
Journal of Mathematical Physics, Analysis, Geometry
2022, Vol. 18, No. 2, pp. 224–252

doi: https://doi.org/10.15407/mag18.02.224

Long-Time Asymptotics for the Modified

Camassa–Holm Equation with Nonzero

Boundary Conditions
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We consider the modified Camassa–Holm (mCH) equation mt +(
(u2 − u2x)m

)
x

= 0 with m := u − uxx on the line −∞ < x < +∞, where
u(x, t) is subject to nonzero boundary conditions at infinity: u(x, t)→ 1 as
x→ ±∞. The paper aims at studying the long-time asymptotics of solutions
of the initial value problems for this problem, using the Riemann–Hilbert for-
malism recently developed in [3]. The emphasis is made on the asymptotics
in two sectors of the (x, t) half-plane (t > 0), where the main asymptotic
terms are given in terms of modulated, decaying (as t−1/2) trigonometric
oscillations, as well as in a sector where solitons dominate the long time
behavior of the solution of the initial value problem.
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1. Introduction

In a recent paper [3], the Riemann–Hilbert formalism have been developed for
studying initial value problems for the modified Camassa–Holm (mCH) equation

mt +
(
(u2 − u2

x)m
)
x

= 0, m := u− uxx, t > 0, −∞ < x < +∞, (1.1a)

u(x, 0) = u0(x), −∞ < x < +∞, (1.1b)

in the case of nonzero boundary conditions: it is assumed that u0(x)→ 1 as x→
±∞ and that the solution u(x, t) satisfies these boundary conditions for all t >
0: u(x, t)→ 1 as x→ ±∞. An important additional assumption on the data for
this problem adopted in [3] is that m0(x) := (1− ∂2

x)u0(x) > 0 for all x; then it
can be shown that m(x, t) > 0 for all t as long as the solution exists [28]. In the
present paper we study the behavior of u(x, t) as t→ +∞.

Equation (1.1a) is a modification, involving a cubic nonlinearity, of the
Camassa–Holm (CH) equation [9, 10]

mt + (um)x + uxm = 0, m := u− uxx. (1.2)
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The Camassa–Holm equation has been studied intensively due to its rich math-
ematical structure as well as applications for modeling the unidirectional prop-
agation of shallow water waves over a flat bottom [16, 31]. The CH and mCH
equations are both have Lax pair representations, which makes it possible to
develop the Inverse Scattering Transform method to study various properties of
solutions of initial (Cauchy) value problems for these equations. In particular,
to study the large-time behavior of solutions of initial value problems for the CH
equation, the Riemann–Hilbert (RH) problem formalism (which is a particular
form of the inverse scattering method) has been developed in [6]. This formalism
was subsequently used for developing an appropriate adaptation of the nonlinear
steepest descent method [18] for studying the long-time behavior of solutions of
these problems [2, 5, 7].

Over the last few years various modifications and generalizations of the CH
equation have been introduced, see, e.g., [43] and references therein. In an equiv-
alent form, equation (1.1a) appeared already in [23] (see also [35] and [26]). Re-
markably, equation (1.1a) can be considered as a dual to the modified Korteweg–
de Vries (mKdV) equation [39]. Qiao [36] provided an equivalent Lax pair for
(1.1a), which is also referred to as the Fokas–Olver–Rosenau–Qiao (FORQ) equa-
tion [29].

Being considered for functions satisfying zero boundary conditions at infinity,
equation (1.1a) possesses solutions in the form of localized, peaked traveling waves
– peakons [28] (see also [12], where multipeakon solutions are discussed using the
inverse spectral method for an associated peakon system of ordinary differential
equations).

Existence properties of the mCH equation and its generalizations have also
been studied intensively, see [13, 14, 25, 28, 34], where the focus was on the local
well-posedness and wave-breaking mechanisms. The local well-posedness for clas-
sical solutions and for global weak solutions to (1.1a) in Lagrangian coordinates
are discussed in [27]. Quasi-periodic solutions of algebro-geometric nature are
studied in [29].

The Hamiltonian structure and Liouville integrability of peakon systems are
discussed in [1, 11, 28, 35]. In [32], a Liouville-type transformation was presented
relating the isospectral problems for the mKdV equation and for the mCH equa-
tion, and a Miura-type map from the mCH equation to the CH equation was
introduced. The Bäcklund transformation for the mCH equation and a related
nonlinear superposition formula are presented in [42].

Notice that in the case of the CH equation with zero boundary conditions
at infinity, the inverse scattering transform method (particularly, in the form
of a Riemann–Hilbert factorization problem) has been developed for the version
of the CH equation involving an additional linear dispersion term. A linear
change of variables for such equation allows reducing it to the standard form (1.2),
but the solution has to be considered on a nonzero, constant background (with
nonzero boundary conditions). On the other hand, the asymptotic analysis of the
dispersionless CH equation (1.2) on the zero background requires a different tool
(although having a certain analogy with the Riemann–Hilbert method), namely
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the analysis of a coupling problem for entire functions [20–22].

In the case of the mCH equation, the situation is somewhat similar: the in-
verse scattering method for the Cauchy problem can be developed when equation
(1.1a) is considered on a nonzero background. The Riemann–Hilbert formalism
for this problem has been developed in [3, 4]. On the other hand, reducing to a
zero background leads to an equation of different form (see Section 2).

In the present paper, we discuss the long-time behavior of the solution of
the initial value problem for the mCH equation (1.1) on a nonzero background.
Starting form the RH formalism developed for this situation in [3] and proceeding
with a series of RH problem transformations, we obtain main terms of the asymp-
totics in various sectors of the space-time half-plane. Focusing on the solitonless
case, Section 2 deals with reducing the original (singular) RH problem represen-
tation for the solution of (1.1), proposed for the first time in [3], to a regular
RH problem. In Section 3, the obtained RH problem is treated asymptotically,
assuming t → +∞. The resulting slowly decaying, oscillating asymptotics are
given in Theorems 3.2 and 3.4. Finally, the soliton asymptoics is discussed in
Section 4.

Notations. Furthermore, σ1 := ( 0 1
1 0 ) and σ3 :=

(
1 0
0 −1

)
denote the standard Pauli

matrices. We let C+ = {Imµ > 0} and C− = {Imµ < 0} denote the open upper
and lower complex half-planes. We also let f∗(µ) := f(µ̄) denote the Schwarz
conjugate of a function f(µ), µ ∈ C. If M is a 2 × 2 matrix we denote by M (1)

and M (2) its first and second columns, respectively.

2. RH problem formalism: from non-regular to regular prob-
lem

As we noticed in Introduction, reducing the mCH equation on a nonzero
background to that with zero boundary conditions at infinity leads to a nonlinear
equation of different form. Namely, introducing ũ(x, t) by

ũ(x, t) := u(x+ t, t)− 1, (2.1)

the mCH equation (1.1a) reduces to

m̃t + (ω̃m̃)x = 0, (2.2a)

m̃ := ũ− ũxx + 1, (2.2b)

ω̃ := ũ2 − ũ2
x + 2ũ. (2.2c)

Here the solution ũ is considered on zero background: ũ(x, t) → 0 as x → ±∞
for all t ≥ 0. Particularly, the initial data ũ0(x) is also assumed to decay to 0
as x→ ±∞. In accordance with (1.1), it is further assumed that m̃0(x) := (1−
∂2
x)u0(x) = (1− ∂2

x)ũ0(x) + 1 > 0 for all x > 0. The Riemann–Hilbert formalism
for the Cauchy problem for the system (2.2) has recently been developed in [3].
The formalism provides a parametric representation for ũ(x, t) in terms of the
solution of an associated RH problem according to the following algorithm:
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(a) Given u0(x), determine (by solving the Lax pair equations associated with
(2.2), whose coefficients are determined in terms of u0(x)) the reflection
coefficient r(µ), µ ∈ R, the spectral function a(µ), µ ∈ C+, and, if applicable
(i.e., if a(µ) have simple zeros at µj and −µ̄j , j = 1, . . . , n, where µj = eiθj

with θj ∈ (0, π2 ), the discrete data {θj , δj}nj=1, .

(b) Construct the jump matrix J(y, t, µ), µ ∈ R by

J(y, t, µ) := e−p(y,t,µ)σ3J0(µ)ep(y,t,µ)σ3 (2.3)

where

p(y, t, µ) := − i(µ2 − 1)

4µ

(
−y +

8µ2

(µ2 + 1)2
t

)
(2.4)

and J0(µ) is defined by

J0(µ) :=

(
1− r(µ)r∗(µ) r(µ)
−r∗(µ) 1

)
. (2.5)

(c) Solve the following RH problem parametrized by y and t: Find a 2×2-matrix
valued function M(y, t, µ) meromorphic with respect to µ in C+ and C−,
which satisfies the following conditions:

• The jump condition

M+(y, t, µ) = M−(y, t, µ)J(y, t, µ), µ ∈ R, µ 6= ±1, (2.6)

where M±(·, ·, µ) are the limiting values of M as µ is approached from
C± respectively.

