7)

where £ = kxz 4+ ly + ct +w, k # 0, [, ¢ and w are all constants.
We next consider the Maccari’s equations [17],

iQt + me + QR = 07
Ri+ Ry + (1Q*), = 0.

Supposing that .
Q = u(z,y, t)el(px+qy+0t+d), (3.10)

where p, ¢ and ¢ are undetermined constants, d is an arbitrary constant. Substi-
tuting (3.10) into the Maccari’s equations (3.8) and (3.9) yields

i(ug + 2pug) + gy — (¢ + kHu+uR =0, (3.11)
Ry + Ry + (u?), = 0. (3.12)

Letting & = k(z + ly — 2kt + w), here k and [ are undetermined constants, w
denotes arbitrary constants, then we can transform (3.11) and (3.12) into

Eu” — (c+ EHu+uR =0, (3.13)
(1—2p)R + (v*) = 0. (3.14)

Integrating (3.14) with respect to £ once and selecting the integration constant

as zero, we have
Ly
=——u". 3.1
R = 2pu (3.15)

Substituting (3.15) into (3.13) yields

1
Pu” — k2 )u — 3 =0. 3.16
u' — (c+k%)u = 2pu (3.16)
Balancing u” and u3, we have —n — 2 = —3n, i.e., n = 1. Thus, we suppose
u:@—i—ul, b =ef +a, (3.17)

¢

where ug and u; are undetermined function of . Substituting (3.17) into (3.16)
and setting each coefficient of $=7 (j = 0,1,2,3) to be zero, we derive a set of
ordinary differential equations (ODEs):

-3 2 U
2 _
¢ Fuo ==, =0,
3 2
o2 —efug — LU Supy = 0,
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3

u
°: —(c+kHu — l—12p +u] =0.
Solving the above set of ODEs, we have
V2014 14 2k?
ug = ++/20 — 4pet,  wy :$7p, c=— + , (3.18)

2 2

and hence obtain the solutions of the Maccari’s equations (3.8) and (3.9):

£ 1 i (e _1+42k2
ind%—@(e >8@ﬂy #otrd) (3.19)

fta 2
'3 1 2
e
R=72 - = 3.20
= (egw 2) , (3.20)

where £ = k(x + ly — 2kt +w), k, [, d and w are constants.

3.2. Special type equation. We have the following theorem for the special
type model—TDB equation.

Theorem 3.1. The TDB equation [8],

Ugt = € %+ e 2, (3.21)
has a pair of solutions
v h—w
u = arcsinh 5 (3.22)
with ‘
e 1+1 t
S = = ky — — 3.23

where k # 0 and w are constants.
Proof. Taking the transformation

Nz, t) —v(z, 1)

u = arcsinh 5 ) (3.24)
we transform the TDB equation (3.21) into
3 4 _
— VU + v — v° — 0" = 0. (3.25)
Balancing vv,; and v*, we have —2n — 2 = —4n, i.e., n = 1. We suppose
U:@—i—vl, é=c +a, (3.26)

¢

where & = kx + ct + w, k and ¢ are undetermined constants, w is an arbitrary
constant, vg and v; are undetermined functions of {z,¢}. Substituting (3.26) into
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(3.25) and setting each coefficient of ¢=7(j = 0,1,2,...,4) to be zero yields a set
of ODEs:
¢ — cke** v} — g =0,

¢3: ckeSvd — v — 2cke® vy + dvivy = 0,
<Z>_2 : ckegvovl - 3v§v1 — 6@%1}% + ke§v1v0t — kegvovlt + cengogj + vz Vot
— ce*vgv1y — Vovogt = 0,
¢ = Bugv} — 4wov} + Vorv1e + Vialor — V100t — VoULzt = O,
¢O D V1Vt — V1zV1t + ’U% + Uil =0.
Solving the above set of ODEs, we have

1+1 1
vy = +eb, V=, =, (3.27)

and hence obtain the solutions (3.22). O

3.3. Variable-coefficient equation. We have the following theorem for
the variable-coefficient model, namely the SK equation.

