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Stability in the Marcinkiewicz Theorem
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Dedicated to the memory of 1. V. Ostrovskii

Ostrovskii’s generalization of the Marcinkiewicz theorem implies that
if an entire characteristic functions of a probability distribution satisfies
loglog M(r, f) = o(r) and is zero-free then the distribution is normal. We
show that under the same growth condition, absence of zeros in a wide
vertical strip implies that the distribution is close to a normal one. This
generalizes and simplifies a recent result of Michelen and Sahasrabudhe.
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Following Linnik [5], an entire function f is called a ridge function if |f(z)| <
|f(iImz)|, z € C. This definition is justified by Probability theory: characteristic
functions of random variables are ridge functions when they are entire. We will
apply the same name to subharmonic functions u in C satisfying

u(z) <wu(ilmz), ze€C. (1)

Classical theorem of Marcinkiewicz [7] says that all ridge entire functions of finite
order without zeros are of the form exp(—az? + biz + c), where a > 0, b is real
and c is complex. This was generalized by Ostrovskii [9] who proved a conjecture
of Linnik that the condition of finite order can be relaxed to

log* log |£(2)] = o(|z]), = — ox.
This condition was further relaxed in [11] to

lim inf M =0. (2)
2—00 |z
Paper [10] contains a survey of further generalizations of Ostrovskii’s result.

We prove a “stable version” of this theorem for entire functions which are free
of zeros in vertical strips. A different approach to stability in the Marcinkiewicz
was proposed in [2,3].
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Theorem 1. If u is a ridge subharmonic function in C satisfying

log max{u(ir), u(—ir)}

lim inf =0, (3)
r—00 r
1s harmonic in the strip
S(A) ={z:|Rez| < A} (4)

and normalized by u(0) = u;(0) = uy(0) = 0 and uy,(0) =1, then
|u(z) + Re(2%/2)] < col2[*/A, |2 < A/3, (5)
where ¢y s an absolute constant.

Example u(z) = coshycosy — 1 shows that the growth condition (3) is best
possible. A new proof of Linnik’s conjecture is obtained by setting u = log |f|
and A = oo.

As a corollary we obtain a generalization of the recent theorem by Michelen
and Sahasrabudhe [8, Theorem 4.1]:

Theorem 2. Let X be a random variable with average p and standard devia-
tion o. Suppose that the characteristic function fx is entire, satisfies (2), and is
free of zeros in the strip {z : |Rez| < d}. Then the distribution function Fx~ of
the random variable X* = (X — ) /o satisfies |Fx« — Fn|oo < C—l, where ¢y is an

absolute constant, and N is the standard normal distribution with characteristic
function fn(z) = exp(—22/2).

This theorem was proved in [8] under the additional assumption that X takes
values in the set {0,1,...,n}. We generalize the result and propose a shorter
proof. We will use the

Phragmén—Lindel6f Theorem. If a subharmonic function v in a strip S
satisfies
logt
lim int 28 V(%)
Z—00 |z

=0, (6)
and v(z) <0, z € S, then v(z) <0 in S.

Lemma 1. If a harmonic function in a strip S(A) satisfies (3) and (1), then
for all real y, the function x — u(x + 1y) is decreasing for x € [0, A/2].

Proof. Let us fix s € (0,A/2) and let z — z* be the reflection with respect
to the line Re z = s, that is 2* = 25 — Z. We define u*(z) = u(z*), and

v(z) = max{u(z),u"(2)}, 0<Rez < 2s.

On the lines Re z = 0 and Re z = s we have v(z) < u(z). For a ridge function
u, condition (3) implies (6) so u and v satisfy (6), and by the Phragmén—Lindel6f
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theorem we conclude that v(z) < u(z) in the strip {z : 0 < Rez < s}. On the
other hand v(z) > u(z) by definition, so

v(z) =u(z), 0<Rez<s. (7)

On the lines Rez = s and Rez = 2s we have v(z) < u*(z), so by a similar
application of the the Phragmén—Lindel6f theorem we conclude that v(z) < u*(2)
in the strip {z : s < Rez < 2s}. On the other hand, v(z) > u*(z) by definition,
S0

v(z) =u*(z), s<Rez<2s. (8)

Since v(z) is subharmonic, we have v,(s — 0) < v, (s 4+ 0), and in view of (7),
(8) we have v;(s — 0) = uy(s) and v,(s +0) = uj(s) = —u,(s), and so we obtain
that u,(s) < —uy(s) that is u,(s) < 0, which proves the lemma. O

Lemma 2. Let () be the square,
Q={z+iy:0<z<2 |yl <1}, 9)

and let P(z,() be the Poisson kernel of Q, where z = x +1iy € @, and ¢ € 0Q.
Then for ¢ € 0Q\(—1i,1) we have Py(0,() > ca, where ¢z is an absolute constant.