• The residue conditions

Resµj M
(1)(y, t, µ) =

1

κj(y, t)
M (2)(y, t, µj),

Res−µ̄j M
(1)(y, t, µ) =

1

κj(y, t)
M (2)(y, t,−µ̄j),

Resµ̄j M
(2)(y, t, µ) =

1

κj(y, t)
M (1)(y, t, µj),

Res−µj M
(2)(y, t, µ) =

1

κj(y, t)
M (1)(y, t,−µj),

(2.7)

with κj(y, t) := ie−iθjδje
−2p(y,t,µj).

• The normalization condition

M(y, t, µ)→ I as µ→∞. (2.8)

• The symmetries

M(µ) = M(µ̄−1) = σ3M(−µ̄)σ3 = σ1M(µ̄)σ1, (2.9)

where M(µ) ≡M(y, t, µ).
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• The singularity conditions

M(y, t, µ) =
iα+(y, t)

2(µ− 1)

(
−c 1
−c 1

)
+ O(1)

as µ→ 1, Imµ > 0, (2.10a)

M(y, t, µ) = − iα+(y, t)

2(µ+ 1)

(
c 1
−c −1

)
+ O(1)

as µ→ −1, Imµ > 0, (2.10b)

where c = 1 + r(1) (generically, c = 0) whereas α+(y, t) ∈ R is not
specified.

(d) Having found the solution M(y, t, µ) of this RH problem (which is unique,
if it exists, see [3]), extract the real-valued functions aj(y, t), j = 1, 2, 3 from
the expansion of M(y, t, µ) at µ = i:

M(y, t, µ) =

(
a1(y, t) 0

0 a−1
1 (y, t)

)
+

(
0 a2(y, t)

a3(y, t) 0

)
(µ− i)

+ O((µ− i)2), µ→ i. (2.11)

(e) Obtain ũ(x, t) in parametric form as follows:

ũ(x, t) = û(y(x, t), t),

where

û(y, t) := −a2(y, t)a1(y, t)− a3(y, t)a−1
1 (y, t), (2.12a)

x(y, t) := y + 2 ln a1(y, t). (2.12b)

Remark 2.1. Comparing with [3], M+ and M− are interchanged in the jump
relation (2.6) so that here the jump is the inverse of that in [3]: J0 = Ĵ−1

0 and

J = Ĵ−1.

Notice that the symmetries (2.9) are consistent with the symmetries of r(µ):

r(µ) = −r(−µ) = r(µ−1). (2.13)

In turn, (2.13) follows from the construction of the RH problem above in terms of
the dedicated (Jost) solutions of the Lax pair equations associated with the mCH
equation, see [3]. In particular, the symmetries (2.9) imply the specific matrix
structure of the terms in (2.11).

Remark 2.2. In the case of the Camassa–Holm (CH) equation, the condition
m0(x) := (1 − ∂2

x)u0(x) > 0 for all x provides the existence of a global solution
(i.e., for all 0 < t < ∞) to the corresponding initial value problem (see, e.g.,
[15]). In the case of the modified Camassa–Holm (mCH) equation, the situation
is different: even if the initial potential m0 does not change sign the solution
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u(x, t) may blow-up in finite time [28]. With this respect we notice that our
asymptotic analysis is applicable assuming that the solution of problem (1.1)
exists globally. On the other hand, the RH formalism, being intrinsically local
in the corresponding variables (y and t in the case of the mCH equation), is
well suited to present solutions that overcome finite time blowup, which allows
discussing the long-time behavior of such (non-classical) solutions.

In the general context of nonlinear integrable equations, the RH problem for-
malism (i.e., the representation of the solution of the original problem — the
Cauchy problem for a nonlinear integrable PDE — in terms of the solution of an
associated RH problem) allows reducing the problem of the large time analysis
of the solution of the nonlinear PDE to that of the RH problem. Residue con-
ditions (if any) involved in the RH problem formulation generate a soliton-type,
non-decaying contribution to the asymptotics whereas the jump conditions are
responsible for the dispersive (decaying) part, details of which can be retrieved
applying an appropriate modification of the nonlinear steepest descent method
to the asymptotic analysis of a preliminarily regularized RH problem (i.e., a RH
problem involving the jump and normalization conditions only).

As for the singularity conditions, we notice that in the case of the Camassa–
Holm equation, where such a condition is also involved in the matrix RH problem
formalism, an efficient way to handle it is to reduce the matrix RH problem to
a vector one, multiplying from the left by the constant vector (1, 1). Indeed,
the singularity condition for the CH equation has the form of (2.10b), and thus
this multiplication removes the singularity, reducing the RH problem to a regular
one. With this respect, we notice that the matrix RH problem for the modified
Camassa–Holm equation is different: indeed, the singularity condition (2.10a)
cannot be removed using the same trick.

Nevertheless, reducing to a regular RH problem is possible for the mCH as
well. To fix ideas, in this section we proceed with the solitonless case assuming
that there are no residue conditions. We are going to reduce the original RH
problem (which is singular due to conditions (2.10)) to a regular one, proceeding
in two steps.

In Step 1, we reduce the RH problem with the singularity conditions (2.10) at
µ = ±1 to a RH problem which is characterized by the following two conditions:

(i) the matrix entries of the solution of the RH problem are regular at µ = ±1,
but the determinant of the (matrix) solution vanishes at µ = ±1 (notice
that detM(µ) ≡ 1 for the solution of the original RH problem);

(ii) the solution of the RH problem is singular at µ = 0.

Then, in Step 2, the latter RH problem is reduced to a regular one, i.e., to a
RH problem with the jump and normalization conditions only.

Proposition 2.3. Let M(y, t, µ) be a solution of the RH problem (2.6), (2.8)–

(2.10). Define M̃ by

M̃(y, t, µ) :=

(
I − 1

µ
σ1

)
M(y, t, µ). (2.14)
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Then M̃(µ) ≡ M̃(y, t, µ) is the unique solution of the following RH problem:

(i) M̃(µ) is analytic in C+ and C− and continuous up to R \ {0}.

(ii) M̃(µ) satisfies the jump condition (2.6) with the jump defined by (2.3)–(2.5).

(iii) M̃(µ)→ I as µ→∞.

(iv) M̃(µ) = − 1
µσ1 + O(1) as µ→ 0.

(v) det M̃(±1) = 0.

(vi) M̃(µ−1) = −µM̃(µ)σ1.

Proof. First, let’s check that M̃(y, t, µ) constructed from M(y, t, µ) satisfies
the conditions above. The limiting properties (iii) and (iv) as µ → ∞ and as
µ → 0 are obviously satisfied (by construction) whereas (ii) results from the
fact that a multiplication from the left does not change the jump conditions.
Further, since detM(y, t, µ) ≡ 1, it follows that det M̃(y, t, µ) = 1− 1

µ2
and thus

det M̃(y, t,±1) = 0. Moreover, as µ→ 1 we have(
M̃11(µ), M̃12(µ)

)
= (M11(µ),M12(µ))− 1

µ
(M21(µ),M22(µ))

= (M11(µ)−M21(µ),M12(µ)−M22(µ)) + O(1) = O(1)

due to (2.10a). Similarly, as µ→ −1 we have(
M̃11(µ), M̃12(µ)

)
= (M11(µ) +M21(µ),M12(µ) +M22(µ)) + O(1) = O(1)

due to (2.10b). Similarly for
(
M̃21(µ), M̃22(µ)

)
. Thus M̃(y, t, µ) is non-singular at

µ = ±1. Finally, (C6) follows from the symmetry relation M(µ−1) = σ1M(µ)σ1

from (2.9).
Now, let’s prove that the solution of the RH problem (i)–(vi) above is unique

(if it exists). First, we notice that if M̃(y, t, µ) solves the RH problem (i)–(vi),
then

det M̃(y, t, µ) = 1− 1

µ2
. (2.15)

Indeed, since detJ(y, t, µ) ≡ 1 and detM(y, t, µ) is bounded at µ = ∞, it fol-
lows that detM(µ) is a rational function. Moreover, from (C4) we have that
detM(µ) = − 1

µ2
+ c

µ +O(1) as µ→ 0, with some c ≡ c(y, t). Taking into account

(iii) we have that ζ(y, t, µ) := detM(y, t, µ)−1+ 1
µ2
− c
µ is a bounded entire func-

tion of µ, which, by Liouville’s theorem and (iii), vanishes for all (y, t). Finally,
evaluating ζ(y, t, µ) at µ = ±1 and using (v), it follows that c(y, t) ≡ 0 and thus
(2.15) follows.

