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The algebraic method of singular reduction is applied for non regular
group action on manifolds which provides singular symplectic spaces. The
problem of deformation quantization of the singular surfaces is the focus. For
some examples of singular Poisson spaces Grönewold–Moyal series is explic-
itly constructed and convergence is checked. Some examples of deformation
quantization of singular Poisson spaces are considered in detail.

Key words: Poisson manifold, constrains, singular symplectic reduction,
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1. Introduction

The problem of quantum systems with constraints goes back to Dirac [6].
The general method of Meyer–Marsden–Weinstein works for reduction of a sym-
plectic manifold with constraints and a free group action. If the group action is
not free the constraint locus is singular. The singular points are often the most
interesting because they have smaller orbits and larger symmetry. Sniatycki and
Weinstein [12] applied a pure algebraic method for symplectic reduction in a
modelling case. The problem of singular symplectic reduction of the angular mo-
mentum was studied by geometric methods in [1,5]. Batalin–Vilkovisky–Fradkin’s
method [3,7] was proposed for gauge systems. Stasheff extended this method for
a wider class of singular reduced spaces in terms of differential graded free alge-
braic resolutions. In [4] the BRST method was developed based on the rather
complicated homological construction including ghosts fields.

The method of algebraic singular reduction can be applied to any algebraic
Poisson manifold (X, q) with an algebraic momentum map and action of an al-
gebraic group G. It ends up on an affine Poisson algebraic variety (Xred, qred)
with an algebra sheaf Ored of G invariant functions restricted to the constraint
locus. This variety is singular if the group action is not free. This is the case
of the Yang–Mills theory and general relativity where the constraint locus has
quadratic singularities and the reduced space Xred is singular [2].

We give here explicit constructions of deformation quantization of some singu-
lar spaces Xred. Our method is based on the general Grönewold–Moyal formula.
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We check in the simplest case that the associative product converges for local
holomorphic arguments.

The problem of quantization of spaces with singularity was rased by Kontse-
vich [9]. To my best knowledge there is no examples of deformation quantization
of singular spaces so far. See [11] for basics of theory of quantization of singular
spaces.

2. Singular reduction

The following construction of singular reduction is close to that of [12]. Let
X be a real algebraic variety endowed with a Poisson bracket q defined on the
algebra of real rational functions on X. In a more general setting let (X,OX) be a
real algebraic scheme with a Poisson biderivation q : OX ×OX → OX . Let G be
an algebraic group defined on X such that the bracket q is G covariant and OX/G

be the subsheaf of OX of G invariant germs. It is a sheaf of algebras defined on
the orbit space X/G (which needs not to be an analytic manifold). An invariant
Poisson bracket q can be lifted to a Poisson bracket qG on OX/G.

Let J : X → g∗ be an algebraic mapping called momentum map, where g∗ is
the dual space to Lie algebra g of G. The set Y = J−1 (0) is the subscheme of OX

(called constraint locus) with structure sheaf OY = OX/ (J) , where (J) denotes
the ideal in OX generated by elements of J . We suppose that (J) is invariant
under action of G and J generates a mapping JG defined on Y/G making the
diagram commutative:

Y → X
J→ g∗

↓ ↓ ‖
Xred = Y/G → X/G

JG→ g∗
.

We assume further that the bracket q is Hamiltonian that is for any γ ∈ g and
any a ∈ OX , we have

q (〈γ, J〉 , a) = dGA (γ) (a) (2.1)

where A : X × G → X denotes the group action and dGA : g → T (X) is the
tangent map.

Proposition 2.1. The bracket q as above can be lifted to a biderivation qred
on Xred + Y/G. This is a Poisson bracket.

Proof. Check that inclusion q (j, b) ∈ (J) holds for any j ∈ (J) and arbitrary
b ∈ OX/G. Let j = 〈γ, J〉 a for some a ∈ OX and γ ∈ g. We have

q (j, b) = 〈γ, J〉 q (a, b) + aq (〈γ, J〉 , b)

because q is biderivation. The first term belongs to (J) and by (2.1)

q (〈γ, J〉 , b) = dGA (γ) (b) = 0

since b is constant on any orbit and the field dGA (γ) is tangent to orbits of G.
Finally q (j, b) ∈ (J) .
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The Poisson variety
(
Xred,OY/G, qred

)
will be called singular symplectic re-

duction of (X, q,G, J). This construction is translated to the category of sheaves
of smooth functions on X with obvious modifications.

