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This work presents a classification of Uq(sl2)-symmetries on the quan-
tum disc. A principal invariant of such classification, the grading jump, is
introduced. It turns out that, under the present subjects, the grading jump
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1. Introduction

An essential idea in studying quantum algebras is to consider them together
with a certain collection of “quantum symmetries”. Normally such pairs of sub-
jects were treated as q-analogs for actions of Lie groups on their homogeneous
spaces.

Initially a single distinguished symmetry on the quantum plane has been
considered (the original term was ‘the structure of Uq(sl2)-module algebra on
the quantum plane’, see, e.g., [5]); one had also a similar distinguished such
structure on the quantum disc [16], just one more simplest quantum algebra to
be considered in this work.

A complete list of Uq(sl2)-symmetries on the quantum plane has been de-
scribed in [4]. This initial result has been extended to certain quantum spaces of
higher dimension, along with the related actions of Uq(sln) by symmetries [3].

Another reasonable extension of the results of [4] is presented in [11, 12],
where the standard (polynomial algebra of) quantum plane is embedded into
a larger quantum algebra of Laurent polynomials on the quantum plane. The
latter algebra, while retaining all the symmetries of the standard quantum plane,
appears to be much more symmetric, with rather extended classification list of
symmetries.

The purpose of this paper is to produce a complete list of Uq(sl2)-symmetries
on the quantum disc Pol(D)q. Our initial assumption is that the algebra Pol(D)q
carries no involution. This was made implicit within the principal part of the
research, just to obtain the utmost list of the symmetries. This list is given here
in Table 1.1 for the reader’s convenience; the notation involved therein can be
found in the rest of the text.
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Series
names

Weight
constants

Action of e and f

(0+)
k(z) = z

k(z∗) = z∗
e(z) = e(z∗) = 0

f(z) = f(z∗) = 0

(0−)
k(z) = −z
k(z∗) = −z∗

e(z) = e(z∗) = 0

f(z) = f(z∗) = 0

(1a)
k(z) = q2z

k(z∗) = q−2z∗

e(y) = q−1b−1
0 zy f(y) =

(
b0y + b1y

2
)
z∗

e(z) = qb−1
0 z2 f(z) = −b0 − b1y2

e(z∗) = −q−1b−1
0 f(z∗) = q2b0z

∗2

b0, b1 ∈ C, b0 6= 0

(1b)
k(z) = q2z

k(z∗) = q−2z∗

e(y) = z
(
a0y + a1y

2
)

f(y) = q−1a−1
0 yz∗

e(z) = q2a0z
2 f(z) = −q−1a−1

0

e(z∗) = −a0 − a1y2 f(z∗) = qa−1
0 z∗2

a0, a1 ∈ C, a0 6= 0

(−1a)
k(z) = q−2z

k(z∗) = q2z∗

e(y) = −qb−1
1 z∗ f(y) = z(b0 + b1y)

e(z) = q−1b−1
1 f(z) = −q2b1z2

e(z∗) = 0 f(z∗) = −q−2b0 + b1 −
(
1 + q−2

)
b1y

b0, b1 ∈ C, b1 6= 0

(−1b)
k(z) = q−2z

k(z∗) = q2z∗

e(y) = (a0 + a1y)z∗ f(y) = −qa−1
1 z

e(z) = −q−2a0 + a1 −
(
1 + q−2

)
a1y f(z) = 0

e(z∗) = −q2a1z∗2 f(z∗) = q−1a−1
1

a0, a1 ∈ C, a1 6= 0

Table 1.1: List of symmetries

After that, in the last Section 6, the subcollections of symmetries are ex-
tracted, which, under various additional assumptions on q and choices of involu-
tion on Uq(sl2), are subject to a speci1al compatibility assumption on involutions.

The outline of this paper is as follows. Section 2 contains some preliminary
material: definitions, notations, some well known and obvious facts. Section
3 describes the trivial series (0+) and (0−) of Uq(sl2)-symmetries on Pol(D)q,
together with the principal invariant of the symmetries in question, the grading
jump GJ. Section 4 presents a description of symmetries with GJ > 0 and
demonstrates that in fact the only possible value of GJ for such symmetries is
GJ = 1. Section 5 investigates the case GJ < 0; similarly, it turns out that
such symmetries exist only in the case GJ = −1. Finally, Section 6 extracts the
subcollections of those Uq(sl2)-symmetries on Pol(D)q which respect involutions
in the above algebras.

2. Preliminaries

We start with recalling the general definitions. Let H be a Hopf algebra
whose comultiplication is ∆, counit is ε, and antipode is S [1]. Consider also a
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unital algebra A whose unit is 1. The Sweedler sigma-notation related to the
comultiplication

∆(h) =
∑
(h)

h(1) ⊗ h(2)

as in [15] is used below. In what follows, C is assumed to be the ground field.

Definition 2.1. By a structure of H-module algebra on A (to be referred
to as an H-symmetry for the sake of brevity, or even merely a symmetry if H
and A are completely determined by the context) we mean a homomorphism of
algebras π : H → EndCA such that

(i) π(h)(ab) =
∑
(h)

π
(
h(1)

)
(a) · π

(
h(2)

)
(b) for all h ∈ H, a, b ∈ A;

(ii) π(h)(1) = ε(h)1 for all h ∈ H.

The symmetries π1, π2 are said to be isomorphic if there exists an automorphism
Ψ of the algebra A such that Ψπ1(h)Ψ−1 = π2(h) for all h ∈ H.

Throughout the paper we assume that q ∈ C\{0} is not a root of 1 (qn 6= 1
for all non-zero integers n).

The quantum disc [7, 9, 13] is a unital algebra Pol(D)q generated by z, z∗

subject to the relation

zz∗ = q2z∗z + 1− q2. (2.1)

Certainly this is a ∗-algebra under the natural involution z 7→ z∗. However, the
principal purpose of this paper is to produce a complete list of Uq (sl2)-symmetries
on Pol(D)q, with the latter being considered as an algebra without involution, so
that z∗ is treated as a single symbol. This is our approach before the last Section
6, in which the details related to involutions are expounded.

We use the obvious grading on Pol(D)q given by

Pol(D)q =

∞⊕
k=−∞

Ak with Ak = linear span of
{
ziz∗j

∣∣ i− j = k
}
.

The algebra Pol(D)q contains an element y = 1 − zz∗ ∈ A0, which satisfies the
following quasicommutation relations

yz = q−2zy, (2.2)

yz∗ = q2z∗y. (2.3)

The general form of an element of Ak is zkϕ(y) for k ≥ 0, and ψ(y)(z∗)−k for k <
0, which is an easy consequence of (2.1). It is also worth mentioning a closely
related and quite obvious fact that Pol(D)q is a domain (no zero divisors).

The quantum universal enveloping algebra Uq(sl2) [5,8] is a unital associative
algebra defined by its (Chevalley) generators k, k−1, e, f, and the relations

k−1k = 1, kk−1 = 1,
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ke = q2ek, (2.4)

kf = q−2fk, (2.5)

ef − fe =
k− k−1

q − q−1
. (2.6)

The standard Hopf algebra structure on Uq(sl2) is determined by the comul-
tiplication ∆, the counit ε, and the antipode S as follows

∆(k) = k⊗ k, (2.7)

∆(e) = 1⊗ e + e⊗ k, (2.8)

∆(f) = f ⊗ 1 + k−1 ⊗ f, (2.9)

S(k) = k−1, S(e) = −ek−1, S(f) = −kf,
ε(k) = 1, ε(e) = ε(f) = 0.

Here and in what follows we describe the (series of) Uq(sl2)-symmetries on
Pol(D)q via determining an action of the distinguished generators of Uq(sl2) on
the generators of Pol(D)q. To derive the associated Uq(sl2)-symmetry, we first
extend the action to monomials (both in Uq(sl2) and in Pol(D)q) using

(ab)u
def
= a(bu), a, b ∈ Uq(sl2), u ∈ Pol(D)q,

a(uv)
def
=
∑
(a)

(
a(1)u

)
·
(
a(2)v

)
, a ∈ Uq(sl2), u, v ∈ Pol(D)q,

and then extend by linearity to the entire algebras Uq(sl2) and Pol(D)q, using

a(u+ v) = au+ av, (a + b)u = au+ bu,

1u = u, a1 = ε(a)1, a, b ∈ Uq(sl2), u, v ∈ Pol(D)q.