Now let’s assume that
˜̃
M is another solution of the RH problem (i)–(vi) and

define N(µ) := M̃(µ)
˜̃
M−1(µ). Since M̃ and

˜̃
M satisfy the same jump conditions,
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N(µ) is a rational function, with possible singularities at µ = 0,−1, 1. In view of

(2.15) and (iii),
˜̃
M−1(µ) = µ2

µ2−1
( 1
µσ1 + O(1)) = O(µ) as µ→ 0 and thus N(µ) is

non-singular at µ = 0. In order to prove that N(µ) is non-singular at µ = ±1,

we use relation (vi). In particular, we have M̃(1) = −M̃(1)σ1 and thus M̃(µ) =( g1 −g1
g2 −g2

)
+ O(µ− 1) as µ → 1, with some gj , j = 1, 2. Consequently,

˜̃
M−1(µ) =

µ2

µ2−1

((
−g̃2 g̃1
−g̃2 g̃1

)
+ O(µ− 1)

)
as µ→ 1, with some g̃j , j = 1, 2, which implies that

N(µ) is bounded as µ → 1. Similarly for µ → −1. Therefore, N(µ) is an entire
function such that N(∞) = I and thus N(µ) ≡ I by Liouville’s theorem.

Remark 2.4. Assuming r(µ) = −r(−µ) (see (2.13)), we have that J(µ) satis-
fies the symmetries

J(µ) = σ3J(−µ)σ3 = σ1J−1(µ)σ1,

which, due to uniqueness, imply for M̃ the same symmetries as for M :

M̃(µ) = σ3M̃(−µ̄)σ3 = σ1M̃(µ̄)σ1 (2.16)

(taking also into account that the symmetries (2.16) are consistent with all con-
ditions in the RH problem in Proposition 2.3).

Step 2 in the reduction of the RH problem is formulated in the following
proposition (see [30, 40, 41] for the case of the nonlinear Schrödinger equation
with “finite density” boundary conditions).

Proposition 2.5 (regular RH problem). The solution M̃ of the RH problem
from Proposition 2.3 can be represented in terms of the solution of a regular RH
problem as follows:

M̃(y, t, µ) =

(
I − 1

µ
∆(y, t)

)
MR(y, t, µ), (2.17)

where MR(µ) ≡MR(y, t, µ) is the solution of the following RH problem:
Find MR(µ) such that

(a) MR(µ) is analytic in C+ and C− and continuous up to the real axis.

(b) MR(µ) satisfies the jump condition (2.3)–(2.6).

(c) MR(µ)→ I as µ→∞.

Here ∆ in (2.17) is expressed in terms of the solution MR of the RH problem
above by:

∆(y, t) = σ1[MR(y, t, 0)]−1.

Proof. Let MR(µ) be the solution of the regular RH problem (a)-(c) above.

Then M̃(y, t, µ) defined by (2.17) obviously (by construction) satisfies conditions
(i)-(iv) of the RH problem from Proposition 2.3. In order to check conditions (v)
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and (vi), we use the matrix structure of ∆ that follows from the symmetries of
MR(µ).

(i) Since MR(µ) and M(µ) satisfy the same jump condition, the uniqueness
of the solution of the regular RH problem implies that MR(µ) satisfies the same
symmetries (see (2.9)) (generated by the symmetry r(µ) = −r(−µ)):

MR(µ) = σ3MR(−µ̄)σ3 = σ1MR(µ̄)σ1. (2.18)

Considering this for µ = 0 it follows that MR(y, t, 0) =
(

α(y,t) iβ(y,t)
−iβ(y,t) α(y,t)

)
with some

α(y, t) ∈ R and β(y, t) ∈ R. Moreover, α2(y, t)− β2(y, t) ≡ 1 since detMR(µ) ≡
1. Consequently, ∆(y, t) has the structure

∆ =

(
iβ α
α −iβ

)
(2.19)

with α2 − β2 = 1 and thus det(I − µ−1∆(y, t)) = 1 − α2−β2

µ2
= 1 − 1

µ2
, which

implies (v). Notice that ∆2 ≡ I.
(ii) Now consider the symmetry µ 7→ µ−1. From r(µ) = r(µ−1) it follows

that J(µ) = σ1J
−1(µ−1)σ1 and thus M̌(µ) := σ1M

R(µ−1)σ1 satisfies the same
jump condition as MR(µ) does. Taking into account that M̌(∞) = σ1M

R(0)σ1,
Liouville’s theorem implies that M̌−1(∞)M̌(µ) ≡ σ1[MR(0)]−1MR(µ−1)σ1 =
M(µ), or, in terms of ∆,

MR(µ−1) = ∆MR(µ)σ1. (2.20)

Now, combining (2.17) with (2.20) we can express M̃(µ−1) in terms of M̃(µ) as
follows:

M̃(µ−1) = (I −∆µ)MR(µ−1) = (I −∆µ)∆MR(µ)σ1 = Q(µ)M̃(µ)σ1 (2.21)

with
Q(µ) = (I −∆µ)∆

(
I −∆µ−1

)−1
.

Using (2.19), direct calculations give Q(µ) = −µI and thus the symmetry (2.20)
takes the form of (vi) in Proposition 2.3.

2.1. From MR back to ũ. Now, we can obtain a parametric representa-
tion of the solution ũ(x, t) of the Cauchy problem (2.2) in terms of the solution
MR(y, t, µ) of the regular RH problem from Proposition 2.5. First, using (2.14)
and (2.17), we get M from MR:

M(µ) =

(
I − 1

µ
σ1

)−1(
I − 1

µ
∆

)
MR(µ). (2.22)

Then, by (2.11) and (2.12) we find

M(y, t, µ) ; {a1(y, t), a2(y, t), a3(y, t)}; {û(y, t), x(y, t)},

and finally ũ(x, t) = û(y(x, t), t).
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3. Long-time asymptotics

In this section, we study the long-time asymptotics of the solution MR(y, t, µ)
of the regular RH problem from Proposition 2.5 using the ideas and tools of
the nonlinear steepest descent method [18], which will finally lead us to the
asymptotic formulas for the solution of the mCH equation. The method consists
of successive transformations of RH problems, in order to arrive at a RH problem
that can be solved explicitly. The transformation steps include

(a) appropriate triangular factorizations of the jump matrix;

(b) “absorption” of the triangular factors with good large-time behavior;

(c) reduction, after rescaling, to a RH problem which is solvable in terms of
certain special functions;

(d) analysis of the approximation errors.

The information on Lp-RH problems and their applications to the asymptotics
can be found in [17, 19, 24, 44]. Here we focus on deriving the leading terms of
the long-time asymptotics, while for error estimates we refer to [33].

3.1. Transformations of the regular RH problem. Introduce

θ(µ, ξ) := θ̂(k(µ), ξ),

where

ξ :=
y

t
, k(µ) :=

1

4

(
µ− 1

µ

)
, θ̂(k, ξ) := kξ − 2k

1 + 4k2
. (3.1)

Hence, p(y, t, µ) = itθ(µ, ξ). The jump matrix J(y, t, µ) in (2.6) which is defined
by (2.3)–(2.5) allows two triangular factorizations:

J(y, t, µ) =

(
1 r(µ)e−2itθ

0 1

)(
1 0

−r∗(µ)e2itθ 1

)
, (3.2a)

J(y, t, µ) =

(
1 0

− r∗(µ)
1−r(µ)r∗(µ)e2itθ 1

)(
1− r(µ)r∗(µ) 0

0 1
1−r(µ)r∗(µ)

)

×

(
1 r(µ)

1−r(µ)r∗(µ)e−2itθ

0 1

)
. (3.2b)

Following the basic idea of the nonlinear steepest descent method [18], the
factorizations (3.2) can be used in such a way that the (oscillating) jump matrix
on R for a modified RH problem reduces (see the RH problem for M2 below) to
the identity matrix whereas the arising jumps outside R are exponentially small
as t→ +∞. The use of one or another form of the factorization is dictated by the
“signature table” for θ, i.e., the distribution of signs of Im θ(µ, ξ) (that depends
on ξ) in the µ-complex plane.
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a) The factorization (3.2a) is appropriate for the (open) intervals of R for which
Im θ(µ) is positive for µ ∈ C+ close to these intervals (and negative for µ ∈
C− close to the same intervals). We denote by Σa ≡ Σa(ξ) the union of
these intervals.

b) On the other hand the factorization (3.2b) is appropriate for the (open)
intervals of R for which Im θ(µ) is negative for µ ∈ C+ close to these intervals.
We denote their union by Σb(ξ) = R \ Σa(ξ).

