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We study the distribution of complex eigenvalues z1,...,zy of random
Hermitian IV x N block band matrices with a complex deformation of a
finite rank. Assuming that the width of the band W grows faster than
V/N, we proved that the limiting density of Sz, ..., Sz in a sigma-model
approximation coincides with that for the Gaussian Unitary Ensemble. The
method follows the techniques of [16].
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1. Introduction

The complex eigenvalues of non-Hermitian random matrices have attracted
much research interest due to their relevance to several branches of theoretical
physics, and in particular to the study of scattering chaotic systems. According
to the works [18,20], universal properties of the poles of the scattering matrix
S(F) in the complex plane can be modelled by N complex eigenvalues z,, Sz, <
0 of so-called “effective non-Hermitian Hamiltonian”

Hepp = H —il, (1.1)

where H is a random matrix ensemble with an appropriate symmetry (e.g., Her-
mitian or real symmetric), and I' is a positive deformation of a rank M < N.
More details of the approach can be found, e.g., in reviews [9,11,14] and references
therein.

One of the most interesting questions about the spectral statistics of Hyy is
the distribution of Jz; (i.e. “resonance widths”). In contrast to the classical non-
Hermitian models such as Ginibre ensemble (random matrices with iid entries),
if M is fixed and N — oo, matrices H.ys are weakly non-Hermitian, and so Sz;
are of order of the typical spacing w between eigenvalues of H, i.e., O(1/N). It is
also expected that the spectral fluctuations on the w-scale is universal, i.e., inde-
pendent of the particular form of the distribution of H or the energy dependence
of w.
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For the case H taken from Gaussian Unitary Ensemble (GUE) the probabil-
ity density of the scaled Jz; was obtained in [6, 10] for any finite M (for some
related models see review [11] and references therein). Let us mention also that
the cases of non-Hermitian symmetry, and in particular real symmetric case, are
much more involved, and is not well-enough studied even for H taken from Gaus-
sian Orthogonal Ensemble (there are only some partial results for M = 1, see
physical papers [8,19] for GOE; let us also mention the paper [13] that gives joint
probability distribution of z; for rank-one perturbation of general S-ensembles).

In this paper we consider H to be a one-dimensional Hermitian block band
matrix (block RBM). The 1d block RBM are the special class of Wegner’s orbital
models (see [21]), i.e., Hermitian N x N matrices Hy with complex zero-mean
random Gaussian entries Hjj g, where j,k = 1,...,n (they parametrize the
lattice sites) and a,y = 1,..., W (they parametrize the orbitals on each site),
N = nW, such that

<Hj1k1,a1’y1 Hj2k2,042’72> = 5j1k25j2k1 50&1’72 5“/1(12 Jj1k1 (1‘2)

with
J=1/W + BA/W, (1.3)

where W > 1 and A is the discrete Laplacian on {1,2,..,n}. The probability
law of Hy can be written in the form

1 Hipon|?
Py(dHy) = exp § —3 S Hjtean dHy. (1.4)

The density of states p of a general class of RBM with W > 1 is given by the
well-known Wigner semicircle law (see [2, 15]):

p(E) = (2n)"'W4—-E2, Eec[-272]. (1.5)

The main feature of RBM is that their local spectral statistics is conjectured to
exhibit the crossover at W = v/N: for W > /N the eigenvectors are expected
to be delocalized and the local spectral statistics is governed by the Wigner-
Dyson (GUE/GORE) statistics, and for W < v/N the eigenvectors are localized
and the local spectral statistics is Poisson. The conjecture is supported by the
physical derivation due to Fyodorov and Mirlin (see [7]) based on supersymmetric
formalism, but is not proved in the full generality yet. For the general RBM
the delocalization is proved for W > N3/* (see the review [3] and references
therein). For the more specific Gaussian model (1.2)—(1.3), the Wigner-Dyson
local statistics is proved up to the optimal regime W > /N first in the so-
called sigma-model approximation [16], and then in the full model [17] by the
application of the supersymmetric transfer matrix approach.

The main advantage of the SUSY techniques here is that the main spectral
characteristics of the model (1.2)—(1.3) such as a density of states, spectral cor-
relation functions, E{|G;;(E + ic)|*}, etc. can be expressed via SUSY as the
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averages of certain observables in nearest-neighbour statistical mechanics models
on a box in Z, which allows to combine the SUSY techniques with a transfer ma-
trix approach. However, the rigorous application of the techniques to the main
spectral characteristics of RBM is quite difficult due to the complicated structure
and non self-adjointness of the corresponding transfer operator. So it is easier to
apply it first to the so-called sigma-model approximation, which is often used by
physicists to study complicated statistical mechanics systems. In such approxi-
mation spins of the statistical mechanics model take values in some symmetric
space (+1 for Ising model, S! for the rotator, S? for the classical Heisenberg
model, etc.). It is expected that sigma-models have all the qualitative physics
of more complicated models with the same symmetry. The sigma-model approx-
imation for RBM was introduced by Fyodorov and Mirlin in [7], where it was
demonstrated that the corresponding non-linear sigma-model is equivalent, upon
the correct identification of parameters, to one studied in the paper [4] (the spins
in this model are 4 x 4 matrices with both complex and Grassmann entries). The
rigorous application of the techniques to the correlation functions of (1.2)—(1.3)
was developed in [16].

The aim of the current paper is to derive the sigma-model approximation for
the limiting density of the imaginary parts of the eigenvalues of H. s of (1.1) with
H of (1.2), and, following the techniques of [16], prove that its limiting behavior
in the delocalized regime W > v/N coincides with that for H = GUE.

Define

H=Hyn +1Ty, (1.6)

with Hy of (1.2)—(1.3), where I'y; is a N x N matrix

v 0 ... ... 0 ... 0
0 Y2 0 ... 0 ... 0
Tyy=]0 ... 0 vy 0 ... 0 (1.7)
o ... ... 0 0 ...0
O ... ... 0 0 ...0

with some fixed ~; > 0 and fixed M. Notice that for convenience we have changed
the sign of I'j; in order to get positive Iz;.

In order to access the density p(z,y) of complex eigenvalues z; = x; + iy; one
can use the formula (see [10] and reference therein)

pN(xay) = _47TN ‘El%aQq)(xvya R)
with
B,y k) = ——1 det ((H —z — iy) (M - —')*+’€2)
r,Y,Rk) = N og de X Yy X (2 N2

where 02 stands for the two-dimensional Laplacian and a positive parameter xis
added to regularize the logarithm.
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Introduce the generating function

det {(”H —2)(H—21)" + ]/?722}

Zgnw (K, 21, 22) = E (1.8)

2 )
K
det {(H - 22)(7'[ — 2’2)* + ]\72}
where z; and z, are auxiliary spectral parameters in the vicinity of F + iy/N-:

zl:El—i—%, E,:E+%, 1=1,2. (1.9)

Given Zg, the density can be obtained using the following identity (see [10]
and references therein):

pN(E,y/N)_lnm< 9 (hm 8Zn,w> L0 (hm 8Zn,W>>

87;1 Y2—y1 83/2 (971'1 za—w1 0%

y1=y
x1=0

Following [16], to derive sigma-model approximation of Zg, for the model(1.2)—-
(1.3), we take 3 in (1.3) of order 1/W | i.e., put

J=1/W + BA/W?. (1.10)

The first main result states that in the model (1.10) with fixed 5 and n, and with
W — oo, the function Zg,w (k, 21, 22) of (1.8) converges to the value given by
the sigma-model approximation. More precisely, we get

Theorem 1.1. Given Zg,w(k,z1,22) of (1.6)~(1.8), and (1.10), any fized
B, n, k>0, 21, 20 of (1.9), and |E| < /2, we have, as W — oco:

Zgnw (K, 21, 22) = Zgn (K, 21, 22),

where

3 C
Zgn(K, 21, 22) = eL(@1—x2) /exp {—f Z StrQ;Qj—1 + % Z Str QjA/i,yl,yQ}

M , .
- B ot
« TT Sdet ! <Q1 L £E)dQ, 1.11
11 22p(B)  mpl(E) (L)
3 = (2mp(E))B, co = 2mp(E) with p of (1.5), U; € U(2), S; € U(1,1) (see
notation (1.16) below), and Q; are 4 x 4 supermatrices with commuting diagonal
and anticommuting off-diagonal 2 X 2 blocks

0, — Ur 0\ ((I+2p;7)L 27 Ui 0
77\0 st 2p; —(I-2p;#)L)\ 0 S;)°

dQ = H de, de = (1 - 271]',177,]',2) dpj71d7’j71 dpj72d7'j72 de de
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with

nj71 = pjrlijl’ nj72 = pj727—j72’
pj = diag{pj1, pjo}, 7 = diag{mj1, 7jo}, L = diag{l, ~1}.

