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One Class of Linearly Growing C0-Groups

Grigory Sklyar, Vitalii Marchenko, and Piotr Polak

We consider the special class of C0-groups from [12], whose generators
are unbounded, have a pure point imaginary spectrum and a corresponding
dense and minimal family of eigenvectors, which however does not form a
Schauder basis. We obtain two-sided estimates for norms of C0-groups from
this class and thus prove that these C0-groups have linear growth. Moreover,
we show that C0-groups from the considered class do not have any maximal
asymptotics. This means that the fastest growing orbits do not exist.
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1. Introduction

In 2017, G.M. Sklyar and V. Marchenko [12] constructed classes of C0-groups
with generators possessing a pure point imaginary spectrum and a dense minimal
family of eigenvectors, which is however not uniformly minimal, and hence this
family does not form a Schauder basis. For definitions and various properties of
Schauder bases and decompositions we refer to [6]. By the spectral XYZ theorem
(see Theorem 1.1 in [19], Theorem 1.1 in [20] or XYZ Theorem in [13]) points of
the spectrum of such generators must be non-separated, so they behave in [12]
like

i lnn, n ∈ N,

and cluster at i∞. The XYZ theorem is a spectral theorem for nonselfadjoint
operators providing us with general sufficient conditions for eigenvectors (or in-
variant subspaces) of the generator of the C0-group to constitute a Riesz basis
in a Hilbert space, see [19, 20] for its formulations and proofs and [12, 13, 15] for
discussions around it. For equivalent definitions and various properties of Riesz
bases we refer to [2,6,7]. Recently in [13] G.M. Sklyar and V. Marchenko used the
constructed classes of C0-groups with non-basis family of eigenvectors from [12]
to prove that XYZ Theorem is sharp in a sense that none of its conditions can
be weakened or removed, see Section 2 in [13].

Throughout the paper we will use the notations from [12, 15]. Consider a
separable Hilbert space H with norm ‖·‖ and fix an arbitrary Riesz basis {en}∞n=1
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in H. Then

H1 ({en}) =

{
x = (f)

∞∑
n=1

cnen : {cn − cn−1}∞n=1 ∈ `2, c0 = 0

}

is a Hilbert space of formal series (f)
∞∑
n=1

cnen with norm

‖x‖1 =

∥∥∥∥∥(f)
∞∑
n=1

cnen

∥∥∥∥∥
1

=

∥∥∥∥∥
∞∑
n=1

(cn − cn−1)en

∥∥∥∥∥ .
By S1, we denote the following class of real sequences:

S1 =
{
{f(n)}∞n=1 ⊂ R : lim

n→∞
f(n) = +∞; {n (f(n)− f(n− 1))}∞n=1 ∈ `∞

}
,

where f(0) = 0. One clearly has {lnn}∞n=1 ∈ S1 and {
√
n}∞n=1 /∈ S1.

The construction of C0-groups with non-basis family of eigenvectors from [12]
on the space H1 ({en}) is given by the following theorem.

Theorem 1.1 (The case k = 1 in Theorem 11 from [12]). Assume that
{en}∞n=1 is a Riesz basis of H. Then {en}∞n=1 is a complete and minimal se-
quence in H1 ({en}) but does not form a Schauder basis of H1 ({en}), and for
each {f(n)}∞n=1 ∈ S1, the operator A1 : H1 ({en}) ⊃ D(A1) 7→ H1 ({en}) , defined
by

A1x = A1

(
(f)

∞∑
n=1

cnen

)
= (f)

∞∑
n=1

if(n) · cnen,

with domain

D(A1) =

{
x = (f)

∞∑
n=1

cnen ∈ H1 ({en}) : {f(n)cn − f(n− 1)cn−1}∞n=1 ∈ `2

}
,

generates the C0-group on H1 ({en}), which acts for every t ∈ R by the formula

eA1tx = eA1t(f)

∞∑
n=1

cnen = (f)

∞∑
n=1

eitf(n)cnen. (1.1)

It was proved in [13] that for the spectrum σ(A1) of the operator A1 we have

σ(A1) = σp(A1) = {if(n)}∞n=1 .