In turn, one can get rid of the diagonal factor in (3.2b) using the solution of the
following scalar RH problem: Find a scalar function δ(µ, ξ) (ξ being a parameter)
analytic in µ ∈ C \ Σb(ξ) and such that

δ+(µ, ξ) = δ−(µ, ξ)(1− |r(µ)|2), µ ∈ Σb(ξ), (3.3a)

δ(µ, ξ)→ 1, µ→∞. (3.3b)

The solution of the RH problem (3.3) is given by the Cauchy integral:

δ(µ, ξ) = exp

{
1

2πi

∫
Σb(ξ)

ln(1− |r(s)|2)

s− µ
ds

}
. (3.4)

Define M1(y, t, µ) := MR(y, t, µ)δ−σ3(µ, ξ). Then M1 can be characterized as
the solution of the RH problem including the standard normalization condition
M1(µ)→ I as µ→∞ and the jump condition

M1+(y, t, µ) = M1−(y, t, µ)J1(y, t, µ), µ ∈ R, (3.5)

where the jump matrix is factorized as

J1(y, t, µ) =

(
1 r(µ)δ2(µ, ξ)e−2itθ

0 1

)(
1 0

−r∗(µ)δ−2(µ, ξ)e2itθ 1

)
,

µ ∈ Σa(ξ) (3.6a)

J1(y, t, µ) =

(
1 0

− r∗(µ)
1−r(µ)r∗(µ)δ

−2
− (µ, ξ)e2itθ 1

)(
1 r(µ)

1−r(µ)r∗(µ)δ
2
+(µ, ξ)e−2itθ

0 1

)
,

µ ∈ Σb(ξ). (3.6b)

Now let us discuss the structure of Σa(ξ) and Σb(ξ). First, we notice that
θ̂(ξ, k) is exactly the same as in the case of the CH equation [7]. Taking into
account the relation between µ and k (see (3.1)), the “signature table” for the
CH equation near the real axis suggests that for the mCH equation (the latter
being, additionally, symmetric with respect to µ 7→ 1/µ) while the ranges of
values of ξ for which the “signature table” keeps the same structure are the
same. Namely, one can distinguish four ranges of values of ξ for which Σa(ξ) and
Σb(ξ) have qualitatively different structures (which, consequently, implies four
qualitatively different types of large-time asymptotics): (I) ξ > 2, (II) 0 < ξ < 2,
(III) −1

4 < ξ < 0, and (IV) ξ < −1
4 . Each range of values of ξ is characterized by
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the structure of Σa(ξ) (or Σb(ξ)): Σa(ξ) is the union of disjoint intervals whose
(finite) end points are (real) stationary points of θ(µ, ξ), i.e., points µ ∈ R where
dθ
dµ(µ, ξ) = 0, and similarly for Σb(ξ). More precisely,

Σb(ξ) =



∅, ξ > 2

(−µ0,− 1
µ0

) ∪ ( 1
µ0
, µ0), 0 < ξ < 2

(−∞,−µ1) ∪ (−µ0,− 1
µ0

) ∪ (− 1
µ1
, 1
µ1

)

∪( 1
µ0
, µ0) ∪ (µ1,+∞), −1

4 < ξ < 0

(−∞,+∞), ξ < −1
4

. (3.7)

Here the values of µ0(ξ) > 1 and µ1(ξ) > 1 are those associated (via κj = 1
4(µj −

1
µj

), j = 0, 1) with the (real) stationary points κ0(ξ) and κ1(ξ) of θ̂(k), i.e., the

end points in the case of the CH equation. They are determined by the relation
ξ = 2−8κ2

(1+4κ2)2
(see [7]):

κ2
0(ξ) =

√
1 + 4ξ − 1− ξ

4ξ
, κ2

1(ξ) = −
√

1 + 4ξ + 1 + ξ

4ξ

(κ0(ξ) is relevant for ranges II and III whereas κ1(ξ) is relevant for range III
only). In analogy with the case of the CH equation, for ξ in ranges I and IV,
the solution M2 of the RH problem (see below) decays rapidly (as t → +∞) to
the identity matrix, which corresponds (in the case without discrete spectrum)
to rapid decay of the resulting û(y, t). On the other hand, ranges II and III are
those where the large-time asymptotics in the case of the CH equation are of
Zakharov–Manakov type (trigonometric oscillations decaying as t−1/2), see [5,7].
Our main goal in the present paper is the derivation of analogous asymptotic
formulas, for ranges II and III, in the case of the mCH equation.

The next step in the transformation of the RH problem is the “absorption”
of the triangular factors in (3.6a) and (3.6b) into the solution of a deformed
RH problem, with an enhanced jump contour (having parts outside R). This
absorption requires the triangular factors in (3.6a) and (3.6b) to have analytic
continuation at least into a band surrounding R. With this respect we notice that,
as in the case of other integrable equations (in particular, the CH equation), the
reflection coefficient r(µ) is defined, in general, for µ ∈ R only. However, one can

approximate r(µ) and r(µ)
1−r(µ)r∗(µ) by some rational functions with well-controlled

errors (see, e.g., [33]). Alternatively, if we assume that the initial data ũ(x, 0)
decays exponentially to 0 as x → ±∞ (or that ũ(x, 0) has finite support in R),
then r(µ) turns out to be analytic in a band containing the real axis (or analytic
in the whole plane) and thus there is no need to use rational approximations in
order to be able to perform this absorption (see the transformation M1 ; M2

below). Henceforth, in order to avoid technicalities and to keep the presentation
of our main result as simple as possible, we assume that r(µ) (and thus 1 −
r(µ)r∗(µ)) is analytic in a domain of the complex plane containing the contours
of the successive RH problems (and refer to [33] for details related to the rational
approximations).
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For 0 < ξ < 2 and for −1
4 < ξ < 0, we define a contour Σ ≡ Σ(ξ) consistent

with the signature table for θ(µ, ξ), see Figures 3.1 and 3.2, respectively.

Fig. 3.1: Signature table (dotted lines), contour Σ(ξ) = ∪4
j=1Σj (solid lines) and

domains Ωj(ξ) for 0 < ξ < 2.

Fig. 3.2: Signature table (dotted lines), contour Σ(ξ) = ∪4
j=1Σj (solid lines) and

domains Ωj(ξ) for −1
4 < ξ < 0.

Further, define M2 by M2(y, t, µ) := M1(y, t, µ)P (y, t, µ), where

P (y, t, µ) = I, µ ∈ Ω0, (3.8a)

P (y, t, µ) =

(
1 0

r∗(µ)δ−2(µ, ξ)e2itθ 1

)
, µ ∈ Ω1, (3.8b)

P (y, t, µ) =

(
1 − r(µ)

1−r(µ)r∗(µ)δ
2(µ, ξ)e−2itθ

0 1

)
, µ ∈ Ω2, (3.8c)

P (y, t, µ) =

(
1 0

− r∗(µ)
1−r(µ)r∗(µ)δ

−2(µ, ξ)e2itθ 1

)
, µ ∈ Ω3, (3.8d)
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P (y, t, µ) =

(
1 r(µ)δ2(µ, ξ)e−2itθ

0 1

)
, µ ∈ Ω4. (3.8e)

Then M2(y, t, µ) can be characterized as the solution of the RH problem
with the standard normalization condition M2(µ) → I as µ → ∞ and the jump
condition

M2+(y, t, µ) = M2−(y, t, µ)J2(y, t, µ), µ ∈ Σ := ∪4
j=1Σj , (3.9)

where Σj := Ω0 ∩ Ωj and

J2(y, t, µ) =

(
1 0

−r∗(µ)δ−2(µ, ξ)e2itθ 1

)
, µ ∈ Σ1, (3.10a)

J2(y, t, µ) =

(
1 r(µ)

1−r(µ)r∗(µ)δ
2(µ, ξ)e−2itθ

0 1

)
, µ ∈ Σ2, (3.10b)

J2(y, t, µ) =

(
1 0

r∗(µ)
1−r(µ)r∗(µ)δ

−2(µ, ξ)e2itθ 1

)
, µ ∈ Σ3, (3.10c)

J2(y, t, µ) =

(
1 −r(µ)δ2(µ, ξ)e−2itθ

0 1

)
, µ ∈ Σ4. (3.10d)

The RH problem for M2 is such that uniform decay (as t→ +∞) of the jump
matrix is violated only near the stationary phase points of θ(µ). The large-time
analysis, with appropriate estimates, of such problems involves the “comparison”
of the RH problem with that modified in small vicinities of the stationary phase
points, using rescaled spectral parameters as well as approximations of the jump
matrices in these vicinities [18].

In our large-time analysis for M2, we follow the strategy presented in [33].

Step (i). Add to Σ small circles γj (j = 0, 1) surrounding µj , together with
their images −γj (surrounding −µj) and ±γ−1

j (surrounding ±1/µj) under the
mappings µ 7→ −µ and µ 7→ 1/µ, respectively.

Step (ii). Inside the circles around µ0 and µ1, define (explicitly) a function
m0(y, t, µ) which exactly satisfies the jump condition across Σ obtained from
(3.10) by replacing r(µ) with r(µ0) and r(µ1), respectively, and by replacing
δ2(µ, ξ)e−2itθ(µ,ξ) with its large-time approximation.

Step (iii). Define m0(y, t, µ) inside the other small contours using the symmetries
m0(µ) = m0(1/µ̄) and m0(µ) = σ3m0(−µ̄)σ3 (which are consistent with the
symmetries of M2(µ)).

