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Gradient Estimates and Harnack Inequalities
for a Nonlinear Heat Equation with the
Finsler Laplacian
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Let (M™, F,m) be an n-dimensional compact Finsler manifold. In this
paper, we study the nonlinear heat equation

Opu = Apu on M"™ x [0,T),

where A,, is the Finsler Laplacian. We derive Li—Yau type gradient esti-
mates for positive global solutions of this equation on static Finsler man-
ifolds, as well as under action of the Finsler—Ricci flow. As corollaries, in
both cases, the corresponding Harnack inequalities are also obtained.
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1. Introduction

After Cheng—Yau’s work in [6] and Li-Yau’s work in [12] on gradient estimates
of the heat equation
Ou = Au (1.1)

on a complete Riemannian manifold, there have been plenty of results obtained
not only for the heat equation, but more generally, for other nonlinear equations
on manifolds, for example, [8-11,14-17,26,30] and the references therein.

Next, we simply introduce research progress associated with this article.

Let (M™,g) be an n-dimensional complete Riemannian manifold with Ricci
curvature bounded below by —K, where K > 0. For the positive solution of the
heat equation (1.1), Li and Yau [12] obtained the celebrated gradient estimate:

|Vul|? O n?K  no?

92t < .
u? ﬂu _2(19—1)+2t7 (12)

where ¥ > 1 is a constant. In [8], Davies improved Li-Yau’s estimate (1.2) to

|Vul|? O n?K  no?
—v—< . .
u? v u — 40 —-1) T (13)
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Later, the Li-Yau estimate (1.3) was improved for small time by Hamilton [9],
where he proved under the same assumptions as above that

[Vul? _€2Kt% < 64Kt£‘
u? u 2t
But the right hand side of (1.4) will blow up as t — co. In order to find a sharp
form which works for both large and small ¢, Li and Xu [15] got a new gradient
estimate
|Vul? B <1 N sinh(Kt) cosh(Kt) — Kt> du _ nkK
2

2 <
2 sinh?(Kt) u

(1.4)

” (coth(Kt) +1) (1.5)

and its linearized version

2 2 K 11
[Vul” _ <1 + 3Kt> O  nk (K + 5+ K2t> : (1.6)
u

u? 2 3

The estimates (1.5) and (1.6) were later generalized by Qian [23]. And more
recently, Yu and Zhao [27] obtained a Li—Yau type gradient estimate for positive
solutions of (1.1) which is different with the estimates by Li-Xu [15] and Qian [23]
as follows:

‘VUP atu< n < 1 (2K5(8)+/8/(s))+8>’ (17)

@ T 2 B B - A)
where a, = max{a,0} and 8 € C([0,T]) satisfies
(B1) 0<fB(t) <1 foranyt e (0,7T];

(B2) (1—p5(0))*+5(0)* > 0 and (0) > 0.

As an application of the estimate, they obtained an improvement of Davies’ Li—
Yau type gradient estimate (1.3). Moreover, their results generalized (1.4).

As the most natural generalization of Riemannian geometry, Finsler geometry
attracts many attentions in recent years, since it has broader applications in
nature science. Simultaneously Finsler manifold is one of the most natural metric
measure spaces, which plays an important role in many aspects in mathematics.
There is also a hope that gradient estimates can be applied in the Finsler setting
to study elliptic and parabolic operators. In the Finsler setting, there exists
a natural Laplacian, which we call here Finsler Laplacian. Unlike the usual
Laplacian, the Finsler Laplacian is a nonlinear operator. In [20], Ohta and Sturm
have studied the associated nonlinear heat equation

Ouw = Apu on M"™ x [0,T]. (1.8)

The nonlinearity is inherited from the Legendre transform. The nonlinear heat
equation is very recent and very little has been done about it. Some results
regarding the existence, uniqueness and Sobolev regularity of a positive global
solution of the nonlinear heat equation (in the sense of distributions) are obtained
in [20]. In [19], Ohta and Sturm proved the Bochner—Weitzenbock formula for the
Finsler Laplacian on general Finsler manifolds and derived Li—Yau type gradient
estimates as well as parabolic Harnack inequalities. They proved
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Theorem A (Li-Yau gradient estimate [19]). Assume that (M", F,m) is an
n-dimensional compact Finsler manifold and satisfies Ricy > K for some N €
[n,00) and K € R, put K’ := min{K,0}. Let u(x,t) be a positive global solution
to the nonlinear heat equation (1.8). Then, for any ¥ > 1, we have

N92K' N2

F2(V(logu)) — 90 (logu) < —4(19 " + o

on M"™ x [0,T7. (1.9)

For their Harnack inequalities, one can refer to Theorem 4.5 in [19]. The
precise definition of the Finsler measure space, weighted Ricci curvature Ricy,
gradient vector field V, Finsler Laplacian A,, and the global solution to the
nonlinear heat equation will be given in Section 2 below.

Inspired by above works, we further study Li—Yau type gradient estimates for
positive global solutions to the nonlinear heat equation (1.8) on compact Finsler
manifolds and obtain several type estimates for the nonlinear heat equation.

Theorem 1.1. Assume that (M™, F,m) is an n-dimensional compact Finsler
manifold and satisfies Ricy > 0. Let u(x,t) be a nonnegative global solution of
(1.8) on M x (0,00). If OM # 0, assume that OM is convex, and u(z,t) satisfies
the Neumann boundary condition

VueT(OM) on OM x(0,00).
Then we have
2 N
F*“(V(logu)) — d¢(logu) < 5 o OM x (0,00). (1.10)

Remark 1.2. When M™ is a compact Riemannian manifold, Ricy becomes
Ric and the Finsler Laplacian A, is just the usual Laplacian A, then Theorem
1.1 can be reduced to the Theorem 1.1 in [12]. Hence, the above Theorem extends
the corresponding result in [12].

Theorem 1.3. Assume that (M™, F,m) is an n-dimensional compact Finsler
manifold and satisfies Ricy > —K for some N € [n,00) and K € [0,00). Let
u(x,t) be a positive global solution to the nonlinear heat equation (1.8) on M x

[0,T]. Let
N e 1 (2KB(s) + ('(s)), s
)= 3 25 (507 + o= o)
Then we have
B(t)F*(V(logu)) — d(logu) < 41 (t) on M™ x [0,T], (1.11)

where ay = max{a,0} and B € C[0,T)] satisfies conditions (B1) and (B2).

Remark 1.4. We should note the following:

(1) When M™ is a compact Riemannian manifold, Ricy and A, become Ric and
A respectively, then the estimate (1.11) can be reduced to the formula (1.7).
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(2) For convenience of comparison, for any 9 € (0,1), one can rewrite (1.9) as

I ~ooguy < - YK N
VF*(V(logu)) — 0¢(logu) < -7 +2?§t. (1.12)

When $(t) is a constant, the estimate (1.11) can be reduced to the formula
(1.9)(or (1.12)). Hence, the above Theorem 1.3 extends the corresponding
result in [19].

From Theorem 1.3, we derive Davies type estimate and Hamilton type esti-
mate for (1.8).

Corollary 1.5. Let the notations be the same as in Theorem 1.5. Then the
following special estimates are valid.

(1) Dawvies type: For any constant $ € (0,1), we have

N 1—
557, t S —_—
BF%(V(logu)) — 0 (logu) < {3/}3\; NE - 2175 on M x (0,T]
st T aa-g = 2KB
(1.13)
(2) Hamilton type: For any constant 6 € (0, 1], we have
. N NEK(1—6)
e 29KtF2(v(logu)) B 8t(logu) < 27t€29Kt + m on M x (O,T].
(1.14)

Remark 1.6. We should note the following:

(1) Obviously, (1.13) improves the Li-Yau type gradient estimate (1.9) (or
(1.12)). Therefore, the Corollary 1.5 improves the corresponding result in [19].

