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Trajectories of a Quadratic Differential

Related to a Particular Algebraic Equation
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In this paper, we discuss the existence of a solution interpreted as the
Cauchy transform of a signed measure of a particular algebraic quadratic
equation of the form zC2(z) − P (z) C(z) + Q (z) = 0 for some polynomials
P (z) and Q (z) . This issue requires the description of the critical graph of
a related quadratic differential in the Riemann sphere C. In particular, we
discuss the existence of finite critical trajectories of this quadratic differen-
tial.
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1. Introduction

Quadratic differentials have provided an important tool in the asymptotic
study of some algebraic equations solutions. In quantum mechanics, trajectories
of such quadratic differentials play a crucial role in the WKB analysis.

We consider the algebraic equation

zC2(z)− zP (z) C(z) +Q (z) = 0, (1.1)

where P (z) and Q (z) are two 1-degree real monic polynomials.

Notice that the above technique is the continuity to a series of papers related
to the study of complex zeros of hyper-geometric polynomials, for example, [1,8].

In this paper, we discuss the existence of solutions of equation (1.1) as the
Cauchy transform of compactly-supported signed measures. In Section 2, we
describe the critical graphs of quadratic differentials − q(z)

z dz2, where q is a poly-
nomial of degree 3 in the Riemann sphere C, precisely, we discuss the existence
and the number of its finite critical trajectories. In Section 3, we make the connec-
tion between the algebraic equation (1.1) and a particular quadratic differential
among those studied in Section 2.
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2. A quadratic differential

In the rest of this paper, we denote

C+ = {z ∈ C | = (z) > 0} ; C− = {z ∈ C | = (z) < 0} .

Below, we describe the critical graphs of the family of quadratic differentials

$a = −q (z)

z
dz2 = −(z − 1) (z − a) (z − a)

z
dz2, (2.1)

where a ∈ C+, and q is a monic polynomial of degree 3. We begin our investigation
with some immediate observations from the theory of quadratic differentials. For
more details, we refer the reader to [2, 6, 10].

Recall that critical points of a given quadratic differential −Q (z) dz2 on the
Riemann sphere C are its zeros and poles; the multiplicity of a critical point is
its multiplicity in the rational function Q in C. Zeros and simple poles are called
finite critical points, while poles of order 2 or greater are the infinite ones. All
other points of C are called regular points.

Horizontal trajectories (or just trajectories) of the quadratic differential are
the zero loci of the equation

−Q (z) dz2 > 0,

or, equivalently,

<
∫ z√

Q (t) dt = const. (2.2)

Knowing that if z (t) , t ∈ R, is a horizontal trajectory, we get that the function

t 7→ =
∫ t√

Q (z (u))z′ (u) du

is monotone.

The vertical (or orthogonal) trajectories are obtained by replacing = by <
in equation (2.2). The horizontal and vertical trajectories produce two pairwise
orthogonal foliations of the Riemann sphere C.

A trajectory passing through a critical point is called critical. In particular,
if it starts and ends at finite critical points, it is called a finite critical trajectory
or a short trajectory. Otherwise, we call it an infinite critical trajectory. The
closure of the set of the finite and infinite critical trajectories is called the critical
graph. A necessary condition for the existence of a short trajectory connecting
two finite critical points is the existence of a Jordan arc γ connecting them such
that

<
∫
γ

√
Q (t) dt = 0. (2.3)

However, this condition is not sufficient in general, see counter-examples in [11].

The local structure of such trajectories is as follows:
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• At any regular point, horizontal (respectively, vertical) trajectories look lo-
cally as simple analytic arcs passing through this point, and through every
regular point, a uniquely determined horizontal (respectively, vertical) tra-
jectory passes; these horizontal and vertical trajectories are orthogonal at
this point.

• From each zero of multiplicity r, there emanate r + 2 critical trajectories
spacing under equal angle 2π/ (r + 2).

• At a simple pole, there emanates exactly one horizontal trajectory.

• At the pole of order r > 2, there are r−2 asymptotic directions (called critical
directions) spacing under equal angle 2π/ (r − 2) , and a neighborhood U
such that each trajectory entering U stays in U and tends to the pole in one
of the critical directions (see Figure 2.1).