Such extension determines a well-defined action of Uq(sl2) on Pol(D)q if and only
if everything passes through the relations in Uq(sl2) and in Pol(D)q. To verify
this, one has to apply every generator of Uq(sl2) to each relation in Pol(D)q, and
then every relation in Uq(sl2) to each generator of Pol(D)q. This is to be done in
each specific case, and normally such verification is left to the reader.

Given a Uq(sl2)-symmetry on Pol(D)q, the generator k acts via an automor-
phism of Pol(D)q, as one can readily deduce from invertibility of k, Definition
2.1(i) and (2.7).

A description of automorphisms of the algebra Pol(D)q is due to J. Alev and
M. Chamarie.

Proposition 2.2 ([2, Proposition 1.4.4(i)]). Let Ψ be an automorphism of
Pol(D)q, then there exists a non-zero constant α such that

Ψ : z 7→ αz, z∗ 7→ α−1z∗.



488 Sergey D. Sinel’shchikov

This automorphism is well-defined on the entire algebra Pol(D)q, because the
ideal of relations generated by (2.1) is Ψ-invariant.

It follows from Proposition 2.2 that, given a symmetry π, the action of k is
determined completely on the generators of Pol(D)q as follows

π(k)(z) = αz, π(k)(z∗) = α−1z∗ (2.10)

for some weight constant α ∈ C \{0}. Therefore every monomial ziz∗j ∈ Pol(D)q
is an eigenvector for π(k) (a weight vector), and the associated eigenvalue αi−j

will be referred to as the weight of this monomial, to be written as wt
(
ziz∗j

)
=

αi−j .

Remark 2.3. Observe that wt(y) = 1 and, more generally, for u ∈ A0 one
has wt(u) = 1. This already implies that wt is constant on every homogeneous
component Ak. It is convenient to consider, instead of monomials of z, z∗, the
weight vectors in the general form zkϕ(y) and ψ(y)(z∗)k, with k ≥ 0 and ϕ, ψ
polynomials. Here, wt

(
zkϕ(y)

)
= k and wt

(
ψ(y)(z∗)k

)
= −k.

3. The trivial series of symmetries. The grading jump (GJ)
related to a symmetry

We start with the simplest case in which the operators π(e) and π(f) are
identically zero.

Lemma 3.1. Let π be a Uq(sl2)-symmetry on Pol(D)q. The following prop-
erties of π are equivalent:

(i) the weight constant α ∈ {−1; 1};

(ii) π(e) is the identically zero operator on Pol(D)q;

(iii) π(f) is the identically zero operator on Pol(D)q;

(iv) both π(e) and π(f) are the identically zero operators on Pol(D)q.

Proof. Assume (i). Clearly the weight of any monomial in z, z∗ is ±1. On
the other hand, it follows from (2.4) that π(e)(z), if non-zero, should be a weight
vector whose weight is ±q2 6= ±1. Hence π(e)(z) = 0. In a similar way, π(e)(z∗) =
0. Thus we conclude that π(e) ≡ 0, which is just (ii). The proof of (i) ⇒ (iii) is
similar.

Assume (ii). An application of (2.6) to z yields
(
π(k)− π

(
k−1
))

(z) = 0,
hence α = α−1, β = β−1, which is equivalent to (i). The proof of (iii) ⇒ (i) is
similar, and the rest of implications are clear.

The series of symmetries satisfying the equivalent conditions of Lemma 3.1
will be called the (0)-series and is described by

Theorem 3.2. The (0)-series consists of the two Uq(sl2)-symmetries on
Pol(D)q given by

(0+) : π(k)(z) = z, π(k)(z∗) = z∗
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π(e)(z) = π(e)(z∗) = π(f)(z) = π(f)(z∗) = 0,

(0−) : π(k)(z) = −z, π(k)(z∗) = −z∗

π(e)(z) = π(e)(z∗) = π(f)(z) = π(f)(z∗) = 0,

which are non-isomorphic.

Proof. A routine verification establishes that the above formulas extend from
the generators of Uq(sl2) and Pol(D)q to well-defined symmetries. The symmetries
(0+) and (0−) are non-isomorphic, because, by Proposition 2.2, any automor-
phism of Pol(D)q commutes with each of the above the actions of k.

Let us introduce the notion of grading jump GJ, to be used to classify
the Uq(sl2)-symmetries on Pol(D)q that break the equivalent properties listed
in Lemma 3.1.

Proposition 3.3. Suppose that π is a Uq(sl2)-symmetry on Pol(D)q which
does not belong to (0)-series. Then there exists a unique non-zero integer n such
that for all k ∈ Z

π(e)Ak ⊂ Ak+n, π(f)Ak ⊂ Ak−n. (3.1)

Proof. First observe that for any non-zero zkϕ(y) ∈ Ak, k ≥ 0, one
has wt

(
zkϕ(y)

)
= αk, and for a non-zero ψ(y)z∗k ∈ Ak, k ≤ 0, one has

wt
(
ψ(y)z∗k

)
= αk, with α being the weight constant for π as in (2.10). Since the

homogeneous components {Ak}k∈Z span Pol(D)q, one deduces that an arbitrary
weight vector has weight of the form αm for some integer m.

Another consequence of our assumption on π is that π(e) is not the identically
zero operator. Since z, z∗ generate Pol(D)q, either π(e)(z) or π(e)(z∗) should be
non-zero. Let us first assume that π(e)(z) 6= 0. It follows from (2.10) and (2.4)
that π(e)(z) is a weight vector whose weight is q2α. On the other hand, by our
above observations this weight should be αm for some integer m. Hence with n =
m− 1 one has αn = q2; in particular, under the assumptions of the Proposition,
α should be a root of q2. Clearly n 6= 0 since q is not a root of 1. Thus one
deduces that α is also not a root of 1, together with q, and n as above is unique.
In particular, the weights of non-zero homogeneous vectors of different degrees
are different. Now π(e)Ak ⊂ Ak+n, k ∈ Z, becomes a consequence of the general
form of an element of Ak and the relation αn = q2.

Of course, a similar argument also works in the case when π(e)(z∗) 6= 0. This
argument also allows one to derive a unique integer n such that αn = q2. Even
more, if one assumes that both π(e)(z) and π(e)(z∗) are non-zero, the integer n
produced in each of these procedures should be the same, being a unique solution
of the same equation αn = q2.

Now one can reproduce the same argument(s) as above with e being replaced
by f. We get this way αn = q−2, which leads finally to the relation π(f)Ak ⊂
Ak−n.
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Definition 3.4. Let π be a Uq(sl2)-symmetry on Pol(D)q. If π does not
belong to the (0)-series, we call the (unique) integer n associated to π as in
Proposition 3.3 the grading jump (GJ) for π. In the case when π belongs to the
(0)-series, we say that GJ = 0.

Proposition 3.5. GJ is an isomorphism invariant of Uq(sl2)-symmetries on
Pol(D)q.

Proof. Let π be a Uq(sl2)-symmetry on Pol(D)q and Ψ an automorphism
of Pol(D)q determined by a non-zero constant α as in Proposition 2.2. Clearly
Ψ
(
ziz∗j

)
= αi−jziz∗j , hence ΨAk = Ak, k ∈ Z. This implies that for the

isomorphic symmetry ξ 7→ Ψπ(ξ)Ψ−1 the relations

Ψπ(e)Ψ−1Ak ⊂ Ak+n, Ψπ(f)Ψ−1Ak ⊂ Ak−n

are equivalent to (3.1).

Now we are in a position to compute all the Uq(sl2)-symmetries on the quan-
tum disc in terms of the grading jump introduced above, such that each value of
GJ labels a series of symmetries, to be denoted as (GJ)-series.

4. Symmetries with GJ > 0

Suppose that GJ = n > 0 for a symmetry π, with the weight constant α
subject to αn = q2. In view of (3.1) we have π(e)(y) = znp(y) for some polynomial
p. An application of π(e) to (2.2) using Definition 2.1(i), (2.8), (3.1), and (2.10)
yields

π(e)(yz) = yπ(e)(z) + π(e)(y)π(k)(z) = yπ(e)(z) + αzn+1p
(
q−2y

)
,

π(e)
(
q−2zy

)
= q−2zπ(e)(y) + q−2π(e)(z)π(k)(y) = q−2zn+1p(y) + q−2π(e)(z)y.

