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We study the WKB expansion of 2×2 system of linear differential equa-
tions with Fuchsian singularities. The main focus is on the generating func-
tion of the monodromy symplectomorphism which, according to a recent
paper [10], is closely related to the Jimbo–Miwa tau-function. We compute
the first three terms of the WKB expansion of the generating function and
establish the link to the Bergman tau-function.
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1. Introduction

Although a subject of by now venerable age, the Wentzel–Kramers–Brillouin
(WKB) approximation, used since early days of quantum mechanics to study the
quasi-classical limit of the Schrödinger equation, has enjoyed a surge of interest
in the past decades, with a positive feedback of results between the mathematical
and physical community. After the method was developed further by many math-
ematicians in the decades preceding the turn of the millennium (see the relatively
recent reviews [18,37]), a new surge of interest in the subject was prompted by the
emergence of a connection between the WKB approximation and the geometry of
four-dimensional supersymmetric field theories in [22], where the rich geometry
arising from the WKB graph and differentials was used to study BPS states of
four-dimensional supersymmetric theories. This perspective has been later made
more mathematically precise in [2, 12, 14]. The central object in this analysis is
the WKB curve, a Riemann surface arising from the leading semiclassical approx-
imation, that coincides with the Seiberg–Witten curve of the associated quantum
field theory. Over the curve C one introduces the graph of horizontal trajectories
for the projective connection entering as potential in the Schrödinger equation,
defining a triangulation that allows to relate periods of the WKB differential to
Fock–Goncharov coordinates [9, 21], defined on the monodromy manifold of the
second order ODE.

The monodromy manifold of the Schrödinger equation is the SL2(C) character
variety, that can be parametrized by Fock–Goncharov coordinates (in turn related
to WKB periods). Over this space the Goldman Poisson bracket [26] is defined,
inverted by the symplectic form ΩG found in [1] on symplectic leaves V r, which
was computed in [9] using complex shear (Fock–Goncharov) coordinates. In the
paper [8] a natural set of Darboux coordinates for the Goldman symplectic form
ΩG, called homological shear coordinates, were found. The symplectic leaf V r

of the SL(2) character variety, where e±2πirj are the monodromy eigenvalues at
the punctures, is the image under the monodromy map F of the moduli space of
meromorphic flat connections with fixed residues, Ar. This is also a symplectic
manifold, endowed with the Atiyah–Bott (pre-)symplectic form, that reduces to
the Kirillov–Konstant symplectic form ΩKK in genus 0. According to the theorem
proved in [1, 27, 40], the monodromy map for a Fuchsian differential equation is
a symplectomorphism between the two spaces V r and Ar, i.e.

F∗ΩG = 2πiΩKK . (1.1)

Another connection between monodromy of linear ODEs and supersymmetric
QFTs comes from the theory of tau functions of isomonodromic systems, first
introduced in the ’80s by the Japanese School [35]. Starting from [23], the tau
function of a large class of isomonodromy problems, including in particular the
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sixth Painlevé equation and the Schlesinger system [24,28] as cases relevant to this
work, was identified with a Fourier series of non-perturbative four-dimensional
gauge theory partition functions. The quantum field theory corresponding to a
given isomonodromic problem can be identified by the singularity structure of
the linear system, or equivalently by its spectral curve, which coincides with the
WKB curve [11]. In this context, the tau function is defined by requiring its
logarithmic derivatives to be the isomonodromic Hamiltonian, which makes it
determined up to an arbitrary function of the monodromy data.

In [10], after previous results in this direction in the papers [30, 31], it was
shown that it is possible to extend the definition of the isomonodromic tau func-
tion for Fuchsian systems on the Riemann sphere in a way that fixes not only
the time dependence, but also the dependence on the monodromy parameters, by
defining it to be the generating function for the monodromy symplectomorphism,
that is, given symplectic potentials θKK and θG such that δθKK = ΩKK , δθG =
ΩG, the tau function T is defined as

d log T := θKK −
n∑
k=1

Hk dtk−
1

2iπ
F∗θG. (1.2)

In [17] it was shown that this same expression, together with its generalization
for Fuchsian systems over genus one Riemann Surfaces, arises from the Fredholm
determinant representation of the tau function [16, 24]. The definition (1.2) has
the conceptual advantage of fully fixing the functional dependence of T on all local
coordinates of Ar. In particular, it allows to determine the ratio of tau functions
expressed in different monodromy coordinates, allowing to determine the so-called
connection constant [30, 32]. In terms of 2d CFT, the connection constant is
interpreted as the ratio between conformal blocks in different channels, known as
the fusion kernel [5, 25, 29], and in terms of the corresponding 4d gauge theory
[34,43] it is the ratio of dual partition functions defined in different gauge theory
regimes. (A different point of view was taken in [15], where tau functions were
characterized as difference generating functions. While there are clear similarities
between the two definitions, the precise relation is not yet completely clear, and
we leave it to future studies.)