Step (iv). Define m̂(µ) by

m̂(y, t, µ) =

{
M2(y, t, µ)m−1

0 (y, t, µ), inside ± γj and ± γ−1
j ,

M2(y, t, µ), otherwise,

Then m̂(µ) satisfies the conditions of the RH problem{
m̂+(y, t, µ) = m̂−(y, t, µ)Ĵ(y, t, µ), µ ∈ Σ̂ := Σ ∪j {±γj} ∪j {±γ−1

j },
m̂(y, t, µ)→ I, µ→∞,
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where

Ĵ(y, t, µ) =


m−1

0 (y, t, µ), µ ∈ ∪j{±γj} ∪j {±γ−1
j },

m−1
0−(y, t, µ)J2(y, t, µ)m0+(y, t, µ), µ ∈ Σ ∩ {µ in ∪j {±γ±1

j }},
J2(y, t, µ) otherwise.

On the other hand, the unique solution of this problem can be expressed in terms
of the solution Θ(µ) of the singular integral equation (see [33]*Lemma 2.9):

m̂(y, t, µ) = I +
1

2πi

∫
Σ̂

Θ(y, t, s)ŵ(y, t, s)
ds

s− µ
. (3.11)

Here ŵ(y, t, s) := Ĵ(y, t, s)− I and Θ ∈ I + L2(Σ̂) is the solution of the integral
equation

Θ(µ)− CŵΘ(µ) = I,

where Cŵ : L2(Σ̂) +L∞(Σ̂)→ L2(Σ̂) is an integral operator defined with the help
of the singular Cauchy operator: Cŵf := C−(fŵ), where C− = 1

2(−I + S
Σ̂

) and

S
Σ̂

is the operator associated with Σ̂ and defined by the principal value of the
Cauchy integral:

(S
Σ̂
f)(µ) =

1

2πi

∫
Σ̂

f(s)

s− µ
ds, µ ∈ Σ̂.

Here L2(Σ̂)+L∞(Σ̂) denotes the space of all functions that can be written as the
sum of a function in L2(Σ̂) and a function in L∞(Σ̂).

Step (v). Estimate the large-time behavior of m̂(y, t, µ) at µ = i and µ = 0 taking
into account the following facts:

• The main contribution to the right hand side of (3.11) comes from the
integrals over the small contours, where ŵ(y, t, µ) = m−1

0 (y, t, µ)− I:

m̂(y, t, µ) = I +
1

2πi

∫
∪j{±γj}∪j{±γ−1

j }

m−1
0 (y, t, s)− I

s− µ
ds+ o(t−1/2). (3.12)

Henceforth the error estimates are uniform for ε < ξ < 2− ε and −1
4 + ε <

ξ < −ε, for any small ε > 0. For detailed estimates, see [33].

• In turn, the main contribution to m−1
0 (y, t, µ) − I comes from the asymp-

totics of the RH problem for parabolic cylinder functions (involved in the
construction of m0(y, t, µ)), see [33]*Appendix B, which can be given explic-
itly.

3.2. Range 0 < ξ < 2. This range is characterized by four real critical
points: ±µ0 and ±µ−1

0 .
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3.2.1. Construction of m0. First, we approximate itθ(µ, ξ) using (3.1),
the relation

κ0 =
1

4

(
µ0 −

1

µ0

)
(3.13)

between µ0 and κ0, and the approximation for θ̂(k, ξ) near κ0, see [7]:

θ̂(k, ξ) ≈ θ̂(κ0) + 8f0(κ0)(k − κ0)2,

where

f0(κ0) =
κ0(3− 4κ2

0)

(1 + 4κ2
0)3

, θ̂(κ0) = − 16κ3
0

(1 + 4κ2
0)2

. (3.14)

Here and below we use the symbol ≈ somewhat loosely to express that the left-
hand side is approximated by the right-hand side as a function of the spectral
parameter with an error term that we are able to control in the subsequent error
estimates (see, e.g., (3.21) and (3.24)–(3.26)). We have −itθ(µ, ξ) ≈ −itθ̂(κ0) −
iµ̂2

4 , where the scaled spectral variable µ̂ is introduced by

µ− µ0 =
µ̂

(1 + µ−2
0 )
√

2f0t
. (3.15)

Now we approximate δ(µ, ξ) near µ = µ0. From (3.4) we have

δ(µ, ξ) =

(
µ− µ0

µ− 1/µ0

)ih0 (µ+ 1/µ0

µ+ µ0

)ih0

eχ(µ),

where

h0 = − 1

2π
ln(1− |r(µ0)|2),

χ(µ) =
1

2πi

(∫ −1/µ0

−µ0
+

∫ µ0

1/µ0

)
ln

1− |r(s)|2

1− |r(µ0)|2
ds

s− µ

(notice that |r(µ)| = |r(−µ)| = |r(1/µ)|). Therefore (cf. [7]),

δ(µ, ξ) ≈ (µ− µ0)ih0

(
µ0 + 1/µ0

2µ0(µ0 − 1/µ0)

)ih0

eχ(µ0) = µ̂ih0(128f0κ
2
0t)
− ih0

2 eχ(µ0)

and thus

δ(µ, ξ)e−itθ(µ,ξ) ≈ δµ0(ξ, t)µ̂ih0e−
iµ̂2

4 , (3.16)

where

δµ0(ξ, t) = e−itθ̂(κ0(µ0))eχ(µ0)(128f0(κ0(µ0))κ2
0(µ0)t)−

ih0
2 . (3.17)

The approximation (3.16) suggests introducing m0(y, t, µ) (near µ = µ0) as
follows:

m0(y, t, µ) = D(ξ, t)mX(ξ, µ̂)D−1(ξ, t), (3.18)
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where D(ξ, t) = δσ3µ0(t) and mX(ξ, µ̂) is the solution of the RH problem, in the µ̂-
complex plane, whose solution is given in terms of parabolic cylinder functions [33]
(with q = −r̄(µ0)).

Since (see (3.15)) finite values of µ correspond to growing (with t) values of µ̂,
the large-time asymptotics of m0(y, t, µ) for µ on the small contours surrounding
±µ0 and ± 1

µ0
involves the large-µ̂ asymptotics of mX(ξ, µ̂), which is given by

(see [33]*Appendix B)

mX(ξ, µ̂) = I +
i

µ̂

(
0 −βµ0(ξ)

β̄µ0(ξ) 0

)
+ O(µ̂−2) (3.19)

with
βµ0(ξ) =

√
h0ei(π4−arg(−r̄(µ0))+arg Γ(ih0)), (3.20)

where Γ is Euler’s gamma function. From (3.15), (3.18) and (3.19) we have

m−1
0 (y, t, µ) = D(ξ, t)(mX)−1(ξ, µ̂(µ))D−1(ξ, t)

= D(ξ, t)

(
I − i

µ̂(µ)

(
0 −βµ0(ξ)

β̄µ0(ξ) 0

))
D−1(ξ, t) + O(t−1)

= I +
B(ξ, t)√
t(µ− µ0)

+ O(t−1), (3.21)

where

B(ξ, t) =

(
0 B0(ξ, t)

B̄0(ξ, t) 0

)
with B0(ξ, t) =

iδ2
µ0(ξ, t)βµ0(ξ)

(1 + µ−2
0 )
√

2f0(κ0(µ0))
. (3.22)

Here the estimate O(t−1) is uniform for ξ and µ such that ε1 < ξ < 2 − ε1 and
|µ− µ0| = ε2 for any small positive εj , j = 1, 2.

3.2.2. Asymptotics for m̂. In view of our algorithm for representing u in
terms of the solution of the associated regular RH problem, see (2.22), (2.11),
(2.12), and (2.1), we need to know the asymptotics for m̂(y, t, 0), m̂(y, t, i), and
m̂1(y, t), where m̂1 is extracted from the expansion m̂(y, t, µ) = m̂(y, t, i) +
m̂1(y, t)(µ − µ0) + O((µ − µ0)2) as µ → µ0. By (3.21) and the residue theorem,
the leading contributions of the integral over γ0 into (3.12) for these quantities
are, respectively,

B

µ0

√
t
,

B

(µ0 − i)
√
t
, and

B

(µ0 − i)2
√
t
. (3.23)

In order to take into account the contributions of all small contours, we extend
the definition of m0 by symmetries (as indicated in Step (iii)). This gives

m̂(y, t, 0) = I +

(
B

µ0
− B̄

µ0
− 1

µ2
0

B̄

µ−1
0

+
1

µ2
0

B

µ−1
0

)
1√
t

+ o(t−1/2)

= I +
4i ImB0(ξ, t)

µ0

√
t

(
0 1
−1 0

)
+ o(t−1/2), (3.24)
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m̂(y, t, i) = I +

(
B

µ0 − i
+

B̄

−µ0 − i
− 1

µ2
0

B̄

µ−1
0 − i

− 1

µ2
0

B

−µ−1
0 − i

)
1√
t

+ o(t−1/2)

= I +
2i ImB0(ξ, t)

µ0

√
t

(
0 1
−1 0

)
+ o(t−1/2), (3.25)

and

m̂1(y, t) =

(
B

(µ0 − i)2
+

B̄

(−µ0 − i)2
− 1

µ2
0

B̄

(µ−1
0 − i)2

− 1

µ2
0

B

(−µ−1
0 − i)2

)
1√
t

+ o(t−1/2)

=
4√
t

(
0 Re B0

(µ0−i)2

Re B̄0
(µ0−i)2

0

)
+ o(t−1/2). (3.26)

3.2.3. From m̂ back to MR. In Section 3.2.2 we presented the large-time
asymptotics of m̂(y, t, µ) (and thus of M2(y, t, µ)) for the dedicated values of µ.
Since P (y, t, 0) = 0 whereas P (y, t, µ) tends to I exponentially fast, as t → +∞
for all µ close to i, in order to obtain the leading terms of the asymptotics for
MR(y, t, µ) = M1(y, t, µ)δσ3(µ, ξ) = M2(y, t, µ)P−1(y, t, µ)δσ3(µ, ξ), we need to
know δ(µ, ξ) (3.4) for µ = 0 and µ near i.