Since π(e)(z) ∈ An+1, this implies

q−2n−2π(e)(z)y + αzn+1p
(
q−2y

)
= q−2zn+1p(y) + q−2π(e)(z)y,

which is equivalent to(
q−2n − 1

)
π(e)(z)y = zn+1

[
p(y)− αn+1p

(
q−2y

)]
. (4.1)

Since the l.h.s. here is divisible by y, we conclude that p(y)−αn+1p
(
q−2y

)
should

be also divisible by y. With p(y) =
m∑
i=0

piy
i and α not a root of 1, the constant

term
(
1− αn+1

)
p0 of p(y) − αn+1p

(
q−2y

)
is zero iff p0 = 0. Thus p is divisible

by y, so we can now rewrite the expression for π(e)(y) in the form

π(e)(y) = znse(y)y, (4.2)
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with se(y) =
∑
i
aiy

i a polynomial. We need also a generalization of (4.2) as

follows.

π(e)(yk) =

k−1∑
i=0

yk−i−1znse(y)yi+1 = znse(y)

(
k−1∑
i=0

q−2(k−i−1)n

)
yk

= q−2nk+2n
k−1∑
i=0

q2niznse(y)yk = q−2n(k−1)
1− q2nk

1− q2n
znse(y)yk

=
q−2nk − 1

q−2n − 1
znse(y)yk,

for k ≥ 0, hence for any polynomial ϕ one has

π(e)(ϕ(y)) =
(
q−2n − 1

)−1
znse(y)

[
ϕ
(
q−2ny

)
− ϕ(y)

]
.

Furthermore, with p being replaced by se(y)y, (4.1) acquires the form

π(e)(z) =
(
q−2n − 1

)−1
zn+1

[
se(y)− αse

(
q−2y

)]
. (4.3)

This implies, via a straightforward induction argument, that with k ≥ 0

π(e)
(
zk
)

=
(
q−2n − 1

)−1
zn+k

[
se(y)− αkse

(
q−2ky

)]
.

Let us apply π(e) to (2.3) using Definition 2.1(i), (2.8), (3.1), (4.2), and (2.10):

π(e)(yz∗) = yπ(e)(z∗) + π(e)(y)π(k)(z∗)

= q−2(n−1)π(e)(z∗)y + α−1q2zn−1se
(
q2y
)
y(1− y),

π(e)
(
q2z∗y

)
= q2z∗π(e)(y) + q2π(e)(z∗)π(k)(y)

= q2
(
1− q−2y

)
zn−1se(y)y + q2π(e)(z∗)y

= q2zn−1
(
1− q−2ny

)
se(y)y + q2π(e)(z∗)y.

This implies

q−2(n−1)π(e)(z∗)y + α−1q2zn−1se
(
q2y
)
y(1− y)

= q2zn−1se(y)y
(
1− q−2ny

)
+ q2π(e)(z∗)y,

which is equivalent to

π(e)(z∗) =
(
q−2n − 1

)−1
zn−1

[
se(y)

(
1− q−2ny

)
− α−1se

(
q2y
)

(1− y)
]
. (4.4)

Again, a straightforward induction argument establishes that with 0 < k ≤ n

π(e)(z∗k) =
(
q−2n − 1

)−1
zn−k

[
se(y)

(
q−2ny; q2

)
k
− α−kse

(
q2ky

) (
y; q2

)
k

]
.

Here and in what follows, the standard notation

(a; q)n =
n−1∏
j=0

(
1− aqj

)
,
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is used (see, e.g., [6, p. xiv]).
Very similar calculations as above can be reproduced for the generator f. We

leave routine details to the reader and present here only the outcome.
In view of (3.1) we have π(f)(y) = r(y)z∗n for some polynomial r. After

establishing that r is divisible by y, we rewrite this in the form

π(f)(y) = sf (y)yz∗n

for some polynomial sf (y) =
∑
i
biy

i. Furthermore, with ϕ an arbitrary polyno-

mial

π(f)(ϕ(y)) =
(
q−2n − 1

)−1
sf (y)

[
ϕ
(
q−2ny

)
− ϕ(y)

]
z∗n.

One also has

π(f)(z) =
(
q−2n − 1

)−1 [
sf (y)

(
1− q−2ny

)
− α−1sf

(
q2y
)

(1− y)
]
z∗n−1, (4.5)

π(f)
(
zk
)

=
(
q−2n − 1

)−1 [
sf (y)

(
q−2ny; q2

)
k
− α−ksf

(
q2ky

) (
y; q2

)
k

]
z∗n−k,

0 < k ≤ n, (4.6)

π(f)(z∗) =
(
q−2n − 1

)−1 [
sf (y)− αsf

(
q−2y

)]
z∗n+1, (4.7)

π(f)
(
z∗k
)

=
(
q−2n − 1

)−1 [
sf (y)− αksf

(
q−2ky

)]
z∗n+k, k ≥ 0.

Additionally, we will need below an expression for π(f)
(
z2n
)
, which is formally

not covered by (4.6), but is an easy consequence of the latter with k = n:

π(f)
(
z2n
)

=
(
q−2n − 1

)−1
zn
[
sf
(
q−2ny

) (
q−4ny; q2

)
n
− q−4sf

(
q2ny

) (
y; q2

)
n

]
.

The above observations allowed us to derive the relations (4.3), (4.4), (4.5),
(4.7), which, together with (2.10) determine (in our present setting GJ = n > 0)
a symmetry π on the distinguished generators of Uq(sl2) and Pol(D)q in terms of
the parameters n, α, and the polynomials se, sf of one variable. To produce these
relations, (2.1), (2.4), (2.5), (2.8), (2.9) have been used. Certainly, the parameters
of a symmetry are not completely arbitrary; in particular, αn = q2. To adjust
finally the parameters and clarify the possible form of the polynomials se, sf , it is
suitable to apply the relation (2.6) to zn. For that, we proceed with computing,
using the above formulas. The result of these calculations is formulated as

Theorem 4.1. The following assertions hold.

(i) There exist no Uq(sl2)-symmetries on Pol(D)q with GJ = n > 1.

(ii) With GJ = 1, there exist two 2-parameter series of Uq(sl2)-symmetries on
Pol(D)q as follows.

(1a) : π(k)(z) = q2z, π(k)(z∗) = q−2z∗,

π(e)(y) = q−1b−10 zy, π(f)(y) =
(
b0y + b1y

2
)
z∗,

π(e)(z) = qb−10 z2, π(f)(z) = −b0 − b1y2,
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π(e)(z∗) = −q−1b−10 , π(f)(z∗) = q2b0z
∗2,

b0, b1 ∈ C, b0 6= 0.

(1b) : π(k)(z) = q2z, π(k)(z∗) = q−2z∗,

π(e)(y) = z
(
a0y + a1y

2
)
, π(f)(y) = q−1a−10 yz∗,

π(e)(z) = q2a0z
2, π(f)(z) = −q−1a−10 ,

π(e)(z∗) = −a0 − a1y2, π(f)(z∗) = qa−10 z∗2,

a0, a1 ∈ C, a0 6= 0.