In this paper we take the first step towards the WKB analysis of the generating
function of monodromy symplectomorphism defined by

δ log G := F∗θG − 2πiθKK (1.3)

for the case of a general Fuchsian system on the Riemann sphere, by computing
explicitly its first three contributions. From a WKB standpoint, the main differ-
ence with respect to previous works such as [8, 22] is that the 2 × 2 Schlesinger
system gives rise to the Schrödinger equation with apparent singularities. Fur-
thermore, we consider variations δ that do not move the position of the (non-
apparent) singularities, that we denote by z1, . . . , zg+2. Even though the apparent
singularities introduce technical complications, it is still possible to explicitly in-
tegrate the equation for the generating function in the first three orders, resulting
in Theorems 3.1–3.3.
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To obtain the WKB-expansion of the isomonodromic tau function from our
computation, one would have to consider also variation of the positions of the
poles, and then impose that the apparent singularities evolve according to the
isomonodromic deformation equations, as it was done in [13, 33] for the case
of Painlevé I. In this case Rj ’s become ~ and time-dependent, so to get the
true asymptotic expansion in ~, one would have to further expand the resulting
expression imposing the isomonodromic time evolution.

Let us now introduce the necessary definitions and notations (for more details
about the notations we refer the reader to the beginning of Section 3). We are
going to study the ~-expansion for the equation

dΨ

dz
= R(z)Ψ(z) =

1

~

g+2∑
j=1

Rj
z − zj

Ψ(z). (1.4)

Let

R∞ = Rg+3 = −
g+2∑
j=1

Rj , (1.5)

and assume that R∞ is diagonal,

R∞ =

(
r∞ 0
0 −r∞

)
. (1.6)

Denote the eigenvalues of the matrices Rj by rj and −rj for j = 1, . . . , g +
3. The solution Ψ of (1.4) has monodromies M1, . . . ,Mg+3 around the points
z1, z2, . . . , zg+2,∞ which satisfy the relation

M1 · · ·Mg+3 = I.

Assume that the matrices Rj are diagonalizable, and let

Rj = GjLjG
−1
j , (1.7)

where Lj = diag(rj ,−rj). Then, on the space Ar which is the symplectic leaf rj =
const quotiented over simultaneous transformations of the form Rj → GRjG

−1,
G ∈ SL(2,C), the Kirillov–Kostant symplectic form is defined by

ΩKK = −1

~
tr

g∑
k=1

LkG
−1
k δGk ∧G−1k δGk (1.8)

with the symplectic potential θKK (such that δθKK = ωKK) given by

θKK =
1

~
tr

g∑
k=1

LkG
−1
k δGk. (1.9)

The construction of the Darboux homological shear coordinates for the Goldman
symplectic form [8], parametrizing the monodromy representation of solutions of
(1.4), looks as follows: write the coefficient matrix of the linear system (1.4) as

R(z) =

(
a(z) b(z)
c(z) −a(z)

)
, (1.10)
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and define

Q0(z) ≡ −detR(z) = a(z)2 + b(z)c(z). (1.11)

We will assume all zeros xj , j = 1, . . . , 2g + 2 of Q0 to be simple; then Q0 takes
the form

Q0(z) = C0

∏2g+2
j=1 (z − xj)∏g+2
j=1(z − zj)2

, (1.12)

where C0 is a proportionality constant. Consider the hyperelliptic curve C of
genus g with branch points at x1, . . . x2g+2 defined by

µ2 = Q0(z), (1.13)

and introduce the following meromorphic differential of the third kind, with 2g
poles on C:

v = µ(z) z. (1.14)

The horizontal trajectories of v generically connect its zeros xj with its poles zj ;
denote the resulting critical graph by Γ. From the graph Γ one can construct two
graphs embedded in the Riemann sphere: the graph Σ with vertices at zj whose
faces are triangles, and the tri-valent graph Σ∗ dual to Σ with tri-valent vertices
at xj , as in Figure 1.1.

x1

x2

x3

x4

x5

x6

z1

z2

z3

z4

z5

Fig. 1.1: Horizontal critical trajectories (blue lines) connect poles zj with zeros
xk of Q and form the critical graph Γ. Black edges connecting poles zj form
the graph Σ (the triangulation of C) while the zigzag curves connect zeros xj and
form the dual tri-valent graph Σ∗. All edges of Σ∗ can be chosen to be the branch
cuts of C.

The (logarithmic) complex shear coordinates on V are assigned to edges of Σ∗;
according to [8] these coordinates can be extended by linearity to get homological
shear coordinates assigned to elements of H1(C). Introduce a canonical basis of
cycles (aj , bj)

g
j=1 on C with the intersection index and consider the corresponding

set of logarithmic homological shear coordinates (ρaj , ρbj ) on V r (see App of [8]),
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among which there are g relations. In terms of (ρaj , ρbj ), Goldman’s symplectic
form ΩG on V r looks as follows:

ΩG =

g∑
j=1

δρaj ∧ δρbj . (1.15)

The corresponding symplectic potential on V r satisfying δθG = ΩG will be chosen
as follows:

θG =
1

2

g∑
j=1

(ρajδρbj − ρbjδρaj ). (1.16)