3. The Poisson bracket of Hamiltonian fields

Let A be a unitary commutative algebra over a field K of zero characteristic.

Proposition 3.1. Let q be a Poisson bracket on A. If q (q (a, b) , ·) = 0 for
some a, b ∈ A, then the Hamiltonian fields A (·) = q (·, a) and B (·) = q (b, ·)
commute.

This follows from the Jacobi identity.
For arbitrary derivations A, B onA, we define the biderivation (A ∧ B) (a, b) =

A (a) B (b)− B (a) A (b), a, b ∈ A. For a biderivation q, we denote

Jac [q] (a, b, c) ≡ q (q (a, b) , c) + q (q (b, c) , a) + q (q (c, a) , b)

and have Jac [q] = 0 if q is a Poisson bracket.

Proposition 3.2. If fields Ai, Bi, i = 1, . . . , n, are defined on A and satisfy
[Ai,Bj ] = 0 for any i and j then bracket q =

∑
Ai∧Bi fulfils the Jacobi identity.

Proof. For n = 1 this identity can be checked by a direct computation. In
the general case we set U =

∑
tiAi, V =

∑
tn−iBi where t is a real parameter.

The fields U and V commute, hence Jac [U ∧ V ] = 0. The left hand side is a
polynomial in t which vanishes identically. In particular the term with tn is equal
zero which implies the statement.

We say that a subalgebra B of A is dense, if any derivation δ in A that
vanishes on B vanishes also on A.

Proposition 3.3. Let q be a Poisson bracket on A. If there exist elements
ai,bi ∈ A, i = 1, . . . , n, such that

q
(
ai, aj

)
= q

(
bi,bj

)
= 0, q

(
ai, bj

)
= δij , i, j = 1, . . . , n, (3.1)

and ai,bi generate the dense subalgebra B of A then

q (·, ·) =

n∑
1

q (·,bk) ∧ q (ak, ·) . (3.2)

Proof. Proposition 3.1 implies commutativity of any pair of the fields q (·,bk),
q (ak, ·), i, j = 1, 2, . . . , n. By (3.1) the biderivation

[·, ·] +
n∑
+1

q (·, bk) ∧ q (ak, ·) +
n∑
1

q (·, bk) q (ak, ·)−
n∑
1

q (·, ak) q (bk, ·)

fulfils

[ai, bj ] =
n∑

k=1

q (ai,bk) q (ak, bj)−
n∑

k=1

q (bj ,bk) q (ak, ai) = δij

for any i, j that is [ai, bj ] = q (ai, bj) . Therefore [p, q] = q (p, q) for arbitrary
p, q ∈ B.This implies that the brackets coincide on A since B is dense in A.
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4. The Grönewold–Moyal star product

The idea of quantization of a physical space-time supplied with a Pois-
son structure goes back to Weyl [15]. It was developed by Grönewold [8] and
Moyal [10]). The idea was used later in the form of deformation quantization by
Kontsevich [9] and formalized by the author for the category of singular analytic
spaces [11].

Theorem 4.1. For a commutative R-algebra A with Poisson bracket q and
elements ai,bj fulfilling (3.1), the generalized Grönewold–Moyal (GM) product is
a bilinear associative operation

(u ∗ v) (t) + uv +
∞∑
k=1

tk

k!
Qk (u, v) , u, v ∈ A, (4.1)

where for any k = 1, 2, 3, . . .

Qk (u, v) +
k∑

j=0

(−1)j k!

j! (k − j)!

n∑
il=1

Ai1 · · ·AijBij+1 · · ·Bik (u) Bi1 . . .BijAij+1 · · ·Aik (v)

and

Ak = q (·, bk) , Bk = q (ak, ·) , k = 1, . . . , n.

In particular Q1 (u, v) = q (u, v) .

Proof. For the phase space T ∗ (Rn) = Rn × Rn the classical Poisson bracket

q (a, b) =
∑ ∂a

∂xi
∂b

∂ξi
− ∂a

∂ξi

∂b

∂xi
(4.2)

is a particular case of formula (3.2) written for coordinate functions ai = xi,
bi = ξi. Operation (4.1) has the same form as the classical Grönewold–Moyal
star series. Only Jacobi identity is necessary for the proof of this property [8,10].
This implies that (4.1) is an associative operation in the general case.

5. Invariant quantization of a flat phase space

The action of the orthogonal group O (n) on Rn × Rn : (x, ξ) 7→ (Ux,Uξ)
preserves the Poisson bracket and momentum map

J : Rn × Rn → ∧2Rn, J (x, ξ) = x ∧ ξ.