Proof. We have

π(ef)(zn) =
(
q−2n − 1

)−1
π(e)

[
sf (y)

(
q−2ny; q2

)
n
− α−nsf

(
q2ny

) (
y; q2

)
n

]
=
(
q−2n − 1

)−2
zn
[
se(y)sf

(
q−2ny

) (
q−4ny; q2

)
n

−
(
1 + q−2

)
se(y)sf (y)

(
q−2ny; q2

)
n

+q−2se(y)sf
(
q2ny

) (
y; q2

)
n

]
. (4.8)

π(fe)(zn) =
(
q−2n − 1

)−1
π(f)

{
z2n
[
se(y)− αnse

(
q−2ny

)]}
=
(
q−2n − 1

)−1 {
π(f)

(
z2n
) [
se(y)− q2se

(
q−2ny

)]
+π(k)−1

(
z2n
)
π(f)

[
se(y)− q2se

(
q−2ny

)]}
=
(
q−2n − 1

)−2 {
zn
[
se(y)sf

(
q−2ny

) (
q−4ny; q2

)
n

− q−4se(y)sf
(
q2ny

) (
y; q2

)
n
− q2se

(
q−2ny

)
sf
(
q−2ny

) (
q−4ny; q2

)
n

+q−2 se
(
q−2ny

)
sf
(
q2ny

) (
y; q2

)
n

]
+ α−2nz2nsf (y)

[
se
(
q−2ny

)
− q2se

(
q−4ny

)
− se(y) + q2 se

(
q−2ny

)]
z∗n
}

=
(
q−2n − 1

)−2
zn
[
se(y)sf

(
q−2ny

) (
q−4ny; q2

)
n

− q2se
(
q−2ny

)
sf
(
q−2ny

) (
q−4ny; q2

)
n

−q−4se
(
q2ny

)
sf
(
q2ny

) (
y; q2

)
n

+ q−2se(y)sf
(
q2ny

) (
y; q2

)
n

]
. (4.9)

Finally, we combine (4.8) and (4.9) to get

π(ef − fe)(zn) =
(
q−2n − 1

)−2
zn
[
−
(
1 + q−2

)
se(y)sf (y)

(
q−2ny; q2

)
n

+ q2se
(
q−2ny

)
sf
(
q−2ny

) (
q−4ny; q2

)
n

+ q−4se
(
q2ny

)
sf
(
q2ny

) (
y; q2

)
n

]
. (4.10)

In our present context GJ > 0 both se and sf are non-zero polynomials, which
can be readily deduced (in the case of se) from (4.3), (4.4), and Lemma 3.1; a
similar argument also works also in the case of sf . Let ne, nf be the degrees of
se and sf , respectively, so that se(y) = aney

ne + (lower terms), sf (y) = bnf
ynf +

(lower terms), with ane , bnf
being non-zero constants.
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As a consequence of (4.10), we deduce that

π(ef − fe)(zn) =
(
q−2n − 1

)−2
znh(y)

with h(y) being a non-zero polynomial whose highest term is

(−1)nanebnf

(
−q−(n+1)n − q−(n+1)n−2 + q−(3n+1)n+2−2n(ne+nf )

+ q(n−1)n−4+2n(ne+nf )
)
yne+nf+n.

This, together with (2.6), ne ≥ 0 nf ≥ 0, n > 0, implies

−q−(n+1)n − q−(n+1)n−2 + q−(3n+1)n+2−2n(ne+nf ) + q(n−1)n−4+2n(ne+nf ) = 0.

Substituting here t = q2n(ne+nf ), we get the equation

t2 − q−2n2+2(1 + q2)t+ q−4n
2+2 = 0,

whose roots are t1 = q−2n
2+4 and t2 = q−2n

2+2.
In the first case we have q2n(ne+nf ) = q−2n

2+4, and since q is not a root of 1,
this is equivalent to

n2 + n(ne + nf )− 2 = 0. (4.11)

This equation with respect to n has 2 real roots, and the conjectured existence
of Uq(sl2)-symmetries on Pol(D)q with some specific values of n, ne, nf should
imply that at least one of the two roots n1, n2 is a positive integer. Let it be n1,
then n2 = −2/n1 is negative, hence 2/n1 = n1 +ne +nf is also a positive integer.
Assuming in the latter relation n1 = 2 we get ne +nf = −1, which is impossible.
So it remains the only possibility n1 = 1, which appears to be a root of (4.11) iff
ne + nf = 1.

A very similar argument establishes that in the second case q2n(ne+nf ) =
q−2n

2+2, only the value ne+nf = 0 guarantees the existence of a positive integral
root n, which is n = 1.

We conclude that the only positive value of grading jump GJ under which
there exist Uq(sl2)-symmetries on Pol(D)q is GJ = 1; in this case one should have
deg se + deg sf ≤ 1.

Our next step is to substitute n = 1 to (4.10) and then to consider the 2 cases
as follows: set in (4.10) se(y) = a0, sf (y) = b0 + b1y (respectively, se(y) = a0 +
a1y, sf (y) = b0) and apply (2.6) in order to exclude a0 = q−1b−10 (respectively,
b0 = q−1a−10 ) in order to obtain finally the series (1a) (respectively, (1b)), which,
already at this point, appear just as in the formulation of the present Theorem.
This calculation is completely routine and is left to the reader.

It turns out that one needs not try finding more relations between ai, bj
(e.g., via applying (2.6) to z∗). Instead, it suffices to use the formulas for series
(1a) and (1b) of symmetries as in the formulation of our Theorem in order
to apply the generators of Uq(sl2) to the relation in Pol(D)q, and vice versa,
every relation in Uq(sl2) to the generators of Pol(D)q; in each case one gets the
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identity. This calculation, while being completely routine (and thus left to the
reader), establishes that the formulas for the series (1a) and (1b) as in the
formulation determine well defined Uq(sl2)-symmetries on Pol(D)q for all values
of the parameters involved therein.

Remark 4.2. The series of symmetries (1a) and (1b) are not disjoint. Their
intersection is the 1-parameter series determined by setting in (1a) b1 = 0; equiv-
alently, it can be produced by setting in (1b) a1 = 0 and then substituting
q−1a−10 = b0.

5. Symmetries with GJ < 0

Now assume that GJ = −n < 0 for a symmetry π, with the weight constant
α subject to αn = q−2. Although the arguments used below are similar to those
applied in Section 4, one encounters certain diversity in formulas which results
in some different conclusions.

In view of (3.1) we have π(e)(y) = re(y)z∗n and π(f)(y) = znrf (y) for some
polynomials re, rf . It turns out that the property of divisibility of re(y) and
rf (y) by y does not hold for all n as it was the case in Section 4. Now let us
assume that n > 1, respectively, GJ < −1. It will be demonstrated below that
the above divisibility property should be valid in this case, just as in Section 4.

An application of π(e) to (2.2) using Definition 2.1(i), (2.8), (3.1), and (2.10)
yields

π(e)(yz) = yπ(e)(z) + π(e)(y)π(k)(z)

= yπ(e)(z) + αre(y)
(
1− q−2ny

)
z∗n−1,

π(e)
(
q−2zy

)
= q−2zπ(e)(y) + q−2π(e)(z)π(k)(y)

= q−2re
(
q2y
)

(1− y)z∗n−1 + q−2nyπ(e)(z).

This implies

yπ(e)(z) + αre(y)
(
1− q−2ny

)
z∗n−1 = q−2re

(
q2y
)

(1− y)z∗n−1 + q−2nyπ(e)(z),

which is equivalent to(
q−2n − 1

)
yπ(e)(z) =

[
αre(y)

(
1− q−2ny

)
− q−2re

(
q2y
)

(1− y)
]
z∗n−1. (5.1)

Since the l.h.s. here is divisible by y, we conclude that αre(y)
(
1− q−2ny

)
−

q−2re
(
q2y
)

(1 − y) should be divisible by y. With re(y) =
m∑
i=0

riy
i and α not a

root of 1, the constant term
(
α− q−2

)
r0 of αre(y)

(
1− q−2ny

)
− q−2re

(
q2y
)

(1−
y), under our current assumption n > 1 is zero iff r0 = 0. Thus re(y) is divisible
by y, so we can now rewrite the expression for π(e)(y) in the form

π(e)(y) = se(y)yz∗n, (5.2)
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with se(y) =
∑
i
aiy

i a polynomial. Now (5.2) can be generalized as follows:

π(e)(yk) =

k−1∑
i=0

yk−i−1se(y)yz∗nyi

= se(y)yk

(
k−1∑
i=0

q−2in

)
z∗n =

q−2kn − 1

q−2n − 1
se(y)ykz∗n,

for k ≥ 0, hence for any polynomial ϕ one has

π(e)(ϕ(y)) =
(
q−2n − 1

)−1
se(y)

[
ϕ
(
q−2ny

)
− ϕ(y)

]
z∗n.

Furthermore, with re(y) being replaced by se(y)y, (5.1) acquires the form

π(e)(z) =
(
q−2n − 1

)−1 [
αse(y)

(
1− q−2ny

)
− se

(
q2y
)

(1− y)
]
z∗n−1. (5.3)

This implies, via a straightforward induction argument, that with 0 ≤ k ≤ n

π(e)
(
zk
)

=
(
q−2n − 1

)−1 [
αkse(y)

(
q−2ny; q2

)
k
− se

(
q2ky

) (
y; q2

)
k

]
z∗n−k.