Suppose that f(n) = lnn, n ∈ N. Then in [14] and [15] the authors obtained
the following two-sided estimate for the norm of C0-group

{
eA1t

}
t∈R from Theo-

rem 1:

C|t| ≤
∥∥eA1t

∥∥ ≤ p(|t|), (1.2)
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where C > 0 and p is a linear function with positive coefficients, for the proof, see
Theorem 6 in [15]. Thus, it was proved that for the case when f(n) = lnn, n ∈ N,
the C0-group

{
eA1t

}
t∈R has exactly a linear growth. Note that C0-groups of linear

growth arise naturally in the theory and applications of evolution equations, see,
e.g., [1], [3], [16], [18]. A careful analysis of the scheme of the proof of Theorem 6
in [15] leads to a more general result including more general behaviour of the
spectrum of the generator A1 from Theorem 1.1. This case we discuss in details
in Section 2 and thus present one class of linearly growing C0-groups on Hilbert
spaces H1 ({en}).

It was also proved in [15] that C0-semigroups
{
e±A1t

}
t≥0, for the case when

f(n) = lnn, n ∈ N, do not have maximal asymptotics. Thus, on the one hand,

∥∥eA1t
∥∥ ∼ c (A1) |t|, t→ ±∞,

where c (A1) is a constant depending on A1, but, on the other hand, for all x ∈
H1 ({en}) we have that

lim
t→±∞

∥∥eA1tx
∥∥

|t|
= 0.

The second aim of the paper is to show, using (1.2), that C0-semigroups{
e±A1t

}
t≥0 for the case of more general behaviour of the spectrum of the gener-

ator A1 from Theorem 1.1 also do not have maximal asymptotics.

The construction of C0-groups with non-basis family of eigenvectors was
also presented in [12] on certain Banach spaces `p,1 ({en}) , p > 1. The space

`p,1 ({en}) , p > 1, is a Banach space of formal series (f)
∞∑
n=1

cnen,

`p,1 ({en}) =

{
x = (f)

∞∑
n=1

cnen : {cn − cn−1}∞n=1 ∈ `p

}
, p > 1,

where c0 = 0 and {en}∞n=1 is a symmetric basis of the corresponding `p, p > 1,
with appropriate norm, defined similarly to the case of H1 ({en}). The concept of
a symmetric basis was first introduced and studied by I. Singer [10] in connection
with one Banach problem from isomorphic theory of Banach spaces. For definition
and various properties of symmetric bases see, e.g., [4,8–10]. Note that in Hilbert
spaces the concepts of a Riesz basis and a symmetric basis coincide, see e.g., [6].
Since the construction of C0-groups with non-basis family of eigenvectors on the
Banach space `p,1 ({en}) , p > 1, is similar to the construction on H1 ({en}), the
third purpose of the paper is to obtain similar results for the case of corresponding
C0-groups defined on the Banach space `p,1 ({en}) , p > 1.
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2. A class of linearly growing C0-groups defined on H1 ({en})

By ∆, we denote the backward difference operator

∆ =


1 0 0 0 . . .
−1 1 0 0 . . .
0 −1 1 0 . . .
0 0 −1 1 . . .
...

...
...

...
. . .

 ,

by ∆ {αn}∞n=1, the sequence {αn − αn−1}∞n=1 and by ∆αn, the n-th element of
the sequence {αn − αn−1}∞n=1, i.e. ∆αn = αn − αn−1, n ∈ N.

The main result of the paper is formulated as follows.

Theorem 2.1. Let
{
eA1t

}
t∈R be the C0-group from Theorem 1.1, defined on

H1 ({en}), where {f(n)}∞n=1 ∈ S1. Assume that there exists a constant K > 0
such that for each n ∈ N we have

n |∆f(n)| ≥ K. (2.1)

Then the C0-group
{
eA1t

}
t∈R has a linear growth, i.e., there exists a linear func-

tion l with positive coefficients and a constant C > 0 such that for all t ∈ R we
have

C|t| ≤
∥∥eA1t

∥∥ ≤ l(|t|). (2.2)

Proof. The right-hand side of inequality (2.2) follows from Proposition 12
in [12].