Fig. 2.1: Structure of the trajectories near a simple zero (left), a simple pole
(center) and a pole of order 6 (right).

A very helpful tool that will be used in our investigation is the so-called
Teichmüller Lemma (see [10, Theorem 14.1]).

Definition 2.1. A domain in C bounded only by the segments of horizontal
and/or vertical trajectories of $a (and their endpoints) is called a $a-polygon.

Lemma 2.2 (Teichmüller). Let Ω be a $a-polygon, and zj be the critical
points on the boundary ∂Ω of Ω, and let θj be the corresponding interior angles
at vertices zj , respectively. Then∑(

1− (nj + 2) θj
2π

)
= 2 +

∑
mi, (2.4)

where nj are the multiplicities of zj , and mi the multiplicities of critical points
inside Ω.

We have the following immediate observations:

• The finite critical points of $a are simple zeros 1, a, a and a simple pole at 0.

• With the parametrization u = 1/z, we get

$a (u) =

(
− 1

u6
+O

(
1

u5

))
du2, u→ 0.
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Thus, infinity is an infinite critical point of $a,, namely a pole of order 6.

• Since the quadratic differential $a has two poles, Jenkins Three-pole The-
orem (see [10, Theorem 15.2]) asserts that the situation of the so-called
recurrent trajectory (whose closure might be dense in some domain in C)
cannot happen.

• Since∞ is the only infinite critical point of $a, any critical trajectory which
is not finite approaches ∞ following one of the 4 directions:

Dk =
{
z ∈ C | arg (z) = (2k + 1)

π

4

}
, k = 0, 1, 2, 3.

Similarly, for the orthogonal trajectories at∞, though the critical directions
are:

D⊥k =

{
z ∈ C | arg (z) =

kπ

2

}
, k = 0, 1, 2, 3.

Observe that if two trajectories approach ∞ in the same direction Dk, then
there exists a neighborhood V of ∞, in which any orthogonal trajectory
which traverses Dk in V necessarily traverses both of these two trajectories.

Lemma 2.3. Two critical trajectories of $a emanating from the same zero
cannot diverge to ∞ with the same critical direction.

Lemma 2.4. For any a ∈ C+, condition (2.3) is fulfilled for $a between the
pairs of finite critical points (0, 1) and (a, a) . More generally, let α, β, and γ be
three complex numbers (γ 6= 0). If the quadratic differential

$q = −q (z)

z
dz2 = −z

3 + αz2 + βz + γ

z
dz2

has two short trajectories connecting two distinct pairs of finite critical points,
then

=
(
α2 − 4β

)
= 0.

In order to study the critical graph of $a, we introduce the set

Σ =

{
z ∈ C | <

∫ z

0

√
(t− 1) (t− z) (t− z)

t
dt = 0

}
. (2.5)

Obviously, here our main focus is only in the vanishing of the real part regardless
of the choice of the branch-cut of the square root in the integrand.

The following statements will be proved in Section 4.

Lemma 2.5. The set Σ is symmetric with respect to the real axis, and it is
formed by the 3 Jordan arcs:

• the segment [0, 1] ,

• two curves Σ± emerging from z = 1 and diverging respectively to infinity in
C±.
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Fig. 2.2: Approximate plot of the curve Σ.

We give here the behavior of Σ at z = 1 and at ∞.

Lemma 2.6. The following results hold:

lim
z→∞

z∈Σ∩C+

arg (z) =
π

2
, lim

z→1
z∈Σ∩C+

arg (z) =
π

3
.

From Lemma 2.5, Σ splits C into two connected domains (see Figure 2.2) :

• Ω1 limited by Σ± and containing z = 2,

• Ω2 = C \ (Ω1 ∪ Σ± ∪ [0, 1]).

Proposition 2.7. For any complex number a ∈ C+, the quadratic differential
$a has:

• two short trajectories if a ∈ Ωi, i = 1, 2: the segment [0, 1] and another one
that connects a and a in Ωi (see Figures 2.3,2.4);

• three short trajectories if a ∈ Σ±: the segment [0, 1] and two others that
connect z = 1 with a and a that are symmetric with respect to the real axis
(see Figure 2.5).