The constraint locus Y = J−1 (0) consists of pairs (x, ξ) of proportional vectors
x and ξ. For elements ejk = yj∂/∂yk − yk∂/∂yj , j 6= k = 1, . . . , n of Lie algebra
of the group O (n), we have 〈ejk, J〉 = xjξk − xkξj and equation

q (〈ejk, J〉 , a) = ξk
∂a

∂ξj
− ξj

∂a

∂ξk
+ xj

∂a

∂xk
− xk ∂a

∂xj
= dGA (ejk) (a)
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implies (2.1). By Proposition 2.1 the bracket q is lifted to the Poisson bracket
qred in Y/G.

Let A be the algebra of real polynomials on X = Rn×Rn. The algebra AY/G

of invariant polynomials on X with respect to the action of O (n) is generated by

s1 = |x|2 , s2 = |ξ|2 , s3 = 〈x, ξ〉 .

The generators fulfils one equation f (s) + s23 − s1s2 = 0, hence AY/G
∼=

R [s1, s2, s3] / (f) . The bracket is defined by

qred (s1, s2) = 4s3, q (s1, s3) = 2s1, q (s2, s3) = −2s2

or equivalently

qred = 4s3∂1 ∧ ∂2 − 2s2∂2 ∧ ∂3 − 2s1∂3 ∧ ∂1. (5.1)

The elements a1 =
√
s1, b1 =

√
s2 belong to the quadratic extension A∗ of the

algebra AY/G and

qred (a1,b1) =
4s3

2
√
s12
√
s2

= 1.

This bracket fulfils conditions of Proposition 3.3 for n = 1 and the algebra B of
polynomials of a1 and b1 is dense in A∗. It follows that the bracket qred admits
the quantization of GM type on the algebra A∗.

6. Convergence of the Grönewold–Moyal series

Theorem 6.1. The terms Qm of the GM quantization of bracket (5.1) are
bidifferential operators with polynomial coefficients of degree ≤ m in each argu-
ment.

Proof. The fields

A = q (·, b1) = q (·,
√
s2) = 2

√
s1∂1 +

√
s2∂3,

B = q (a1, ·) = q (·,
√
s1) = 2

√
s2∂2 +

√
s1∂3

commute, vanish on f and satisfy A ∧ B = q. By Theorem 4.1 for an arbitrary
even k, we have

Qk (a, b) =
∑

i+j=k/2

k!

2i!2j!
A2iB2j (a) B2iA2j (b)

−
∑

i+j+1=k/2

k!

(2i+ 1)! (2j + 1)!
ABA2iB2j (a) ·ABA2jB2i (b) . (6.1)

For any odd k,

Qk (a, b) =
∑

i+j=k−1
(−1)j

(k − 1)!

i!j!
q
(
AiBj (a) ,AjBi (b)

)
.
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where second order differential operators

A2 = 4s1∂
2
1 + 2∂1 + s2∂

2
3 , B2 = 4s2∂

2
2 + 2∂2 + s1∂3,

BA = AB = 4s3∂1∂2 + 2s1∂1∂3 + 2s2∂2∂3 + s3∂
2
3

have linear coefficients.

Theorem 6.2. For arbitrary holomorphic functions a, b defined on the ball{
s ∈ C3, |s| ≤ r

}
, the GM series (4.1) for the Poisson bracket (5.1) converges if

{|s| < r/4} and |t| < r1/2/18.

The proof is given in the last section.

7. Commuting matrices

Let M2 be the space of 2 × 2 matrices with complex entries. The manifold
X = M2 ×M2 is endowed with Poisson bracket

q =
4∑

k=1

∂

∂ak
∧ ∂

∂bk
, (7.1)

where

A =

(
a1 a3
a4 a2

)
, B =

(
b1 b3
b4 b2

)
are coordinates in X. The group Sl (2,C) acts diagonally by

g : (A,B) 7→
(
gAg−1, gBg−1

)
.