(5.4)
Next, we apply π(e) to (2.3) using Definition 2.1(i), (2.8), (3.1), and (2.10):

π(e)(yz∗) = yπ(e)(z∗) + π(e)(y)π(k)(z∗) = yπ(e)(z∗) + α−1se(y)yz∗n+1,

π(e)
(
q2z∗y

)
= q2z∗π(e)(y) + q2π(e)(z∗)π(k)(y)

= se
(
q−2y

)
yz∗n+1 + q−2nyπ(e)(z∗).

This implies

yπ(e)(z∗) + α−1se(y)yz∗n+1 = se
(
q−2y

)
yz∗n+1 + q−2nyπ(e)(z∗),

which is equivalent to

π(e)(z∗) =
(
q−2n − 1

)−1 [
α−1se(y)− se

(
q−2y

)]
z∗n+1. (5.5)

Now an induction argument allows one to establish that with k ≥ 0

π(e)(z∗k) =
(
q−2n − 1

)−1 [
α−kse(y)− se

(
q−2ky

)]
z∗n+k.

Very similar calculations as above can be reproduced for the generator f. We
leave routine details to the reader and present here only the outcome.

In view of (3.1) we have π(f)(y) = r(y)z∗n for some polynomial r. Again, it
turns out that r(y) is divisible by y, hence

π(f)(y) = sf (y)yz∗n

for some polynomial sf (y) =
∑
i
biy

i. Then with ϕ an arbitrary polynomial

π(f)(ϕ(y)) =
(
q−2n − 1

)−1
znsf (y)

[
ϕ
(
q−2ny

)
− ϕ(y)

]
. (5.6)
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We compute also

π(f)(z) =
(
q−2n − 1

)−1
zn+1

[
α−1sf (y)− sf

(
q−2y

)]
,

π(f)
(
zk
)

=
(
q−2n − 1

)−1
zn+k

[
α−ksf (y)− sf

(
q−2ky

)]
, k ≥ 0, (5.7)

π(f)(z∗) =
(
q−2n − 1

)−1
zn−1

[
αsf (y)

(
1− q−2ny

)
− sf

(
q2y
)

(1− y)
]
,

π(f)
(
z∗k
)

=
(
q−2n − 1

)−1
zn−k

[
αksf (y)

(
q−2ny; q2

)
k
− sf

(
q2ky

) (
y; q2

)
k

]
,

0 ≤ k ≤ n.

We will also need below an expression for π(e)
(
z2n
)
. It is not covered by (5.4),

but easily follows from the latter with k = n:

π(e)
(
z2n
)

=
(
q−2n − 1

)−1
zn
[
q−4se

(
q−2ny

) (
q−4ny; q2

)
n
− se

(
q2ny

) (
y; q2

)
n

]
.

Similarly to Section 4, a symmetry π in our present setting GJ = −n < −1 (if
any) is now determined on the distinguished generators of Uq(sl2) and Pol(D)q
in terms of the parameters n, α (αn = q−2), and the polynomials se, sf of one
variable. To clarify the very existence of symmetries in this case, it is suitable to
apply the relation (2.6) to zn. The outcome is formulated as

Proposition 5.1. There does not exist any Uq(sl2)-symmetry on Pol(D)q
with GJ < −1.

Proof. An application of (5.7) (with k = n) yields

π(ef)(zn) =
(
q−2n − 1

)−1 {
z2nπ(e)

[
q2sf (y)− sf

(
q−2ny

)]
+π(e)

(
z2n
)
π(k)

[
q2sf (y)− sf

(
q−2ny

)]}
=
(
q−2n − 1

)−2 {
z2nse(y)

[
q2sf

(
q−2ny

)
− sf

(
q−4ny

)
− q2sf (y)

+sf
(
q−2ny

)]
z∗n + zn

[
q−4se

(
q−2ny

) (
q−4ny; q2

)
n

−se
(
q2ny

) (
y; q2

)
n

] [
q2sf (y)− sf

(
q−2ny

)]}
=
(
q−2n − 1

)−2
zn
{
se
(
q2ny

) [
q2sf (y)− sf

(
q−2ny

)
−q2sf

(
q2ny

)
+ sf (y)

] (
y; q2

)
n

+
[
q−2se

(
q−2ny

)
sf (y)− q−4se

(
q−2ny

)
sf
(
q−2ny

)] (
q−4ny; q2

)
n

+
[
−q2se

(
q2ny

)
sf (y) + se

(
q2ny

)
sf
(
q−2ny

)] (
y; q2

)
n

}
=
(
q−2n − 1

)−2
zn
{[
se
(
q2ny

)
sf (y)− q2se

(
q2ny

)
sf
(
q2ny

)] (
y; q2

)
n

+
[
q−2se

(
q−2ny

)
sf (y)− q−4se

(
q−2ny

)
sf
(
q−2ny

)] (
q−4ny; q2

)
n

}
.

On the other hand, an application of (5.4) and (5.6) yields

π(fe)(zn) =
(
q−2n − 1

)−1
π(f)

[
q−2se(y)

(
q−2ny; q2

)
n
− se

(
q2ny

) (
y; q2

)
n

]
=
(
q−2n − 1

)−2
znsf (y)

[
q−2se

(
q−2ny

) (
q−4ny; q2

)
n

− se(y)
(
q−2ny; q2

)
n
− q−2se(y)

(
q−2ny; q2

)
n

+se
(
q2ny

) (
y; q2

)
n

]
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=
(
q−2n − 1

)−2
zn
[
q−2se

(
q−2ny

)
sf (y)

(
q−4ny; q2

)
n

−
(
1 + q−2

)
se(y)sf (y)

(
q−2ny; q2

)
n

+se
(
q2ny

)
sf (y)

(
y; q2

)
n

]
,

whence

π(ef − fe)(zn) =
(
q−2n − 1

)−2
zn
[
−q2se

(
q2ny

)
sf
(
q2ny

) (
y; q2

)
n

+
(
1 + q−2

)
se(y)sf (y)

(
q−2ny; q2

)
n

− q−4se
(
q−2ny

)
sf
(
q−2ny

) (
q−4ny; q2

)
n

]
. (5.8)

In the present case GJ < −1 both se and sf are non-zero polynomials. This can
be readily deduced for se from (5.3), (5.5), and Lemma 3.1; a similar argument
works also in the case of sf . Let ne, nf be the degrees of se and sf , respectively,
so that se(y) = aney

ne + (lower terms), sf (y) = bnf
ynf + (lower terms), with ane ,

bnf
being non-zero constants.

One can observe from (5.8) that π(ef − fe)(zn) =
(
q−2n − 1

)−2
znh(y), where

h(y) is a non-zero polynomial whose highest term is

(−1)nanebnf

(
− q2+(n−1)n+2n(ne+nf ) +

(
1 + q−2

)
q(−n−1)n

+ q−4+(−3n−1)n−2n(ne+nf )
)
yne+nf+n.

This, together with (2.6), ne ≥ 0, nf ≥ 0, n > 1, implies that

−q2+(n−1)n+2n(ne+nf ) +
(
1 + q−2

)
q(−n−1)n + q−4+(−3n−1)n−2n(ne+nf ) = 0.

Substituting here t = q2n(ne+nf ), we obtain the equation

t2 − (1 + q2)q−2n
2−2t+ q−4n

2−6 = 0,

whose roots are t1 = q−2n
2−4 and t2 = q−2n

2−2.
In the first case we deduce that ne, nf , n > 1 should be subject to q2n(ne+nf ) =

q−2n
2−4, and since q is not a root of 1, this is equivalent to

n2 + (ne + nf )n+ 2 = 0.

Obviously, this equation has no integral solutions n > 1.
Similarly, we establish in the second case that q2n(ne+nf ) = q−2n

2−2, or, equiv-
alently

n2 + (ne + nf )n+ 1 = 0.

Again, this appears to be impossible for integral n > 1. The Proposition is
proved.

Theorem 5.2. With GJ = −1, there exists two 2-parameter series of Uq(sl2)-
symmetries on Pol(D)q as follows.

(−1a) : π(k)(z) = q−2z, π(k)(z∗) = q2z∗,
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π(e)(y) = −qb−11 z∗, π(f)(y) = z(b0 + b1y),

π(e)(z) = q−1b−11 , π(f)(z) = −q2b1z2,
π(e)(z∗) = 0, π(f)(z∗) = −q−2b0 + b1

−
(
1 + q−2

)
b1y,

b0, b1 ∈ C, b1 6= 0.