Theorem 3.2. The SK equation [30] with the variable coefficients
up + () uug + g(t) ugtize + h(t)utipee + k() tzzeee = 0, (3.28)
has a pair of solutions

_ 3pw®)e 3ptw()et | pPu(r)
YT T T+ e * Af (1) (3.29)

where
¢ =px +p5/ 12f(t)kg}(;g(t)w(t) dt + w, (3.30)
w(t) = —g(t) — 2h(t) £ 1/6( 0(t) = [g(t) + 2h(t)]* — 40f(t)k(t),  (3.31)

p and w are constants, and the coefficient functions f(t), g(t), h(t) and k(t)
satisfy the condition

20£%(t)K (t) = w(®){f'(1)[g(t) + 2h(t)] — f()[g(t)
LR (O]} + 20k() F () F (1), (3.32)

Proof. Balancing tzyzz. and uzt,, yield n = 2. We suppose
¢ ¢
where £ = pr 4 ¢(t) + w, p and ¢(t) are undetermined constant and function

respectively, w is an arbitrary constant, ug, w1 and uo are undetermined func-
tions of {z,t}. Substituting (3.33) into the SK equation (3.28) and setting each
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coefficient of ¢=7(j = 0,1,2,...,7) to be zero yield a set of PDEs. Under the
constraint (3.32), from the set of PDEs we have

_ 3pw(t) _ 3pe(t) _ pu(t)
Wi T i 2T g B8
_ 5 [(12f(OE(E) + g(Hw(?)
q(t) =p / S0 dt, (3.35)
and hence obtain the solutions (3.29). O

Fig. 3.1: The bright-dark bell-soliton structure of the solution (3.29).

Figure 3.1 shows a bright-dark bell-soliton structure of the solution (3.29)
with “4” branch, where we select f(t) =t, g(t) = =2t — 4, h(t) =t + 2, k(t) =
—0.1t,a =1, p =1 and w = 0. It can be seen from Figure 3.1 that the coefficient
functions f(t), g(t), h(t) and k(t) affect the propagation speed of the soliton and
then the trajectory of the soliton forms a bright-dark bell spatial structure.

Fig. 3.2: The bright bell-soliton structure of the solution (3.29).
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Letting f(t), g(t), h(t) and k(t) be constants, in Figure 3.2, we show a typical
bright bell-soliton structure of the solution (3.29) with “+” branch by selecting
fit)y=-1,g9(t)=—-4, h(t)=2,k(t) =0.1,a=1,p=1and w=0.

3.4. Lattice equations. For the lattice equations, because of the complex-
ity of the iteration formulae of ansatz solutions, the steps of the NPE method for
solving the continuous equations should be adjusted.

Theorem 3.3. The lattice equation [29],

dun

3 = (0t Bun + yup) (Un1 = ), (3.36)

has a pair of solutions

i(ed —1)/B? —4ap B Bled +1) + (e? — 1)\/32 — 4ap

~v(ed +1)(esn + a) 2v(e? 4+ 1) ’

(3.37)

Up =

where &, = dn — {(e? — 1)(8% — 4aB)/[y(e! + D]}t +w, a, B, v, d and w are
constants.

Proof. Balancing du,, /dt and u2 yield n = 1. We suppose

Up = 20 + Un,1, (338)
®n
Un+1,0
= ’ 3.39
Un+41 ed¢n T a(l — ed) + Un+1,1, ( )
Up_1 = YUn-1,0 + Un—1.1, (340)

efd(bn + (1(1 — e*d)

where ¢, = e —a, &, = dn + ct + w, d and ¢ are undetermined constants,
w is an arbitrary constant, u, o and u,; are undetermined functions of {n,t}.
Substituting (3.38)—(3.40) into the lattice equation (3.36), replacing ¢!, with ¢,, —
a and eliminating the factors e?¢, + a(l — e?) and e~%¢, + a(1 — e~%) in the
denominators and then setting each coefficient of gb?f” (b=0,1,2,...,4) to be
zero yield a set of differential-difference equations (DDEs) for uy, o, w1, k and c.
Solving the set of DDEs, we have