(2) When M™ is a compact Riemannian manifold and § = 1, (1.14) can be
reduced to (1.4). Therefore, the Corollary 1.5 extends the corresponding result
in [9].

As an application of Theorem 1.3, we derive a Harnack inequality.

Corollary 1.7. Let (M™, F,m) be an n-dimensional compact Finsler man-
ifold and satisfy Ricy > —K for some N € [n,00) and K € [0,00). Let u :
[0,T] x M — R be a nonnegative global solution to the nonlinear heat equation
(1.8). Then we have, for any 0 < t; <ty <T and x1,x9 € M,

t1 t1 T 21)2
u(xa, tg) <u(x1,t1)exp{ . wl(t)—i—/tz Mdt}, (1.15)

where B(t) and ¥1(t) are given in Theorem 1.3.

Remark 1.8. Taking [(t) is a constant in the inequality (1.15), we obtain
Theorem 4.5 in [19].



Gradient Estimates and Harnack Inequalities 525

Remark 1.9. In the proof of above theorems, compared with the case of com-
pact Riemannian manifolds as in [8,9,27], in our case, we need to overcome three
obstructions. First, because of the lack of higher order regularity, we need to
modify the arguments in [8,9,27]. Second, in the Finsler case, A,,u has no def-
inition at the maximum point of w, and thus the maximum principle can not
be suitable for the Finsler Laplacian. Last but not least, in view of nonlinear
property of gradient operator, it is difficult to do the calculations. The weighted
linear operators play an important role in the proof. With their help, we can con-
vert some nonlinear problems into the linear ones. Further, using the weighted
Laplacian, we can obtain the gradient estimate that we need.

On the other hand, many authors used similar techniques to prove gradient
estimates and Harnack inequalities for geometric flows. For instance, in [13],
Liu established first order gradient estimates for positive solutions of the heat
equations (1.1) on complete noncompact or closed Riemannian manifolds under
Ricci flows. As applications, he derived Harnack type inequalities and second or-
der gradient estimates for positive solutions. Generalizing Liu’s work to general
geometric flow, Sun [24] established first order and second order gradient esti-
mates for positive solutions of the heat equations under general geometric flows.
Bailesteanu, Cao and Pulemotov in [7] considered a series of gradient estimates
for positive solutions of the heat equation under the Ricci flow. They also proved
Li-Yau type gradient estimates and obtained Harnack inequalities.

Bao in [5] introduced Finsler—Ricci flow as follows,

9 (5F?Ric)

with 9* and 1/ gives, via Euler’s theorem, 88—112 = —2F?Ric, where Ric;j; is Ak-

barzadeh’s Ricci tensor and Ric is Ricci curvature. There are some results about
Finsler—Ricci flow, such as the existence and uniqueness of such flow and the
solitons of this flow (c.f. [1,2]). In [22], Lakzian derived differential Harnack es-
timates for positive solutions to (1.8) under Finsler-Ricci flow. It is worth to
notice that the inequality (2) in [22] was not completely correct. In fact, due

to the proof of Lemma 4.1 in [22], Lakzian thought that w‘fj = 0 by
Euler’s theorem. This means that the parabolic differential equality (43) is lack

of w fj. Here we used the notations given in [22]. However, we compute

d(Ric?(Vf))
ox'

fi

fi= Ricifl. fi+ Rici{k F]‘(VQJC)QC # 0,

where Ricw‘i denotes the horizontal covariant derivative of Ric” and Ric" ., denotes

the vertical covariant derivative of Ric¥/. Therefore, the gradient estimate in the
inequality (2) in [22] was not completely correct. Next we follow the work of
Liu [13] and Bailesteanu et al. [7], and generalize and correct the work of Lakzian
in [22].
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Theorem 1.10. Let (M", F(t))co,r) be a closed solution to the Finsler—
Ricci flow (1.16). Assume that there are three positive real numbers Ky, Ko and
K3 such that for all t € [0,T], Akbarzadeh’s Ricci tensor satisfies —K1 < R <
Ky and [VR| < K3 and S-curvature vanishes. Consider a positive global solution
u = u(x,t) of the equation (1.8). Let f = logu. Let a, A € CY(0,T] satisfy the
following

(C1) 0<a(t) <1 foranyte (0,T];
(Cg) lim A(t) =0 and \(t) > 0 for any t € (0,T];
t—0+t

(C3) (InA) >0 on (0,7].

Let
o X(s) | o(s) +2(Ky + )
020 = 50 oo <a<s> e —als)
1 1—2e,1 1 3
-0 ( )2 ( (1+a(s)2 K3 +n max{Kl,Kg}) )\(s)).
Then, we have
a(t)F?(V(logu)) — dy(logu) < 9a(t) on M x (0,T]. (1.17)

Here € € (0, %) 1s an arbitrary constant.

Remark 1.11. We should note the following;:

(1) Taking av = 1/6 as a constant function (# > 1) and A(f) = ¢ in (1.17), the
estimate (1.17) is reduced to the one in [22,31].

(2) The condition S = 0 is often required in the study of Finsler—Ricci flow.
Since the S-curvature vanishes for Berwald metrics, our results can be ap-
plied to any Finsler-Ricci flow of Berwald metrics on closed manifolds(for
example, see [1,18,22]).

(3) An important difference in the Finsler case and Riemannian case is that the
solution of the Riemannian heat equation has enough regularity to obtain
O(Af) = A(Of) + 2RicY f;; which appeared as (2-4) in [13]. However, in
the Finsler setting, the solutions of the nonlinear heat equation (1.8) are
lack of higher order regularity. Therefore, we have to compute 0;(A, f) in a
weak sense, which produces Ric" I and Ric” e In order to obtain the gradient

estimate, we require |VR| bounded above.

Even if we assume that the solutions of the nonlinear heat equation (1.8) have
enough regularity, we can’t get 0,(A,,f) = At (Ocf) + 2Ric” f;;. Some non-
Riemannian geometry quantities will appear in the RHS of the above equation,
such as Cartan tensor, hv-curvature tensor ‘P;kl’ and VR. In order to get the
gradient estimate, we have to give more assumptions. These conditions will
become unnatural and too complicated.
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Given the above, it is difficult to to follow the proof of Liu’s paper [13] where
[VR| < K3 is not assumed. Therefore, the assumption |[VOR| < K3 in Theorem
1.10 is necessary.

Using Theorem 1.10, we derive a Harnack inequality.

Corollary 1.12. Let (M", F(t));cio,m) be a closed solution to the Finsler—
Ricci flow (1.16). Assume that there are three positive real numbers Ky, Ko and
K3 such that for all t € [0,T], Akbarzadeh’s Ricci tensor satisfies —K1 < R <
Ky and |VR| < K3 and S-curvature vanishes. Consider a positive global solution
u = u(xz,t) of the nonlinear heat equation (1.8) on M x [0,T]. Let f = logu.
Then for (x1,t1) € M™ x (0,T] and (z2,t2) € M™ x (0,T] such that t; < ta, we
have

1 .
u(zy,t1) < u(zg,tz)exp {/0 <1Wr + (t2 — t1)¢2(8)> ds} . (1.18)

4o t2 — tl

Here 1(s) be a smooth curve connecting x and y with n(1) = x and n(0) =y, and
F(n(s))| is the length of the vector n(s) at time 7(s) = (1 — s)ta + sty.