Here p;;, 751, | = 1,2 are anticommuting Grassmann variables,

-1
Str(‘: X)zTrB—TrA, Sdet<f7‘ X):det(B AT (149

B B det A
and
Kk =iy O 0
iy —k 0 0 (I O (o O
Ay = 0 0 ko —iy | £_<O —IQ)’ E_(0 0>'
iyg —K

Notice that the conjectured crossover W ~ v/ N for the RBM is equivalent to
$ ~ n in the sigma-model approximation Zg,, (see, e.g., [10]). The next theorem
gives asymptotic behavior of Zg, in the delocalized regime 8 > n as n, 3 — oo:

Theorem 1.2. Given Zg,(k,z1,22) of (1.11), we have in the limit § — oo,
n — oo with B > nlog®n:

exp {Trp(E) Str QA k1 s }
M i el
[T2L, Sdet (Q = 57255 + 705 LY

Z/Bn(’iv 21, 22) - eE(xl—xg) / ) dQ7 (113)

which coincides with Z(k, z1, z2) for the GUE. Therefore, the limiting distribution
of the imaginary parts of the eigenvalues of H of (1.6) with Hy of (1.2)—(1.3)
in the sigma-model approximation coincides with that for Hy = GUE obtained
in [10].

We would like to mention also that the localized regime 5 < n was studied
in the recent physical paper [12].

The paper is organized as follows. We are going to give a detailed proof for the
case M =1 and explain some minor correction that should be done to prove the
general case. In Section 2 we obtain the SUSY integral representation of Zg,w
of (1.8). Section 3 is devoted to the derivation of sigma-model approximation,
i.e., to the proof of Theorem 1.1. In Section 4 we prove Theorem 1.2 relying on
the similar study in [16].

1.1. Notation. We denote by C, Ci, etc. various n, 5, W-independent
quantities below, which can be different in different formulas. Integrals without
limits denote the integration (or the multiple integration) over the whole real
axis, or over the Grassmann variables.

Moreover,

e N =Wn;
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e indices %, j, k vary from 1 to n and correspond to the number of block in Hy,
index [ is always 1 or 2 (this is the field index), and Greek indices o, vary
from 1 to W and correspond to the position of the element in the block;

e variables ¢ and ¢ with different indices are complex variables or vectors corre-
spondingly; if #; means some variable (vector or matrix) which corresponds to
the site j = 1,..,n, then & means vector {xj}?zl, dz =[] dxz;, and dz; means
the product of the differentials which correspond to functionally independent
coefficients of x;

e variables ¥, ¥, p, and 7 with different indices are Grassmann variables or
vectors or matrices correspondingly; if p; corresponds to the site j = 1,..,n,
then p means vector {p;}}_;, dp = [[dp;, and dp; means the product of
the differentials which correspond the components (for vectors) or entries (for
matrices) taken into the lexicographic order;

B+ I E?
! . e =1+4a32 co=V4-E2=2mp(E); (114)

® a4 = 2
L =diag{l,—1}, L4 =diag{at,a_}; (1.15)
e U(Q)=U2)/U1)xU(1), U(1,1)=U(1,1)/U(1) x U(1), (1.16)

where U(p) is a group of p X p unitary matrices, and U(1,1) is a group of 2 x
2 hyperbolic matrices S such that S*LS = L;

o Li(E)= {r< B2+ E2/2>|T e o, +oo)}; (1.17)

o B=c}p; (1.18)

1 1
o /1 =E1+ NA'W“ Zoy = Eol + NA,WQ, (1.19)

(K —y (0 1
A”’y_<y in)’ U_<—1 0>'

2. Integral representations

In this section we obtain an integral representation for Zg,w (k, 21, 22) of (1.8).

Proposition 2.1. The determinant ratio Zg,w (k, 21, 22) of (1.8) can be writ-
ten as follows:

n M
Zgnw(,‘i, 21, 2’2) = Cn,W /exp —1 Z TI‘(LY]‘ + (5]‘1 Z LQQ)ZQ
j=1 a=1

n

M
. 1 _
X exp g —i E 'yaTr(LQa)U—E E (J 1)k Tr X; X,
a=1 J,k=1

n M M
1 ~
xexp{ —5 > T Te(LY; + 61> LQa)(LYx + 0kt Y LQa) p det D
a=1

Gk=1 a=1
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dX dy dQ, (2.1)

y 12[ det"' (X; —iZy) det" H det(X| — iZ; + iv,0)

et det®Y; det(X; —iZy) det Yq

where

= Jﬁ{ll4 — 5jk((Xj - iZl) (LY + 5]1 Z — 121 + 170 ) (LQCL)>7

a=1

- - M 2
_ (P11aP110  P11a921a _ dRdi14 dSPr14
2~ : ),m_nnﬂ,

2109110 P21aP21a -
a=1]=1

for complex ¢p14. {Xj};?zl are Hermitian 2 X 2 matrices with standard dX; ,
Y " . are 2 x 2 positive Hermitian matrices with dY; of Proposition 5.1, and
JJ5=1 J
Z12 are defined in (1.19), and

det? J(=1)""
23y (W = DUW —2))" (W = M = 1){(W — M —2)1)’

Cn,W =

Proof. To simplify computation, we are going to present the detailed deriva-
tion for the case M = 1. General case can be obtained similarly with minor
modifications.

To obtain SUSY integral representation, it is useful to rewrite Zg,- in the
more convenient form. Notice that if we set

Ko . y
— —i(Hy — F) —i(l — =)
P::P(E,H,y): N T y K (7 NE , (22)
—i( _N) N—H( N —E)
1 /1 4
=7 1)en
then
. , )
det(TPT) :det{<HN+ir—E—§3> <HN—2‘F—E—|—3\yf> +]’:f2}
Hence et P
et P
Z =E
s, 1,2) =& [ St |
where
Py = P(E1,k,y1), P»= P(E2k,y2). (2.3)

Such transformation is needed since we want P;, P, to have positive real part.
Introduce complex and Grassmann fields:

= ({o¥i=1)s oy = (duj1, dujas- - dyyw), 1 =1,2, are complex,
U= ¥i=)' iy = Wy, Y2, - Yyw), 1=1,2,  are Grassmann.
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Since Pj, P, have positive real part, using (5.3)—(5.4) (see Appendix) we can
rewrite det P, and det P of (2.2)—(2.3) and get

Zgnw (K, 21, 22) = ﬂ2wnE{/exp {—\I/]L (E + ik — z'HN> \Ill}

N
+ (R . . + (R . .
x exp { ~ ¥} (N — By +iHy) Wy - ] (N +iBy —iHy) @ |
x exp { ~®f (% —iBy +iHy) @ +ivf (T + y—]\lf) v, }
xexp {iw (T + %) Wy + i} (T + %) @y +i0f (I + %2) @} do d\II}
K 3 + K . + K . +
= [exp{- (N +iEy ) Wy - (N —iBy ) U0, <N +iE,) Of 1 |
X exp {— (% ~iBy) 5@ + (U + W) + 22 (0 0, + <1>1+<1>2)}

x exp {i7y (Y111¢211 + P2119111 + Gr11¢211 + do116111)

X ESexpd SN (RHjtar oy — SHikar s ) ( ( 124V,
i<k ayy

where
+ — . 4 s
Xjk,ay = Nikay = Mkj o
Nik,ay = wljawlk'y - ¢2jaw2k’y + ¢1ja¢1k'y - ¢2ja¢2k'yv
Njjoa = (V1jaV1ja — Yajat2ja + $1jaPlja — P2jaP2ja)/2-
Averaging over (1.4), we get

ZﬁnW(’{v 21, 22) = W—an/dq> av exp {%(‘I’qug + Wf@g)}
1Y2 Ko
X exp {N (210, + of @) - (N +iEy) qzlﬂlfl}
xexp{— (5 — 1B ) W50, — (- + i) O @) — (N —iEy) @50,

N N
x exp {iy(P111¢211 + Yo11¥111 + Pr11¢211 + P2116111) }

1 2
X exXp § — Z Z ij Nik,ayNkjyo — 5 Z Jjj njj,aa
j?a

Jj<k ayy
Define
Q= (@11@111 @111@11)
P211P111  P2119211
and set
o o
P11aP11a P11aP21a
}7'_(¢;;-¢1j C@jﬁsz), 1 i | Hafila 2, d11ad21
! ¢2j¢1j ¢2j¢2j

W W
> $2naPiia Y. D210P21a
a=2 a=2
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S U}E@ZJU @ZJfrjllsz)
X = ("l@jwlg‘ Uyithej )

Thus,

Zgnw (K, 21, 22) = TFQW"/d‘I) d¥ exp {Z”Y(@Enl%u + @2111/1111)}

X €Xp {ZZTrX LZ — zZTr (LY n 5]1LQ>
X exp {w To(LQ)o + - Z T Tr (X L) (f(kL>
2 55
X exp { Z Jje Tr (LY n 5J1LQ) (Lf/k n 6k1LQ)
2 5
x exp{ ;1 T (Drjo1k (Bridns — Dosr)
J