(e? —1)\/p2% — 4ap Ble? +1) £ (e? —1)/B% — 4af
Upo = E i , Upl = — i , (3.41)
7 T+ 1) ’ 2T T 1)
(e? —1)(8* — 4ap)
=— . 42
’ Y(ed+1) (342
and finally arrive at the solutions (3.37). O

Theorem 3.4. The Toda lattice equation [39)],

d2u,, du,
=|—- +1 n—1— 2up n ) 3.43
dts ( dt ) (tn—1 “ Un+1) ( )
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has a solution

ac [(c? — 1)e?k 4+ 2¢F — 1)¢,

un:7e5”+aJr c(ek —1)2

+ ¢, (344)

where &, = kn + ct + w, ¢, cg and w are constants.

Proof. Balancing d?u,,/dt? and (du,/dt)u, yield n = 1. We employ (3.38)-
(3.40) and substitute them into the Toda lattice equation (3.43), replacing ¢,
with ¢, — a and eliminating the factors e?¢, + a(1 —e?) and e~%¢,, + a(l —e~9)
in the denominators and then set each coefficient of d)%f” (bL=0,1,2,...,4) to
zero to obtain a set of DDEs for uy, 0, u, 1, k and c. Solving the set of DDEs, we
have
[(c? —1)e?d 4 2¢d — 1]¢,

cled —1)2

and finally arrive at the solution (3.44). O

-+ ¢o, (3.45)

Un,0 = —ac, Up1 =

As pointed out by Zhang et al. in [40,42], the exact solutions with external
linear functions possess a remarkable dynamical property, which is that a solitary
wave does not propagate in the horizontal direction as a traditional wave. In
Figure 3.3, a semi-discrete kink-soliton structure of the solution (3.44) with this
characteristic is shown by selecting a =1, ¢ =1.06, d = 1 and ¢y = 0.

4

\

N

Fig. 3.3: The semi-discrete kink-soliton structure of the solution (3.44).

4. Comparisons between the NPE and exp-function methods

To compare the NPE method and the exp-function method [10] more precisely,
we consider in this section the KAV equation (2.8) and the Burgers equation [1],

U + 2uty — Uge = 0. (4.1)

Employing the NPE method to solve the KdV equation (2.8), we substitute
the ansatz solution (2.9) into the KdV equation (2.8) and then set each coefficient
of 77(j =0,1,2,...,5) to be zero, to obtain a set of PDEs [32]:

¢0 = 24k3e¥ug — 12keful = 0, (4.2)
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o 18k3e® g — 6k3e> uy — 18kefuguy + 18k%e* ugy + 6ugugy = 0, (4.3)
3. — 2ce£u0 — 2k3e£u0 + 6k3e®uy — 6ke£u% — 12ke§u0u2 — Gerfuom

+ 6uiugs + 6k2e25u1x + 6uguiy — 6ke£u0m =0, (44)
qb_Q = cegul — k?’eful — 6kefuqug + uor + 6ugugy — 3k%efuiy + 6uiuiy
+ 6ugug, — 3ke£u1xz + wozzz = 0, (45)

¢_1 DUy + Guguy + 6urugy + Uz = 0,
¢O © U9t + 6ugugy + Ugge = 0.

Solving the above set of PDEs (4.2)—(4.7), we reach (2.10) and finally obtain the
exact solution of the KdV equation (2.8),

2k2e28 2k%et k3 +4¢
u=— + - , (4.8)
(e +a)? e +a 6k

where £ = kx + ct + w.
Following the steps of the exp-function method [10] for the KdV equation
(2.8), we suppose

ag + alef + age2§
v by + bie + bye2’ ¢ =k +ct+uw, (4.9)

where ag, a1, as, by, b1, ba, k and c¢ are all undetermined constants, w is an
arbitrary constant. Substituting the ansatz solution (4.9) into the KdV equation
(2.8) and eliminating the denominator (by 4 bie® + boe® )4, then setting each
coefficient of e’¢ (j =1,2,...,7) to be zero, a set of algebraic equations is derived
as follows:

e* 1 arbic — agbdbic + 6agarbik — 6adbobik + a1bgk® — agbbik® =0,  (4.10)

e 1 2agb3c + 2a1b3bic — 2apbobic — 2agbibac + 6a2b2k + 12agagbik — 6adbik

— 12a3bobok + Sasbyk® — 4aib3bi k> + 4agbob?k® — 8agbgbok® = 0, (4.11)
e3¢ 5a2b3b10 + albob%C — aob‘i)C + alb%bgc — 6agbpbibac + 18(110,2[)(2)]6 + 6@%[)01)1]{;