(−1b) : π(k)(z) = q−2z, π(k)(z∗) = q2z∗,

π(e)(y) = (a0 + a1y)z∗, π(f)(y) = −qa−11 z,

π(e)(z) = −q−2a0 + a1

−
(
1 + q−2

)
a1y, π(f)(z) = 0,

π(e)(z∗) = −q2a1z∗2, π(f)(z∗) = q−1a−11 ,

a0, a1 ∈ C, a1 6= 0.

Proof. In this case, with π being a Uq(sl2)-symmetry on Pol(D)q (if exists),
we have π(k)(z) = q−2z, π(k)(z∗) = q2z∗, π(e)(y) = re(y)z∗, π(f)(y) = zrf (y) in
view of Definition 3.4 and Proposition 3.3. Unlike the cases considered before, we
can not claim now that re(y) and/or rf (y) is divisible by y. On the other hand,
we need to deal with polynomials which are divisible; for that, we introduce the
division map τ : C[y]y → C[y], τ [y 7→ ϕ(y)y](y) = ϕ(y). Since everything is
embedded into Pol(D)q, the map τ is well defined, because Pol(D)q is a domain.
The following completely obvious property of τ is going to be useful in what
follows:

τ(ψ) ◦ β = β−1τ(ψ ◦ β), ψ ∈ C[y]y, β ∈ C, (5.9)

where ϕ ◦ β(y) = ϕ(βy).
Firstly, one uses a straightforward induction argument in order to establish

that for any polynomial ϕ one has

π(e)(ϕ(y)) =
(
q−2 − 1

)−1
re(y)τ

[
ϕ
(
q−2y

)
− ϕ(y)

]
z∗. (5.10)

Next, in order to produce the expression for π(e)(z), we compute

π(e)(yz) = yπ(e)(z) + π(e)(y)π(k)(z) = yπ(e)(z) + q−2re(y)
(
1− q−2y

)
,

π(e)
(
q−2zy

)
= q−2zπ(e)(y) + q−2π(e)(z)π(k)(y)

= q−2re
(
q2y
)

(1− y) + q−2yπ(e)(z).

This implies

yπ(e)(z) + q−2re(y)
(
1− q−2y

)
z∗n−1 = q−2re

(
q2y
)

(1− y) + q−2yπ(e)(z),

which is equivalent to(
q−2 − 1

)
yπ(e)(z) =

[
q−2re(y)

(
1− q−2y

)
− q−2re

(
q2y
)

(1− y)
]
. (5.11)

It is easy to observe that the constant term of the polynomial in the r.h.s of (5.11)
is zero, so the polynomial is divisible by y, whence

π(e)(z) =
(
q−2 − 1

)−1
q−2τ

[
re(y)

(
1− q−2y

)
− re

(
q2y
)

(1− y)
]
, (5.12)
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π(e)(z2) =
(
q−2 − 1

)−1
q−2zτ

[
re
(
q−2y

) (
1− q−4y

)
− re

(
q2y
)

(1− y)
]
. (5.13)

In a similar way, we compute:

π(e)(yz∗) = yπ(e)(z∗) + π(e)(y)π(k)(z∗) = yπ(e)(z∗) + q2re(y)z∗2,

π(e)
(
q2z∗y

)
= q2z∗π(e)(y)+ q2π(e)(z∗)π(k)(y) = q2re

(
q−2y

)
z∗2+ q−2yπ(e)(z∗).

This implies

yπ(e)(z∗) + q2re(y)yz∗2 = q2re
(
q−2y

)
z∗2 + q−2yπ(e)(z∗),

which, in view of divisibility of q2re(y)− q2re
(
q−2y

)
by y, is equivalent to

π(e)(z∗) =
(
q−2 − 1

)−1
q2τ

[
re(y)− re

(
q−2y

)]
z∗2. (5.14)

The above calculations can be reproduced for the generator f. The details are
left to the reader; the outcome only is given below.

π(f)(ϕ(y)) =
(
q−2 − 1

)−1
zrf (y)τ

[
ϕ
(
q−2y

)
− ϕ(y)

]
, ϕ ∈ C[y], (5.15)

π(f)(z) =
(
q−2 − 1

)−1
q2z2τ

[
rf (y)− rf

(
q−2y

)]
, (5.16)

π(f)(z∗) =
(
q−2 − 1

)−1
q−2τ

[
rf (y)

(
1− q−2y

)
− rf

(
q2y
)

(1− y)
]
. (5.17)

What remains is to compute the general form of the polynomials re, rf . To
do that, we apply (2.6) to z, using (5.9) – (5.17).

π(ef)(z) =
(
q−2 − 1

)−1
π(e)

{
z2q2τ

[
rf (y)− rf

(
q−2y

)]}
=
(
q−2 − 1

)−1 {
z2q2π(e)

[
τ
(
rf (y)− rf

(
q−2y

))]
+ π(e)

(
z2
)
π(k)τ

[
q2rf (y)− q2rf

(
q−2y

)]}
=
(
q−2 − 1

)−2 {
z2q2re(y)

(
q2τ

[
τ
(
q2rf

(
q−2y

)
− q2rf

(
q−4y

))
− τ

(
rf (y)− rf

(
q−2y

))]
z∗ + zτ

[
re
(
q−2y

) (
1− q−4y

)
− re

(
q2y
)

(1− y)
]
τ
[
rf (y)− rf

(
q−2y

)]}
=
(
q−2 − 1

)−2
z
{
re
(
q2y
)
τ2
[
rf (y)− rf

(
q−2y

)
− q−2rf

(
q2y
)

+ q−2rf (y)
]

(1− y)

+ τ2
[(
re
(
q−2y

) (
1− q−4y

)
− re

(
q2y
)

(1− y)
) (
rf (y)− rf

(
q−2y

))]}
=
(
q−2 − 1

)−2
zτ2

[
re
(
q2y
)
rf
(
q2y
)

(−q−2 + q−2y)

+ re
(
q2y
)
rf (y)(q−2 − q−2y) + re

(
q−2y

)
rf (y)

(
1− q−4y

)
+ re

(
q−2y

)
rf
(
q−2y

) (
−1 + q−4y

)]
.

On the other hand, an application of (5.12) and (5.15) yields

π(fe)(z) =
(
q−2 − 1

)−1
q−2π(f)

{
τ
[
re(y)

(
1− q−2y

)
− re

(
q2y
)

(1− y)
]}

=
(
q−2 − 1

)−2
q−2zrf (y)τ

{
q2τ

[
re
(
q−2y

) (
1− q−4y

)
− re(y)

(
1− q−2y

)]
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− τ
[
re(y)

(
1− q−2y

)
− re

(
q2y
)

(1− y)
]}

=
(
q−2n − 1

)−2
zτ2

[
re
(
q−2y

)
rf (y)

(
1− q−4y

)
+ re(y)rf (y)

(
−1− q−2 +

(
q−2 + q−4

)
y
)

+ re
(
q2y
)
rf (y)

(
q−2 − q−2y

)]
,

whence

π(ef − fe)(z) =
(
q−2 − 1

)−2
zτ2

[
re
(
q2y
)
rf
(
q2y
) (
−q−2 + q−2y

)
+ re

(
q−2y

)
rf
(
q−2y

) (
−1 + q−4y

)
+re(y)rf (y)

(
1 + q−2 −

(
q−2 + q−4

)
y
)]
. (5.18)

In the present case GJ = −1 both re and rf are non-zero polynomials. One
can deduce this for re from (5.12), (5.14), and Lemma 3.1; a similar argument
works also in the case of rf . Let ne, nf be the degrees of re and rf , respectively,
so that re(y) = aney

ne + (lower terms), rf (y) = bnf
ynf + (lower terms), with ane ,

bnf
being non-zero constants.
Let us rewrite, in view of the divisibility issues described above, (5.18) in the

form π(ef − fe)(z) =
(
q−2n − 1

)−2
zh(y), where h(y) is a non-zero polynomial.

The highest term of h(y) is

anebnf

(
−q2(ne+nf )−2 + q−2(ne+nf )−4 − q−2 − q−4

)
yne+nf−1.

Of course, one has here ne + nf ≥ 1, because otherwise (ne = nf = 0) one
deduces from (5.18) that π(ef − fe)(z) = 0, which, in view of (2.6), implies α =
±1, contradicting GJ = −1.