2. Preliminaries

In this section we briefly recall the fundamentals of Finsler geometry by Bao,
Chern and Shen [3], as well as some results on the analysis of Finsler geometry
by Ohta—Sturm [19,20].

2.1. Finsler metric. We assume that M is an n-dimensional smooth con-
nected manifold. Let T'M be the tangent bundle over M with local coordinates
(x,9), where z = (x',...,2") and y = (y',...,y"). A Finsler metric on M is a

function F': TM — [0, 00) satisfying the following properties:
(i) F is smooth on TM \ {0};

(ii) F(z,\y) = A\F(x,y) for all A > 0;

(iii) For any nonzero tangent vector y € T'M, the approximated symmetric met-
ric tensor, gy, defined by
1 0?

gy(u,v) == 5@}72@ + su + tv)’s:t:O,

is positive definite.

Such a pair (M", F) is called a Finsler manifold. A Finsler structure is said
to be reversible if, in addition, F' is even. Otherwise F' is nonreversible. We say
a Finsler manifold (M", F') is forward (respectively, backward) complete if every
geodesic defined on [0, a] (respectively, [—a,0]) can be extended to [0, +00) (re-
spectively, (—o00,0]). Compact Finsler manifolds are both forward and backward
complete. By a Finsler measure space we mean a triple (M"™, F,'m) constituted
with a smooth, connected n-dimensional manifold M, a Finsler structure F' on
M and a measure m on M.
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2.2. Geodesic spray and Chern connection. It is straightforward to
observe that the geodesic spray in the Finsler setting is of the form, G = ¢ -2

2G(x, y)aiyi, where

i _ Lo a(gy)jk _ a(gy)jl gl

ozt

For every nonvanishing vector field V, g;;(V) induces a Riemannian structure
gy of T, M via

n
gv(X,Y) = g;(V)X'Y/ for X,Y € T, M.
i?j
In particular, gy (V,V) = F2(V).
The projection @ : TM — M gives rise to the pull-back bundle 7*T'M over
TM\{0}. Asis well known, on 7*T'M there exists uniquely the Chern connection

D. The Chern connection is determined by the following structure equations,
which characterize “torsion freeness”:

DYY — DY X = [X,Y]
and “almost g-compatibility”
Z(gv(X,Y)) = gv(Dz X,Y) + gv(X,DzY) + Cv(DzV, X,Y)  (2.2)
for Ve TM\ {0}, X,Y,Z € TM. Here

Cv(X,Y,Z) = Lo (V)Xyizk
VS T g gvigyigv
denotes the Cartan tensor and D}/(Y the covariant derivative with respect to
reference vector V'€ TM \ {0}. We mention here that Cy(V, X,Y) = 0 due to
the homogeneity of F'. The Chern connection coeflicients are given by

3 1 3 6gl j 59 ik agk:l 69[ j 59 ik 5le
7 il J J J T J T T
i = =g — + - — N + N/ — N}

gk 2 { 8&;’“ axl 895] 8y7’ k 8y t 8y7ﬂ J ’

where N j’ = gTGj and g is in fact g,.
2.3. Covariant derivative of tensor field. Given the coordinates {x?, 3}
on T'M, one can observe that the pair {%, 8iyi} forms a horizontal and vertical

frames for TT M, where 621- = 8?:1' — Nikaik. Let {dxz’, 6y'} denote the local frame
dual to {%, 6%1-}, where dy* = dy' + Njdz’. Then we obtain a decomposition for

T(TM \ {0}) and T*(TM \ {0}),

T(TM\ {0}) = HTM & VT M, T*(TM\{0})=H"TM & V*TM,
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where

HTM = span{%}, VI'M = span{éfy},

H*TM = span{dz'}, V*TM = span{dy'}.

Let T = T4 a?ci ® % be an arbitrary smooth local section of #*TM ® n*T*M.
They can therefore be expanded in terms of the natural basis {dz?, M}. The

S F
covariant derivative of T% denotes

g g Sy
(VI =T da* +T7, I{i . (2.3)
The horizontal covariant derivative Tzfs denotes
. ST o o
="+ T+ THT,. (2.4)
The vertical covariant derivative T”S denotes
. o1
T’fs =F oy (2.5)

2.4. Distance function. For x,zo € M, the distance function from x; to
xo is defined by

1
dar,az) = inf [ FG(0) ar,

where the infimum is taken over all C'-curves v : [0,1] — M such that v(0) = x;
and (1) = x2. Note that the distance function may not be symmetric unless F' is
reversible. A C*°-curve v : [0,1] — M is called a geodesic if F'(¥) is constant and
it is locally minimizing. In terms of the Chern connection, a geodesic ~y satisfies
Dz’y =0.

2.5. S-curvature. Associated to any Finsler structure, there is one canon-
ical measure, called the Busemann—Hausdorff measure, given by

dVp = op(x)dzt A - Adz",
where op(z) is the volume ratio

op(z) = vol(Bgn (1)) '
vol((a;) € R F(Y aiz:) < 1)

The S-curvature is then defined as

S(0) i= e @) = ¥ s (nre (2), (26)
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2.6. Legendre transform, gradient, Hessian and Finsler Laplacian.
In order to define the gradient of a function, we define the Legendre transform
L:TM — T*M, as L(y) = FF,dx", which satisfies £(0) = 0 and L(\y) =
AL(y) for all A > 0 and y € TM \ {0}. Then £ : TM \ {0} — T*M \ {0} is
a norm-preserving C* diffeomorphism. For a smooth function v : M — R, the
gradient vector of u at x € M is defined as Vu(z) := L7 (du(x)) € T, M, which
can be written as

- 1o, du(z) =0

Set M, := {x € M | du(z) # 0}. We define V?u(z) € T:M ® T, M for x €
M, by using the following covariant derivative [28,29]:

Viu(v) := DY"Vu(z) € T,M, v e T,M.

Set
D2u(X,Y) == gvu(V?u(X),Y) = gvu(DYY(Vu),Y).

Then we have
gvu(DY4(Vu),Y) = D*u(X,Y) = D*u(Y, X) = gvu(Dy*“(Vu), X)

for any X, Y € T, M.

In order to define a Laplacian on Finsler manifolds, we need a measure m (or
a volume form dm) on M. From now on, we consider the Finsler measure space
(M, F,m) equipped with a fixed smooth measure m. Let V € TM be a smooth
vector field on M. In a local coordinate (z°), expressing dm = e®dxlda? - - - da”,

we can write div,,V as

_ "oV 0D
div,,V = ; <8xi +V 5mi> .
A Laplacian, which is called the Finsler Laplacian, can now be defined by
Apu = divey, (Vu).

We remark that the Finsler Laplacian is better to be viewed in a weak sense that

for u € WhH2(M),

/ PApudm = —/ D¢(Vu)dm for ¢ € CZ°(M),
M M

where D¢ is the differential 1-form of ¢.
The relation between A,,u and V?u is that

Apu = tryg, (V2u) — S(Vu) = Z VZu(e;, e;) — S(Vu),
i=1
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where {e;} is an orthonormal basis of T, M with respect to gyy,.
Given a vector field V, the weighted Laplacian is defined on the weighted
Riemannian manifold (M, gy, m) by

AV u = div,, (VVu),

where

99(@, V)5 ooy du(z) #0
(£)=0"

Similarly, the weighted Laplacian can be viewed in a weak sense for u € WH2(M).
We note that AV u = A,,u.