+ @2]‘1#% (Pord2j — P1x15) ) . (24)

where L, Z; 2, o are defined in (1.15) and (1.19).
Using the standard Hubbard—Stratonovich transformation, we obtain

n 1 < S
(27%)" det? J exp 3 > Tk Te(X;L) (X3 L)

Jik=1
1 n
:/exp —3 > ()T Xk+ZTrX (X L) dX, (2.5)
Jik=1 Jj=1

where X; are 2 x 2 Hermitian matrices with the standard measure d.X;.
Substituting (2.5) to (2.4) and integrating over d¥ (see (5.4)), we get

n

det ™2 J 1 _ .
Z(k, 21, 22) = W/exp -3 ; (J 1)jkTerXk — iy Tr(LQ)o
7,k=1

n
xexpq —i 3 Tr (LY + 61LQ) Zo ¢ det M
j=1

X exp —% 3 T Tr (Lf/j + 5j1LQ) (Lf/k + 6k1LQ) dddX (2.6)
G k=1
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with M = MDD — M@ Here MY and M@ are 2Wn x 2Wn matrices with
entries

Ml(jl;’l,m = 0k0or (Cio)wLu, Gk =1,....n, a,y=1,..., W, L,I' = 1,2,
2
9 _
Ml(jo)a,l’k’y = ijéll/L” Z ¢Vja¢uk7Luu (27)
v=1
with
X1 —141+iyo, j=a=1
o (2.8)
X; —i4y, otherwise
We can rewrite
det M = det MD) - det (1= (MD) "M@ ) = det MO det (1 - M)
with
2 —
Mijo iy = Tir(Cia)iit Y bujobyin Luw- (2.9)
v=1
Note that M = AB, where
Alja,l’ka = jk(Cja)l_lll ¢gja, j, ke A, o,y = 1, e VV, l, l,, g = 1, 2,
Bijoka = 0101 Loo G- (2.10)
Therefore, using that det(1 — AB) = det(1 — BA), (2.9), and (2.10), we get
det (1 — M) = det (1 — BA) =: det (1 — M), (2.11)
where
~ W —
Mlja,l’ko’ = Z Bljo,upaAypa,l’ka’ = ij Z(Cja)l_l/1¢gja¢o’ja[/oa
D,V a=1
N .
_ ) Iw(X5 —i20), (LY)) 0, j>1
= NS, A . .\l . .
Jie(X1 —iZ1),, (L), + Jw(X1 —iZ1 +ivo), (LQ), .. j=1

Here we substituted (2.8).
This yields

det (1 — M) = det {d;x — J;xD;} = det* .J - det {J5;' 14 — §;.D;}
with .
D;=(X;—iZ) "' @ (LY;) + 0j1 (X1 — iZ1 +iv0) " @ (LQ).
Besides,
o det(X1 — 121 +iyo
det(X1 — ’iZl)

det MM = (—1) ) [T det™ (x; —iz0). (2.12)
j=1
Now substituting (2.7)—(2.9) and (2.11)—(2.12) to (2.6) and applying the bosoniza-

tion formula (see Proposition 5.1), we obtain (2.1) which finishes the proof for
the case M = 1. O
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3. Derivation of the sigma-model approximation

3.1. Proof of Theorem 1.1. Again we are going to concentrate on the case
M=1.
Let 8 and n be fixed, and W — oo. Defining n X n matrix R as

2 1
-1 1_&& B—A2—~-- =: 1—£A i
J W< W +W2 w W +W2R ;

putting B; = W™LLY}, and shifting X; — iZ; — X, we can rewrite (2.1) of
Proposition 2.1 as

det" X; det"
det2 B;

Zgmw (K, 21, 22) = C /dXdBdQ det D H

W n
x exp ¢ —Tr(LQ)(iZ2 + iyo) - Z (Tr +iZ2)* + Te(Xj +iZ1) )
7j=1

iy QP ~ T B(LQ) + [ (B — Ba) (1)}

det(X; + ivo)

6 S 2 2
exp {2 (TT(BJ = Bjsa)? = (X = X)) det X; det By

j=1
1 . ‘ B
X eXp § oo 2 Rjp Te(X; +iZ1) (X +iZ1) + 573 Tr(LQ)? 3, (3.1)
where
B
D= — N+ — 1
{ (1= ),
5 n
<X ® Bj + = (X1 +iyo) ! (LQ)) }
w j k=1
.]7
and
oW det? J W W2(W=2)(n—1) 3j72(W=3) o=WnTr Z3/2
W.n =

(273)" (W = DUW = 2)))" (W = 2)(W = 3)!)
W4n o2nW—-Wn'Tr Z2/2

G (1 + O(W‘1)>.

Change the variables to

Xj = U;XjUj, Xj = diag{xj,l,xj?g}, Uj € (}(2), Tj1,%52 € R,
Bj = S;lngj, Bj = diag{bj,l,bjg}, Sj S Ucr(l, 1), bj71 S R+, bjg eR™.



222 Mariya Shcherbina and Tatyana Shcherbina

The Jacobian of such a change is

n
j:l

n
J=1

This and (3.1) yield

Zgnw (K, 21, 22) /deUdQ/dm/ db det D (3.2)

« ﬁ («Tj,l — xj72)2(bj71 — bjg) det(X1 + Z’}/Ulo'Ul)
b7 b3 21,1212 - b1,1b1,2

X exp —Wzn;li; (f(zj0) + f(bj,l))}
Pl
x exp ¢ — Tr(LQ)(iZ2 + iyo) — Tr ST B1S1(LQ) + 2Tr(LQ)2} (3.3)
X exp 2;[/ r(LQ)? +ﬁTr(s B1S1 — S5 'B»S, (LQ)}
X exp g gLt (571B;S; — S74 8,185 1>2} (3.4)
i

|
{-
-
|
X exp {g oL (U720 ~ U3 1%y 00500)°) }
{ :
|
o

j=2
1
xexp{ oo > R T (U XU +zZl> (U;XkUk +2Z1)}
7.k
1 o * v —175
xexp - (T U5 XU AL+ TeSTUB ;A ) (3.5)
j=1
where
. Y P SR -1
-1 k951 . * -1
det D = det 4 5, <14 - X; ®Bj) - (X1 +17U10U1) ® ($1(LQ)SY)
1 1 n
+— <—5A + R) U,U ® S-Sl} : (3.6)
W W i J I~k k=1
A = (“J.r”” i > o 1=1,2,
1Y —K + 12

C[(/[2/?n _ 2n(ﬂ_/2)2n eWn(Tr Z24+Tr 22)/2—Wn(2+E?) CI(/II/,)n

_ Vm(uo(w—l)),
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f(z) =2?/2 +iFx —logx — (2 + E?)/4.

The constant in f(x) is chosen in such a way that $f(a+) = 0. Measures dUj,
dS; in (3.2) are the Haar measures over U(2) and U(1,1) correspondingly.

Also it is easy to see that for |F| < v/2 we can deform the contours of inte-
gration as

o for xji, xj2 to —iE/2+R;
o for b to LL(E) of (1.17);
o for bjo to L_(E) of (1.17).

To prove Theorem 1.1, we are going to integrate (3.2) over the “fast” variables:
{xji},{bj1}, 1=1,2, 5 = 1,..,n. The first step is the following lemma:

Lemma 3.1. The integral (3.2) over {x;;},{bj;}, 1 =1,2, j=1,...,n can
be restricted to the integral over the W—(1=/2_neighbourhoods (with a small k >
0) of the points

I i1 =ay, xjo=a_ orxzj1 =a_, xj2 = ay, bj1 = ay, bjo = a_ for any

7=1...,n;
Il. zj1 =xj2=a4, bj1=ay, bjo=a_ foranyj=1,...,n;
III. zj1 =xj2=a_,bj1=a4,bja=a_ foranyj=1,...,n.

Moreover, the contributions of the points 11 and 111 are o(1), as W — 0.

Proof. The proof of the first part of the lemma is straightforward and based
on the fact that Rf(z) for z = x —iE/2, z € R has two global minimums at z =
ay, and for z € L4 (F) has one global minimum at z = ay.

To prove the second part of the lemma, consider the neighbourhood of the
point II (the point III can be treated in a similar way). Change the variables as

Tj1 = a4+ + fj,l/\/ w, Tjo = a4 + ijg/\/ w,
bj,l :a+(1+l~)j71/vW), bj,gza_(l+[~)j72/vW).

This gives the Jacobian (—1)"W =27 and also the additional W~" since
zjn — xjg = (Tj1 — Tj2) [VW.

Together with C{(,[z,)n this gives W" in front of the integral (3.2). In addition,
expanding f into the series, we get

2 W W3/2

ate b2 1 b? bl
Flbja) = flar) + =t gi = Sk + Oz )

~2 3 ~4
flajn) = flap) + 5357 = 57 +O =12 (67
J 2a§’_ W2

2 W 2wW3/2

GQ_C_EJQ'Q 1 632 5?2
fbj2) = fla—) + 5 W_ﬁ'W?’/?—FO we |
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where
cx =1+a7% flay)=—f(a) €iR. (3.8)

We are going to compute the leading order of the integral over {Z;,;}, {Bj,l},
l=1,2,5=1,...,n. To this end, we leave the quadratic part of f (see (3.7)) in
the exponent, expand everything else into the series of z;;/ VW, l;jJ /W around
the saddle-point Z;; = l~)j7l = 0, and compute the Gaussian integral of each term
of this expansion. We are going to prove that all this terms are o(1).