Denote the monodromy map by F . The theorem of [1, 27,40] states that

2πiΩKK = F∗ΩG, (1.17)

so that there exists the generating function G such that

δG = F∗θG − 2πiθKK . (1.18)

In this paper we compute explicitly the first three non-trivial terms in the
~-expansion of G for fixed times:

G =
G−2
~2

+
G−1
~

+ G0 + · · · (1.19)

in Theorems 3.1, 3.2 and 3.3. Note that, due to the almost trivial ~ dependence
of the linear system (1.4), the Kirillov–Konstant symplectic potential in (1.18)
contributes only at order O(~−1), while the potental θG contains terms of every
order starting from ~−2. The existence of the monodromy symplectomorphism F
implies the highly nontrivial consequence that the WKB expansion of Goldman’s
symplectic potential θG gives a closed form at all orders except for O(~−1). The
computation of the coefficients in the expansion (1.19) is based on the ~-expansion
of the homological shear coordinates ρ` for ` ∈ H1(C,Z) [2, 8]:

ρ` =

∫
`

(v
~

+ v0 + ~v1 + · · ·
)
, (1.20)

where v0, v1, v2, . . . are meromorphic differentials on C arising from the WKB
expansion. The integrals in (1.20) are called Voros symbols after [44].

Our main result is the integration of definition 1.3, resulting in the explicit
determination of G−2, G−1, G0 in terms of contour integrals of WKB differentials
v, v0, v1 on the WKB curve (1.13). The leading contribution to G is

G−2 = −πi

r∞reg

∫ ∞(1)

∞(2)

v +

g∑
j=1

rjreg

∫ z
(1)
j

z
(2)
j

v

 , (1.21)

where p(j) denotes the image of the point p ∈ P1 on the j-th sheet of C, and the
regularized integrals are defined by

reg

∫ z
(1)
j

z
(2)
j

v := lim
ε→0

(∫ z
(1)
j +ε

z
(2)
j +ε

v − 2rj log ε

)
(1.22)
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and

reg

∫ ∞(1)

∞(2)

v := lim
R→∞

(∫ R(1)

R(2)

v + 2r∞ logR

)
. (1.23)

The subleading term G−1 is given by the formula

G−1 =
1

2
〈v, v0〉 − 2πi

g∑
j=1

qjAj − πi
g∑

k=1

Bk − πi
g∑
j=1

jAj , (1.24)

where Aj , Bj are the A- and B-periods of v, and 〈·, ·〉 is the antisymmetric pairing
defined by Riemann’s bilinear relations

〈w, w̃〉 :=

∮
∂C̃

(∫ x

w

)
w̃, (1.25)

where C̃ is the fundamental polygon of C. Finally, the constant term G0 in the
WKB expansion of the generating function is

G0 = −12πi ln τB(CP 1, Q0) + F − 1

2
〈v1, v〉, (1.26)

F

iπ
=

1

2

g∑
j=1

\
∫ λ

(1)
j

λ
(2)
j

v0 +
1

2
\
∫ ∞(1)

∞(2)

v0 + ln

∏
a,k(λa − zk)∏

j µj
∏
a<b(λa − λb)

− 1

4r∞
\
∫ ∞(1)

∞(2)

v −
g+2∑
k=1

1

4rk
\
∫ z

(1)
k

z
(2)
k

v. (1.27)

Here λj ’s are the location of the zeros of the (2, 1) entry of the matrix R(z) (1.4),
τB is Bergman’s tau function (see Appendix B) and the regularization in the
integrals is defined by

\
∫ λ

(1)
j

λ
(2)
j

v0 := lim
p→λ(1)j
q→λ(2)j

∫ p

q
v0 −

1

2
ln(z(p)− λj)−

1

2
ln(z(q)− λj), (1.28)

where z : C → C is the projection on the z-coordinate.

2. Second order equation and its WKB expansion

The starting point of our discussion is the linear system (1.4), with coeffi-
cient matrix (1.10). Let us denote the zeros of the component c(z) = R21(z) by
λ1, . . . , λg. Then, since R∞ is diagonal, we have c(z) ∼ C/z2 as z → ∞ and we
can write:

c(z) = C

∏g
j=1(z − λj)∏g+2
k=1(z − zk)

(2.1)

for some constant C. If we also denote by

µj = a(λj), j = 1, . . . , g, (2.2)
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we can write a(z) as follows:

a(z) =

g∑
j=1

µj

n∏
k=1

λj − zk
z − zk

g∏
l 6=k

z − λl
λj − λl

. (2.3)

Proposition 2.1. Let ψ(z; ~) be the second component of the vector-valued

solution of (1.4). Then the function f =
√

~
c(z)ψ(z; ~) satisfies the following

second order ODE:
d2f

dz2
−Q(z; ~)f = 0, (2.4)

where the potential Q(z; ~) is given by

Q(z; ~) =
Q0

~2
+
Q1

~
+Q2. (2.5)

Here,

Q0 = −detR = a2 + bc, (2.6)

Q1 = a
d

dz
ln
( c
a

)
, (2.7)