Due to the symmetry |r(µ)| = |r(−µ)| we have

δ(0, ξ) = exp

{
1

2πi

∫
Σb(ξ)

ln(1− |r(s)|2)

s
ds

}
≡ 1. (3.27)

Let I0 and I1 be such that δ(µ, ξ) = eI0+I1(µ−i)+... as µ → i. Then, using again
the symmetry |r(µ)| = |r(−µ)|),

I0 =
1

2πi

∫
Σb(ξ)

ln(1− |r(s)|2)

s− i
ds =

1

π

∫ µ0

1/µ0

ln(1− |r(s)|2)

s2 + 1
ds.

On the other hand,

I1 =
1

2πi

∫ µ0

1/µ0

ln(1− |r(s)|2)

(
1

(s− i)2
+

1

(−s− i)2

)
ds

=
1

πi

∫ µ0

1/µ0

ln(1− |r(s)|2)
s2 − 1

(s2 + 1)2
ds ≡ 0,

the latter equality being due to the symmetry |r(µ)| = |r(µ−1)|. Thus, as µ→ i,

δ(µ, ξ) = δ(i, ξ) + O((µ− i)2) with δ(i, ξ) = exp

{
1

π

∫ µ0

1/µ0

ln(1− |r(s)|2)

s2 + 1
ds

}
.

(3.28)
Therefore, if MR(y, t, µ) = MR(y, t, i) + MR

1 (y, t)(µ − i) + O((µ − i)2) we have
the following asymptotics for MR(y, t, 0), MR(y, t, i), and MR

1 (y, t):

MR(y, t, 0) = m̂(y, t, 0) = I +
4i ImB0(ξ, t)

µ0

√
t

(
0 1
−1 0

)
+ o(t−1/2), (3.29a)
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MR(y, t, i) = m̂(y, t, i)δσ3(i, ξ) + O(e−εt)

=

(
I +

2i ImB0(ξ, t)

µ0

√
t

(
0 1
−1 0

))
δσ3(i, ξ) + o(t−1/2), (3.29b)

MR
1 (y, t) = m̂1(y, t)δσ3(i, ξ) + O(e−εt)

=
4√
t

(
0 Re B0

(µ0−i)2

Re B̄0
(µ0−i)2

0

)
δσ3(i, ξ) + o(t−1/2), (3.29c)

where B0(ξ, t) is given by (3.22) and δ(i, ξ) is given by (3.28).

3.2.4. Long-time asymptotics of u. Combining the asymptotics (3.29)
for MR(y, t, µ) with (2.11), (2.12), (2.14), and (2.17), we can obtain the leading
term of the long-time asymptotics of u(x, t).

Introducing η := 2 ImB0

µ0
√
t

, from (3.29a) we have:

∆(y, t) = σ1[MR(y, t, 0)]−1 =

(
2iη 1
1 −2iη

)
+ o(t−1/2). (3.30)

Therefore, for

M(µ) =

(
I − 1

µ
σ1

)−1(
I − 1

µ
∆

)
MR(µ) (3.31)

we have M(µ) = I1(µ)I2(µ)MR(µ) + o(t−1/2), where

I1(µ) =

(
µ2

µ2−1
µ

µ2−1
µ

µ2−1
µ2

µ2−1

)
=

(
1
2 − i

2
− i

2
1
2

)
− i

2
I(µ− i) + O((µ− i)2), (3.32a)

I2(µ) =

(
1− 2iη

µ − 1
µ

− 1
µ 1 + 2iη

µ

)

=

(
1− 2η i

i 1 + 2η

)
+

(
−2iη −1
−1 2iη

)
(µ− i) + O((µ− i)2), (3.32b)

MR(µ) =

(
1 iη
−iη 1

)
δσ3(i) +

(
0 β1

β2 0

)
δσ3(i)(µ− i) + O((µ− i)2), (3.32c)

with

β1 =
4√
t

Re
B0

(µ0 − i)2
, β2 =

4√
t

Re
B̄0

(µ0 − i)2
. (3.33)

Substituting (3.32) into (3.31) and keeping the terms of order t−1/2 we have

M(µ) =

(
(1− η)δ(i) 0

0 (1 + η)δ−1(i)

)
+

(
0 (β1 + η)δ−1(i)

(β2 − η)δ(i) 0

)
(µ− i) + o((µ− i)t−1/2)
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and thus (see (2.11)) a1 = (1− η)δ(i) + o(t−1/2), a2 = (β1 + η)δ−1(i) + o(t−1/2),
and a3 = (β2 − η)δ(i) + o(t−1/2). It follows (see (2.12)) that

û(y, t) = −(β1 + β2) + o(t−1/2) =
8(1− µ2

0)

(1 + µ2
0)2
√
t

ReB0 + o(t−1/2), (3.34a)

x(y, t) = y + 2 ln((1− η)δ(i)) + o(t−1/2) = y + y0(ξ) + O(t−1/2), (3.34b)

where (see (3.28)) y0(ξ) = 2
π

∫ µ0
1/µ0

ln(1−|r(s)|2)
s2+1

ds.

Recalling the definition (3.22) of B0 and introducing the real-valued functions
ϕδ(ξ, t) and ϕβ(ξ) (see (3.20) and (3.17)) by

βµ0(ξ) =
√
h0eiϕβ(ξ), δ2

µ0(ξ, t) = eiϕδ(ξ,t),

we have B0 =
√
h0

(1+µ−2
0 )
√

2f0
ei(π

2
+ϕδ(ξ,t))+ϕβ(ξ)) and thus

ReB0(ξ, t) =

√
h0

(1 + µ−2
0 )
√

2f0

cos
{π

2
+ ϕδ(ξ, t) + ϕβ(ξ)

}
. (3.35)

Substituting (3.35) into (3.34a) gives the asymptotics of the solution of the
Cauchy problem for the mCH equation (in the form (2.2)) expressed paramet-
rically, in the (y, t) variables. Recalling the definitions of f0, ϕδ, ϕβ, βµ0 (see
(3.14), (3.17), (3.20)) and the relationship (3.13) between µ0 and κ0 we obtain
the following large-time asymptotics along the rays y

t = ξ for 0 < ξ < 2:

û(y, t) =
C1(ξ)√

t
cos {C2(ξ)t+ C3(ξ) ln t+ C4(ξ)}+ o(t−1/2), (3.36)

where

C1(ξ) = −
(

8h0κ0

3− 4κ2
0

) 1
2

, (3.37a)

C2(ξ) =
32κ3

0

(1 + 4κ2
0)2

, (3.37b)

C3(ξ) = −h0, (3.37c)

C4(ξ) =
3π

4
− 1

π

(∫ −1/µ0

−µ0
+

∫ µ0

1/µ0

)
ln

1− |r(s)|2

1− |r(µ0)|2
ds

s− µ0

− h0 ln
128κ3

0(3− 4κ2
0)

(1 + 4κ2
0)3

− arg(−r̄(µ0)) + arg Γ(ih0), (3.37d)

taking into account that h0, κ0, and µ0 are defined as functions of ξ.
In order to express the asymptotics of ũ(x, t) = û(y(x, t), t) in the (x, t) vari-

ables, we notice that (3.34b) reads

y

t
=
x

t
− y0

t
+ O(t−3/2)
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and thus introducing ζ := x
t gives Cj(ξ) = Cj(ζ) + O(t−1), j = 1, . . . , 4 and

C2(ξ)t = C2(ζ)t− dC2

dζ
(ζ)y0(ζ) + o(1).

It follows that the leading term of the asymptotics for ũ(x, t) can be obtained
from the right hand side of (3.36), where

(i) Cj(ξ) is replaced by Cj(ζ) for j = 1, 2, 3, and

(ii) C4(ξ) is replaced by C̃4(ζ) := C4(ζ)− C ′2(ζ)y0(ζ).