Indeed, consider the expansion of the diagonal elements of D of (3.6):

djn =1 —;1bj1 = (Zj0/as —bj) VW + O(W %),
dj,lQ =1- xj_,llbjﬂ

=c_ — (Zj1/ay — bj2) /> VW +O(WH2)  1=1,2.  (3.9)

If we rewrite the determinant of D in a standard way, then each summand has
strictly one element from each row and column. Because of (3.9), each element
in the rows (j,11) and (j,21) has at least W~'/2, and so the expansion of det D
starts from W~". Moreover, to obtain W~" (i.e., non-zero contribution) we
must consider the summands of the determinant expansion that have only diag-
onal elements d;;s (since non-diagonal elements of D are O(W ™) or less), and
furthermore only the first terms in the expansions (3.9) and all other function in
(3.2). Thus we get

" i-l/a+—l~)-1 i"Q/(l+—l~7‘1 ~ ~ 2
C <H Js 5,1 L3, 2l (Fj1 — Tj2) +0(1), (3.10)
j=1 VW VW ++

where

<'>++

1 - - ~ ~ -
= / ( . ) eXpq =5 <c+(a:?’1 + 1:?2) + aic+b§71 + a%c_b?Q) dz db.
j=1,..n

But it is easy to see that the Gaussian integral in (3.10) is zero, which completes
the proof of the lemma. O

According to Lemma 3.1 the main contribution to (3.2) is given by the neigh-
bourhoods of the saddle points x;1 = a4, x;2 = a— or xj1 = a_, Tj2 = ay.
All such points can be obtained from each other by rotations of Uj;, so we can
consider only z;1 = a4, xj2 = a— for all j = 1,...,n. Similarly to the proof of
Lemma 3.1, change variables as

Tj1 = a4+ 53]'71/\/ w, Tjo =a_+ jjg/v w,
bj1 = at(1+bj1/VW), bjo=a_(1+bj2/VIV). (3.11)



Complex Deformation of RBM: Sigma-Model Approximation 225

That slightly change the expansions (3.7) and (3.9). We get

~2 ~3 ~4
R c— Tip 1 Ty Tjo
f(x]72) - f(a*) + ? w 2@3_ W3/2 + O <W2 ) (312)

and

L, — -1z
djin=1- xj,lbj,l

~ 7 O S ]

Tj1fay —bj1  a4Tjibj — &5, . 051
NiT 2 W W
_ -1z .

djo2 =1—1x;5bj2

Ti111 + O <W_3(1_'€)/2) )

~ 5 = 7o =2
xj,g/a_ — 0j2 a—%,zbﬂ Lo i 5j1
VW atW W

g -1
djjz =1—a;7bj2

Tr2,90 + O (W_?’(l_'{)ﬂ) )

- 7 = 7 ~2

Tj1/ay —bja  a+Tjabjo —T5,  dp _3(1—r)/2

=c4y — - 7] + =T + 0O <W ) ,
aZ VW al W w

N 7 - 7 ~9
_ o @jafas —bjn a-Tyebjin —Tj, G —3(1—k)/2
=c- SN AW + WT22,11+0(W ) ;
(3.13)
where
. -1
T— (X1 + mUlan) ® (Sl(LQ)Sl_l)
1 T 0
—_ A—l _ A—l ( 1,1 R > A_1> ® S L S—l
(a7t (5 (5157
+ 0 (W12 (3.14)
with
~ . « ZE Co . *
A= (Xl + 27U10U1> =——+ —L+iyU,0U7. (3.15)
Z1,1=%1,2=0 2 2

The change (3.11) gives the Jacobian W 2", which together with Cﬁ)n gives W2
in front of the integral (3.2). Similarly to the proof of Lemma 3.1 we are going
to compute the leading order of the integral (3.2) over {Z;;}, {I;ﬂ}, 1=1,2,j=
1,...,n, and so we leave the quadratic part of f (see (3.7) and (3.12)) in the
exponent, expand everything else into the series of Z;;/ VW, Z)ﬂ / VW around the
saddle-point z;; = l;jJ = 0, and compute the Gaussian integral of each term of
this expansion. We are going to prove, that the non-zero contribution is given by

the terms having at least W 2",
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Lemma 3.2. Formula (3.2) can be rewritten as
Zgnw (K, 21, 20) = (co/2m) P eBl@1722) / dzdp d7 dU dS dQ
1
X exp {—2(Mz, 2)+ W22, 0 + WV2 (2, h + C/n)}

X exp {— TH(LQ)(iE/2 + iyo) — %0 Tr s;lle(LQ)}
x exp{—TrA7'p1S1(LQ)S; 71 } det A
X exp {ﬁZTI‘ (U;ﬁjS]‘ - U;,lﬁj_lsj_1> (S 17 U S T]_lUj_1>}

X exp{ g (C+7”Lj712 +c_nja1 —nj1/coay + njz/coa, — BCO E (UJQ + t?)}
n .
_“ srrr (R T 1 —y2
X exp o E <TrU] LU; (iy1 e > +TrS; LS (zyg I >>

+o(1), (3.16)
where A is defined in (3.15),
i M O TS B
T \pja / VW pias )] T /VW  Tia )

njl2 = Pi12Tj12, Mj21 = Pj21Tj21, MGl = Pj1Tj11,  Tj2 = P4,227),22,

z = (211, 2,22, 2j12, %j,21) = (&1, %52, 051, 05.1),

and
M = My +W=tM (3.18)
(Mpz, z) = Z (ch:ijQ-J + c,;%iQ + a%rc+l~)]2-71 + a2_c,l~)§72) (3.19)
J=1,..,n

(Mz,2)=—28) <i’j,157j—1,1 +Ejodj-12 — a3bjibj-1,1 — a%j,zl;j—w)
+28) 03 (Fj1 — E52) (Fj-11 — Fj-12)
+ 2,8 th <a+l~)'1 - a_gjg) <a+l~)j_1,1 — a_i)j_LQ)
-> ( (#5152 — bjabja) — 2(a7nj12d1bj2 + ai3nj,2155j,25j,1)>
—1 {11 0 -1 .22'171 0
cma (9 Y (B 0. a0
Here ¢ = {(j}j=1,...n, GG = (Gj11,Gj22, a+Cj12, a—Cj 1) with
. _ ) K _iyl * ) - _ ) R _iyl *
G = (U] <iy1 —k ) U]>11 7 522 <U] <iy1 —k > U]>22’
(o TW2) e (e W2 g
i1 = <Sj <73y2 -k ) % >117 it (S] (in —K ) % >22‘
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We also denoted h = {hjgs +hi; }j=1, nis=12, h° = {h}, }j=1. nis=12 with

2 2 2
hji1 = 2/co — Begvy — Beoviyy + a—njiz/al,

2 2 2

hjo2 = —=2/co + Begvy + Beovjyy + atnjon/aZ,

2 2
hj,lz = 2a+/Co —2— BCOGthj - ﬁ60a+tj+1 — nj721a+/a,,
2 2
hj721 = —2a_/c() -2+ ,BC()a_tj + ,BC()CL_thrl - nj712a_/a+,
0 0 0 0

hj,ll = nj,l/a+> hj,22 = ”j,2/@fa hj12 = Ny, hj,21 = —Nj2 (3.21)

and

h?,ls = 07 .7 7é 17

1L g 14—
Wi ==+ (A0 + (ARSI LQ)ST AAT),,,

1 _ 14—
h(f’m T e + (A )2 + (A_lplsl(LQ)S1 'FA 1)22,

gy =-1-ay (51(LQ)51_1)11’
W gy = —1 —a_ (S (LQ)STY)

)

22°

We also set
vi = [(UU7 el -t = [(555;1))1zl.

Proof. Rewriting the determinant in (3.6) in a standard way, we obtain

n
det D = Z(_1)|0| H Pj’&j (53]"1, .i‘gj, bj71, bj’l), (3.22)
c J=1

where & is a permutation of {(j,1s)}, {,s =1,2, j =1,...,n, 6; is its restriction
on {(J, lS)}lZ,s:p (—=1)l°l is a sign of o and Pj 5, is an expansion in j1, T2 , Bj,l,
b;1 of the product of four elements from the rows {(j, ls)}i <1 taken with respect
to a;.