Q2 =
1

4

(
c′

c

)2

− 1

2

(
c′

c

)′
= −1

2
S
(∫ z

c(x) dx, z

)
, (2.8)

where S(f, z) is the Schwarzian derivative

S(f, z) ≡
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

. (2.9)

Proof. Let us apply to the linear system (1.10) the following (singular) gauge
transformation

Ψ(z) = c−
σ3
2

(
1 ~

2
c′

c + a
0 1

)
~
σ3
2 F (z) ≡ g(z)F (z), (2.10)

which maps the matrix R(z) to the matrix

g−1Rg − ~g−1
dg

dz
=

(
0 Q
1 0

)
, (2.11)

where

Q =
a2 + bc

~2
+
a log

(
c
a

)′
~

+

[
3

4

(
c′

c

)2

− 1

2

c′′

c

]
. (2.12)

Then, the elements F11, F12 of the matrix F are the two independent solutions
of (2.4).
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2.1. Properties of Q0, Q1, and Q2. Let us discuss the properties of the
meromorphic functions Q0, Q1, and Q2:

• The function Q0 can be written as follows:

Q0(z) = C0
P (z)∏g+2

j=1(z − zj)2
=

g+2∑
j=1

(
r2j

(z − zj)2
+

Hj

z − zj

)
, (2.13)

where P (z) =
∏2g+2
j=1 (x− xj) is a polynomial of degree 2g + 2 and

C0 =

g+2∑
j=1

r2j . (2.14)

• Function Q1:
Notice that a ∼ −r∞/z + · · · as z → ∞ while c behaves as C/z2. Therefore,
Q1 behaves as r∞z

−2 as z →∞. If we write

Q1(z) =

g∑
j=1

µj
z − λj

+

g+2∑
j=1

γj
z − zj

(2.15)

for some parameters γj ∈ C, we get the following condition on the parameters
entering in Q1:

g∑
j=1

µj +

g+2∑
j=1

γj = 0. (2.16)

• Function Q2:
The function Q2 in (2.8) can be written as follows:

Q2 =
1

4

 g∑
j=1

1

(z − λj)
−

g+2∑
k=1

1

z − zk

2

+
1

2

 g∑
j=1

1

(z − λj)2
−

g+2∑
k=1

1

(z − zk)2

 ,

(2.17)
and its Laurent expansion near λ` looks as follows:

Q2(z) =
3

4(z − λ`)2
+

E`
z − λ`

+ F` + · · · (2.18)

with

E` =
1

2

∑
i
i 6=`

1

λ` − λi
−

n∑
k=1

1

λ` − zk

 , (2.19)

F` =
1

4

∑
i
i 6=`

1

λ` − λi
−

g+2∑
k=1

1

λ` − zk


2

. (2.20)

Near z =∞ we have

Q2(z) =
(
∑

j λj −
∑

k zk)
2 + 2

∑
j λ

2
j − 2

∑
k z

2
k

4z4
+O

(
z−5
)
. (2.21)
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The potential (2.5) of the resulting Schrödinger equation has second order
poles at the points z1, . . . , zg+2 with biresidues ~−2r21 − 1

4 , . . . , ~
−2r2g+2 − 1

4 :

Q =

(
r2j
~2
− 1

4

)
1

(z − zj)2
+O((z − zj)−1), z → zj , (2.22)

it has the following behaviour at z ∼ ∞

Q =

(
r2∞
~2

+
r∞
~

)
1

z2
+ . . . ,

and second order poles at the points λ1, . . . , λn−3 with biresidues 3/4:

Q =
3/4

(z − λj)2
+
(µj
~

+ Ej

) 1

z − λj
+O(1). (2.23)

The singularities at λj are apparent, i.e. the monodromy of the fundamental
matrix of equation (2.4) around λj is −1 (the terminology here is the one accepted
in the specific literature but it is a misnomer. According to the classical use of
the term, an “apparent” singularity in an ODE is a point of singularity of the
coefficients such that all the solutions are analytic in a neighbourhood thereof.
Here, on the other hand, both solutions have a branchpoint with exponents ±1

2 .
In general this could be a resonance, but the fact that there are no logarithms in
the solution is the property that is termed improperly “apparent”.

This can be seen by inspection of the gauge transformation (2.10) and is a
consequence of the following (for a proof, see [13]):

Lemma 2.2. The ODE

f ′′(z) =

(
3

4z2
+
A

z
+B +O(z)

)
f(z) (2.24)

has two linearly independent solutions with Frobenius exponents ±1
2 at z = 0 if

and only if A2 = B.

The triviality (in PSL2) of monodromies at the points λj translates to the
following Bethe equations for the quantities γk appearing in Q1:

Lemma 2.3. The monodromy of the ODE (2.4) around the apparent sin-
gularities λj is −1 if and only if the following set of equations are satisfied for
coefficients γj, j = 1, . . . , g + 2 from (2.15):

g+2∑
k=1

γk
λ` − zk

=
∑
i
i 6=`

µ` − µi
λ` − λi

− µ`
∑
k

1

λ` − zk
(2.25)

for ` = 1, . . . , g.