2.7. Weighted Ricci curvature. The Ricci curvature of Finsler mani-
folds is defined as the trace of the flag curvature. Explicitly, given two linearly
independent vectors V,W € TM \ {0}, the flag curvature is defined by

gV(RV(V7 W)W7 V)

v _
K" (VW) = av(V,V)gy (W, W) — gy (V,W)?’

where R" is the Chern curvature (or Riemannian curvature):
RY(X,Y)Z = DxDy Z — Dy DX Z — Djx y,Z.

Then the Ricci curvature is defined by
n—1
Ric(V) =Y K"(V,e:),
i=1

where eq,...,e,_1, % form an orthonormal basis of T, M with respect to gy .
We recall the definition of the weighted Ricci curvature on Finsler manifolds,
which was introduced by Ohta in [21].
Given a vector V € T, M, let v : (—e,&) — M be a geodesic with v(0) =
z, ¥(0) = V. Define

d

S(V) = F’Q(V)@

[S(v(®), ¥())]t=0,

where S(V') denotes the S-curvature at (z, V). The weighted Ricci curvature of
(M, F,m) is defined by

U R
. 2
Ricy (V) :=Ric(V) 4+ S(V) — (Nfg)/)F(V)% N € (n.00).

Ricoo (V) := Ric(V) 4+ S(V).

We note that the curvature Ricy is 0-homogeneous.
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2.8. Akbarzadeh’s Ricci tensor Ric;;. Akbarzadeh’s Ricci tensor Ric;;
is defined as follows ) )
. 0 F<Ric
RICij = 8yzay3 < 9 > . (27)
We denote second order contravariant tensor of Akbarzadeh’s Ricci tensor by ‘R,
that is

0 0
— Rl "
R = Rie oxt ® OxJ’

where Ric” = g**¢7' Ricy;. For further details regarding Akbarzadeh’s Ricci ten-
sor, see [4].

(2.8)

2.9. Bochner—Weitzenbo6ck formula. The following Bochner—Weitzen-
bock type formula, established by Ohta-Sturm in [19], plays an important role in
this paper.

Theorem B (Bochner—Weitzenbock formula [19]). Given u € Wlif(M )N
CYH(M) with Apyu € W,22(M), we have

loc

(7 (R )

_ /Mw{D(Amu)(quRicoo(vu)+|v2u|§,5(w)}dm (2.9)

for all nonnegative functions ¢ € WCM(M) N L>®(M). Given u € C*(M), the
pointwise version of the identity is

F*(V
AVY <(2u)> = D(Apu)(Vu) + Rice (Vu) + ’Vzuﬁfs(vu)‘ (2.10)
Here |v2u‘§{S(Vu) denotes the Hilbert-Schmidt norm with respect to gv.,.

2.10. Global solutions to d,u = A, u. We say that a function w on [0, T x
M, T > 0, is a global solution to the nonlinear heat equation dyu = A, u if it
satisfies the following:

(i) u(x,t) € L([0,T], H'(M)) N H'([0,T], H~(M));

(ii) For any test function ¢ € C2°(M) and for all t € [0,T7,
/ GOyudm = —/ D¢(Vu) dm. (2.11)
M M

2.11. Finsler manifolds with boundary. Let {2 C M be a domain of M.
Then 02 can be viewed as a hypersurface of (M, F,m). For any x € 952, there
exist exactly two unit normal vectors v;, ¢ = 1,2 such that

Tx(aﬂ) = {V S Tx(M)|gVi(Vi7 V) = OagVi(V’i7Vi) = 1}'
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If F is reversible, then 11 = —u».

Now we briefly illustrate the convexity defined in [25,28], which is adopted in
Theorem 1.1. Let (M, F,m) be a Finsler manifold with boundary 0M and v be
the normal vector that points outward M. The normal curvature A, (V) at = €
OM in the direction V' € T,(0M) is defined by

A(V) = gu(v, D'yyﬂm)a

where « is the unique local geodesic for the Finsler structure Fyy; on OM induced
by F with the initial data v(0) = = and 4(0) = V. M is said to have convex
boundary if for any x € OM, the normal curvature A at x is non-positive in any
direction V' € T, (OM).

3. Gradients estimates on static Finsler manifolds

3.1. Some lemmas. In this section, we consider a positive global solution
of the heat equation (1.8) on static Finsler manifolds (M™, F, m). The Laplacian,
gradient and Legendre transform are all with respect to V := Vu and are valid
on M, :={x € M | Vu(z) # 0}.

We consider the function f := logu which is H? in space and C'® in both
space and time, then u = ef. We have

of =eTou

and
Vf=e 'V, Amf =e I Apu— F2(V). (3.1)

Hence f satisfies the following equation
hf=Anf+F*Vf) (3.2)

for every t in the weak sense that

/ (~DO(V ) + GFA(Vf)} dm = / 60,1 dm
M M

for each ¢ € HY(M). From (3.1), we have gy = gvy a.e. on M, and A,,f €
HY(M) for each t.
Now let us consider the function

G(x,t) := p{BF*(Vf) — adf — o(t)} = uSF*(Vf) — 0 — pep, (3.3)

where pu(t), B(t), a(t) and ¢(t) are four functions depending on ¢. In addition,
o(x,t) = u(t)a(t)0f lies in HY(M) and G(z,t) lies in HY(M) for each t and is
Hoélder continuous in both space and time.

Lemma 3.1 ([19]). Let (M™,F,m) be an n-dimensional compact Finsler
manifold, then

OLFA(V )] = 2D f) (V). (3-4)
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Lemma 3.2. In the sense of distributions, o(x,t) satisfies the parabolic dif-
ferential equality

AVl g — 80+ 2Do(Vf) = —pa' s f — oyl 04 f. (3.5)
Proof. For each ¢ € H} (M x (0,T)), we have

/ ' / —D¢(va o) + 00 + 26 Do (V f)} dm dt
/ / D(0pd)(V7 (0,f) + 00y o4 -+ 206 D04 )(V F) } d

= /0 /M { = D(aud) (VY (8:f)) + Ou(dpap)d f — dpucdef — payl' o, f
+ 200D (O f)(V f) } dm dt

- /OT /M {D(0(p))(V ) — dpuc/ 8 f + Oe(dpaup) (A f + F*(Vf))
— pap' O f + adudy(F2(V )} dm dt

T
[ {-watos - awons}odma,
o Jum
where the third equality used (3.2) and (3.4). O

Now we can compute a parabolic partial differential inequality for G(x,t).

Lemma 3.3. In the sense of distributions, G(z,t) satisfies

AVIG - 8,G +2DG(Vf) > D, (3.6)
where

2
D(a.t) = 2 (QuBK 4 () FAVE) + ol 0uf + onlOLf + ()’

Proof. For each ¢ € H3 (M x (0,T)),
T
/ / [-D(VVIG) + GO + 20DC(V f) } dm.di
0 M

T
- /0 /M [~ D(uBe) (V™! (FA(V ) + upF2(V oo
+ 2uB¢D(F*(VF))(Vf) + ¢ppc/Ouf + dap'duf + ¢(pp)' } dm dt
T
- /0 /M [ = DBV (FA(V ) — 208D (A f + FA(V ))(V )

— ¢F2(Vf)(uB) + 20uBD(F*(Vf))(Vf)
+ dud/ O f + da' O f + ¢(usp)' } dm dt

T
- /0 /M [~ D(uBS) (V™! (FA(V £))) — 2uB6D (A f)(V 1)
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— ¢FX (V) (uB) + opuc!Ouf + o/ O f + ¢(pp)' } dmadt
' 2uB(Amf)® "2
> [ o{2EQe i+ (uyyEv

+ pa' O f + a0 f + (W)’} dm dt,
where the second equality used (3.2) and (3.4) and the last one used (2.10). O