Remark 2.8. The case $ = − (z−a1)(z−a2)(z−a2)
z dz2, with the zeros satisfying

0 < a1 < a2 < a3, is obvious. The segments [0, a1] and [a2, a3] are the only two
short trajectories (see Figure 2.6 (left)).
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Fig. 2.3: Critical graphs when a ∈ Ω1, here a = 1.6 + 2i (left) and a = 1.8 + 2i
(right).
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Fig. 2.4: Critical graphs when a ∈ Ω2, here a = 0.5 + 2i (left) and a = 2i (right).
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Fig. 2.5: Critical graphs when a ∈ Σ, here a = 1.55 + 2i (left) and a = 2 + 6.3i
(right).

3. Connection with the algebraic equation

The Cauchy transform Cν of a compactly-supported complex Borel measure
ν is defined in C \ supp (ν) by

Cν (z) =

∫
C

dν (t)

z − t
.

It has the asymptotics

Cν (z) =
ν (C)

z
+O

(
z−2
)
, z →∞,
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Fig. 2.6: Critical graphs for $q when q = (z − 1) (z − 2) (z − 3) (left) and q =
(z − 1) (z − 2)2 (right).
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and the inversion formula (which should be understood in the distributional sense)
reads as

ν =
1

π

∂Cν
∂z

. (3.1)

In particular, the normalized root-counting measure νn = ν(Pn) of a given
complex polynomial Pn of degree n in C is defined by

νn =
1

n

∑
Pn(a)=0

δa (each zero is counted with its multiplicity).

Its Cauchy transform is

Cνn(z) =

∫
C

dνn (t)

z − t
=

P
′
n(z)

nPn(z)
.

While going back to the algebraic equation (1.1), we are seeking a solution every-
where in C as a Cauchy transform Cν of a compactly-supported signed measure
ν. With the choice of the square root of the discriminant

∆ (z) = z
(
zP 2 (z)− 4Q (z)

)
of the quadratic equation (1.1) with condition√

∆ (z) ∼ z2, z →∞,

through an easy check, we have

C(z) =
zP (z)−

√
∆ (z)

2z
=

1

z
+O

(
z−2
)
, z →∞.

Relying on the so-called Plemelj–Sokhotsky formula, it is well known that the
measure ν lies in finite critical trajectories of the quadratic differential −∆(z)

z2
dz2.

The measure ν is given explicitly by

dν (t) =
1

2iπ

(√
∆ (t)

)
+

t
dt.

For more details, we refer the reader to [3, 4, 7, 9].
In the sequel, for general 1-degree real monic polynomials P (z) and Q (z) ,

we may assume that

∆ (z) = z (z − 1) (z − a) (z − a) , a ∈ C+.

The following lemma gives a sufficient condition for a solution of (1.1) to be
the Cauchy transform of some compactly-supported measure in C.

Lemma 3.1 ([5, Chap. II, Theorem 1.2]). Suppose f ∈ L1
loc (C) and that

f(z)→ 0 as z →∞, and let µ be a compactly-supported measure in C such that

µ =
1

π

∂f

∂z

in the sense of distributions. Then f(z) = Cµ (z) almost everywhere in C.
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Now we announce a theorem summarising the main finding of this paper.

Theorem 3.2. For general 1-degree real monic polynomials P (z) and Q (z) ,
algebraic equation (1.1) has always a solution interpreted as a Cauchy transform
of a signed measure ν, supported on the short trajectories [0, 1] and γa of the
quadratic differential $a, and is given explicitly by

dν (t) =
1

2iπ

(√
∆ (t)

)
+

t
dt. (3.2)

The measure ν is of density 1 if and only if

<a+ (=a)2 +
15

4
= 0.

If equality holds, then ν is negative on γa.

4. Proofs

Proof of Lemma 2.3. Suppose that γ1 and γ2 are two critical trajectories
emanating from the zero zj ∈ {a, 1} and diverging to ∞ with the same critical
direction Dk. Consider the $a-polygon with edges γ1 and γ2, and vertices zj and
∞. With the notations of Lemma 2.2, we have

βj =

{
0 if θj = 2π/3,

−1 if θj = 4π/3,
, β∞ = 1,

∑
mi ≥ −1,

which violates (2.4).