In turn, calculating C ′2(ζ) in terms of κ0(ζ) and using (3.37b) and ζ =
2−8κ20

(1+4κ20)2
,

we get C ′2(ζ) = −2κ0 and thus

C̃4(ζ) = C4(ζ) +
4κ0(ζ)

π

∫ µ0

1/µ0

ln(1− |r(s)|2)

s2 + 1
ds. (3.38)

The asymptotic analysis we have presented above can be summarized in the
following

Theorem 3.1. In the solitonless case, the solution ũ(x, t) of the Cauchy
problem for the mCH equation in the form (2.2) has the following large-time
asymptotics along the rays x

t =: ζ in the sector of the (x, t) half-plane 0 < ζ < 2:

ũ(x, t) =
C1(ζ)√

t
cos
{
C2(ζ)t+ C3(ζ) ln t+ C̃4(ζ)

}
+ o(t−1/2) (3.39)

with C1, C2, C3 defined by (3.37a)–(3.37c), and C̃4 defined by (3.38)–(3.37d).

Moreover, in these definitions h0 = − 1
2π ln(1−|r(µ0)|2), κ0(ζ) =

(√
1+4ζ−1−ζ

4ζ

) 1
2
,

and µ0(ζ) > 1 is characterized by the relation κ0(ζ) = 1
4(µ0(ζ)− µ0(ζ)−1).

By using the relation (2.1) between ũ and u we immediately obtain, as a
corollary, the large-time asymptotics for u(x, t) in the sector 1 < x

t < 3.

Theorem 3.2. Let u0(x) be a smooth function which tends sufficiently fast
to 1 as x→ ±∞ and satisfies (1− ∂2

x)u0(x) > 0 for all x. Assume we are in the
solitonless case, i.e., assume that the spectral function associated with u0(x) has
no zeros in the upper half-plane and thus the “discrete spectrum” is empty.

Then the solution u(x, t) of the Cauchy problem (1.1) for the mCH equation
has the following large-time asymptotics in the sector of the (x, t) half-plane de-
fined by 1 < ζ := x

t < 3:

u(x, t) = 1 +
C1(ζ − 1)√

t
cos
{
C2(ζ − 1)t+ C3(ζ − 1) ln t+ C̃4(ζ − 1)

}
+ o(t−1/2). (3.40)

The error term is uniform in any sector 1 + ε < ζ < 3 − ε where ε is a small
positive number.
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3.3. Range −1
4 < ξ < 0. This range is characterized by the presence of

eight real critical points: ±µ0, ±µ1, ±µ−1
0 , and ±µ−1

1 , see Figure 3.2. Similarly
to the range 0 < ξ < 2, we proceed, first, by evaluating the contribution to (3.12)
from γ0 and −γ1 and then by using the symmetries µ 7→ −µ and µ 7→ 1/µ. Notice
that choosing −γ1 surrounding −µ1 is suggested by the structure (3.7) of Σb(ξ):
the parts of Σb(ξ) ending at µ0 and at −µ1 are located to the left of these points.
This implies that the construction of the local approximation near −µ1 follows
exactly the same lines as for µ0, the only difference being in the contributions to
the right hand side of (3.2.1) from other critical points.

Namely, from (3.4) we have

δ(µ, ξ) =

(
µ− µ0

µ− µ−1
0

)ih0 (µ+ µ−1
0

µ+ µ0

)ih0 (
µ− µ−1

1

µ+ µ−1
1

)ih1 (
µ+ µ1

µ1 − µ

)ih1

eχ(µ), (3.41)

where hj = − 1
2π ln(1− |r(µj)|2), j = 0, 1 and

χ(µ) =
1

2πi

{
−
∫ −µ1
−∞

ln(µ− s)d ln(1− |r(s)|2)

+

(∫ −µ−1
0

−µ0
+

∫ µ0

µ−1
0

)
ln

1− |r(s)|2

1− |r(µ0)|2
ds

s− µ

+

∫ µ−1
1

−µ−1
1

ln
1− |r(s)|2

1− |r(µ1)|2
ds

s− µ
−
∫ +∞

µ1

ln(s− µ)d ln(1− |r(s)|2)

}
. (3.42)

Thus, using κ0(µ0), f0(κ0(µ0)), (see (3.13), (3.14)), and similarly for κ1(µ1) and
f1(κ1(µ1))

δ(µ, ξ) ≈ µ̂ih0(128f0κ
2
0t)
− ih0

2

(
κ1 + κ0

κ1 − κ0

)ih1

eχ(µ0)

with µ̂ = (µ− µ0)
(

1 + 1
µ20

)√
2f0t for µ near µ0 and

δ(µ, ξ) ≈ µ̂ih1(−128f1κ
2
1t)
− ih1

2

(
κ1 + κ0

κ1 − κ0

)ih0

eχ(−µ1)

with µ̂ = (µ + µ1)
(

1 + 1
µ21

)√
−2f1t for µ near −µ1 (notice that f0(κ0) =

κ0(3−4κ20)

(1+4κ20)3
> 0 whereas f1(κ1) =

κ1(3−4κ21)

(1+4κ21)3
< 0). Consequently, the coefficients

δµ0(ξ, t) and δµ1(ξ, t) to be used in the construction of m0 (3.18) for µ near µ0

and −µ1, respectively, are as follows:

δµ0(ξ, t) = e−itθ̂(κ0)eχ(µ0)

(
κ1 + κ0

κ1 − κ0

)ih1

(128f0κ
2
0(µ0)t)−

ih0
2 , (3.43a)

δµ1(ξ, t) = eitθ̂(κ1)eχ(−µ1)

(
κ1 + κ0

κ1 − κ0

)ih0

(−128f1κ
2
1(µ1)t)−

ih1
2 , (3.43b)
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which implies (cf. (3.21))

m−1
0 (y, t, µ) = I +

Bµ0(ξ, t)√
t(µ− µ0)

+ O(t−1), for µ inside γ0,

m−1
0 (y, t, µ) = I +

Bµ1(ξ, t)√
t(µ+ µ1)

+ O(t−1), for µ inside − γ1,

where (cf.(3.22))

Bµ0(ξ, t) =

(
0 B0(ξ, t)

B̄0(ξ, t) 0

)
, Bµ1(ξ, t) =

(
0 B1(ξ, t)

B̄1(ξ, t) 0

)
,

with

B0(ξ, t) =

(
κ1 + κ0

κ1 − κ0

)2ih1 iδ2
µ0(ξ, t)βµ0(ξ)

(1 + µ−2
0 )
√

2f0(κ0)
, (3.44a)

B1(ξ, t) =

(
κ1 + κ0

κ1 − κ0

)2ih0 iδ2
µ1(ξ, t)βµ1(ξ)

(1 + µ−2
1 )
√
−2f1(κ1)

. (3.44b)

Here βµ0(ξ) is given by (3.20) and

βµ1(ξ) =
√
h1ei(π4−arg(−r̄(−µ1))+arg Γ(ih1)).

In turn, due to the symmetries, the asymptotics for m̂(y, t, 0), m̂(y, t, i), and
m̂1(y, t) (and thus for MR(y, t, 0), MR(y, t, i), and MR

1 (y, t)) in the present case
(cf. (3.24)-(3.26) and (3.29)) involve two terms:

MR(y, t, 0) = I +
4i√
t

(
ImB0(ξ, t)

µ0
− ImB1(ξ, t)

µ1

)(
0 1
−1 0

)
+ o(t−1/2),

MR(y, t, i) =

(
I +

2i√
t

(
ImB0(ξ, t)

µ0
− ImB1(ξ, t)

µ1

)(
0 1
−1 0

))
δσ3(i, ξ)

+ o(t−1/2),

MR
1 (y, t) =

4√
t

 0 Re
(

B0
(µ0−i)2

+ B1
(µ1+i)2

)
Re
(

B̄0
(µ0−i)2

+ B̄1
(µ1+i)2

)
0

 δσ3(i, ξ)

+ o(t−1/2),

where δ(i, ξ) is now given by

δ(i, ξ) = exp

{
1

π

(∫ µ−1
1

0
+

∫ µ0

µ−1
0

+

∫ +∞

µ1

)
ln(1− |r(s)|2)

s2 + 1
ds

}
. (3.45)

It follows that the asymptotics for the parametric representation of ũ, see
(3.34a) and (3.34b), takes the form

û(y, t) =
8√
t

(
(1− µ2

0)

(1 + µ2
0)2

ReB0 +
(1− µ2

1)

(1 + µ2
1)2

ReB1

)
+ o(t−1/2), (3.46a)
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x(y, t) = y + y01(ξ) + O(t−1/2), (3.46b)

where y01(ξ) = 2
π

(∫ µ−1
1

0 +
∫ µ0
µ−1
0

+
∫ +∞
µ1

)
ln(1−|r(s)|2)

s2+1
ds.