3.2. Proof of Theorem 1.1. To prove Theorem 1.1, let us first give some
auxiliary lemmas.

Lemma 3.4. Let Gy(x,t) := t{F*(Vf(x,t)) — O, f(x,1)}, then Gi(x,t) sat-
isfies the parabolic differential inequality

AVIG) — 8,G1 +2DG1(Vf) > Dy(z,t) (3.7)

in the distributional sense on M x (0,T), where

2 N
Dl(x,t) == mGl (Gl - 2) .

Proof. By Lemma 3.3, we obtain

26(Amf)® o
DREm])” g
N

& o
t N
in the distributional on M x (0, 7). O

AVIG) — 8,G1 +2DG,(Vf) > (Vf)+0f

2 N
(P (V1) - 06 (G- )

We also need to use a new normal vector field on OM defined in [25], that
is normal with respect to the Riemannian metric gv,. To be more general, for
every X € T'M, there is a unique normal vector field vx such that

gx(vx,Y)=0 foranyY € T(OM), gx(vx,vx)=1, g.(v,vx)>0. (3.8)
A simple calculation shows that
gx(vx,v) > 0. (3.9)
Lemma 3.5 ( [25]). Let X,Y € T(M). Then
g1Y)=0 & YeT(OM) & gx(vx,Y)=0. (3.10)
Lemma 3.6 ([25]). Let
TY'M ={Y € TM | g,(v,Y) >0(< 0)}

and
TiXM ={Y eTM|gx(vx,Y)>0(<0)}.

Then
TYM = TiXM, T"M =T"X M.
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Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. By setting f = log(u+¢) for £ > 0, one verifies that f
satisfies (3.2). The theorem claims that G is at most % If not, at the maximum
point (xg,t9) of Gy on M x (0,T) for some T' > 0,

N
G1(zo,to) > 5 > 0.

Clearly, top > 0, because G1(x,0) = 0. If x( is an interior point of M, then by the
fact that (xg,tp) is a maximum point of G on M x (0,T"), we have D1 (xg,ty) < 0.
Assume the contrary, Dj(zg,%) > 0. It would imply D; > 0 on a neighborhood
of (xg,%tp). Hence, according to (3.7) on such a neighborhood, the function G;
would be strict to the linear parabolic operator

AVIGy — 8,G1 +2DG1(Vf).

Therefore, G1(zg,tp) would be strictly less than the supremum of G; on the
boundary of any small parabolic cylinder [ty — §,to] x Bs(xg), where Bs(xo) :=
{y € M|d(zo,y) < 6}. In particular, G; could not be maximal at (xo, o), which
is a contradiction. Hence, D1 (xq,ty) < 0, that is

2 N
m@(%io) (Gl(ﬂﬁo, to) — 2> <0,

which is a contradiction. Hence xg must be on 9M.

Now we consider the case when GG attains its maximum at xy € M. Recall
that G; € C*(M,). Since vy, points outward due to its definition, by (3.7), the
strong maximum principle yields

DG4 (vvy)(zo, to) > 0.
On one hand, the Neumann boundary condition Vu € T(OM) implies that
Du(vyy)(z,t) =0 for (z,t) € OM x (0,00).
Thus we have
DG1(vu)(0, o) = (LD(F(V f))(vva)) (o, to)- (3.11)
On the other hand, using (2.2) and the symmetry of V2u, we have

D(F*(V 1)) (vvu) = D(gvu(Vu, Vu)) (o) (3.12)
= 2gW(D,Y;‘uw, Vu) = 29v4 (DYEVu, vyy,). (3.13)

By the convexity of M, for any X € T(OM), g, (DX X,v) < 0. In particular,
set X = Vu, we know that

9y (DYUVu,v) <0 (3.14)
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It follows from Lemmas 3.5 and 3.6 that (3.14) is equivalent to
9vu(DYEVu, vyy) < 0. (3.15)
Combining (3.11), (3.12) and (3.15), we conclude that
DG (vvy)(xo,to) < 0.

It yields a contradiction. Hence

N
G1§?

and the theorem follows by letting € — 0. 0

Remark 3.7. In the proof of Theorem 1.1, compared with the Riemannian case
as in [12], in our case, we need to overcome two obstructions, the one is how to
prove Dj(z9,t0) < 0. In the Finsler case, A,,u has no definition at the maximum
point of u, and thus we cannot use Finsler Laplacian to adopt maximum principle.
To overcome it, we use the methods as in the proof of Theorem 4.4 in [19]. The
other one is how to apply Neumann boundary condition and convexity to find
contradictions. In the Finsler case, we use the methods as in the proof of Theorem
3.1 in [25].

3.3. Proof of Theorem 1.3. In this section we will complete the proof of
Theorem 1.3. We first give an auxiliary lemma.

Lemma 3.8. Let Ga(z,t) := t{B(t)F*(Vf(x,t)) — 0,f(x,t)}, then Ga(z,t)
satisfies the parabolic differential inequality

AVIGy — 8,Gy + 2DGo(V f) > Do(z,t) (3.16)

in the distributional sense on M x (0,T), where

Gy 281 [G 2
72+5()72

Da(z,t) = -~ N +(L=B0)FX (V)| —[2KB(t) + B (OF* (V).

Proof. By Lemma 3.3, we obtain

AN/ Ga = 016 +2DGu(V ) = 2P oysic 4 1)) 2w ) + s
_2B (Nmf P 9t8K 4 t8)FA(V ) — BEXV ) + )
- G2 WY ysic 4 1) (V)
-G 2GR g " KB+ AWES)

in the distributional on M x (0,7T), where the last equality used A,,f = % +
(1=B)F*(V]). O
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Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Fix arbitrary ¢ € (0,7] and assume that Gy achieves
its maximum at the point (zg,tg) € M x [0,t] and Ga(zo,t9) > 0 (otherwise the
proof is trivial), which implies ty > 0. By an argument analogue to the proof of
Theorem 1.1, one can show that Da(zg,t9) < 0, that is at (xo, to),

2
0> - G2 2odlio) {G (- B(to))F2(Vf)] — RKB(to) + B (to)to FA(V f)
to N to
2
> Qtoﬁf(to) (tlo (11— /3@50))@) G2 - [(ﬂ(ﬁ(to) + 3 (t0)) + 0@ + tlo Ga,

where Q = G5 LE2(V f) (g, tp). Multiplying to to the last inequality, we have, at
the point (z, to),

2(to)

>
O_N

(1+ (1= B(t0)Qto)* G3 — [(2KB(to) + B'(t0))+t3Q + 1] Ga. (3.17)

By (Bz), we know that 8(0) > 0, so minj 77 3 > 0. Hence,

200 (1 + (1 Bt @) >0,
Then, by (3.17),
N (2KB(to) + B'(to))+13Q + 1
Ga(zo,t0) < B) (Lt (= Bl (3.18)
Moreover, note that
te 4, (3.19)

T L 2
(1+0bQ)> — 4b
where a, b, ¢, > 0. Since t > ty, applying (3.19) to (3.18), we have

N [ (2KB(to) + B'(t0))+to
= 25(to) < =B 1>
_N ((QKﬁ(to) + A'(t0))+to 1

~ 2\ A BBl ﬁ(t0)> < (D). (3.20)

Since t is arbitrary in 0 < ¢ < T, we have (1.11). Theorem 1.3 is proved. O

GQ(:L'; t) S GQ(:E(]a tO)

Next, we will prove Corollary 1.5 and 1.7 from Theorem 1.3.