Let J : (A,B) 7→ [A,B] be the momentum map on X; the constraint locus is the
cone

Y = {(A,B) :b3 (a1 − a2)− a3 (b1 − b2) = 0,

b4 (a1 − a2)− a4 (b1 − b2) = 0}. (7.2)

Condition (2.1) is easy to check. The polynomials

α1 = trA, α2 = detA, β1 = trB, β2 = detB, γ = trAB

generate the algebra AX/G of invariant polynomials on X. The reduced Poisson
bracket equals

qred = 2
∂

∂α1
∧ ∂

∂β1
+ β1

∂

∂α1
∧ ∂

∂β2
+ α1

∂

∂α2
∧ ∂

∂β1
+ γ

∂

∂α2
∧ ∂

∂β2

+

(
α1

∂

∂α1
− β1

∂

∂β1
+ 2α2

∂

∂α2
− 2β2

∂

∂β2

)
∧ ∂

∂γ
. (7.3)



184 Victor Palamodov

Proposition 7.1. The algebra AY/G of invariant polynomials of the algebra
AX/G restricted to Y is isomorphic to B/ (ρ) , where B = R [α1, α2, β1, β2, γ] and

ρ = γ2−α1β1γ + α2β
2
1+β2α

2
1 − 4α2β2 =

(
γ−1

2
α1β1

)2

− 1

4
π,

π =
(
4α2 − α2

1

) (
4β2 − β21

)
(7.4)

Proof. Check that ρ = 0 on Y. For any pair (A,B) ∈ Y, there exists g ∈
Sl (2, C) such that both matrices gAg−1 and gBg−1 have Jordan form. This is
easy to prove by means of (7.2). Let (a1, a2) and (b1, b2) be its diagonal elements,
respectively. Then

α1 = a1+a2, α2 = − (a1 − a2)2 , β1 = b1+b2, β2 = − (b1 − b2)2 , γ = a1b1+a2b2

and (7.4) can be checked directly. It is easy to show that this equation generates
all algebraic relations.

It follows that the spectrum of the algebra AY/G is a two-fold covering of C4

ramified over the discriminant set {π = 0} .

Conclusion 7.2. The singular symplectic reduction of the variety
(X,O (2) , q) is singular hypersurface Xred = {ρ = 0} with coordinate functions
α1, α2, β1, β2, γ defined by (7.4) with the Poisson bracket qred as in (7.3).

Let A∗ be the extension of the algebra AY/G by means of the element

(2γ − α1β1)
−1/2 = π−1/4.

Proposition 7.3. Elements

a1 =
1√
2
α1, b1 =

1√
2
β1,

a2 =
1

2

α̃
3/4
2

β̃
1/4
2

, b2 =
1

2

β̃
3/4
2

α̃
1/4
2

(7.5)

of algebra A∗ fulfil (3.1) with n = 2 where α̃2 = 4α2 − α2
1, β̃2 = 4β2 − β21 .

Proof. It is easy to check that

q (a1,b1) = 1, q (a1, a2) = q (a1,b2) = q (a2,b1) = q (b1, b2) = 0.

By (7.3)

q
(
α̃2, β̃2

)
= 16γ − 8α1β1 = 8π1/2 (7.6)

on A∗ hence by (7.6)

q (a2, b2) =
1

4

[
α̃
−1/4
2 β̃

−1/4
2 q

(
α̃
3/4
2 , β̃

3/4
2

)
− α̃3/4

2 β̃
3/4
2 q

(
α̃
1/4
2 , β̃

1/4
2

)]
= 1.

Corollary 7.4. The Poisson bracket qred admits a quantization by means of
GM series with the Hamiltonian fields Ak = q (·, bk), Bk = q (ak, ·), k = 1, 2.
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This follows from Proposition 3.3. These fields are well defined on A∗ since
they vanish on ρ. Explicitly,

A2 = q (·,b2)

= b2
∂

∂γ
+

3

4
π−1/4 (4γ − 2α1β1)

∂

∂α2
− 1

4
π−1/4 (4γ − 2α1β1)

β̃2
α̃2

∂

∂β2
√

2A1 = 2
∂

∂α1
+ α1

∂

∂α2
+ β1

∂

∂γ
,

√
2B1 = 2

∂

∂β1
+ β1

∂

∂β2
+ α1

∂

∂γ
,

2A2 =
3

2
π1/4

∂

∂α2
− 1

2
π1/4

β̃2
α̃2

∂

∂β2
+ b2

∂

∂γ
= q (·,b2) ,

2B2 =
3

2
π1/4

∂

∂β2
− 1

2
π1/4

α̃2

β̃2

∂

∂α2
+ a2

∂

∂γ
= q (a2, ·)

since

π1/4
β̃2
α̃2

=
β̃
5/4
2

α̃
3/4
2

.

Conjecture 7.5. The Grönewold–Moyal quantization of A∗ generated by
elements (7.5) can be lifted to A.