+ 12agagbobi k — 6agai b3k — 12apa1bobek — 18abibok + 5agbiby k*

+ a1bob?k3 — agbtk® — 23a1b3bok® + 18agbob1bak® = 0, (4.12)
e 1 dagbobic + dasbibac — 4agh?bac — dagbobse + 12a3b3k + 24a1asbobik

— 24agaybibok — 12a3b3k + dagbob? k> — 32a20362k3 — 4agbibok®

+ 32a0bob3k?® — 3ke 14y 4 Uozzz = 0, (4.13)
655 : CLQb?C + 6a2b0b1b20 — alb%bgc — albobgc — 5&0[)11)30 + 18&%()0()1]{' + 6a1a2b%k

+ 12a1asbobok — 6a3bibok — 12apasbbok — 18agaib3k + axb3k?

— 18agbob1bok® — a1b3bok® 4 23a1bobsk> — Sagbibak® = 0, (4.14)
% 1 2a9b2byc + 2anbobic — 2a1bibic — 2apbic 4 6a3bTk + 12a3bobok — 6a3b3k

— 12apagbdk — dagbibok® + 8agbobik® 4 4a1bib3k® — Sapbsk® = 0, (4.15)
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e : agbibac — arbic 4 6a3bibok — 6aiashik + axb b3k — a1b3k® = 0. (4.16)
Then solving the above set of algebraic equations (4.10)—(4.16), we have

bo(* + ¢) by (5K — ) R+ o)

b
6k T T 6k 0 T T T ombok

by = —L, (4.17)

w=- " by

where bg and k are non-zero constants, b; and c are arbitrary constants. We thus
obtain an exact solution of the KdV equation (2.8):

bo(k3+c) | bi(5k—c) ¢  bi(k3+c) o¢
. ok T 6k © T “2abok ©

= , E=kx+ct+w. (4.18)
bo + bre + e

It is easy to see that the solution (4.18) can be rewritten as

E+c n 2k2e6 2k2e28
6k %4-65 (%—i—ef)Q’

u = E=kx+ct+w, (4.19)

which is the obtained solution (4.8) as long as 2by = apb;.

The above comparison shows that although the solution processes of the NPE
method and the exp-function method [10] are similar and both can get the same
solution of the KdV equation (2.8), the PDEs (4.2)—(4.7) are simpler than the
algebraic equations (4.10)—(4.16). The main reason is that the NPE method
collects the coefficients of ¢=7 = (ef +a)™7 (j = 0,1,2,...,5), while the exp-
function method [10] collects the coefficients of /¢ (j = 1,2,...,7). Besides,
both the numbers of the undetermined parameters and the equations solved in
the PDEs (4.2)—(4.7) are less than those in the algebraic equations (4.10)—(4.16).
This makes the calculation of solving (4.2)—(4.7) less than that of solving (4.10)—
(4.16) although (4.2)—(4.7) are PDEs and (4.10)—(4.16) are algebraic equations.

Let us take the Burgers equation (4.1) as another example for comparison.
In this example, we firstly take the traveling wave transformation

E=krx+ct+w (4.20)

before solving it by the NPE and exp-function methods, here k and ¢ are all
undetermined constants while w is an arbitrary constant. Then the Burgers
equation (4.1) is transformed into

cu' + 2kuu’ — k*u” = 0. (4.21)

Integrating (4.21) with respect to £ once and setting the integration constant as
A, we have
cu+ku? — kv — A =0, (4.22)