To prove the left-hand side of inequality (2.2), we use the scheme of the proof
of Theorem 6 from [15]. For the sake of completeness, we recall the full scheme
of this proof. First, we consider a one-parameter family of sequences

aβn =
n∑
k=1

k−β, n ∈ N, β ∈
(

1

2
,
3

4

)
, (2.3)

and note that for every β ∈
(
1
2 ,

3
4

)
and each n ∈ N we have

2

7
n1−β ≤ 2

7
(n+ 1)1−β ≤ aβn ≤ 4n1−β, (2.4)

see [15] for details.
The next step of the proof is to consider a one-parameter family xβ ∈

H1 ({en}), β ∈
(
1
2 ,

3
4

)
, generated by sequences (2.3) and defined as follows:

xβ = (f)
∞∑
n=1

aβnen. (2.5)

Since the sequence {en}∞n=1 constitutes a Riesz basis of the initial Hilbert space
H, there exist constants M ≥ m > 0 such that for each

y =

∞∑
n=1

cnen ∈ H
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we have

m

∞∑
n=1

|cn|2 ≤ ‖y‖2 ≤M
∞∑
n=1

|cn|2, (2.6)

see, e.g., [2, 6].
Further, by (2.6), we have that

m

2β − 1
≤ ‖xβ‖21 ≤

3M

2

1

2β − 1
, (2.7)

see [15] for details.
The next step of the proof is to estimate from below the norm of the C0-group,∥∥eA1t
∥∥. To this end, we use a one-parameter family xβ ∈ H1 ({en}), defined by

(2.3), (2.5), fix arbitrary t ∈ R and, using (2.6), note that

∥∥eA1txβ
∥∥2
1

=

∥∥∥∥∥(f)

∞∑
n=1

eitf(n)aβnen

∥∥∥∥∥
2

1

≥ m

(
1 +

∞∑
n=1

∣∣∣aβn+1e
itf(n+1) − aβneitf(n)

∣∣∣2)

= m

(
1 +

∞∑
n=1

∣∣∣aβn+1

(
eitf(n+1) − eitf(n)

)
+ eitf(n)

(
aβn+1 − a

β
n

)∣∣∣2)

= m

(
1 +

∞∑
n=1

∣∣∣∣aβn+1

(
eit(f(n+1)−f(n)) − 1

)
+

1

(n+ 1)β

∣∣∣∣2
)

≥ m

(
1 +

∞∑
n=1

∣∣∣aβn+1

∣∣∣2 sin2 (t (f(n+ 1)− f(n)))

)
.

Since {f(n)}∞n=1 ∈ S1, there exists a constant L > 0 such that for all n ∈ N,

n |∆f(n)| ≤ L.

Hence, for all t ∈ R and each n ∈ N,

|t (f(n+ 1)− f(n))| ≤ L|t|
n
,

and thus for all n ≥ L|t| we obtain

|t (f(n+ 1)− f(n))| ≤ 1. (2.8)

Since for all s ∈ [0, 1] we have

sin s ≥ s

2
, (2.9)

we infer, applying (2.8), (2.9) and (2.1), that for arbitrary t ∈ R and for all n ≥
L|t|,

sin2 (t (f(n+ 1)− f(n))) ≥ t2

4
(f(n+ 1)− f(n))2 =

t2

4
(∆f(n))2 ≥ K2t2

4n2
.
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Thus we can continue the estimation for
∥∥eA1txβ

∥∥
1

and, using (2.4), obtain that

∥∥eA1txβ
∥∥2
1
−m ≥ m

∑
n≥L|t|

∣∣∣aβn+1

∣∣∣2 sin2 (t (f(n+ 1)− f(n)))

≥ m
∑
n≥L|t|

K2
∣∣∣aβn+1

∣∣∣2 t2
4n2

≥ 4m

49
· K

2t2

4

∑
n≥L|t|

(n+ 1)2−2β

n2

≥ mK2t2

49

∑
n≥L|t|

(n+ 1)−2β ≥ mK2t2

49

∞∫
L|t|+1

(s+ 1)−2βds

=
mK2t2

49

1

2β − 1

1

(L|t|+ 2)2β−1
.