Generating function of monodromy symplectomorphism 311

Proof. Use the behaviour (2.23) of Q at λj , and apply Lemma 2.2 to the
Schrödinger equation (2.4):(

µj
~

+ res
λj
Q2

)2

=
Q0(λj)

~2
+

1

~
Qreg

1 (λj) +Qreg
2 (λj), (2.26)

where resλj Q2 denotes the coefficient of 1
z−λj in the expansion of Q2 around λj ,

as in equation (2.24), and Qreg
i the regular part of the expansion at λj . Using

the explicit form of Q0, Q1, Q2 in equations (2.13), (2.15), (2.18), we find(
µ`
~

+
1

2

∑
i
i 6=`

1

λ` − λi
− 1

2

n∑
k=1

1

λ` − zk

)2

=
Q0(λ`)

~2
+

1

~

n∑
k=1

γk
λ` − zk

+ F` +
1

~
∑
i
i 6=`

µi
λ` − λi

.

On account that µ2` = Q0(λ`) and equation (2.20) we are left with the Bethe
equations for the quantities γk.

2.2. Canonical cover and WKB differentials. We now introduce the
WKB approximation of equation (2.4):

fzz −
(
Q2 +

Q1

~
+
Q0

~2

)
f = 0. (2.27)

Introduce the cover C given by

v2 = Q0(z)dz
2. (2.28)

The curve C has 2g + 2 branch points which we denote by x1, . . . , x2g+2. We
denote the projection of C to the z-plane by f , and the hyperelliptic involution
on C by ν. The homology group of the curve C, punctured at 2g + 4 points
f−1(zj), can be represented as a direct sum of even and odd components under
the involution ν:

H1

(
C \ {f−1(zj)}g+2

j=1

)
= H+⊕H−, dimH+ = g+1, dimH− = 3g+1. (2.29)

Denote the points projecting to the poles zj by z
(1,2)
j :

f−1(zj) =
{
z
(1)
j , z

(2)
j

}
.

The enumeration is chosen such that

res
z
(1)
j

v = rj , res
z
(2)
j

v = −rj .
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Let small positively-oriented loops around points {z(1)j }
g+1
j=1 be denoted by

{tj}g+1
j=1 . Then generators of H+ can be chosen to be t+j = tj +ν∗tj , j = 1, . . . , g+

1. The generators of H− can be chosen to be

{aj , bj}gj=1, {t−j }
g+1
j=1 , (2.30)

where

t−j =
1

2
(tj − ν∗tj).

Introduce the divisor of degree g given by

D = λ
(1)
1 + · · ·+ λ(1)g , (2.31)

where λ
(1)
j = (λj , µj) with λj being the zeros of c(z) and µj = a(λj). Then λ

(2)
j

is the point having the same projection on z-plane but lying on another sheet of

C, i.e. λ
(2)
j = (λj ,−µj).

To study the limit ~ → 0 of equation (2.27) we introduce the asymptotic
series s =

∑∞
k=−1 ~ksk and write the asymptotic series for the solution f in the

form

f = v−1/2 exp

{∫ x

x0

(~−1s−1 + s0 + ~s1 + . . . )v

}
, (2.32)

where sk are meromorphic functions on C and x0 is a basepoint. We introduce
also the meromorphic differentials

vk =
1

2
(sk + ν∗sk)v. (2.33)

The differential vk satisfies

ν∗vk = −vk. (2.34)

As a corollary of (2.27) the function s satisfies the Riccati equation which in
coordinate-independent form can be written as follows:

ds+ vs2 = −qv +
Q1v

~
+

v

~2
, (2.35)

where q = −Q2 − Sv
2 and Sv = S(

∫ z
v, ·). Equivalently, since Q2 =

−1
2S
(∫ z

c(x) dx, ·
)
, we can represent the meromorphic function q on C in the

coordinate-independent form:

q =
1

2

(
S
(∫ z

c(x) dx, ·
)
− S

(∫ z

v, ·
))

=
1

2
S
(∫ z

c(x) dx,

∫ z

v

)
. (2.36)

Equivalently, (2.35) can be written as

d

( ∞∑
k=−1

~ksk

)
+ v

( ∞∑
k=−1

~ksk

)2

= −qv +
Q1v

~
+

v

~2
.
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The coefficients of ~−2, ~−1 and ~0 give

s−1 = ±1, s0 =
Q1

2Q0
, s1 = −s

2
0

2
− q

2
− ds0

2v
(2.37)

so that v−1 = ±v. We shall choose the “+” sign.

The higher functions sk, k ≥ 1 can be found recursively from relations

dsk + v
∑
j+l=k
j,l≥−1

sjsl = 0, k ≥ 1, (2.38)

which imply

sk+1 = − 1

2s−1

(
dsk
v

+
∑
j+l=k
j,l≥0

sjsl

)
, k ≥ 1.