Proof of Lemma 2.4. Since q(t)
t is a real rational function, then√

q (t)

t
=

√
q
(
t
)

t
, t 6= 0. (4.1)

So, after changing the variable u = t in the second integral, we get

<

(∫ z

z

√
q (t)

t
dt

)
= <

(∫ z

1

√
q (t)

t
dt−

∫ z

1

√
q (t)

t
dt

)

= <

(∫ z

1

√
q (t)

t
dt−

∫ z

1

√
q (t)

t
dt

)

= <

(
2i=

(∫ z

1

√
q (t)

t
dt

))
= 0.

Let us provide a necessary condition to get two short trajectories joining two dif-
ferent pairs of finite critical points in the general case of the quadratic differential
with simple zeros

$q = −q (z)

z
dz2 = −z

3 + αz2 + βz + γ

z
dz2, α, β, γ ∈ C, γ 6= 0.
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Considering two disjoint oriented Jordan arcs γ1 and γ2 connecting two distinct

pairs of finite critical points, we define the single-valued function

√
q(z)
z in C \

(γ1 ∪ γ2) with the asymptotics

√
q(z)
z ∼ z, z →∞. For s ∈ γ1 ∪ γ2, we denote by(√

q(s)
s

)
+

and

(√
q(s)
s

)
−

the limits from the + and − sides, respectively. (As

usual, the + side of an oriented curve lies to the left and the − side lies to the
right if one traverses the curve according to its orientation.)

From the Laurent series of
√
q (z) at ∞, we obtain√

q (z)

z
= z +

α

2
−
(
α2 − 4β

8z

)
+O

(
z−2
)
.

Therefore, the residue of

√
q(z)
z at z =∞ is given by

resz=∞

(√
q (z)

z

)
=

1

8

(
α2 − 4β

)
.

Let

I =

∫
γ1

(√
q (s)

s

)
+

ds+

∫
γ2

(√
q (s)

s

)
+

ds.

Since (√
q (s)

s

)
+

= −

(√
q (s)

s

)
−

, s ∈ γ1 ∪ γ2,

we have

2I =

∫
γ1∪γ2

[(√
q (s)

s

)
+

−

(√
q (s)

s

)
−

]
ds =

∮
Γ

√
q (z)

z
dz,

where Γ is a closed contour encircling the curves γ1 and γ2. After a deformation
of the contour, we pick up the residue at z =∞ and get

I =
1

2

∮
Γ

√
q (z)

z
dz = ±iπ rest=∞

(√
q (z)

z

)
= ±πi

8

(
α2 − 4β

)
.

A necessary condition is
=
(
α2 − 4β

)
= 0,

which is satisfied for q = (z − 1) (z − a) (z − a) .

Proof of Lemma 2.5. Obviously, Σ ∩ R = [0, 1] . The observation (4.1) shows
that Σ is symmetric with respect to the real axis. In order to prove that Σ is a
curve, we consider the real functions F and G (locally) defined for (x, y) in C+

by the formulas

F (x, y) = <

(∫ x

0

√
(u− (x+ iy)) (u− (x− iy)) (u− 1)

u
du

)
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= <

∫ x

0

√√√√((u− x)2 + y2
)

(u− 1)

u
du

 ,

G (x, y) = <

(∫ x+iy

x

√
(u− (x+ iy)) (u− (x− iy)) (u− 1)

u
du

)

= −
∫ 1

0
y2
√

1− t2=
√

1− 1

x+ ity
dt.

The square roots are chosen with condition
√
X > 0 for X > 0.

Define
Σ =

{
(x, y) ∈ R2 | (F +G) (x, y) = 0

}
.

Let us prove that
Σ \ [0, 1] ⊂ {z ∈ C | <z > 1} .

Indeed, it is straightforward to check that F (x, y) = 0 if 0 ≤ x ≤ 1 and y > 0,
and F (x, y) ≤ 0 if x < 0 and y > 0. On the other hand, taking the argument in
[0, 2π[ , for 0 < t ≤ 1, we have

0 < arg (x+ ity) < arg (x− 1 + ity) < π. (4.2)

Therefore,

0 < arg

(
1− 1

x+ ity

)
< π,

implying that

=
√

1− 1

x+ ity
> 0.