Assuming ne + nf > 1, one clearly observes from (2.6) applied to z that

−q2(ne+nf )−2 + q−2(ne+nf )−4 − q−2 − q−4 = 0.

To find the possible values of ne + nf > 1 that could make possible the latter
relation, we substitute here t = q2n(ne+nf ) in order to get the equation

t2 −
(
1 + q−2

)
t+ q−2 = 0,

whose roots are t1 = q−2 and t2 = 1. Respectively, this yields ne +nf = −1 or 0,
breaking the assumption ne + nf > 1.

Thus we conclude that the only possibility is ne + nf = deg re + deg rf = 1.
The final step in producing the series (−1a) (respectively, (−1b)) as in the

formulation of Theorem, is to consider the 2 cases as follows: set in (5.18) re(y) =
a0, rf (y) = b0 + b1y (respectively, re(y) = a0 + a1y, rf (y) = b0) and apply (2.6)
to exclude a0 = −qb−11 (respectively, b0 = −qa−11 ). This calculation is completely
routine and is left to the reader.

Now we suggest to reproduce the final step of the proof of Theorem 4.1.
Namely, instead of searching for more relations between ai, bj (e.g., via apply-
ing (2.6) to z∗), it suffices to use the formulas for series (−1a) and (−1b) of
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symmetries as in the formulation of the present Theorem in order to apply the
generators of Uq(sl2) to the relation in Pol(D)q, and vice versa, every relation
in Uq(sl2) to the generators of Pol(D)q. In all the cases one gets the identity,
which demonstrates that the formulas for the series (−1a) and (−1b) as in the
formulation determine well defined Uq(sl2)-symmetries on Pol(D)q for all values
of the parameters involved therein. Again, this calculation appears to be purely
technical and thus left to the reader.

Remark 5.3. No symmetry of the series (−1a) or (−1b) is isomorphic to
a symmetry of the series (1a) (1b). This is due to the fact that an arbitrary
automorphism of Pol(D)q (see Proposition 2.2) commutes with the action of π(k)
for any Uq(sl2)-symmetry π on Pol(D)q.

Remark 5.4. The series of symmetries (−1a) and (−1b) are disjoint. To see
this, one can, e.g., observe that in the series (−1a), π(f)(z) is non-zero for any
(non-zero) value of the parameter b1; on the other hand, in the series (−1b) one
has π(f)(z) = 0 for all admissible values of the parameters.

A very similar argument can be also used to establish that no symmetry
of the series (−1a) is isomorphic to a symmetry of the series (−1b). In fact,
with π being a (−1b)-symmetry and Ψ an automorphism of Pol(D)q, one readily
computes, using Proposition 2.2, that Ψπ(f)Ψ−1(z) = 0.

6. A note on involutions

The approach used above that ignored the presence of involutions both in
Pol(D)q and in Uq(sl2) was helpful in describing the utmost collection of Uq(sl2)-
symmetries on Pol(D)q. However, it would be unnatural to avoid even mentioning
at least the straightforward involution on Pol(D)q, which sends z to z∗. As for
Uq(sl2), the picture is less plausible, as the latter Hopf algebra admits several
involutions (real forms) compatible with the structures on Uq(sl2) as a Hopf alge-
bra. Also, a sort of compatibility is assumed implicit on involutions involved for
a Uq(sl2)-symmetry on Pol(D)q. So, we start with recalling relevant definitions,
see, e.g., [8].

Let H be a Hopf algebra whose comultiplication is ∆, counit is ε, and an-
tipode is S. Suppose H is equipped with an involution ∗, which is an antilinear
antiisomorphism. H is called a Hopf ∗-algebra if the following conditions are
satisfied. ∆ : H → H⊗H is a ∗-homomorphism. The latter means that ∆(a∗) =
∆(a)∗ for a ∈ H, where the involution of H ⊗H is defined by (a⊗ b)∗ = a∗ ⊗ b∗.
This definition already implies certain relations between ∗, S, and ε [8, 1.2.7].

Now let A be a unital involutive algebra, whose unit is 1, and the involution
is denoted by the same symbol ∗ as above. Let also π be an H-symmetry on
A. In this specific case, the following compatibility assumption on involutions is
implicit [16] (see also [10,13,14]):

(π(ξ)a)∗ = π(S(ξ)∗)a∗, ξ ∈ H, a ∈ A. (6.1)

Here the symmetry sign π is used explicitly, unlike [16] where the symmetry in
this compatibility property is implicit and thus omitted. Just as in the context
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of [16], this part of the definition of a symmetry (structure of H-module algebra
on A) allows a proper application of the involution(s) to the relation

π(ξη)a = π(ξ)(π(η)a), ξ, η ∈ H, a ∈ A.

In our specific case H = Uq(sl2), A = Pol(D)q, we already have a complete
list of Uq(sl2)-symmetries on Pol(D)q described in Sections 3, 4, 5. What remains
is to extract a (sub)list of symmetries compatible with involutions as in (6.1).

We restrict our considerations to the involution z 7→ z∗ in Pol(D)q, and repro-
duce below the list of involutions that make Uq(sl2) a Hopf ∗-algebra [8, 3.1.4].
The list is exhaustive and contains representatives of equivalence classes (of invo-
lutions that can be intertwined by automorphisms of the Hopf algebra Uq(sl2)).
Each item in this list is related to a specific set of values for q, and we additionally
keep our initial assumption that q is not a root of 1.

(A) This involution is valid with q ∈ R, and the corresponding Hopf ∗-algebra
Uq(su2) is called the compact real form of Uq(sl2). Explicitly,

k∗ = k, e∗ = fk, f∗ = k−1e.

(B) Similarly to the previous case, q ∈ R, and the corresponding Hopf ∗-algebra
is denoted by Uq(su1,1). Explicitly,

k∗ = k, e∗ = −fk, f∗ = −k−1e.

(C) Let |q| = 1. The single equivalence class of involutions that make Uq(sl2) a
Hopf ∗-algebra is represented by

k∗ = k, e∗ = e, f∗ = f.

This real form is denoted by Uq(sl2(R)).

(D) Let q ∈ iR. An equivalence class of involutions that have no classical coun-
terpart is represented by

k∗ = k, e∗ = ifk, f∗ = ik−1e.

(E) Again with q ∈ iR, there exists just one more equivalence class of involutions
that have no classical counterpart; it is represented by

k∗ = k, e∗ = −ifk, f∗ = −ik−1e.

Now we are in a position to produce a complete list of series of Uq(sl2)-
symmetries on Pol(D)q which, under presence of involutions both in Uq(sl2) and
in Pol(D)q, admit the compatibility condition (6.1). We start with the following
Lemma which describes the cases when (6.1) agrees with the algebraic structures
both on Uq(sl2) and on Pol(D)q, regardless of the explicit form of symmetries.
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Lemma 6.1. Suppose that the involution on Uq(sl2) is (A), (B), (D), or (E).
Assume also that the relation (6.1) is true with ξ taking values in the distinguished
set of generators k, k−1, e, f ∈ Uq(sl2) and, a being z or z∗ ∈ Pol(D)q. Then (6.1)
is true for arbitrary ξ ∈ Uq(sl2), a ∈ Pol(D)q.

Proof. This Lemma does not allude to an explicit form of a symmetry π as in
(6.1), so we omit the very symbol π throughout the present proof, thus making
a symmetry implicit.

Let a, b = z or z∗ ∈ Pol(D)q. Let us now restrict our considerations to the
involution (A) on Uq(sl2). In this case

S(k)∗ = (k−1)∗ = k−1,

S(k−1)∗ = (k)∗ = k,

S(e)∗ = (−ek−1)∗ = −k−1fk = −q2f,
S(f)∗ = (−kf)∗ = −k−1ek = −q−2e.

With this, under the assumptions of Lemma one has

k(ab)∗ = (k(a)k(b))∗ = k(b)∗k(a)∗ = (S(k)∗b∗)(S(k)∗a∗)

= k−1(b∗)k−1(a∗) = k−1(b∗a∗) = S(k)∗(ab)∗,

and, in a similar way

k−1(ab)∗ = S(k−1)∗(ab)∗.