Recalling the definitions (3.44) of Bj , j = 0, 1, and arguing as in the case 0 <
ξ < 2, we arrive at the asymptotics of û(y, t) (cf. (3.36))

û(y, t) =
∑
j=0,1

C
(j)
1 (ξ)√
t

cos
{
C

(j)
2 (ξ)t+ C

(j)
3 (ξ) ln t+ C

(j)
4 (ξ)

}
+ o(t−1/2), (3.47)

where

C
(j)
1 (ξ) = −

(
8hjκj
|3− 4κ2

j |

) 1
2

, (3.48a)

C
(j)
2 (ξ) =

(−1)j32κ3
j

(1 + 4κ2
j )

2
, (3.48b)

C
(j)
3 (ξ) = −hj , (3.48c)

C
(j)
4 (ξ) =

3π

4
− 2iχ((−1)jµj)− hj ln

128κ3
j |3− 4κ2

j |
(1 + 4κ2

j )
3

− arg(−r̄((−1)jµj)) + arg Γ(ihj) + 2h1−j ln
κ1 + κ0

κ1 − κ0
, (3.48d)

and χ(µ) is given by (3.42).

Returning to the (x, t) variables, C
(j)
4 (ξ), j = 0, 1 are to be replaced, similarly

to (3.38), by

C̃
(j)
4 (ζ) = C

(j)
4 (ζ) +

(−1)j4κj(ζ)

π

(∫ µ−1
1

0
+

∫ µ0

µ−1
0

+

∫ +∞

µ1

)
ln(1− |r(s)|2)

s2 + 1
ds,

(3.49)
which finally leads us to

Theorem 3.3. In the solitonless case, the solution ũ(x, t) of the Cauchy
problem for the mCH equation in the form (2.2) has the following large-time
asymptotics along the rays x

t =: ζ in the sector of the (x, t) half-plane −1
4 < ζ <

0:

ũ(x, t) =
∑
j=0,1

C
(j)
1 (ζ)√
t

cos
{
C

(j)
2 (ζ)t+ C

(j)
3 (ζ) ln t+ C̃

(j)
4 (ζ)

}
+ o(t−1/2)

with an error term uniform in any sector −1
4 + ε < ζ < −ε where ε is a small

positive number. The coefficients C
(j)
1 , C

(j)
2 , C

(j)
3 are defined by (3.48a)–(3.48c)

and C̃
(j)
4 is defined by (3.49)–(3.48d). In these definitions

hj = − 1

2π
ln(1− |r(µj)|2),
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κ0(ζ) =

(√
1 + 4ζ − 1− ζ

4ζ

) 1
2

, κ1(ζ) =

(
−
√

1 + 4ζ + 1 + ζ

4ζ

) 1
2

,

and µj(ζ) > 1, j = 0, 1 is characterized by the relation κj(ζ) = 1
4(µj(ζ)−µj(ζ)−1).

Using again (2.1) we obtain, as a corollary, the large-time asymptotics of
u(x, t) in the sector 3

4 <
x
t < 1.

Theorem 3.4. Let u0(x) be a smooth function which tends sufficiently fast
to 1 as x→ ±∞ and satisfies (1− ∂2

x)u0(x) > 0 for all x. Assume we are in the
solitonless case, i.e., assume that the spectral function associated with u0(x) has
no zeros in the upper half-plane and thus the “discrete spectrum” is empty.

Then the solution u(x, t) of the Cauchy problem (1.1) for the mCH equation
has the following large-time asymptotics along the rays x

t =: ζ in the sector of the
(x, t) half-plane defined by 3

4 < ζ < 1:

u(x, t) = 1 +
∑
j=0,1

C
(j)
1 (ζ − 1)√

t
cos
{
C

(j)
2 (ζ − 1)t+ C

(j)
3 (ζ − 1) ln t+ C̃

(j)
4 (ζ − 1)

}
+ o(t−1/2). (3.50)

The error term is uniform in any sector 3
4 + ε < ζ < 1− ε where ε is small and

positive.

4. Soliton asymptotics

As for other soliton equations, the soliton solutions of the mCH equation are
associated with the residue conditions (2.7) (see also [37, 38] for the effects of
residue conditions in the case of nonlocal nonlinear integrable equations). Ac-
cordingly, these conditions give rise to soliton asymptotics in a dedicated sector
of the (x, t) plane. They can be handled by adding to the contour small circles
around each µj and its symmetry counterparts and thus reducing the residue
conditions to associated jump conditions across the circles and then proceeding
as in the case without residue conditions [5].

The one-soliton solution u ≡ uθ,δ with parameters (θ, δ), where θ ∈ (0, π2 ),
has the following parametric representation [3]:

u(x, t) = ũ(x− t, t) + 1 = û(y(x− t, t), t) + 1, (4.1a)

where

û(y, t) = 4 tan2 θ
z2(y, t) + 2 cos2 θ · z(y, t) + cos2 θ

(z2(y, t) + 2z(y, t) + cos2 θ)2
z(y, t), (4.1b)

x(y, t) = t+ y + 2 ln
z(y, t) + 1 + sin θ

z(y, t) + 1− sin θ
, (4.1c)

and

z(y, t) = 2δ sin θ e
sin θ

(
y− 2

cos2 θ
t
)
. (4.1d)
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Notice that if θ ∈ (π3 ,
π
2 ), then the x to y correspondence (4.1c) is not one-

to-one and thus in this case (4.1) represent a loop-type multi-valued function of
x [3]. On the other hand, if θ ∈ (0, π3 ), then (4.1) represent a smooth function,
which dominates the long-time behavior of the solution of problem (1.1) in an
associated sector. Similarly to [5] the following theorem holds:

Theorem 4.1 (soliton asymptotics). Assume that a(µ) associated with u0(x)
has 2n simple zeros: µj = eiθj with 0 < θ1 < · · · < θn <

π
3 and µn+l = −µ̄l for

l = 1, . . . , n. Then the asymptotics of u (understood as a global solution of (1.1a)
or a solution continued beyond possible blow-ups following the RH formalism) in
the sector 3 < x

t < 9 is given as follows:

1. In the sectors
∣∣∣xt − 1− 2

cos2 θj

∣∣∣ < ε with any sufficiently small ε > 0,

u(x, t) = uj(x, t) + O(t−l), j = 1, . . . , n

with l ≥ 1 depending on the rate of decay of u0(x)− 1 as |x| → ∞, where uj
is given, parametrically, by (4.1) with θ, δ, and z replaced by θj, δj, and zj
respectively, where

zj(y, t) = 2δj sin θj e
sin θj

(
y− 2

cos2 θj
t+y0j

)

and y0
j are constants determined by {θm, δm}nm=j+1.

2. Outside these sectors, u(x, t) = O(t−l).

Remark 4.2. Since it is the RH problem parametrized by y and t that under-
goes the asymptotic analysis, and the soliton solutions (4.1b) are smooth in (y, t)
variables, the asymptotic results of Theorem 4.1 hold true for the mCH equation
written in (y, t) variables, see [3], even if a(µ) has zeros at some µ∗ = eiθ∗ with
θ∗ ∈ (π3 ,

π
2 ). On the other hand, this allows deducing a sufficient condition for

wave breaking of solutions of problem (1.1a) (in (x, t) variables): If a(µ) has a
zero µ∗ = eiθ∗ with θ∗ ∈ (π3 ,

π
2 ), then wave breaking occurs at a certain finite time.

In this case, the mechanism of wave breaking consists in breaking the one-to-one
correspondence x↔ y (cf. [8]).

Remark 4.3 (other regions). u(x, t) decays rapidly to 0 in the sectors x
t >

9 and x
t <

3
4 , cf. [7]. This is due to the fact that for these ranges of values of

x
t , θ(µ, ξ) has no real stationary points (lying on the contour of the original RH
problem).
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Асимптотики за великим часом для модифiкованого
рiвняння Камаси–Хольма з ненульовими крайовими

умовами
Iryna Karpenko

Ми розглядаємо модифiковане рiвняння Камаси–Хольма (мКХ)mt+(
(u2 − u2x)m

)
x

= 0,m := u−uxx на осi −∞ < x < +∞, де u(x, t) задовiль-
няє ненульовi крайовi умови на нескiнченностi: u(x, t)→ 1 при x→ ±∞.
Метою роботи є дослiдження асимптотики за великим часом розв’язкiв
початкової задачi, застосовувуючи формалiзм задачi Рiмана–Гiльберта,
що був нещодавно розроблений у [3]. Основна увага придiляється одер-
жанню асимптотики у двох секторах пiвплощини (x, t) (t > 0), де основ-
нi асимптотичнi члени мають вигляд модульованих та спадаючих (як
t−1/2) тригонометричних осциляцiй, а також асимптотицi у секторi, де
у поведiнцi розв’язку початкової задачi домiнують солiтони.

Ключовi слова: задача Рiмана–Гiльберта, нелiнiйний метод найшвид-
шого спуску, солiтони
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