This conjectured is fulfilled at least for the second term Q2 (a, b) .

Other groups. The above method works for the conjugate action of the
orthogonal group O (2) on the space of pairs of real symmetric 2× 2 matrices as
well for action of the unitary group SU (2) on the space of pairs of Hermitian 2×
2 matrices. The algebra of invariants is generated by the same five symmetric
polynomials. This bracket can be quantized in a similar way.

8. K3 surfaces

K3 surfaces are topologically trivial Calabi–Yau 2-manifolds. Any nonsingular
variety Xf given in CP3 by an equation f = 0 of degree 4 is a K3 surface. The
Poisson bracket qf on O

(
CP3

)
/ (f) is equal to const x−10 q0 on the chart X0 =

{x0 6= 0}, where

q0 (a, b) = det

∂1a ∂2a ∂3a
∂1b ∂2b ∂3b
∂1f ∂2f ∂3f

 , ∂i = ∂/∂xi, (8.1)

and x0, x1, x2, x3 are arbitrary homogeneous coordinates on CP3. Theorem 4.1
can be applied to the nonsinular K3 variety Xf where

f =
1

4

(
−x40 + x41 + x42 + x43

)
.
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The canonical Poisson bracket is given by

qf = x33∂1 ∧ ∂2 + x31∂2 ∧ ∂3 + x32∂3 ∧ ∂1

on the chart X0 = {x0 = 1} . We set a = ϕ (x3)x1, b = ϕ (x3)x2 for an unknown
function ϕ and solve equation

qf (a,b) = qf (ϕ (x3)x1, ϕ (x3)x2) = 1. (8.2)

This equation reads

det

ϕ 0 x1ϕ
′

0 ϕ x2ϕ
′

x31 x32 x33

 = x33ϕ
2 −

(
x41 + x42

)
ϕϕ′ = 1

where ϕ′ = ∂ϕ/∂x3. For κ = ϕ2, we get

κ′ =
2x33

x41 + x42
κ− 2

x41 + x42
=

2x33
1− x43

κ− 2

1− x43

Calculate a solution of this equation

exp

(
2

∫ x3

1

y3

1− y4
dy

)
= exp

(
1

2

∫ x4
3

1

dz

1− z

)
=
(
1− x43

)−1/2
,

κ = −
(
1− x43

)−1/2 ∫ x3

1

dy

(1− y4)1/2

This yields

ϕ (x3) = κ1/2 (z) = (1− z)−1/4 λ1/2, λ (z) +
∫ 1

z

(
1− y4

)−1/2
dy.

The products

a (x) =
x1

(1− z)1/4
λ1/2

(
x43
)
, b (x) =

x2

(1− z)1/4
λ1/2

(
x43
)

belong to extension of the algebra C [x1, x2, x3] by means of κ1/2 and fulfil (8.2).
The corresponding GM series is generated by the fields

A = det

∂1 ∂2 ∂3
0 ∂2b ϕ′b
x31 x32 x33

 = κ1/2
((
x33 − ϕ′x42

)
∂1 + ϕ′x31x2∂2 − x31∂3

)

B = det

∂1a 0 ϕ′a
∂1 ∂2 ∂3
x31 x32 x33

 = κ1/2
(
x1x

3
2ϕ
′∂1 +

(
x33 − x41ϕ′

)
∂2 − x32∂3

)
such that A ∧ B = qf .
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9. Singular surfaces in CP3 of degree 4

Few more examples of quantization of singular surfaces of degree 4 are given
below.

I. The singular hypersurface of degree 4x0x
3
3 − x21x22 = 0 has singularity at

four points where both terms x0x
3
3, x

2
1x

2
2 vanish. The bracket

q = 3x0x
2
3∂1 ∧ ∂2 − 2x1x

2
2∂2 ∧ ∂3 − 2x21x2∂3 ∧ ∂1

is quantized on X0 by the functions

a =
x2

x3
√
x0
, b =

x1
x3
√
x0
.

Equation qf (a, b) = 1 implies that the Hamiltonian fields

B = qf (a,·) = − 1
√
x0

(
x0x3∂1 + 2x1x

3
2x
−2
3 ∂2 + 2x1x

2
2x
−1
3 ∂3

)
,

A = qf (·, b) = − 1
√
x0

(
2x31x2x

−2
3 ∂1 + x0x3∂2 + 2x21x2x

−1
3 ∂3

)
generate a quantization of GM type.