Let us prove that for each j = 1,...,n and any & each term of
Pj (%51, %25, bj1,b;1) of (3.22) belongs to one of the three following groups:
(i) has a coefficient W~2 or lower;
(ii) has a coefficient W=3/2 and at least one of variables Zj1, T2y, l;j71, Ej,l of the

odd degree;

(iii) has a coefficient W1 and at least two variables of Zj1, Taj, l~)j71, I~)j71 of the
odd degree;

Note that each element in the expansion of the coefficients of the rows (j,11)
and (j,22) has a coefficient W~/2 or lower, and so Pjs; (ijjl,irgj,gj,l,lgjjl) has
a coefficient W~ or lower. In addition, if Pjs; (ijvl,jjg,l;j,l,l;j,l) contains any
terms with Rj; (see (3.6)), or at least one off-diagonal elements in (j,12) and
(4,21), we get a coefficient W~2 or lower (and so obtain the group (i)).
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We are left to consider terms with d; 12d; 21. Consider first j > 1. If Pj s, (%1,
Zj2, l;j,l, BjJ) contains two off-diagonal elements in rows (7, 11) and (7, 22), we get
group (i). One off-diagonal element and d; 11 (or dj22) gives group (ii) or group
(i) (since off-diagonal elements do not depend on Z; 1, Z;2, l~)j,1, l;j,l), and it is easy
to see from (3.13) that all the terms in expansion of d; 11d;22d; 12d; 21 belongs to
groups (i)—(iii). For j = 1 everything will be similar since the zero order term
of T of (3.14) (which gives contribution to the W~! order of elements) does not
depend on Z; 1, T2, l;j,l, l;jyl, and the next orders contribute to the orders W—3/2
or smaller.

To get a non-zero contribution, we have to complete the expression
Pjs,; (ij71,a~cj72,l~)j71,5j71) by some other terms of the expansion of the exponent
of (3.2) in order to get an even degree of each variable Z; 1, Z; 2, l;j71, l;jjl. But all
such a terms have the coefficient W /2 or lower, and therefore Lemma 3.2 yields
that the coefficient near each j in terms that gives a non-zero contribution must
be W2 or lower. Since we have a coefficient W?2" in (3.2) after the change (3.11),
this means that to get a non-zero contribution each coefficient must be exactly
W~2. Note that the terms of Pj5,(Tj1,%52, l;jyl, l~)j’1) that can be completed to
the monomial with all even degrees and with a coefficients W =2 does not contain
any terms with R, any terms of (3.14) higher than linear in Z’s, and any terms
of the expansion d; s, [, s = 1,2 of order W—3/2 or lower (except those that comes
from T'). They also cannot be completed to the monomial with all even degrees
and with a coefficients W~2 by any terms of the exponent of (3.2) that has a
coefficient lower then W~1/2 for some j. Thus we need to consider the terms
up to the third order in the expansions (3.7) and (3.12), the linear terms of the
functions in the exponents (3.3)—(3.5), the linear terms coming from

o 25'1 25'2 _
b272 —expd — 2L T2 L o(wh) Y 3.23
107 p{ W I W) (3.23)
3 Z11 T1,2 b1 b1 -
r11212b1.1b L —exp{ — = — 2 = 2 Lo (WY 3,
( 1,171,2011 1,2) p{ a+\/W a_\/W W \/W ( )}

and no more than quadratic terms in

det (Xl + ivaUf)
1

=det A exp{\/W

Tr A "X, — % TTA ' XA X, 40 (W—3/2) } (3.24)

- (#1 O
X1—(0 531,2>'

Note that the terms containing #;1b;1/W in dj11 (see (3.13)) cannot contribute
to the limit, since if we complete them to the monomial with even degrees of
53]',1,Z~)j,1, then it will contain W~2 and an additional W1 should come from
the line containing d;22. Moreover, the terms containing 5:?-71 in d;11 can give

with
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a non-zero contribution only if the resulting monomial contains only 5:?1, since

otherwise, taking into account the contribution of the line containing d; 22, we

again obtain at least W3, Thus we can replace :Z‘il by its average via Gaussian
72

measure (27 /c,) "2~ +%1/2 e by et

and for 5@?2 which could be replaced by ¢_*.

The same is true for jjgi)jz/w
Similar argument yields that the
contribution of the terms with iil in the line containing d; 12 and i?’Q in the line
containing d; 21 disappear in the limit W — oo. Thus the term corresponding to
W?2n det D in (3.2) can be replaced by the term

/dp dTexp { Z <c+nj,12 +c_njo1 — TL]‘J/C()CL_F + ’rlj72/C()a_>
+ 5 Z Tr (U;ﬁij — U;‘,lﬁj_lSj_Q (Sj_lf'jUj - Sj__117~'j_1Uj_1)

+ wl/2 Z ((g}j’l/aJr — Bj71)nj,1 + (ii‘j,Q/af - ~j,2)nj,2)

— W71/2 Z <a;2 (:Ej71/a+ — I;j,z)nj,m + CL:2 (fjg/a_ — bj71)nj721> }

conl (g () misizann)
+o(1), (3.25)

where pj, 75, nj12, nj21, nj1, nj2 are defined in (3.17). Here we have used Grass-
mann variables {p;s}, {7jus}, 7 =1,...,n, [,s = 1,2 to rewrite the determinant
(3.6) with respect to (5.4), have substituted (3.13) and left only terms that give
the contribution (according to arguments above), and then have changed p;11 —
\/ij,lla Tj11 — \/ij,ll- Note also

c+a%r =coay, c_a’ =—coa_. (3.26)

Now let us prove that the contribution of the third order in the expansions
(3.7) and (3.12) is small. Indeed, the terms P;z, (%;1,%;2,bj1,bj.1) that can be
completed to the monomial with all even degrees and with a coefficients W =2 by
these cubic terms cannot come from the contribution of T" of (3.14) and can be
one of two types

(1) terms (:Ej71/a+ - l;ﬂ)x c4c—, where ¢, c_ come from the zero terms of d; 12,
dj21 (see (3.13)) and z is an element of the row (j, 22) and so does not depend
on Zj1, bj1 (or similar terms with (Z;2/a— — bj2));

(2) terms of (Z;1/ay —bj1) (Zj2/a— —bj2) (Zj1/a+ — bja)c— with :Z‘?,l or 1332 (or
similar terms with c; coming from dj 12);

But it is easy to see that

~2 2 72
T Gerbin

- ~ 27 1 1
-4 4y _j4 - - 7 — =
[ @ity By i = 2 (- ) =0

and so the contribution of (1) is zero. Similarly the contribution (2) is zero.
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Therefore, the contribution of the third order in the expansions (3.7) is small,
and using (3.25), (3.23)—(3.24), and also

n

1
exp - Z (Tr UJ’»"LinAl + Tr S{lLiS]’Ag) = exp{ — E(x; + .’Eg)}
j=1

n . .
_ S sr. (B T iy (K Ty
xexpq =5 Z; <ﬁ Us LU; (iyl e ) +Tr S;'LS; (Z.yZ e >>
]:
for Ly, L defined in (1.15), we get (3.16). O

Denoting the exponent in the second line of (3.16) by £(z) and taking the
Gaussian integral over dz with z of (3.17), we get

E(z)dz = (2m)* det™ V2 M
R4n

X exp {;(M_l(Wl/Qho + W Y2(h+¢/n), W2RO + W12 (h + g/n))} .
(3.27)

It is easy to see from (3.18)—(3.20) that

det M = det Mo (1+0O (W™1))
= (EEada)" (1+0 (W) =" (1+0 (W)

with ¢y of (3.8). Note now that

-1
M~ = <M0 + VlVM> =M;" - %MO_IMMO_I +0(W?).

Since My is diagonal and h_?,ls is proportional to n;1 or n;2 and ”32',1 = 0, we have
—130 10
(MO h, h ) =0.
Hence, the exponent in the right-hand side of (3.27) takes the form

%( (Mg 'R, b+ ¢/n) + (Mg ' (h+¢/n), h°)

(M) ) ol 1+ T ol

Then we can rewrite (recall (3.21) and (3.26))

LD — Z <(hj,11 + Giii/n)njq N (hjo2 + Cjoa/m)nj2

a4 Cyp a_c_—

2 2

_ (hja2 +asGaz/n)nga (hj21 + a—Gor/n)njo
a‘cy azc_
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2 2

q .
i hi11mjn +h1,22n1,2 hi1am11 hi21ni2
a4y Cq a_c— a+c+ a” Cc—

_Z[ ot (a co+5(t2+ty+1 12 UJZ-H)

a_1512 nj21 <j,11 - Cj,12
5 + +
az Co a_—Co con

_l’_

2
+nj’2<_a Co +ﬁ(t2+ty+1 2‘ UJ2+1)

Caynior mji2 G2 — G
azco a4 Co con

<(A1)12(51LQ51_1)22(A1)21

+ny1n12
Cya4
n (A1 (S1LQST 11 (A V12
c_a_
A Y — (S1(LQ)STE
_|_n171( )11 ( 1( Q) 1 )11
Cyra4
(A2 — (S1(LQ)ST )22 1
O(—); 3.28
+n12 . +O0(57); (3.28)
1
I[a = . . .
3 4 anlna 2~ 2 2 Zn] 1275,175,2 — 2_03 Znﬂlnwlnﬂ
ﬁ(vj + t?)
Z 2 (nj,lnjﬂ,l +njanj+1,2 + nyen 11 + nj,2nj+1,2)
0
1 — — —
- ?(A D12(A Harnanig + O(W 1), (3.29)
0