Lemma 3. The family of harmonic functions in a vertical strip S(A) as
in (4) satisfying (3), (1) and normalized both conditions u(0) = u,(0) = 0 and
Uyy(0) = 1, is uniformly bounded from above on every compact set K C S(A/2)
by a constant depending only on K and A.

Proof. By Lemma 1, harmonic functions —u, are positive in the right half
of the strip, and u,(0,y) = 0 in view of (1). Applying to them the Poisson rep-
resentation in rectangles ¢@) where @ is defined in (9) and using Lemma 2, we
obtain that the total measure in this representation is bounded. So w, are uni-
formly bounded on compacts. We conclude that the analytic functions u, — iu,,
are uniformly bounded on compacts. Since u,(0) = 0 by the ridge property and
uy(0) = 0 by assumption, we conclude that functions u are uniformly bounded
on compacts in S(A/2). This proves Lemma 3. O

Proof of Theorem 1. We may assume without loss of generality that A > 1.
Consider the expansion at 0:

u(z) = Re (—z2/2 + i anz"> :
n=3

[ee]
up = A7%u(zA) = Re <—z2 + Z anA”_Qz"> , z€S(1).
n=3
By Lemma 3, its coefficients are uniformly bounded, therefore |a,| < c3AZ™",
and

- - ER 3
lan||2"] < csATP " — < ¢o|2]?/A, when |z| <A/3.
2 = J2I/A

This proves Theorem 1. ]
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Derivation of Theorem 2 from Theorem 1. Following [8] and [4], we use the
Berry—Esseen inequality

fxulz) — e @/

X

dx + E, (10)

T
sup |Fx«(t) — Fz(t)| < 1/ T

teR ™ J—T

where ¢ is an absolute constant. This estimate can be found in [1, Ch. XVI, 3,
Lemma 2| and in [6, Lemma 8.2.2].

We set A = §o. The statement of Theorem 2 is meaningful only when A is
large, so we assume that A > ¢g, where ¢q is the constant in Theorem 1.

We are going to apply Theorem 1 to u = log|fx+|, where fx, is the charac-
teristic function of X™*. Since X* is normalized, v is normalized as required in
Theorem 1. Since by assumption the characteristic function fx has no zeros in
the strip S(6), the function fx+ has no zeros in the strip S(A). Then Theorem
1 implies that

fx+(z) = exp(—2?/2 + R(z)), where |R(x)| < colz*/A, |z| < A/2.

Set T'= A/(4cp) in (10). To estimate the integral in (10) we break it into two
parts:
Let a := (A/co)'/® > 1. When |z| < a, we have |R(z)| < 1, so

@) — 1| < 2|R(z)| < 2¢02% /A,
SO

fxo () — e /2

X

2
dr = <0

N . e~ 2024 < cs/A.

/.

When |z| € [a, T] we use fx«(z) = exp(—2?/2+ R(z)) and

22(=1/2 + |z|co/A) < 2?(=1/2 4 1/4) = —2?/4.

/xIE[avT]

This completes the proof. O

So
Fxs(z) — e /2

X

dr < 4/ e~ Ady < ¢g/A.
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CriiikicTs y Teopemi MapruakeBu4da

Alexandre Eremenko and Alexander Fryntov

Vzarampuenus OcTpoBcbkoro Teopemu MaprmHKeBUYa CTBEPIKYE, IO
AKIIO TJ1a XapaKTePUCTHIHA (DYHKINA HMOBIPHICHOTO PO3MTOMIIY 3a0BOTb-
nsie ymosy log™ log |f(2)| = o(|z|), 7 — oo, i He mae mysxiB, To po3mOIiN €
HOpMaJILHUM. MU JTOBOMMO, 10 TIPH TOMY CaMOMY OOMEXKEHH] Ha 3POCTAHHS
3 BiICYTHOCTI HyJIiB y IIUPOKiil BEPTUKAJIBHIN CMy31 BUIIMBAE, IO PO3IOIIT
€ Oyim3pkuM 10 HOpMasibHOrO. 1le y3aranbraioe ogua pe3ysnbrar Mimenera i
CaxacTpaly/ixe Ta CIpOILy€e HOro JTOBEICHHS.

KitrouoBi cjioBa: XapakTepucTU4YHa (DYHKINs, XpeOToBa (DYHKIIis, HOP-
MaJIbHUN PO3ITOILIT
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