Proof of Corollary 1.5. This can be proved using arguments similar to those
for Corollary 2.1 and Corollary 2.3 in [27]. We omit the proofs here. O

Proof of Corollary 1.7. Replacing u by uw + ¢ if necessary, we may assume
without restriction that u is positive. Along the lines of Li—Yau, let the reverse
curve (1) = exp,, ((t1 — 7)v) for 7 € [t2,t1] be a shortest geodesic joining x; =
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v(t1) and za = (t2) with suitable v € T, M. Then obviously F(—%(1)) =

CEE“’II) for all 7. From (1.11), we have
1—t2)

—0;(logu) < ¢ (t) — B(H)F(V(logu))*.

We also put f :=logu and have

st~ st = [ (g6w0)a= [ {pr6)+ o a

t1 dt t1

- /t (- Dre) - o e < /t PP - o bar

2 2

{ (OF*(Vf) + F(=3 () F(Vf) +¢1(t) } dt

tl 1 d(ﬂ:l,xg)
< / {w(t) GRS } a (3.21)

where the last inequality used —Ax? 4+ Cx < C . From (3.21), we have

u(wa,t2)\ s D1 d(xy,a)?
o (S ) = St - St < [ GGty w0

Therefore, we arrive at

to 1o AB(t)(t1 — t2)?

(Bt + /tl Wdt}.

u(xe, to) <u(wy,ty)exp {
It ends the proof of Corollary 1.7. O

4. Gradient estimates under Finsler—Ricci flows

4.1. Some lemmas. In this section, we consider a positive global solution
of the nonlinear heat equation (1.8) under Finsler-Ricci flows (M™, F'(t),m). The
Laplacian and gradient are both with respect to V := Vu and are valid on M, :=
{r € M | Vu(x) # 0}. Let f = logu. Although Chern connection coefficient
r ;k(V f) is not compatible with respect to gvy, it is torsion free. Hence, similar
to Riemannian case, for a given time ¢, we can choose a normal coordinate system
at a fixed point of M,. We will compute at a fixed point and at this point we
have

Ric” (Vf) = Ricij(V), V2 3seop) = wa

> fi=Amf, T(Vf)=0. (4.1)

i=1

First, we will use the following obvious lemma:
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Lemma 4.1 ([3]). Let Ric;j be a component of Akbarzadeh’s Ricci tensor and
Ric be the Ricci curvature on (M™, F,m). We have

Ric’(Vf) fifj = Ric(V f). (4.2)
Proceeding, we have the following lemma:

Lemma 4.2 ([22]). Let (M™, F(t),m) be a closed solution to the Finsler—Ricci
flow (1.16). Then we have

H(F2(V)) = 2Ric(Vf) + 2D(:f)(V ): (4.3)
Now let us consider the function
H = NaF*(Vf) =0 f) = \aF%(Vf) - L, (4.4)

where A(t) and a(t) are two functions depending on t. L(z,t) = A(t)0:f lies in
HY(M) and H(x,t) lies in H'(M) for each t and is Hélder continuous in both
space and time.

Proceeding, we have the following lemma:

Lemma 4.3. In the sense of distributions, L(x,t) satisfies the parabolic dif-
ferential equality

AV L = 0L +2DL(V f) = =2ARicY (V f) fifj — 2ARic" (V f) fij — 2ARic", f;
— 2\Ric”, %(W fE—No,f, (4.5)
where Rici]"i denotes the horizontal covariant derivative of Ric¥ and Rici{k denotes
the wvertical covariant derivative of Ric% .

Proof. For any non-negative test function ¢ € HJ(M x (0,T)) whose support
is included in the domain of the local coordinate, we have

0(DAG)(V ) = (g (V) (AD)if;)
= (g7 (VN)A)if; + 97 (V)0 (A))ifj + g7 (V) (A0)i(Oef);

= (g7) (V)i f; + Zg;iaxf’“)(m)ifj gV 00D f;

+ g7 (V) (AD)i(0uf);
= 2Ric” (V) (Ad)ifj + D(0:(Ae))(V f) + D(Ap) (VY (Ocf)),

where the last equality used 9;g% = 2Ric” and Cy(V,X,Y) = 0. That is,

D) (VY (8ef)) = —0(D(AG)(V ) + D(9:(A$))(V f)

y A
(P00 O

(4.6)
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Multiplying the left-hand side of (4.5) by ¢, integrating and then substituting
(4.6), we get

T
_ _ vf m
A _/ / DO(VYI L) + Lo + 2¢D£(Vf)} dm dt

/ / D) (VY (041)) + A6+ 26 D@ )(V f) } dim

- /0 /M{ ~ DO @) + (0N, f
— N f +2X¢D (0, f)(V f)} dmdt

T
= [ [ (=000 + D@0 1) + 2 Ricii (v ) 200 OF

oxt Oz
— NGOLf + 0 (dN) (Am f + F2(Vf)) + 226 D(0:f)(V f) } dm dt.

Using Lemma 4.2 and the fact that

/ ' | e n)ami=o
0 M

we arrive at

A= //{ O(D(AP)(Vf)) + D(9:(Xd))(Vf) + 2RicY (V f) é/\‘f)gé

— GOLfON+ Ot (dN) (A f + F2(Vf)) + 226D (0, f)(V f) } dm dt
[ {QR son20D 0L 0,1 1 0,00 (V1)

+ 208D (0, f)(V f)} dm dt

-, {QR 90N T 5~ Nong + Ao (F(V )

+ X0 (F2(V f)) — 2A¢ Ric (V f) f; fj} dm dt

/ / { — 2ARIc(Vf) fif; — 2ARicY (V£) f;

_ zx‘ij - xatf} dmdt. (47)

We note that

d(Ric(Vf)) . [ORicV ORic (V f)F
ij_( o (VI + T >fj
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z] f]

= Rlc” ; fi + Ric ( 2f)k, (4.8)

Hence we have

T
A= / / ¢{ — 2ARIC(Vf) fif; — 2ARIcY (V) fi; — 2X Ric”‘; fj
0 M

zg fj

— 2ARic", L(V2)F = X0, f}dmdt. (4.9)

The lemma, is proved. ]

Now we can compute a parabolic partial differential equality for H(x,t) which
will be the key to the proof of our Theorem 1.10.

Lemma 4.4. In the sense of distributions, H(x,t) satisfies the parabolic dif-
ferential equality

AVIH — 91 + 2DH(V ) = B, (4.10)

where

B(a,t) = <

/

o /

A+ 2RIV fif;
Z] fj

- (hm)’) 7—[+)\<

l—«

2RI (Y ) fy + 2RI, f; + 2 Ric (V2 + 2a\v2fr%[s<w>>'

Proof. For any non-negative test function ¢ € H} (M x (0,T)), we compute
/ ' / [=DS(TVIH) + Hduo + 26DH(V £)} dm di
0 M
T
=—A+ [ [ {=D0ao)(TT(FV ) + APV oo
+2Xa¢D(F*(V)(Vf)} dm dt
T
=—A+ [ [ {=D0as)(TV (V) - ol(ra) FE(V)
+ Xady (F2(V ) + 2XapD(F*(V£))(V f)} dm dt
T
—— it [ [ 1= D00 ) - o) PV
— pAa(2Ric(Vf) +2D(0:f)(V f)) + 22a¢D(F*(V £))(V )} dm dt

T
= A+ [ [ {=DOad) VI FHV1) ~ 60 V)
0 M

— 20 A Ric(Vf) — 20 aD (A, f + FAV VL))
+20a¢D(F*(VF))(Vf)} dmdt

- At / / [~ D(ag) (VY (FH(V 1)) - d(ra) F2(V])
— 20 a Ric(Vf) = 20 aD(ALf)(VS) } dm dt.
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By applying the Bochner—Weitzenbock formula (2.9) and noticing that S =0
implies Ricoo (V') = Ric(V'), we have

T
—a+ [ [ (= DOas@TIE V) - p0a) FA (V)
0 M
— 20 aRic(V f) = 20 aD(An f)(V )} dm dt

T
— _A+/ / {207V flFr5v ) — (M) FA(V f)} dm dt.
o Jum
Now, substituting A from (4.9), we have

B(x,t) = 2ARicY (Vf) fifj + 2ARIc (V f) fij + 2\ Ric”"z. fj

20|V g0 + 2ARiCY, %(VZ PE 4N — (M) FA(V ).