By applying of (2.7), we arrive at

∥∥eA1txβ
∥∥2
1

‖xβ‖21
≥ 2mK2t2

147M(L|t|+ 2)2β−1
+

m

‖xβ‖21
≥ 2mK2t2

147M(L|t|+ 2)2β−1
.

Finally, the latter estimate leads for all t ∈ R to the following:

∥∥eA1t
∥∥2 = sup

x∈H1({en})

∥∥eA1tx
∥∥2
1

‖x‖21
≥ sup

β∈( 1
2
, 3
4)

∥∥eA1txβ
∥∥2
1

‖xβ‖21

≥ lim
β→+ 1

2

(
2mK2t2

147M(L|t|+ 2)2β−1

)
=

2mK2t2

147M
,

and thus (2.2) is proved with C =
√

2m
147MK.

Remark 2.2. Note that for the case when f(n) = lnn, n ∈ N, condition (2.1)
obviously holds. For this case, Theorem 2.1 was first obtained in [14] and proved
in [15].

Remark 2.3. As it was shown in [3], C0-groups corresponding to abstract
wave equations also have linear growth. Let n ∈ N. The partial case of abstract
wave equations is the classical d’Alembert wave equation

∂2u(t, x)

∂t2
= ∆u(t, x), t ∈ R, x ∈ Rn,

on the space L2 (Rn), where ∆ is the usual Laplacian, see [3] for details.
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3. A class of linearly growing C0-groups defined on Banach
spaces `p,1 ({en}) , p > 1

3.1. Preliminary constructions. Let {en}∞n=1 be an arbitrary symmetric
basis of `p, p > 1. Then `p,1 ({en}) , p > 1, is a Banach space of formal series

(f)
∞∑
n=1

cnen,

`p,1 ({en}) =

{
x = (f)

∞∑
n=1

cnen : {cn}∞n=1 ∈ `p(∆)

}
,

where

`p(∆) = {x = {αn}∞n=1 ⊂ C : ∆x ∈ `p} , p > 1.

By Proposition 5 in [12], we have that Lin{en}∞n=1 = `p,1 ({en}), the sequence
{en}∞n=1 is minimal but {en}∞n=1 is not uniformly minimal in `p,1 ({en}), hence it
does not form a Schauder basis of `p,1 ({en}) . We refer to Section 2.2 in [12] for
more details.

Consider the operator

Ã1 : `p,1 ({en}) ⊃ D
(
Ã1

)
7→ `p,1 ({en}) ,

defined on a Banach space `p,1 ({en}) , p > 1, as follows:

Ã1x = Ãk(f)
∞∑
n=1

cnen = (f)
∞∑
n=1

if(n) cnen, (3.1)

where x ∈ D
(
Ã1

)
, {f(n)}∞n=1 ∈ S1 and {en}∞n=1 is a symmetric basis of the

initial Banach space `p, p > 1, with domain

D
(
Ã1

)
=

{
x = (f)

∞∑
n=1

cnen ∈ `p,1 ({en}) : {f(n) · cn}∞n=1 ∈ `p(∆)

}
. (3.2)

By virtue of Theorem 16 in [12], the operator Ã1 generates the C0-group{
ẽA1t

}
t∈R

on `p,1 ({en}) , p > 1, which acts on `p,1 ({en}) for every t ∈ R by

the formula

ẽA1tx = ẽA1t(f)
∞∑
n=1

cnen = (f)
∞∑
n=1

eitf(n)cnen. (3.3)

3.2. A class of linearly growing C0-groups on `p,1 ({en}) , p > 1. For
the case of the construction of C0-groups with non-basis family of eigenvectors
from [12] on a Banach space `p,1 ({en}) , p > 1, we obtain the following theorem
on their linear growth, similar to Theorem 2.1.
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Theorem 3.1. Let
{
ẽA1t

}
t∈R

be the C0-group given by (3.3) , defined on a

Banach space `p,1 ({en}) , p > 1, where {f(n)}∞n=1 ∈ S1. Assume that there exists
K > 0 such that for each n ∈ N we have (2.1), i.e.,

n |∆f(n)| ≥ K.