Thus,
G (x, y) < 0.

Hence,
(F +G) (x, y) ≤ 0 +G (x, y) < 0, x ≤ 1, y > 0.

As a result, (x, y) /∈ Σ.
Then we prove that Σ is a curve, subset of

Π = {(x, y) | x > 1, y > 0} .

For x > 1, we have

∂F

∂x
(x, y) =

√
y2 (x− 1)

x
+

∫ x

1

(x− u) (u− 1)√(
(u− x)2 + y2

)
(u− 1)u

dt > 0.

In addition, for ut = x+ ity, t ∈ [0, 1] , we have

∂G

∂x
(x, y) =

∂

∂x

[
<
(∫ 1

0
iy2
√

1− t2
√

1− 1

ut
dt

)]
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= −
∫ 1

0

y2
√

1− t2
2

=

 1

u2
t

√
1− 1

ut

 dt.

It suffices to check that

∀t ∈ [0, 1] =

 1

u2
t

√
1− 1

ut

 ≤ 0,

which is equivalent to proving that

∀t ∈ [0, 1] arg

 1

u2
t

√
1− 1

ut

 ∈ [π, 2π[ ,

where the argument is taken in [0, 2π[. From (4.2), for any t ∈ [0, 1] , we get

arg

 1

u2
t

√
1− 1

ut

 = 2π −
(

3

2
arg (ut) +

1

2
arg (ut − 1)

)
∈ ]π, 2π[ .

We deduce that for any t ∈ [0, 1] ,

=

 1

u2
t

√
1− 1

ut

 ≤ 0,

and then
∂G

∂x
(x, y) ≥ 0.

We have just shown that

∂ (F +G)

∂x
(x, y) 6= 0, (x, y) ∈ Σ ∩Π.

Finally, we conclude that the set Σ is a curve in C by applying the Implicit
Function Theorem to the function F +G.

Proof of Lemma 2.6. Take z = reix ∈ Σ, r > 1, x ∈
[
0, π2

]
. After the change

of variable t = sreix, we get

<

e2ix

∫ 1

0

√(
s− 1

re
−ix
)

(s− 1) (s− e−2ix)

s
ds

 = 0.

Taking the limits when r →∞, we obtain

0 = <
∫ 1

0
e2ix

√
(s− 1) (s− e−2ix). (4.3)
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Trivially, x 6= 0. With the change of variable t = αu+ β, where

β =
1 + e−2ix

2
, α = i

1− e−2ix

2
,

equation (4.3) becomes

0 = <
(∫ i

cotx

√
u2 + 1 du

)
= <

(∫ 0

cotx

√
u2 + 1du+

∫ i

0

√
u2 + 1 du

)
= <

(∫ 0

cotx

√
u2 + 1 du

)
,

which holds if and only if x = π
2 .

The Laurent series of

√
(t−1)(t−z)(t−z)

t as t → 1 (with the appropriate choice

of the branch-cut of the square root) is√
(t− 1) (t− z) (t− z)

t
= |z − 1|

√
t− 1 + o

(
(t− 1)

1
2

)
.

We conclude that

0 = lim
z→1,z∈Σ+

<
∫ z

1

√
(t− 1) (t− z) (t− z)

t
dt =

2

3
|z − 1| < (z − 1)

3
2 ,

and then
arg (z − 1)

3
2 ≡ π

2
mod (π) ,

which ends the proof.

Proof of Proposition 2.7. Clearly, the segment [0, 1] is always a short trajec-
tory of $a. If a /∈ Σ, then, from (2.3), there is no short trajectory connecting a
to 0 or 1. By Lemma 2.3, there exist at most two critical trajectories emanating
from a and approaching∞ in the upper half-plane C+. Using the symmetry with
respect to the real axis, at least one critical trajectory emanating from a meets a
critical trajectory emanating from a somewhere at b ∈ R \ [0, 1] . Since b cannot
be a zero of the quadratic differential $a, we conclude that these two critical
trajectories form a short one.