Moreover,
X (Ur 53 85-Us_155-185-1) (71 55U5=S7 4 751U 1)
_eWZTr(U*ij U _1Pj—155— 1)(5» 7;U; S ijlUjfl) _i_O(V[/fl/Q)7 (330)
where

pj = diag{pj1, pj22}, 75 = diag{7;11, 752} (3.31)

Combining (3.28)—(3.30) we can integrate the main term of (3.27) with respect
to pj12, Tj12, Pj21, Tj21 according to (5.4). This integration gives

n
a_n;q ;9 ;1M 2 ni1 a4njz  MiiNj9
g, g, 3,17, g, g, 3,17,
H<C++ T aicn 22><C—+a0_ 5t =53
o a4 co +Co a? cg _Co a< cop a“ cg

CcCon; Con;
=g+ =22 L (14 2/ njings

n; n,; 2
:cgexp{_]’l+-7’2}(1+ njlnj2>
a4 Co a_Co



232 Mariya Shcherbina and Tatyana Shcherbina

which, together with (3.28)—(3.30), yields

2
Z,BnW(/‘f 21, 2) = (Q)n E(x1—z2 /dpdeUdSH< ! N n;, 2>
J=1 0
X exp{ ZTI‘ (U]* 1p] 15] 1> <SJ»_17A'jUj — S;}lfj_lUj_l)}
G — G2
{Z”ﬂ» (5@ i — v — i) +#
2 2 9 Gji22 — Gj21
X exp an’ Bt +tj+1_vj_vj+1)_T

<oxp {5 Y07+ £)} [ F(A.Qun,7,51)dQ

X exp

X exp —26—2 ; (Tr U LU, <Z’; Zyl) +TrS;1LS; (Zyz __Zf))
+o(1)
where we have used aicy = cg, a_c— = —cp, and
(1+2nj1n52/c)) e dniania/e — 1 2n;11,2/Ch.
Here
F(A,Q, p1,71,51) = exp { ~Tr(E/2 + ivo)(LQ) — %0 Tr Sl_lLSl(LQ)}
X exp{ —Tr A~ 181 (LQ)S My + c%(A—l)u(A—l)mnmnm} det A

0
(n11(A"1=81(ZQ)S; 11 —n12(A~1 =51 (LQ)S V)22)) /eo

X e
Xem,mm(( “)12(S1LQST H22(A™ )21 — (A*l)gl(SILlefl)n(Afl)m)/CO.
Notice
1 A1 e 1 A-1) (4-1 dot A
exp ;0<( )y — ( )22711,2) + %( ) (A7) y n1an e ¢ det

= det (A + inm),
o

where p1, 71 is defined in (3.31). In addition,
o~ Tr A71p151(LQ)ST 11— (S1(LQ)ST M1ina1/co+(S1(LQ)Sy H)22n1 2/co

« en1,1n1,2((A_l)12(51LQ5f1)22(A_1)21*(A_l)zl(SlLQSfl)n(A_l)m)/Co

1. 1o\ |
= exp { Tr Sl 17'1 (A + COLp1T1> plSILQ — aTr Sl 1Lp17'151<LQ)}
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hence we can perform the integration with respect to @ to get
/F(A7Q7PA177A_1751) dQ

1
det (A + Lﬁ1%1>
Co

, , o 2 . L 1. \L '
det <1E/2 +ivo + 5051 1L( — 62p17'1> S1— 5] Lz <A + CLp17'1> ,015’1)
0 0

Using

1 iE  co,, 2 . ,
Ui A+ —Lpi# Ui = —— + 2UFL( 1+ S UL + ino,
Co 2 2 o

we get finally

/F(A7Q7ﬁ17f1,51)d62

o o 2
UikL(l + %plTl)Ul — E=2ho 031’70 %Sl 17’1U1

— Sdet_l 2 1 9 B2
anmSl —SL(1 - %9171)51 — =

€0

Now changing

Pj11 = CopPj1,  Tiil —> C0Tj1,  P422 —7 C0pPj2, Tj22 — C0Pj2

with an appropriate change in n; 1, n;2, p;, 7;, and recalling (1.18), we get (1.11)
which finishes the proof of Theorem 1.1 for M = 1. The general case can be
obtain very similar: since M is finite, the additional terms (2.1) do not affect the
saddle-points and the main terms in representation (3.16), they just add some

additional terms to M of (3.20), hgt,]l)s of (3.21) and to (3.23) — (3.24) which can
be handled in the same way. O

4. Proof of Theorem 1.2

To simplify formulas below we handle again the case M = 1. We explain the
difference with the case M > 1 at the end of the section.

It is easy to see that (1.11) implies that Zg,(k, 21, 22) can be written in the
form

Zgn(k, 21, 22) =eP(@1772) / D(Q)F( QM 1(Q,Q"F(Q"dQdQ',

where

~ ¢
F(Q) := exp{ﬁ Str QAx g1 y0

MQ.Q) = FQesp{ - 2500 QQIF(Q),
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and

- .
! i LE) — D(U, 8, p, 7).

D(Q) := Sdet™! (Q ~ 2m0(E) + mp(E)

But for the proof of Theorem 1.2, it is convenient to change variables {U;}}",
and {S;}_; in order to obtain a little bit different representation.

Proposition 4.1. We have

Zgn(k, 21, 22) :GE(“xz)/Dl(Q)f(Q)M”1(Q7Q’)J’(Q’)deQ', (4.1)

where
I(Q)'ZGXP{C*OSUQM} Ay = L 0 k1o = (K% +yiy)'/?
’ 4n ’ 0 Lks ’ ’ 1,2 ’
M@.Q) = FQesp{ - §5trQQ1F(Q)
Dl(Q) =1 + conq + c3ng + cqning + d1p17'2 + d2p2’7'1, (42)

3
Cy = ZC(Vk)(T —isinht cos ag cosf + cosh t sin ag)_k, v=123,4,
k=1

d, = dV(r —isinht cosay cosf + cosht sinay) ™, v=1,2,

(v +771)/co > 0. (4.3)

T

Here ny = p171, ng = pam and a1, ag are defined as

sinag = Yo (k2 +92)"Y2, 0<a,<7/2, o=1,2

In addition, c(yk) and dl(,l) are polynomials with respect to entries of U, whose coef-
ficients are independent of S in the case of cl(,k), and are bounded functions of S in

the case of dl(,l). Parameterst, 0 here correspond to the following parametrizations
of UeU(2) and S € U(1,1):

i) /2 —i)2 o i0/2 t o=i0/2ginh &
) <ew/ cosg e/ SIHS;)’ _ <e” cosh e~/ Slnhz) (4.4)

—e®/24in £ e~ /2 cog z ¢/ sinh % e~"/2 cosh %

Proof. Let us introduce unitary matrices

[ cos(as/2) —isin(ag/2) B
Vo = (—isin(ao/Q) cos(ag/2) > » o=12

where a9 are defined in (4.1). It is straightforward to check that
Vol y, Vo = koL, o=1,2.

For the unitary group we can just change the variables U; — U; V1, and since the
Haar measure is invariant with respect to this change of variables, we obtain the
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desired transformation for the ”unitary” part of M. Unfortunately, similar trans-
formation for the hyperbolic group does not work directly, since the matrix S; =
S; Vo is not hyperbolic. But if we use another parametrization of the Hyperbolic
group

[ cosh(t/2) +ise!/?/2  —sinh(t/2) —iset/?/2
S(t,s) = <— sinh(t/2) +iset/?/2  cosh(t/2) —ise'/? /2 > ’

then it is straightforward to check that
S(t, S)VQ = S(t + i, S).

On the other hand, M(S1, S2) depends only on 8152_1 and the entries of 515’2_1
depend only on t; — ¢

(S(t1,51)S ™ (tg, 52)))11 = cosh((t1 — t2)/2) + (ispeltr72)/2 _ jgpe(1=2)/2) /.
(S(tl, 81)571(152, 82)))12 = — sinh((t1 — t2)/2) — (isle(t1*t2)/2 — i32€7(t1*t2)/2)/2.

Hence, if we change the integration contour with respect to all t; +-iao — t;, then
F—F, M—=M, DUS)— DUV, SVy).
Thus we are left to study Dy = D(UV}*, SV5"). Denote
U=U0Vy, S=S8Vy.