Then the C0-group
{
ẽA1t

}
t∈R

has a linear growth, i.e., there exists a linear func-

tion l̃ with positive coefficients and a constant C > 0 such that for all t ∈ R we
have

C|t| ≤
∥∥∥ẽA1t

∥∥∥ ≤ l̃(|t|). (3.4)

Proof. The right-hand side of inequality (3.4) follows from Proposition 17
in [12].

To prove the left-hand side of inequality (3.4), we first note that if {en}∞n=1 is
a symmetric basis of the Banach space `p, p ≥ 1, then there exist constants M ≥
m > 0 such that for each

z =

∞∑
n=1

cnen ∈ `p

we have

m
∞∑
n=1

|cn|p ≤ ‖z‖p ≤M
∞∑
n=1

|cn|p, (3.5)

i.e., a two-sided estimate similar to (2.6), see Proposition 4 in [12] and [4] for
more details. Thus the proof of the left-hand side of inequality (3.4) repeats the
lines of the proof of the left-hand side of inequality (2.2) in Theorem 2.1. For
p ≥ 2, one just needs to consider a one-parameter family

aβn, n ∈ N, β ∈
(

1

p
, 1− 1

p2

)
instead of (2.3), for p ∈ (1, 2], a family

aβn, n ∈ N, β ∈
(

1

p
, 1− 1

q2

)
,

where q is a number satisfying 1
p + 1

q = 1. Then one needs to put into play a one-
parameter family xβ ∈ `p,1 ({en}), defined as in (2.5), with the corresponding
interval for β depending on p, and to estimate the norm of the C0-group from
below. The necessity to control the convergence of the series

∞∑
n=1

n−pβ

at the second step of the proof together with the positivity of the power pβ − 1
for all β from the interval at the end of the proof leads to the need of distinction
of intervals for p ≥ 2 and p ∈ (1, 2], for details, see the proof of Theorem 2.1.

Remark 3.2. Note that C0-groups generated by certain perturbations of gen-
erators of uniformly bounded C0-groups on Banach spaces grow at most linearly
in t, for details, see Corollary 2 in [5].
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4. The lack of maximal asymptotics for linearly growing C0-
groups on spaces H1 ({en}) and `p,1 ({en}) , p > 1

The question on the existence of maximal asymptotics for a C0-semigroup{
eAt
}
t≥0, or for the corresponding abstract linear differential equation{

ẋ(t) = Ax(t), t ≥ 0,

x(0) = x0,
(4.1)

on a Banach space X, as the existence of its fastest growing in time t weak
solution eAtx0, t ≥ 0, x0 ∈ X, was first formulated by G. Sklyar in 2010, see [11].
The definition of a maximal asymptotics for a C0-semigroup is the following.

Definition 4.1 ( [11]). The C0-semigroup
{
eAt
}
t≥0 (or the corresponding

abstract linear differential equation (4.1)) on a Banach space X has a maximal
asymptotics (a real and positive function f(t), t ≥ 0) provided that

(1) for some a ≥ 0 and for each x ∈ X, the function∥∥eAtx∥∥
f(t)

is bounded for all t ∈ [a,+∞);

(2) there exists at least one x0 ∈ X such that

lim
t→+∞

∥∥eAtx0∥∥
f(t)

= 1.

Clearly, if f(t) is a maximal asymptotics of a C0-semigroup
{
eAt
}
t≥0, then

cf(t) for any c > 0 also is a maximal asymptotics of a C0-semigroup
{
eAt
}
t≥0.

If A : Rn → Rn is a finite dimensional linear operator, then the associated
C0-semigroup

{
eAt
}
t≥0 always has the maximal asymptotics

f(t) = eµttN−1,

where µ = max
λ∈σ(A)

<λ, σ(A) is the spectrum of A, and N ≤ n is the maximal

geometric multiplicity of an eigenvalue of A with a real part µ. For infinite di-
mensional case, even in the class of bounded operators A, there may exist corre-
sponding C0-semigroups

{
eAt
}
t≥0 without any maximal asymptotics, for details,

see [11].
We recall that the growth bound ω0 of the C0-semigroup

{
eAt
}
t≥0 on a Banach

space can be defined as the following limit:

ω0 = lim
t→+∞

ln
∥∥eAt∥∥
t

.