Using the fact that

/ /

«

—(In A)’) MaF?(Vf) — o f) + AmAmf

Nouf - Gy PV ) = (12

a/

:( of —(ln)\)’)HJr/\l

A f,
1—«a !

(07

we arrive at

ste -

/

a /

— (In A)’) H+ A(l N ~Anf+2RicY (V) fif

+2RicY (V) fij + 2Ric, f; + 2 Ric", %(W £F+ 20V flisw f)> :

—

The lemma, is proved. ]

4.2. Proof of Theorem 1.10. By Lemma 4.4, we have

AZ}“H — OyH + 2DH(V])
- < “—n )\)/> H+ A( flaﬁmf +2Ric? (V) fif;

l—« 1
+ 2Ric? (V) fij + 2 Ricl’ﬂl’i fi + 2Ric", %(W E+ 202V firgee f)>

o o
> — (In N A f — 2K, F? — 2eaf?
_(1—04 (HA)>H+)‘<1_Q mf 1 (Vf) EQfy;
n? 2 72
— ﬁmaX{Kl,KQ}

1 1
— 2€F2(Vf) — EKg? — 2eq sz - @K?% + 20<\V2f!?{s(w)>

Oé/

> <1 o _ (m»’) H+ A(zo‘(ln_2‘€>(AmJ”)2 + T Anf

— —
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1+O[ 2 n2
2¢a 3 2ea

—2(K 4 e)F3(Vf) — max{K?, K§}>, (4.11)

where we used
) 1 . 1
2R1Cij fl] > —2eq E f% — % E R,lczzj > —2ea E fl?] - % maX{K%,KS},

1
2R1C” i > 25F2(Vf) Z(Rlc”

¢

1
2> —2eF3(V)) - K3,

7]

2
2RICU f] (V f) =z 250‘2‘]0”“ e Z (Z Rici{k Jf?)

ik 7
N2 1
. 2 2
> 26062ka %0 Z (Rlclzk) > —ZEaZfik - EK:)’
1,5,k i,k

and the Cauchy inequality
1 )2
Z i = ﬁ :

Noticing that
Apf=—(F* V) = 0f),
hence (4.11) shows

/

AVIH — OH 4+ 2DH(V ) > (1 © - (mx)’) H

/

T (FX(V1) ~ o)

A2 ) - oy -

1 2
Ry e S max{K%,K§}> = D(z,t). (4.12)

—2(K1+€)F2(Vf)—2€7a 57 92

Let w = F2(Vf) and z = 9,f. We have
(w—2)? = (aw — 2)* + 2(1 — a)w(aw — 2) + (1 — a)?w?

2
i +2(1 - a)w% + (1 — a)?w?

Y
Then
/ /
B , (1 —2¢) 2« B
D(x,t)-(l_a (ln)\)>7-[+)\( (w— 2) 1_a(w z)
1 2
— 2Ky +e)w — 2;0‘1(3— " max{K%,fg})
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o H l+a n?
_1_ax_a/w_2(Kl+5)w_ Sear Kg—%max{K%,ng}

2a(1 —2e) H?  4(1 — 2¢)
Z + - a(l — a)wx

= —(InA\)H + A(

+ Ma(l —a)?w? — (& +2(K;1 +¢))w

1 2
T (K, K%})

2eq
n(a +2(Ky +¢))?
8(1 —2¢e)a(l — «)?

2eq

20(1 — 2¢) H? ,
>Z- T -
> - )\ (In \)'H

1+« 2 n2 2 9
— K3\ — — max{ K7, K5\
25 3 25 { 1> 2} )

A

where the last inequality used —Az? + Bz < %.

Fix arbitrary ¢ € (0,7] and assume that H achieves its maximum at the
point (zo,to) € M x [0,t] and H(zg,to) > 0 (otherwise the proof is trivial), which
implies g > 0. By an argument analogue to the proof of Theorem 1.1 and 1.3,
one can show that D(xg,tp) < 0, that is at (zo, o),

20(1-2¢), 4 n(a’ +2(K1 +¢))?
S VP _
0= n A 8(1—2¢)a(l — a)?
2
3

l+a 2 ”2 2 2112
— K3\ — — max{ K7, K5I )\“. 4.13
% % { 1> 2} ( )

)\2

For a positive number a and two nonnegative numbers b, ¢, from the inequality
ax® — bz — ¢ < 0 we have z < g + \/g . Hence, solving the quadratic inequality
of H in (4.13) yields

2 < n N n(a + 2(Ky +¢))
2(1 — 2e) 4(1 — 2e)a(l — @)

1 h N
+ m <(n(1 +a))2K3+n maX{Kl,Kg}) . (4.14)

Since t > tg, we have

< n , n(d +2(Ky+e))
T 2(1 -2 4(1 — 2¢)a(l — )

1 ) s
m ((n(l +a))2K3+n max{KLKg}) A < Aiho(t)

7‘[(13, t) § H(xo, to)
+
and for all x € M, it holds that

aF2(Vf) = 0 f < aha(t). (4.15)

Since t is arbitrary in [0, 7], we obtain (1.17). Hence, we complete the proof.
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4.3. Proof of Corollary 1.12. Let n(s) be a smooth curve connecting x
and y with (1) = z and n(0) = y, and F(1(s))|r is the length of the vector 7(s)
at time 7(s) = (1 — s)tg + st1. From (1.17) we have

—0if < —aF%*(V(logu)) + a(t).

Let I(s) = logu(n(s),7(s)) = f(n(s),7(s)). Then

f(x1,t1) — fao,t2) = /01 %(f(n(s),ﬂs))) ds

- [ - (Hl —uf) s
/ { tg—tl L atf}ds

< /Ol(tg - tl){F(n(s))(Vf) — aF?(V(logu)) + wg(t)} ds

ta— 1

1 2 (s 2
< | {;Wstg—mww}ds, (4.16)

where the last inequality used —Ax? + Bx < %. Using (4.16), we derive

u(wy,t1)\ Y F(n(s))?|-
log <u(:1:2,t2)> = f(z1,t1) — f(x2,t2) < /0 {404252—t1+(t2_tl)w2(t)} ds

Therefore, we arrive at

1 . 2
u(:cl, tl) < u(l'g, t2) exp { /0 (;W + (tg — tﬂi/)g(t)) ds}.

Hence, we complete the proof.

Acknowledgments. The author would like to thank the referee for valuable
comments. The author is also grateful to his advisor professor Qun He for her
constant encouragement.

The author is supported by NSFC 11971415, Henan Province Science Foun-
dation for Youths (No0.212300410235), and the Key Scientific Research Program
in Universities of Henan Province (No.21A110021) and Nanhu Scholars Program
for Young Scholars of XYNU (No. 2019).

References

[1] S. Azami and A. Razavi, Existence and uniqueness for solutions of Ricci flow on
Finsler manifolds, Int. J. Geom. Methods Mod. Phys. 10 (2013), 21 pages.