Using formulas (1.11) and (1.12), we conclude that

detA det(1 + 2LAA™Y)
Y7 det B det(1 — 2LAB-1 + 4p(A + 2La)-17)
- B 2y - p_ B 2ivg 5
A=-Z40s0 v, B="14"185" 11,
co Co Co €0
n = diag{ni,na} (4.5)

It is easy to see that

. B 2 -
detAzdet(—Z—i-wU&U_l—i-L)
Co o
E2 42 diy - = A
:_7_1_%——7<U11U12—U12U11)—
cH o o
4
=— 1(7 —sinp - cosaq siny 4 sin ay cos ) (4.6)
€0
N E 2. -
det B = det <Z + 225657 + L>
Co €o
E? 4 Ay (s e 3. (51
g o (Bl a5y -
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4
=— l(T—iSinht‘COSOég cosf + cosht - sinaw), (4.7)
Co

where 7 is defined in (4.3) and we used parametrizations (4.4) for U and S. Here

we used also that ~ _
51— < S22 —~512>
—So1 Su )’

—511(S™ Y91 + S12(S7Y) 11 = 511521 + S12592
= (SV5)11(SV5 )21 + (SV5)12(SV5 )22
= COS a2(511521 + 512522) + 7sin a2(511522 + 512521)

= sinht cos o cos @ + i coshttsin ap. (4.8)

and so

Similar formulas can be obtained for [711(:]12 — 012(}11.
Since

pIA+2Ln) "% = pA~ (1 —2LA A7,
PpATNLAAT BT = —nyng A} A LB,
we have
det<1 —2LAB! 4 4p (21 + 2Lﬁ> o %B*)
— det (1 —2LaB ! 4 4pAt (1 - 2LﬁA—1) %B—I)
—det (1 2LaB~" +4pA~ 257" ) det (1 + Snina Ary A LB )
=(1+m @AY - 2By +np (445 +2) By
+ 447 By pimy + 41212_1131_21,0271)

4ATY — ) (445 +2) + 16 AT AS) . -
x<1+n1n2<( 11 )(4A5 +2) + 1641, Ay 8AJ AL TYB L) .

detB
Hence,
det ™! (1 — LBl + 4p(A + 2Lﬁ)_1%[3_1>
= (1 — k:bnlng) (1 —m (4%1;11 — 2) Bil — Ny (4141521 + 2) Bg;
— 447} Byt pimo — 445 B! pm),
where
gy = AT =2 (Mg +2) #1645 450 a5y gy

det B
—2(4A7! — 2) (445, +2) By)' By, + 3247, Ay By By
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= —(16det™ A+8Tr A™'L — 4) (B! Byy' + By' By') + 8A Ay Tt B L.
Similarly,
det(1+2LAA™Y) = (14 2n1 A — 2n2 A% ) (1 — 4nyna(det A)~h).
Then finally D; of (4.5) can be rewritten as
Dy = (et B) " [det A~y (44pnBry! — 24 — 2B det A)
—ngy (432_2112111 + 245, + 21;’2_21 det fl)
+ 4/1123511P172 + 4A21Bf211727'1 - knl”Q} ;

k=— (16 ~8Tr AL — 4det [1) (Bﬁlf}g‘; + B;;B;f)

~8 Tr B'L + 4B A1y + 4B, Ao + 4, (4.9)
where we used
Agy B Apa
A= | detd detd ] (4.10)
_ Ax A
det A det A

Using (4.10) for B, and taking into account that (see (4.8))

24y

. 10 . S
Bjj=— — (-1 + =(3657");
(&) Co
B . .22 -~ -~
S (=1)7 + <_1)Jﬂ(512522 + 511521)
Co Co

5 ‘ 9;
== (1) + (—l)jﬂ(sinht cosag cosf +icosht sinag), j=1,2,
(&) Co
BI—IIB2—21 + BI_QIBEII = —(det B)_l + 2(det B)_QBHBQQ,
we obtain (4.2).

For the next step we will use the following notations:

FU,S) = exp{ - Ci(m (; - \U12\2> + @(; + \512\2>> } (4.11)
R(U,5) = _?<”1<; - |U12|2> — K2 <; + |512|2>>

with #1292 defined in Proposition 4.1.

Proposition 4.2. We have

eE(l’l—Z’Q)
Zﬂn(ﬁlewZQ) = - 27'["L

7{ " HG(2) ], 9)dz, (4.12)
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where wa = {z : |z] =1+ A/n},
~ —~ -1 —~ ~~ A~ ~
G(z) = (M - z) . M=FKF, R=RK,+0(8™"), (4.13)

where operators IA(O, F and the vectors J?, g have the form

0 0 Kuys K
0 0 0 Kys

f=F(es—e1), g§= ﬁ(cleo + coea + czes + (cq — c1)eq) + O(B_l) (4.15)

Kys Ki Ky Ks 1 B P F?

=~ |0 Kps 0 Ky = o1 0 A
Ko = CP=Fly o R (4.14)

0 O 1

with F and Fy being the operator of multiplication by the functions F and Fi
defined in (4.11) on La(U) ® La(S) , Kys = Ky ® Kg and Ky and Kg being the
integral operators in Lo(U) and Lo(S) with a “difference” kernels

Ky(U,U") = Ky(U(U')*) = Be AWl

K5(8,8') = Ks(S(8')™") = fe P60 Dl
and cs having the form (4.2). Here IN(p, p = 1,2,3 are normal operators on

Lo(U) ® Lo(S), they commute with Kys and with the Laplace operators Ay, Ag
on the corresponding groups and satisfy the bounds

K, < C(1— Kys) < —C(Ay + Ag)/, (4.16)

where the Laplace operators AU,KS for the functions depending only on |Sya|?
and |Uy2|? have the form

As(e) = _dix(x )% (= isnP),

T dr
~ d dy
Ay(p) = —%9@(1 - 95)% (z = |Ur2]?).

The proposition is basically identical to the Proposition 5.1 of [16]. The only
change is the different form of g coming from the presence of the factor D; in
(4.1). The from of g in (4.14) follows from (1.11) and Proposition 4.1. Indeed,
consider the basis e; = 1, ea = n1, es = na, e4 = nNing, €5 = P17, € = PaTl,
and let £1 = span{ey, eq, e3, e4}. Write the transfer operator matrix H as a block
matrix with the first block corresponding to £ (see the proof of Proposition 5.1

in [16]):
H(ll) H(12) (22 h h
= ) _ (11 a2
H <H(21) H(22)> ’ H (hgl h22> ’
0 0
ey — < 2% T T 0> : P B (4.17)
-2z —x —x 0 Y -

2ya —2yq
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Here hi;, x,y, x4, yq are “difference” operators whose kernels are defined with the
functions

hij = hijuhijs,  hiju = UKo, hijs = S5 Ks
T =1xyrs, zy = UnUna Ky, zs = S11S12Ks, z4=1xd,
Y =yuys, yu = UnU2Ky ys = S11512Ks, ya=yd, (4.18)

and Z, ¥y, T4, Jq mean the complex conjugate kernels. We recall that we are saying
that the operator in Lo(Us) is a “difference” one with a kernel f, if its kernel
k(Up,Us) has the form k(Uy,Us) = f(U U3). The operator on Ly(U(1,1)) is
a“difference” one with a kernel f, if k(S1,S2) = f(S1951). Let us recall also that
K (and consequently its resolvent) was obtained from H by the transformation

e}

K=THT, T=dag{T I}, T=

o O
o = O O

B
0
0
0

O O = O

B—l

Hence the entries of the off-diagonal blocks of the resolvent of K are obtained
from those of the off-diagonal blocks of the resolvent of H by multiplication by
B, 1, or B~1. Thus, to obtain the bound O(871) in (4.15), it is sufficient to get
the bound O(872) for the corresponding entries of the resolvent of H.
According to the Schur formula, the resolvent G(z) = (H — 2)~! has the form

G(11) _G(ll)H(12)G2
G(z):= (—GQH@UG(“) Gy + GoHED G H12) iy > ;

oy — M;l’ M, = HD — , — g2 g, gD, Gol(2) = (H 722 _ 2L
Since f576 = 0, we can write
(G(2)f,9) = (GUV 0, g — (HEV)*G39™),

where f(, (M) are the projection of f g on £ and ¢ is a projection of § g on
span{es, eg} Let us consider H(®2) = h + h where h is a diagonal part and h-off
diagonal part of H??) and let Goq = ( —2)~L. By the resolvent identity we can
write

Go = Gag — GoghGa (4.19)
Moreover, it was proven in [16] (see the proof of Lemma 6.2) that

|Ga(2)|| < Cn,  [|Gaa(2)] < Cn, ||h| <CB72, ||H®Y| <Cp?
= [[(HV)*(GoghGa)*|| < C5~2

For the first terms of the right-hand side of (4.19) we use the expansion

Gag(z -1 Z ~*(h)* (4.20)
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It is easy to see that, due to the form ¢ (see (4.9)), h and H®Y (see (4.17) and
(4.18)), after the integration with respect to U only the term corresponding to
s =1 in the above expansion will give non zero contribution. Hence, using that

1(H 20 b g2 < €572,

after the multiplication by £ we get (4.15). O
Now let us derive (1.13) from Proposition 4.2. To this end, set

My=F Gy=(My-2) .
and consider
AG:=G—Go= —GO(J\?— J\%)@O - @0<J\7— J\%)@(i\?— J\%)@o.
We apply the following lemma:

Lemma 4.3. For any z € wa (see (4.12)) we have the bounds

H@H < Clog®n/|z — 1|, H (]/\4\— ]/\/f\o)éoﬂr < C’(n/B)Q, (4.21)
H (1\7— 1\70)60@”2 < C(n/B), ](6;0 (1\7— 1\70)@0?, g)] < m' (4.22)

Inequalities (4.21) were proven in [16] (see Lemma 5.1). Hence we need to
prove only inequalities (4.22). We postpone the proof to the end of the section,
and continue with the proof of (1.13) using Lemma 4.3.