The main result on the lack of maximal asymptotics for linearly growing C0-
groups on the spaces H1 ({en}) and `p,1 ({en}) , p > 1, from Theorem 2.1 and
Theorem 3.1 is formulated as follows.
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Theorem 4.2. Let
{
eA1t

}
t∈R be the C0-group from Theorem 2.1, defined on

H1 ({en}), and
{
ẽA1t

}
t∈R

be the C0-group (3.3) from Theorem 3.1, defined on a

Banach space `p,1 ({en}), where p > 1. Then the C0-semigroups
{
e±A1t

}
t≥0 and{

ẽ±A1t
}
t≥0

do not have a maximal asymptotics.

Proof. To prove this theorem, we use Theorem 12 from [15], a new theorem
on the lack of maximal asymptotics for C0-semigroups on Banach spaces, see
also [17] for its proof.

By virtue of Theorem 2.1 and Theorem 3.1, we obtain that

ω0 = lim
t→+∞

ln
∥∥eA1t

∥∥
t

= 0 = lim
t→+∞

ln
∥∥∥ẽA1t

∥∥∥
t

= ω̃0,

where ω0 is the growth bound of the C0-semigroup
{
eA1t

}
t≥0 and ω̃0 is the growth

bound of the C0-semigroup
{
ẽA1t

}
t≥0

. Since by Theorem 3.1 in [13],

σ (A1) = σp (A1) = {if(n)}∞n=1 ⊂ iR,

Condition 1 of Theorem 12 from [15] is satisfied for the C0-semigroup
{
eA1t

}
t≥0.

Analogously, by Theorem 3.2 in [13], this condition holds for
{
ẽA1t

}
t≥0

.

Further we note that for any n ∈ N the eigenspace, corresponding to the point
if(n) ∈ σp (A1) , is Lin{en}. Then, for any x = cnen ∈ Lin{en}, we clearly have∥∥eA1tx

∥∥
1

=
∥∥∥eitf(n)cnen∥∥∥

1
= |cn| ‖en‖1 .

Therefore, by virtue of Theorem 2.1, we obtain that

lim
t→+∞

∥∥eA1tx
∥∥
1

‖eA1t‖
≤ lim

t→+∞

|cn| ‖en‖1
C|t|

= 0,

and hence Condition 2 of Theorem 12 from [15] is satisfied for the C0-semigroup{
eA1t

}
t≥0. By similar arguments and application of Theorem 3.1, we obtain

that that Condition 2 of Theorem 12 from [15] holds also for the C0-semigroup{
ẽA1t

}
t≥0

. Thus, by virtue of Theorem 12 from [15], we infer that the C0-

semigroups
{
eA1t

}
t≥0 and

{
ẽA1t

}
t≥0

do not have any maximal asymptotics.

The operator −A1 generates the C0-semigroup
{
e−A1t

}
t≥0 with D (−A1) =

D (A1), and for its spectrum we have that

σ (−A1) = σp (−A1) = {−if(n)}∞n=1 ⊂ iR.

Therefore, by virtue of Theorem 2.1, Theorem 3.1 and Theorem 12 from [15], we

conclude that the C0-semigroups
{
e−A1t

}
t≥0 and

{
ẽ−A1t

}
t≥0

also do not have

any maximal asymptotics.
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Один клас лiнiйно зростальних C0-груп
Grigory Sklyar, Vitalii Marchenko, and Piotr Polak

Ми розглядаємо спецiальний клас C0-груп з [12], генератори яких
є необмеженими, мають чисто точковий уявний спектр та вiдповiдну
щiльну i мiнiмальну сiм’ю власних векторiв, яка, проте, не утворює базис
Шаудера. Ми одержуємо двостороннi оцiнки норм C0-груп з цього класу
i таким чином доводимо, що цi C0-групи зростають лiнiйно. Крiм того,
ми доводимо, що C0-групи з класу, що розглядається, не мають жодної
максимальної асимптотики. Це означає, що не iснує орбiти, що зростає
найшвидше.

Ключовi слова: C0-група, лiнiйне зростання, максимальна асимпто-
тика, XYZ теорема
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