Secondly, we use the NPE method to solve (4.22). Balancing v’ and u? give
n = 1. We then suppose

u:%m, ¢=c +a, (4.23)
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where up and u; are undetermined functions. Using the ansatz solution (4.23),
we transform (4.22) into

i B kj N cuy N 2kupur k2, N eriuo LUQ%
4k 4 ¢ ¢ ¢ ¢ ¢

Then setting each coefficient of ¢—7(j = 0,1,2) in (4.24) to be zero, we derive a
set of ODEs as follows:

cuy + ku? — k2l +

= 0. (4.24)

¢ k2efug + kul, (4.25)
ot cug + 2kuouy — kzu{), (4.26)
0 2 g2, ¢ K
¢ . Cuy + kul — ]{3 Uy + @ — Z (427)
Solving the above set of ODEs (4.25)—(4.27), we have
k? —c k* — 2
— ke — =
ug kes, up T A YT (4.28)
and hence obtain an exact solution of the Burgers equation (4.1),
ket k* —c
__e§+a+ T =k +ct+w, (4.29)

where k # 0 and ¢ are constants.

Finally, we solve (4.22) by using the exp-function method [10]. Supposing
that

__ap + ale5 + a2e25

v= bo + bleg + b2e25 ’

(4.30)

we transform (4.22) into

1
(bo + bies + bye?6)?

<—Abg + agbgc — 2Abob1e§ + alboceg + aoblcef

— Abfe% - 2Ab0b2e25 + agbgce25 + a1byee® + aobgce2£
— 2Ab1bye® + agbyce® + abocedt — Ab%e4E + agbyce™®
+ a%k + 2aoall~cef + a%ke% + 20,0azke2g + 2a1a2ke35

+ a2ke®® — arbok?e® + agbi ket — 2apbok?e

F2a0bok2e® — agb k2% + a1b2k2e3€) ~0. (4.31)

Then, eliminating the denominator (by +b1eb +bye* )2 and setting each coefficient

of e (7 = 0,1,2,...,4) to be zero, we derive a set of algebraic equations as
follows:

P Abg + agbge + a%k, (4.32)

et 1 —2Abgby + arboc + agbic + 2apark — arbok® + agbik* = 0, (4.33)
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(325 D= Ab% — 2Abgbs + asbge + a1bic + agbac + a%k + 2agask

— 2(12()0]432 + 2&0()2]{22 =0, (434)
e . —24b1by + a2ble + arboc + 2a1a0k — a2b1k% 4+ alb2k? =0,  (4.35)
e — Ab3 + asboc + a3k = 0. (4.36)

Solving the above set of algebraic equations (4.32)—(4.36) yields

_ (c—KkH)[4arbick + 4a3k? + b3 (c? — k)] _ bo(k*+¢)
ap = FTNE N T (4.37)
4arbick + 4a2k? — b3 (c? — k*) kt — 2
bO 4[)2]{)4 ) 4k ( 38)

where a1, b1, bs and k # 0 are constants. Thus we obtain an exact solution of
the Burgers equation (4.1),

(c—k?)[4a1bs ck+4adk?+b3 (2 —k*))] + agef — bg(gj:rc) 0%

8bzk?
U= 212 p2( o2 1A ) (4.39)
—4a1b10k+4i(1)fk4 (e | bief + boe?t
where £ = kx + ¢t + w. The solution (4.39) can be further simplified to
k*—c ket
u = - , E=kx+ct+w. (4.40)
2k b10+22t;;llz;-blk2 + et

Obviously, if we let 2absk? = byc+ 2a1k + b1 k?, then the solution (4.29) becomes
the solution (4.40).

5. Conclusions and discussions

In summary, we have presented and extended the NPE method to the (2+1)-
dimensional DLW equations, Maccari’s equations, the TDB equation, the SK
equation with variable coeflicients and two lattice equations. As a result, some
exact solutions, including traveling wave solutions, non-traveling wave solutions
and semi-discrete solutions, are obtained.