Let us write

57 NAGRD)E| <€ § [(GoldT - TT)Gof )]
+C § |G| 0T - FyGot 7| |37 - 3Go()a]
< C(nlogn/ﬁ) }{ \z‘d—z”l\ < Cnlog? n/ﬁ~ — 0,

where we used nlog?n < B and

7{ L < C'logn.
wa |Z - 1|

Thus we have proved that (recall (4.14))

eE(xlfxg)

Zﬁn(/’% Z1722) = - Ii

75 2 (Go(2)F.5) dz +0(1)

— EBlzi—m2) (ﬁ2”—2ﬁ /g\> +o(1).
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Proof of inequalities (4.22). Using inequalities (4.16) it is easy to conclude
the it is sufficient to prove that

I(As + Ap)Gogll? < Cn?,  [(@olds + Av)Gof.5)] < nlogn/|s — 1], (4.23)
Notice that since Gy = (F2 — 2)~!, we can write

Go GoFiFGy GoFiFGy GoFlFGoFlFG0+G0F12FGO

o — 0 Gy 0 GoF1FGy
0 0 0 Go GoF1FGy
0 0 0 Gy
GO _ (F2 . Z)_l, F(ZL‘) _ e—(202x—2clu+cl—02)/2n (424)

with z = |S12|%, u = |U2|2. Observe that coefficients of @0 do not depend on 6
of (4.4). Hence we can integrate over € in expression for § of (4.14) and (4.2).
Using that

2

1 do
o / (T — i cos ag sinh t cos § + sin ag cosh t)d
0
86—1

2 2 2 —1/2
((T + sin ag cosh t) + sinh” £ cos a2> , 0=1,2,3,
one can conclude that (4.23) will follow from the bounds

~ 2
|@as+anfa| <cn? v=1,.4 (4.25)

where for = sinh?(t/2)

fu(z) = a,GoF + b, F | (FGy)? + d, FZ(FGy)?

—~

~1/2
Gu(z) = alV) ((T + sin ap cosh t)? + sinh? ¢ cos? a2>

o —1/2

+ b(yl) g ((7‘ + sin aig cosh t)2 + sinh? ¢ cos? az)

-
2 —-1/2

+ dl(}) 882 ((T + sin ap cosh t)? + sinh? ¢ cos? az) ) (4.26)
-

where a,,b,,d, and al(,l), bl(,l), dl(,l) are bounded functions depending only on wu.
It is straightforward to check that

19

x(x + 1)|§,’,’

D) <CE@+ 1) |+ 1)g, ()] < C@® +1)71/2,
z)| < C@@®+1)

(
( -1/2, (4.27)

and

£/ (@)] <Cn,  |(x+1)f(x)] < Cn, |fi(z)| < On.
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Then, since
As(fodn) = z(@+ 1) (fodn)” + Qz + 1) (foin) + Fodv,
we conclude that
[As(fg)| < Cn@®+1)72 = |As(fa)|” < on
In addition, one can obtain by the same way that
1A (fod0)||° < Cn?.

Thus, we obtain (4.25).
To prove the second inequality in (4.23), we observe that for any f, of the
same type as in (4.26) we have

Ce—cx/n Cne—cw/n
<
=12 = |z -1

/ ca:/ndl,
- 1| (x2+1)1/2

e “Cdy Cnlogn
\Z—l\ o (@+n 2T jz-1]

|GoAsfu| <

Hence

‘/AAM%M__

Here we changed the variable x — nZ. Repeating the argument for Ay we obtain
the second inequality in (4.25). O

The case M > 1 is very similar, since in this case the transfer matrix M and
F in (4.1) remain the same and only D; is replaced by the product of D, of the
same form but with different 74 (see (1.11)). Hence, in (4.12) the resolvent G and
the function fare the same and only the function g will be different. But one can
see from the argument given after (4.27) that for our proof we need only bounds
(4.27), and the fact that g depends polynomially on entries of U (recall that we
used polynomial dependence on U in (4.19)-(4.20) to prove that only a finite
number of terms in (4.20) are non zero). But for M > 1 D; should be replaced
by the product of D, and each of them has the form (4.2) with 7 replaced by 7,
defined by (4.3) with v = v,. Hence it is evident that that resulting g will satisfy
(4.27) and will depend on entries of U polynomially.

5. Appendix

5.1. Grassmann integration. Let us consider two sets of formal variables
{1; }?:1, {¥; _1, which satisfy the anticommutation conditions

ity + Yes = Y0k + by = by + 9 =0, G k=1,...,n.  (5.1)
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Note that this definition implies %2' = @2 = 0. These two sets of variables

> J
{¥}j=1 and {3;}}_; generate the Grassmann algebra 2. Taking into account
tllat 1/}? = 0, we have that all elements of 2l are polynomials of {wj};‘:l and
{;}}—; of degree at most one in each variable. We can also define functions of

the Grassmann variables. Let y be an element of 2, i.e.,

X=a+ Z(aﬂ/}j + b)) + Z(aj,k”(/fjwk +bjkthjthy + cip ) + oo (5.2)

j=1 J#k

For any sufficiently smooth function f we define by f(x) the element of 2 obtained
by substituting x — a in the Taylor series of f at the point a. Since x is a
polynomial of {%}?:1, {@J %y of the form (5.2), according to (5.1) there exists
such [ that (x —a)! = 0, and hence the series terminates after a finite number of
terms and so f(x) € 2.

Following Berezin [1], we define the operation of integration with respect to
the anticommuting variables in a formal way:

/dwj Z/dwj:(k /@Z}jd%:/%d% =1

and then extend the definition to the general element of 2 by the linearity. A
multiple integral is defined to be a repeated integral. Assume also that the
“differentials” d1); and d 1), anticommute with each other and with the variables
1j and 1. Thus, according to the definition, if

k
F@r, k) =po+ Y Pithi + Y Pivga¥i s + o+ Prae w1 Uk

Jj1=1 Jj1<j2

then

Let A be an ordinary Hermitian matrix with a positive real part. The follow-
ing Gaussian integral is well-known

- ARz d Sz 1
/exp — Z AijjEk H J?T I = det A (5.3)
k=1 j=1

One of the important formulas of the Grassmann variables theory is the analog
of this formula for the Grassmann algebra (see [1]):

/exp = > Aty p [[ d;dw; = det A, (5.4)
G k=1 j=1

where A now is any n X n matrix.
We will also need the following bosonization formula
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Proposition 5.1 (see, e.g., [5]). Let F' : R — C be some function that depends

only on combinations
P 2
Qsd) = { ¢la¢sa} )
a=1 l,s=1

2 p
d® =[] [] dRéa dSé1a-

=1 a=1

and set

Assume also that p > 2. Then

2p—1

- T
F (¢ d<I>:/F B)detP~2 BdB,
/ (99) (p—1lp—2)! (5)
where B is a 2 x 2 positive Hermitian matriz, and

dB = 1B>0 dBll dBQQ d%Blg dSBlg.
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Komnuekcna nedopmaiiisi CKIH4Y€eHHOTO PaHTY J1JIst
BUMNAJKOBUX CTPIYKOBUX MaTPUIlb: allPOKUMAaIlisi
cirma-mogeJti

Mariya Shcherbina and Tatyana Shcherbina

Mu BUBYaEMO pO3IOII KOMILJIEKCHUX BJIACHUX 3HAYEHb 21,...,2ZN BU-
A IKOBOI epMITOBOI OJIOKOBOI CTPIIKOBOI MaTpuili po3mipy N X N 3 KoMILIe-
KCHOIO JTepOPMAIIIEI0 CKIHIYEHHOTO PAHTY. ¥ PEXuMi, Koau po3mip 60koB W
3pocrae mBume 3a N, MA JOBOIUMO, [0 FPAHUYHA IIIJIBHICTL S271, ..., S2N
y cirmMa-MoJie/IbHIN ampoKcuMaliil 30ira€ThCsl 3 BiAMOBIIHOIO MILIBHICTIO st
TayciBchKoro yaiTapHOro ancamoimo. JIjis boro Miu BUKOPHCTOBYEMO METOI,
po3pobienuii B [16].

KrrowoBi cj1oBa: BUTIAIKOBI CTPIIKOBI MATPHII, TEI0KATIZ0BAHIA PEXKIM,
KOMILJIEKCHA JTepopMallis, cirMa-MoIeb, CyIepCUuMeTpist
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