[2] B. Bidabad and M. Yarahmadi, On quasi-Einstein Finsler spaces, Bull. Iranian
Math. Soc. 40 (2014), 921-930.



Gradient Estimates and Harnack Inequalities 547

[3]

[4]

D. Bao, S.S. Chern, and Z.M. Shen, An Introduction to Riemannian—Finsler Geom-
etry, Grad. Texts in Math., 200, Springer-Verlag, 2000.

B. Bao and C. Robles, Ricci and Flag Curvatures in Finsler Geometry. A sampler of
Riemann-Finsler geometry. Math. Sci. Res. Inst. Publ., 50, Cambridge Univ. Press,
Cambridge, 2004.

B. Bao, On two curvature-driven problems in Riemann—Finsler geometry, in Finsler
Geometry: In memory of Makoto Matsumoto, Advanced Studies in Pure Mathe-
matics, 48, Math. Soc., Japan, Tokyo, 2007, 19-71.

S.-Y. Cheng and S.-T. Yau, Differential equations on Riemannian manifolds and
their geometric applications, Commun. Pure Appl. Math. 28 (1975), 333-354.

M. Bailesteanu, X. D. Cao and A. Pulemotov, Gradient estimates for the heat
equation under the Ricci flow, J. Funct. Anal. 258 (2010), 3517-3542.

E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Math., 92,
Camb. Univ. Press, 1989.

R. Hamilton, A matrix Harnack estimate for the heat equation, Comm. Anal. Geom.
1 (1993), 113-125.

G.Y. Huang, Z.J. Huang, and H.Z. Li, Gradient estimates for the porous medium
equations on Riemannian manifolds, J. Geom. Anal. 23 (2013), 1851-1875.

G.Y. Huang, Z.J. Huang, and H.Z. Li, Gradient estimates and differential Har-
nack inequalities for a nonlinear parabolic equation on Riemannian manifolds, Ann.

Global Anal. Geom. 43 (2013), 209-232.

P. Li and S.-T. Yau, On the parabolic kernel of the Schrédinger operator, Acta
Math. 156 (1986), 153—201.

S. P. Liu, Gradient estimates for solutions of the heat equation under Ricci flow,
Pacific J. Math. 243 (2009), 165-180.

J. Li, Gradient estimates and Harnack inequalities for nonlinear parabolic and non-
linear elliptic equations on Riemannian manifolds, J. Funct. Anal. 100 (1991), 233
256.

J. F. Li and X. J. Xu, Differential Harnack inequalities on Riemannian manifolds I:
linear heat equation, Adv. Math. 226 (2011), 4456-4491.

L. Ma, Gradient estimates for a simple elliptic equation on complete non-compact
Riemannian manifolds, J. Funct. Anal. 241 (2006), 374-382.

B.Q. Ma and F.Q. Zeng, Hamilton—-Souplet—Zhang’s gradient estimates and Liouville
theorems for a nonlinear parabolic equation, C. R. Math. Acad. Sci. Paris 356
(2018), 550-557.

S. Ohta, Vanishing s-curvature of randers spaces, Differential Geom. Appl. 29
(2011), 174-178.

S. Ohta and K.-T. Sturm, Bochner-Weitzenbock formula and Li—Yau estimates on
Finsler manifolds, Adv. Math. 252 (2014), 429-448.

S. Ohta and K.-T. Sturm, Heat flow on Finsler manifolds, Comm. Pure Appl. Math.
62 (2009), 1386-1433.

S. Ohta, Finsler interpolation inequalities, Calc. Var. Partial Differential Equations
36 (2009), 211-249.



548

Fanqi Zeng

[22)
23]
[24]
25]
26]
27]

28]

[29]
[30]

[31]

S. Lakzian, Differential Harnack estimates for positive solutions to heat equation
under Finsler—Ricci flow, Pacific J. Math. 278 (2015), 447-462.

B. Qian, Remarks on differential Harnack inequalities, J. Math. Anal. Appl. 409
(2014), 556-566.

J. Sun, Gradient estimates for positive solutions of the heat equation under geomet-
ric flow, Pacific J. Math. 253 (2011), 489-510.

G.F. Wang and C. Xia, A sharp lower bound for the first eigenvalue on Finsler
manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (2013), 983-996.

Y.Y. Yang, Gradient estimates for a nonlinear parabolic equation on Riemannian
manifolds, Proc. Amer. Math. Soc. 136 (2008), 4095-4102.

C.J. Yu and F.F. Zhao, A note on Li-Yau-type gradient estimate, Acta Math. Sci.
39 (2019), 273-282.

S.T. Yin, Q. He, and Y.B. Shen, On the first eigenvalue of Finsler Laplacian in a
Finsler manifold with nonnegative weighted Ricci curvature, Sci. China Math. 57
(2014), 1057-1070.

S.T. Yin, Q. He, and D.X. Zheng, Some new lower bounds of the first eigenvalue on
Finsler manifolds, Kodai Math. J. 39 (2016), 318-339.

F.Q. Zeng, Gradient estimates of a nonlinear elliptic equation for the V -Laplacian,
Bull. Korean Math. Soc. 56 (2019), 853-865.

F.Q. Zeng and Q. He, Gradient estimates for a nonlinear heat equation under the
Finsler-Ricci flow, Math. Slovaca 69 (2019), 409-424.

Received October 7, 2020, revised April 30, 2021.

Fanqi Zeng,
Xinyang Normal University, 237 Nanhu Road, Xinyang, 464000, P.R. China,
E-mail: fanzeng100126.com

I'pagienTHi oninku Ta HepiBHOCTI 'apHaka s
HEeJIIHITHOTrO piBHSIHHS TENJIONPOBiAHOCTI 3
dincaepoBuM JarstacianoMm

Fanqi Zeng

Hexait (M™, F,m) € n-BUMIpHUM KOMIIAKTHUM (biHCIEPOBUM MHOIOBU-
JoM. Y 1iiit pobOTI MM BUBYAEMO HEJIiHIWHE PIBHSIHHS TEIJIOMPOBIIHOCTI

Opu = Apu wva M™% [0,T),

ne A, € dincaeposum sartacianoMm. OjepKaHo rpaiieHTH] oMKy Trmy J1i—
Ay na no3uTUBHEX 1VI0O6ATBHAX PO3B’A3KIB I[LOTO PIBHAHHS HA CTATUYHUAX
dincIepoBUX MHOTOBHUIAX, & TAKOXK i1 jieio moToky Pinciepa—Piuqi, Ak
HACJII0K, B 000X BHIAJJIKaX TAKOXK OJIeprKaHO BijmoBiani HepiBHocTi apHa-
KA.

Kuroqosi ciiopa: rpazientni oninku JIi-fy, nepisnicrs ['apnaka, Hemimiii-
He PiBHAHHS TeIIONpoBigHOoCTi, moTik Pinciiepa—Piudai


mailto:fanzeng10@126.com

	Introduction
	Preliminaries
	Finsler metric.
	Geodesic spray and Chern connection.
	Covariant derivative of tensor field.
	Distance function.
	S-curvature.
	Legendre transform, gradient, Hessian and Finsler Laplacian.
	Weighted Ricci curvature.
	Akbarzadeh's Ricci tensor Ric ij.
	Bochner–Weitzenböck formula.
	Global solutions to nonlinear heat equation.
	Finsler manifolds with boundary.

	 Gradients estimates on static Finsler manifolds
	Some lemmas.
	Proof of Theorem 1.1.
	Proof of Theorem 1.3.

	Gradient estimates under Finsler–Ricci flows
	Some lemmas.
	Proof of Theorem 1.10.
	Proof of Corollary 1.12.