The NPE method does not need to go through the traveling wave transfor-
mation process. Its advantages mainly lie in the following;:

1) compared with the exp-function method [10], there are fewer parameters
to be determined, the speed of “expansion of intermediate expression” in the
calculation process is slow;

2) compared with the Painlevé truncated expansion method [1], the process
of analyzing resonance points is not required for the NPE method and the ansatz
solution of the NPE method is not an infinite expansion but a simple and spe-
cific expression ¢ = ef + a in advance, which makes the derivatives of ¢ with
respect to & be e¢, and thus reduces the complexity of calculation caused by the
undetermined ¢ in the process of calculation of the Painlevé truncated expansion
method;
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3) compared with the homogeneous balance method [43], the assumed expan-
sion form of the ansatz solution of the NPE method is easy to be drawn up by the
balancing process, and there is no need to go through the homogeneous balance
method to find the logarithmic function in most cases in advance for determining
the assumed expansion of the ansatz solution;

4) compared with the auxiliary equation method [34], the NPE method does
not involve the auxiliary equation that the auxiliary equation method needs to
use in balancing the expansion order of the ansatz solution or in the process of
substituting the ansatz solution into the equation, and the final solution of the
NPE method does not require any special solutions of the auxiliary equation.

As for disadvantages of the NPE method, there are two of them:

1) there are relatively fewer types of solutions obtained due to the hypotheti-
cal form of ¢ in advance, although the obtained solutions expressed by exponential
functions can be transformed into hyperbolic function solutions and trigonomet-
ric function solutions by appropriate deformations, other types of solutions like
Jacobi elliptic function solutions can not be constructed;

2) the undetermined coefficients embedded in the ansatz solutions are all
functions of independent variables, which to some extent increase computational
complexity of solving the transformed equations of the given equations as the
transformed equations are generally PDEs (ODEs) or DDEs but not algebraic
equations.
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Touni po3B’sa3Ku HeJIHIMHUX PiBHAHb B MaTeMaTUYHIii
di3uili 3a MeToI0M HEraTMBHOI'O PO3MIMPEHHS
MOTY>KHOCTi

Bo Xu and Sheng Zhang

VY crTaTTi NpeCcTaBIeHO IPAMUI METOJ, 110 HA3UBAETHCS METOJOM Hera-
tuBHOrO posmupenns noryxkuocti (HPIT), sikuit 3acTocoBano miist moGy 1081
TOYHUX PO3B’I3KiB HEJIHINHUX PiBHSHDb MaTeMaTUIHOI (Pi3UKH. 3aIPOIIOHO-
sanuii meron (HPII) € takox edexrtuBHMM jyis 3B’s3aHUX DPIBHSHb, PiB-
HAHBb 31 3MIHHAM KOeMiIiEHTOM Ta IedKUX IHIMNX CHEeIlaJbHUX BHUIIB PiB-
usnb. 11106 nokasaru edekrTuBHicTh HaHOro MeTomy, 6ys0 posrisaayTo (2 +
1)-BumipHe Jucnepciiine piBHSIHHSI JJIsi JOBroi XBWJl, piBHsAHHA Makkapi,
piBasiaas [Tuneiiku—/lomma—Bysuioy, pisasaas Casaga—Korepa 31 3MiHHE-
Mu KoedillieHTaMuy Ta JIBa PIBHSHHS PENITKA. Y pe3y/IbTaTi 0JIepXKaHO TOYHI
PO3B’SI3KM, BKJIIOYAIOYN PO3B’SI3KM PiBHsIHHS O12KHOI XBWJIi, PiBHSIHHS HEDI-
2KHOI XBWJII Ta HAIMIBAMCKDPETHI PO3B’s3KU. ¥ CTATTI MMOKA3aHO, IO METO/T
HPII — ne mpocrtuit Ta edekTuBHM CIOCIO PO3B’sI3Ky HEMHINHUX PIBHAHD
B MaTeMaTH4HiN disuri.

Kurouosi ciioBa: Tounmii po3s’azok, meroq HPII, (24 1)-Bumipue jucnep-
cifine piBHAHHS JUTs JOBrol XBui, piBHsgHHs Makkapi, piBasuusa [umneiiku—
Honma—Bymnoy, pisusuns Casana—Korepa 3i aminanMu Koedirienramu, pis-
HSHHSI PelIiTKU
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