If a ∈ Σ and there is no short trajectory connecting a to 1, then there ex-
ist two critical trajectories γa and γ1 emanating respectively from a and 1 and
approaching ∞ in the same critical direction Dk. From the behavior of orthog-
onal trajectories at ∞, we can take an orthogonal trajectory σ that hits γ1 and
γa respectively in two points b and c (there are infinitely many such orthogonal
trajectories σ ). We consider a path γ connecting 1 and a, formed by the part of
γ1 from 1 to b, the part of σ from b to c, and the part of γa from c to a. Then,
integrating along γ, we have

<
∫
γ

√
q (t)

t
dt = <

∫ b

1

√
q (t)

t
dt+ <

∫ c

b

√
q (t)

t
dt+ <

∫ a

c

√
q (t)

t
dt
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= <
∫ c

b

√
q (t)

t
dt 6= 0,

which violates the fact that a ∈ Σ.

Proof of Theorem 3.2. We consider the case where the discriminant of alge-
braic equation (1.1) is

∆ (z) = z (z − 1) (z − a) (z − a)

for some a ∈ C+. Let us suppose first that a /∈ Σ and denote by γa the short
trajectory joining a to a. The segment [0, 1] and γa are positively oriented re-
spectively from 0 to 1, and from a to a. As in the proof of Lemma 2.4, these
orientations define the + and −-sides with respect to the curves [0, 1] and γa. We
choose the square root

√
∆ (z) in C \ ([0, 1] ∪ γa) with asymptotics

√
∆ (z) ∼ z2

as z →∞.
From the proof of Lemma 2.4, we have

ν (C) =

∫
[0,1]∪γa

dν (t) =
1

2iπ

∫
[0,1]∪γa

(√
∆ (t)

)
+

t
dt

=
1

16

(
α2 − 4β

)
= −1

4
<a− 1

4
(=a)2 +

1

16
.

We obtain a necessary and sufficient condition on the zero a = x+ iy, x ∈ R, y ≥
0, to get ν (C) = 1,

ν (C) = 1⇐⇒ −y2 − 15

4
= x. (4.4)

Observe that condition (4.4) cannot hold for a ∈ Σ. The expression of the measure
ν on [0, 1] is

dν (t)|[0,1] =
1

2iπ

(√
∆ (t)

)
+

t
dt =

1

2π

√
t (1− t) (t− a) (t− a)

t
dt,

which obviously implies that it is positive in [0, 1] . In order to prove that ν is a
non-positive measure in γa, we consider the function f (y) defined for y ≥ 0 by

f (y) = ν ([0, 1]) =
1

2π

∫ 1

0

√
t (1− t) (t− a) (t− a)

t
dt

=
1

2π

∫ 1

0

√
t (1− t)

(
t2 +

(
2y2 + 15

2

)
t+ y4 + 17

2 y
2 + 225

16

)
t

dt.

An easy study shows that f (y) increases from f (0) to lim
y→+∞

f (y) = +∞. By the

other hand,

f (0) =
1

2π

∫ 1

0

√
t (1− t)

(
t2 + 15

2 t+ 225
16

)
t

dt =
1

2π

∫ 1

0

(
t+ 15

4

)√
t (1− t)

t
dt
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=
1

2π

(
B

(
3

2
,
3

2

)
+

15

4
B

(
1

2
,
3

2

))
=

8

π
B

(
3

2
,
3

2

)
= 1.

We conclude for every a ∈ C+ satisfying (4.4) that

ν ([0, 1]) > 1,

and thus the measure ν cannot be positive on γa.
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Траєкторiї квадратичного диференцiала, пов’язаного
з деяким алгебраїчним рiвнянням

Mondher Chouikhi, Faouzi Thabet, Wafaa Karrou, and Mohamed Jalel
Atia

У цiй статтi ми обговорюємо iснування розв’язку, iнтерпретованого
як перетворення Кошi деякого заряду, алгебраїчного квадратичного рiв-
няння вигляду zC2(z)−P (z) C(z) +Q (z) = 0 для деяких полiномiв P (z)
та Q (z) . Ця проблема потребує опису критичного графу вiдповiдного
квадратичного диференцiала на сферi Рiмана C. Зокрема, ми обговорю-
ємо iснування скiнченних критичних траєкторiй цього квадратичного
диференцiала.

Ключовi слова: квантова механiка, аналiз WKB, перетворення Кошi,
квадратичнi диференцiали
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