Also, we compute

e(ab)∗ = (ae(b))∗ + (e(a)k(b))∗ = e(b)∗a∗ + k(b)∗e(a)∗

= (S(e)∗b∗)a∗ + (S(k)∗b∗)(S(e)∗a∗) = −q2f(b∗)a∗ − k−1(b∗)q2f(a∗)

= −q2∆(f)(b∗ ⊗ a∗) = −q2f(b∗a∗) = S(e)∗(ab)∗,

f(ab)∗ = (f(a)b)∗ + (k−1(a)f(b))∗ = b∗f(a∗) + f(b)∗k−1(a)∗

= b∗(S(f)∗a∗) + (S(f)∗b∗)(S(k−1)∗a∗) = −b∗q−2e(a∗)− q−2e(b∗)k(a∗)

= −q−2∆(e)(b∗ ⊗ a∗) = −q2e(b∗a∗) = S(f)∗(ab)∗,

Similar arguments work in the cases of the rest of involutions on Uq(sl2) listed
in the formulation of Lemma. This proves (6.1) for ξ = k, k−1, e, or f ∈ Uq(sl2),
a ∈ Pol(D)q, due to the anti-linearity in a of the l.h.s. and the r.h.s. of (6.1) with
a fixed ξ ∈ Uq(sl2).

Now let ξ, η = k, k−1, e, or f ∈ Uq(sl2), a ∈ Pol(D)q. In view of the above
observations,

((ξη)a)∗ = (ξ(ηa))∗ = S(ξ)∗(ηa)∗ = S(ξ)∗S(η)∗a∗ = (S(η)S(ξ))∗a∗ = S(ξη)∗a∗,

which finishes the proof, due to the anti-linearity in ξ of the l.h.s. and the r.h.s.
of (6.1) with a fixed a ∈ Pol(D)q.
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Remark 6.2. The involution (C) is not covered by Lemma 6.1, because under
this involution (6.1) fails even on the generators, unless the symmetry in question
is either (0+) or (0−).

Theorem 6.3. The following assertions hold.

(i) The symmetries (0+) and (0−) admit compatibility for each of the involu-
tions (A) – (E) with the involution in Pol(D)q.

(ii) Suppose that q < 0. Then the involution (A) possesses the compatibil-
ity property (6.1) with the involution in Pol(D)q so that the latter admits
Uq(su2)-symmetries under a part of the series (1a) distinguished by setting
there b1 = 0, |b0|2 = −q−3. Explicitly, those symmetries are

π(k)(z) = q2z, π(k)(z∗) = q−2z∗,

π(e)(y) = q−1b−10 zy, π(f)(y) = b0yz
∗,

π(e)(z) = qb−10 z2, π(f)(z) = −b0,
π(e)(z∗) = −q−1b−10 , π(f)(z∗) = q2b0z

∗2,

b0 ∈ C, |b0|2 = −q−3.

In view of Remark 4.2, this set of symmetries is also a part of the series
(1b) distinguished by setting there a1 = 0, |a0|2 = −q.

(iii) Suppose that q > 0. Then the involution (B) possesses the compatibil-
ity property (6.1) with the involution in Pol(D)q so that the latter admits
Uq(su1,1)-symmetries under a part of the series (1a) distinguished by setting
there b1 = 0, |b0|2 = q−3. Explicitly, those symmetries are

π(k)(z) = q2z, π(k)(z∗) = q−2z∗,

π(e)(y) = q−1b−10 zy, π(f)(y) = b0yz
∗,

π(e)(z) = qb−10 z2, π(f)(z) = −b0,
π(e)(z∗) = −q−1b−10 , π(f)(z∗) = q2b0z

∗2,

b0 ∈ C, |b0|2 = q−3.

In view of Remark 4.2, this set of symmetries is also a part of the series
(1b) distinguished by setting there a1 = 0, |a0|2 = q.

(iv) Suppose that q = λi with λ > 0. Then the involution (D) possesses the
compatibility property (6.1) with the involution in Pol(D)q under a part of
the series (1a) distinguished by setting there b1 = 0, |b0|2 = λ−3. Explicitly,
those symmetries are

π(k)(z) = q2z, π(k)(z∗) = q−2z∗,

π(e)(y) = q−1b−10 zy, π(f)(y) = b0yz
∗,

π(e)(z) = qb−10 z2, π(f)(z) = −b0,
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π(e)(z∗) = −q−1b−10 , π(f)(z∗) = q2b0z
∗2,

b0 ∈ C, |b0|2 = λ−3.

In view of Remark 4.2, this set of symmetries is also a part of the series
(1b) distinguished by setting there a1 = 0, |a0|2 = λ.

(v) Suppose q = λi with λ < 0. Then the involution (E) possesses the compati-
bility property (6.1) with the involution in Pol(D)q under a part of the series
(1a) distinguished by setting there b1 = 0, |b0|2 = −λ−3. Explicitly, those
symmetries are

π(k)(z) = q2z, π(k)(z∗) = q−2z∗,

π(e)(y) = q−1b−10 zy, π(f)(y) = b0yz
∗,

π(e)(z) = qb−10 z2, π(f)(z) = −b0,
π(e)(z∗) = −q−1b−10 , π(f)(z∗) = q2b0z

∗2,

b0 ∈ C, |b0|2 = −λ−3.

In view of Remark 4.2, this set of symmetries is also a part of the series
(1b) distinguished by setting there a1 = 0, |a0|2 = −λ.

The above list is exhaustive. There exist no other Uq(sl2)-symmetries on Pol(D)q
which, under presence of involutions both in Uq(sl2) and in Pol(D)q, admit the
compatibility condition (6.1).

Proof. The only case which is not covered by Lemma 6.1 is (i) under the
involution (C). Let us consider this case separately.

Note that, with ξ ∈ Uq(sl2) being fixed, both l.h.s and r.h.s. of (6.1) are anti-
linear with respect to a ∈ Pol(D)q. Hence it suffices to verify (6.1) on a basis. For
this purpose, we choose the basis of weight vectors

{
zkyn, ynz∗l

∣∣ k, n ≥ 0, l > 0
}

for a symmetry π. We also consider the basis
{
eikmfj

∣∣ i, j ≥ 0, m ∈ Z
}

in Uq(sl2)
[8], along with an expansion of an arbitrary ξ ∈ Uq(sl2) with respect to this basis,
ξ =

∑
i,m,j

ci,m,je
ikmfj (the sum is finite). Since both π(e) and π(f) are identically

zero operators, one has in the subcase (0−)

(
π(ξ)

(
zkyn

))∗
=

(
π

(∑
m

c0,m,0k
m

)(
zkyn

))∗

=

((∑
m

(−1)kmc0,m,0

)(
zkyn

))∗
=

(∑
m

(−1)kmc0,m,0

)
ynz∗k,

(
π(ξ)

(
ynz∗l

))∗
=

(
π

(∑
m

c0,m,0k
m

)(
ynz∗l

))∗

=

((∑
m

(−1)lmc0,m,0

)(
ynz∗l

))∗
=

(∑
m

(−1)lmc0,m,0

)
zlyn,
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S(ξ)∗ =

∑
i,m,j

ci,m,je
ikmfj

∗ =
∑
i,m,j

ci,m,jf
jkmei,

π(S(ξ)∗)
(
zkyn

)∗
= π

(∑
m

c0,m,0k
m

)(
ynz∗k

)
=

(∑
m

(−1)kmc0,m,0

)
ynz∗k,

π(S(ξ)∗)
(
ynz∗l

)∗
= π

(∑
m

c0,m,0k
m

)(
zlyn

)
=

(∑
m

(−1)lmc0,m,0

)
zlyn,

which establishes (6.1). A similar but even easier argument works also in the
subcase (0+). The claim (i) under the involution (C) is proved.

In all other cases Lemma 6.1 is applicable. The latter Lemma allows ex-
traction of suitable subseries satisfying (6.1) from the series of symmetries listed
explicitly in Sections 3, 4, 5 via verifying (6.1) on the generators both in Uq(sl2)
and in Pol(D)q. The verification procedure anticipates calculations which are
completely routine and thus left to the reader.
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Uq (sl2)-симетрiї квантових дискiв: повний перелiк
Sergey D. Sinel’shchikov

У роботi наведено класифiкацiю Uq(sl2)-симетрiй на квантовому ди-
ску. Запроваджено головний iнварiант цiєї класифiкацiї — градуюваль-
ний стрибок. Виявляється за зазначених умов градуювальний стрибок
може набувати лише три значення: 0, 1, −1.
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