The first three differentials in the WKB expansion are obtained from (2.37)
taking into account that the only term in (2.37) which is not skew-symmetric
under ν∗ is −ds0/2v:

v2 = Q0(z)(dz)
2, v0 =

1

2v
Q1(z)(dz)

2, (2.39)

v1 = −v
2
0

2v
+

1

2v
Q2(z)(dz)

2 +
1

4v
S
(∫ z

v, z

)
(dz)2. (2.40)

2.3. Properties of WKB differentials. Here are the properties of the
WKB differentials (2.39), (2.40):

• The differential of the third kind on C given by

v = µdz (2.41)

has first order poles at points z
(1,2)
j with the residues ±rj , and at ∞(1,2) with

residues ±r∞. The latter statement follows from the fact that near ∞(1,2) we
have

v ∼ a(z) dz = ∓r∞
dz

z
, (2.42)

res
∞(1,2)

v = ±r∞. (2.43)

• The differential of the third kind

v0 =
Q1

2v
(dz)2 (2.44)

is holomorphic at branch points of C (at the branch points, v has second order
zero, while the differential dz has a first order zero). Let us now discuss the
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behaviour of v0 near λ
(1,2)
j . Near λ

(1)
j we have v ∼ a(λj)dz and Q1 ∼ µj

z−λj .

Therefore, near λ
(1,2)
j one has the asymptotics

v0 ∼ ±
dz

2(λ− λj)
.

Moreover, near ∞(1,2) we have Q1 ∼ r∞
z ; thus, using (2.42), v0 has simple

poles at ∞(1,2) with residues ±1/2, respectively.

• We can write the differential v1 (which turns out to be of second kind) as

v1 = −v
2
0

2v
+
Q2

2v
(dz)2 +

1

4v
S
(∫

v, z

)
(dz)2, (2.45)

or more more symmetrically as

v1 = −v
2
0

2v
+

(dz)2

4v

(
S
(∫

v, z

)
− S (c, z)

)
. (2.46)

Using the composition property of the Schwarzian derivative, it can also be
written as follows:

v1 = −v
2
0

2v
− v

4
S(c, ξ), (2.47)

where ξ =
∫ z
v is the flat coordinate defined by differential v.

To prove (2.47) we used the composition rule for c(ξ(z)):

S(c, z) (dz)2 = S(c, ξ) (dξ)2 + S(ξ, z) (dz)2. (2.48)

The differential v1 has second order poles at branch points and second order
poles at ∞(1,2) with residues

res
∞(1,2)

v1 = ∓ 1

4r∞
. (2.49)

Lemma 2.4. The conditions (2.25) of triviality of monodromies around λj
are equivalent to equations

res |
λ
(1,2)
j

v1 = 0. (2.50)

Proof. We use the expression

v1 =
1

2v

[
1

2
S
(∫

v, z

)
+Q2(dz)

2 − v20
]
. (2.51)

The term involving the Schwarzian derivative can be ignored since it is regular
at λj . Using the expansions at z = λj

Q0(z) = µ2j + (z − λj)Q′0(λj) +O(z − λj)2,

Q1(z)
2 =

µ2j
(z − λj)2

+
2µj
z − λj

Qreg1 (λj) +O(1),
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Q2(z) =
3

4

1

(z − λj)2
+

Ej
z − λj

+O(1)

and expressing v and v0 in terms of Q0, Q1 we have

1

2v

[
Q2(dz)

2 − v20
]

= ± 1

4µj

[
1

(z − λj)2
+

1

(z − λj)
(2µjEj −Qreg

1 (λj)) +O(1)

]
.

The vanishing of the residue is equivalent to the O(~−1) equation of (2.26).

Let us summarize in a table all the properties of the WKB differential dis-
cussed in this section:

Differential Pole Order of the pole Residue

v = µdz z
(1,2)
j 1 ±rj
∞(1,2) 1 ±r∞

v0 = Q1

2v (dz)2 z
(1,2)
j 1 ±1

2

λ
(1,2)
j 1 ±1

2

v1 = −v20
2v −

v
4S(c, ξ) z

(1,2)
j 2 ∓ 1

4r∞
∞(1,2) 2 ∓ 1

4rk

λ
(1,2)
j 2 0

xj 2

2.4. WKB expansion of complex shear coordinates. Let us assume
that Q0 is a Gaiotto–Moore–Nietzke (GMN) differential (i.e. it has no horizontal
trajectories connecting two zeros [22]). Then the cover (2.28) (also called the
“WKB curve”) admits a canonical triangulation Σ, constructed as follows. Due
to the genericity assumption on Q0, the horizontal trajectories always start at a
zero xj and end at a pole zk: let us call by Γ the critical graph whose edges are
such trajectories. The WKB triangulation Σ is defined as the graph having the
poles zk’s as vertices, with every face containing exactly one zero of Q. The dual
graph to Σ, whose vertices are instead the zeros xj , will be denoted by Σ∗. This
construction is shown in Figure 1.1.

To each edge e of the graph Σ one assigns a coordinate ρe ∈ C whose expo-
nential is a complex shear coordinate, the simplest example of a Fock–Goncharov
coordinate (see Appendix A.2 of [8] for more details).