II. If f = x20x
2
3 − x21x22 then

qf = 2x20x3∂1 ∧ ∂2 + 2x1x
2
2∂2 ∧ ∂3 + 2x21x2∂3 ∧ ∂1

and have qf (a1,b1) = 1 if we take

a =
x1

2x0
√
x3
, b =

x2
2x0
√
x3
.

III. For f = x43 − x21x22 we have qf (a,b) = 1 for the elements

a =
x1

x3
√
x3
, b = − x2

x3
√
x3
.

10. Convergence of GM series

Proof of Theorem 6.2. Denote

‖a‖ = max
max|si|≤1

|a (s)|

for any polynomial a on C3. It is easy to check that ‖sia‖ ≤ ‖a‖, i = 1, 2, 3, and
‖∂iam‖ ≤ m ‖am‖ for any polynomial am of degree m. For any operator

p (s,D) =
∑

pijksi∂j∂k, pijk ∈ C,

degree of the polynomial p (s,D) am is ≤ m− 1 and

‖p (s,D) am‖ ≤
m!

(m− 2)!
‖p‖ ‖am‖ , ‖p‖ =

∑
|pijk| .
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For arbitrary i, j, A2iB2j (am) is a polynomial of degree m− i− j and

‖AB (am)‖ ≤ 92
m! (m− 1)!

(m− 2)! (m− 3)!
‖am‖ ≤ 92

(
m!

(m− 2)!

)2

‖am‖∥∥AiBj (am)
∥∥ ≤ 9i+j m! (m− 1)!

(m− i− j)! (m− i− j − 1)!
‖am‖

≤ 9i+j

(
m!

(m− i− j)!

)2

‖am‖

since
max

(
‖AB‖ ,

∥∥A2
∥∥ ,∥∥B2

∥∥) ≤ 9.

It follows that for an arbitrary homogeneous polynomial bn of degree n, and any
even k,

‖Qk (am, bn)‖ ≤ 9k

 ∑
i+j=k/2

k!

2i!2j!
+

∑
i+j=k−1

(k − 1)!

i!j!


×
(

m!

(m− i)!
n!

(n− j)!

)2

‖am‖ ‖bn‖

≤ (36)k
(
k

2
!

)2

4m+n ‖am‖ ‖bn‖ ≤ C (18)k k!4m+n ‖am‖ ‖bn‖

for m+ n > k/2. Otherwise Qk (am, bn) = 0. Similar estimate holds for any odd
k, since ‖q‖ ≤ 9. Let

a =
∑

am, b =
∑

bm (10.1)

be series of homogeneous polynomials am, bm. We assume that both series con-
verge on the ball of radius r which implies

max {‖am‖ , ‖bm‖} ≤ Cεε
m (10.2)

for arbitrary ε > 1/r and some constant Cε that does not depend on m. For any
k, by (10.2)

|Qk (a, b; s)| ≤ ‖Qk (am, bn)‖ |s|m+n+k/2

since Qk (a, b; s) is a homogeneous polynomial in s. Finally obtain the inequality∑
k

tk

k!
|Qk (a, b; s)| ≤ C ′ε

∑
k

(18 |t|)k |s|−k/2
∑

m+n≥k/2

(4ε |s|)m+n

≤ C ′ε
1− 4ε |s|

∑
k≥0

(
18 |t| |s|−1/2

)k
(4ε |s|)k/2

=
C ′ε

1− (4ε |s|)
(
1− 18ε1/2 |t|

) ,
where |s| < 1/4ε and for |t| < ε−1/2/18. The estimate implies that the series
converges for any s and t such that |s| < r/4 and |t| < r1/2/18.
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Алгебраїчна симплектична редукцiя i квантизацiя
сингулярних просторiв

Victor Palamodov

Алгебраїчний метод сингулярної редукцiї застосовано для нерегуляр-
них груп дiй на многовидах, якi забезпечують сингулярнi симплектичнi
простори. У фокусi проблема квантизацiї деформацiї сингулярних про-
сторiв. Для деяких прикладiв сингулярних просторiв Пуассона побудо-
вано ряди Ґроневолда–Мойала та перевiрено їх збiжнiсть. Детально роз-
глянуто деякi приклади квантизацiї деформацiй сингулярних просторiв
Пуассона.

Ключовi слова: многовид Пуассона, обмеження, сингулярна сим-
плектична редукцiя, квантизация деформацiї, добуток з зiрочкою
Ґроневолда–Мойала, K3 поверхнi
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