To every edge e of the triangulation it is possible to associate a cycle `e ∈
H−, defined to be the loop that goes clockwise around the edge e∗ of Σ∗; to the
cycle e one assigns the Fock-Goncharov coordinate ρe

{ρe, ρe′} = e ◦ e′.

Because the Poisson bracket is constant, it is possible to choose linear com-
binations of the ρe’s that are Darboux conjugate. These coordinates extend by
linearity to the aj and bj cycles, that we denote by ρaj , ρbj , and their Goldman
bracket is {

ρaj , ρbk
}
G

=
δjk
2
. (2.52)



316 Marco Bertola, Dmitry Korotkin, and Fabrizio del Monte

The following proposition is an analog of Proposition 5.2 in [8]. It shows
that the homological shear coordinates ρ` (for ` ∈ H−(C)) admit an asymptotic
expansion in terms of periods of Sodd.

Proposition 2.5. The formal asymptotic expansion of the homological shear
coordinate ρ` for each ` ∈ H− looks as follows:

ρ` ∼
1

~

∫
`
v +

∫
`
v0 + ~

∫
`
v1 + · · · , (2.53)

where vk are given by (2.33). The relation (2.53) is understood in PSL(2) sense,
i.e. up to an addition of πik for k ∈ Z.

Proof. The proof is parallel to the proof of Proposition 5.2 of [8]. The dif-
ference is the presence of the term Q1 in this paper which was absent in [8];
moreover, Q1 has additional singularities at λj which are apparent singularities
of the equation (2.4) were absent in [8] and also in [3]. In the frameworks of [8]
and [3] the differential V contains only odd powers of ~ (since in these papers it is
assumed that Q1 = 0) while in our present context we also have all even powers.

The presence of apparent singularities at λj does not modify the asymptotics
(2.53) by the following reason: the issue of apparent singularities at the poles
of Q1 is completely analogous to the case of the Lax pair for the sixth Painlevé
equation (i.e. our case with g = 1); we refer to [37], Theorem 4.4. The reason
why there are no different Stokes’ regions in the WKB analysis near a λj is that,
up to a (Borel resummable ~–dependent) conformal change of coordinate z →
ξ(z, ~), the local model of the equation in a neighbourhood of z = λj is

− d2

dξ2
f +

(
4ξ2

~2
− 3

4ξ2

)
f = 0. (2.54)

This equation, while formally displaying a double turning point at ξ = 0
(corresponding to z = λj), does not, in fact, exhibit any Stokes’ phenomenon
since its general solution is explicitly written as

f(ξ) =
A√
ξ

e
1
~ ξ

2
+

B√
ξ

e−
1
~ ξ

2
. (2.55)

This implies that the analysis of [8] goes through without further modifications.
In the case of the opers relevant for all the Painlevé equations I–V I this was
discussed in detail in Chapter 4 of [37] (and references therein).

3. WKB expansion of the generating function

The generating function G defined by (1.18) has the following formal expan-
sion in powers of ~:

G =
G−2
~2

+
G−1
~

+ G0 + . . . . (3.1)
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In this section we compute the first three coefficients, G−2, G−1 and G0. Let us
introduce the following notation: for any two 1-forms w and w̃ we consider their
periods (Aj , Bj) and (Ãj , B̃j) and introduce the pairing

〈w, w̃〉 =

g∑
j=1

AjB̃j −BjÃj . (3.2)

The expansion of the symplectic potential θG from equation (1.16) can be
written as follows using (2.53) and the pairing (3.2):

θG =
θ
(−2)
G

~2
+
θ
(−1)
G

~
+ θ

(0)
G +O(~), (3.3)

where

θ
(−2)
G =

1

2
〈v, δv〉, (3.4)

θ
(−1)
G = 〈v0, δv〉 −

1

2
δ〈v0, v〉, (3.5)

θ
(0)
G =

1

2
〈v0, δv0〉+ 〈v1, δv〉 −

1

2
δ〈v1, v〉. (3.6)

3.1. Formula for G−2. Chose a set of generators of H1(C) which we denote
by {aj , bj}gj=1, {tj}

g−1
j=1 . Introduce the a and b-periods of the differential v:

Aj =

∫
aj

v, Bj =

∫
bj

v.

Theorem 3.1. The equation (3.4) for G−2 can be written as

δG−2 =
1

2

g∑
j=1

(AkδBk −BkδAk) (3.7)

and its solution is given by

G−2 = −πi

r∞reg

∫ ∞(1)

∞(2)

v +

g∑
j=1

rjreg

∫ z
(1)
j

z
(2)
j

v

 , (3.8)

where

reg

∫ z
(1)
j

z
(2)
j

v = lim
ε→0

(∫ z
(1)
j +ε

z
(2)
j +ε

v − 2rj log ε

)
and

reg

∫ ∞(1)

∞(2)

v = lim
R→∞

(∫ R(1)

R(2)

v + 2r∞ logR

)
.
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Proof. In the coordinate system (Aj , λj), the form in the r.h.s. of (3.7) has
only δAj-contributions since it depends only on the moduli of C, and not on the
point of Jacobian. One can write v as follows, using the properties of v that we
listed in Section 2.3:

v = r∞w∞(2),∞(1) +

g∑
j=1

rjwz(2)j ,z
(1)
j

+

g∑
j=1

Ajuj , (3.9)

where wx,y is the differential of third kind on C with residues −1 and +1 at x
and y, respectively, normalized by the condition of vanishing a-periods, and uj is
the holomorphic differential normalized via

∫
ak
uj = δjk. The b-period of wx,y is

given by ∮
bj

wx,y = 2πi

∫ y

x
uj , (3.10)

so that

Bk =

∫
bk

v = 2πi

r∞ ∫ ∞(1)

∞(2)

uk +

g∑
j=1

rj

∫ z
(1)
j

z
(2)
j

uk

+

g∑
j=1

AjΩjk. (3.11)

Moreover, since zj and rj are independent of the periods Aj , from (3.9) and
(3.11) we have

δv

δAj
= uj ,

δBk
δAj

= Ωjk (3.12)

and, therefore,

g∑
k=1

(AkδBk −BkδAk) = −2πi

g∑
k=1

r∞ ∫ ∞(1)

∞(2)

uk +

g∑
j=1

rj

∫ z
(1)
j

z
(2)
j

uk

 δAk, (3.13)

which, due to (3.12), equals to

−2πiδ

r∞reg

∫ ∞(1)

∞(2)

v +

g∑
j=1

rjreg

∫ z
(1)
j

z
(2)
j

v


leading to (3.8).

3.2. Formula for G−1. We shall use the version of Riemann bilinear rela-
tions (see [19], equation (2.5.6)) given in (1.25).

The first theorem we need is the following: let µj = a(λj) and

λ
(1)
j = (λj , µj) (3.14)

and consider the divisor D = λ
(1)
1 + · · ·+ λ

(1)
g .
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According to Th.A.5 the symplectic potential for Kirillov–Kostant symplectic
form can be expressed as follows in terms a-periods of v and the divisor D as
follows:

g∑
j=1

trLjG
−1
j δGj =

g∑
j=1

Ajδqj = −

 g∑
j=1

qjδAj

+ δ

 g∑
j=1

qjAj

 , (3.15)

where

q = A∞(2)(D)−K∞(2)
, (3.16)

K∞
(2)

is the vector of Riemann constants at the point ∞(2).

Using this fact we shall prove the following formula for G−1:

Theorem 3.2. The equations for G−1 look as follows

δG−1 = 〈v0, δv〉 − 2πi

g∑
j=1

trLjG
−1
j δGj +

1

2
δ〈v, v0〉 (3.17)

and the solution is given by the formula

G−1 =
1

2
〈v, v0〉 − 2πi

g∑
j=1

qjAj − πi
g∑

k=1

Bk − πi
g∑
j=1

jAj . (3.18)

Proof. Equation (3.17) follows from δG = θG − 2πiθKK , together with equa-
tions (3.5) and the (1.9). Let us work in the coordinate system (Aj , λj). Then
δλjv = 0. On the other hand, since ∂Ajv = uj we compute

〈v0, ∂Ajv〉 = 〈v0, uj〉 = −
∮
∂C̃

(∫ x

uj

)
v0 = −2πi

∑
res

(∫ x

uj

)
v0

= −

(
πi

g∑
k=1

∫ λ
(1)
k

λ
(2)
k

uj + πi

∫ ∞(1)

∞(2)

uj

)
, (3.19)

where we used that v0 has residues ±1
2 at λ

(1,2)
j and ∞(1,2), respectively. There-

fore,

G−1 =
1

2
〈v, v0〉 − 2πi

g∑
j=1

qjAj + f, (3.20)

where

δf = 〈v0, δv〉+ 2πi

g∑
j=1

qjδAj .

Therefore, δλjf = 0 and

∂Ajf = 〈v0, uj〉+ 2πiqj .
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Using (3.19) and (3.16) we get

∂Ajf = −πi

(
g∑

k=1

∫ λ
(1)
k

λ
(2)
k

uj +

∫ ∞(1)

∞(2)

uj

)
+ 2πi

(
g∑

k=1

∫ λ
(1)
k

∞(2)

uj −K∞
(2)

j

)
.

Choose a branch point x1 as the corner of the fundamental polygon. Then this
equation can be written as

1

2πi
∂Ajf = −

(
g∑

k=1

∫ λ
(1)
k

x1

uj +

∫ ∞(1)

x1

uj

)
+

g∑
k=1

∫ λ
(1)
k

x1

uj + g

∫ x1

∞(2)

uj −K∞
(2)

j

or
1

2πi
∂Ajf = −(g − 1)

∫ x1

∞(2)

uj −K∞
(2)

j .

Therefore, we get
δf

δAj
= −2πiKx1

j .

Using the representation

Kx1
j =

j

2
+

1

2

∑
k

Ωjk

and relation

Ωjk =
δBk
δAj

,

we have

f = −πi
g∑
j=1

jAj − πi
g∑

k=1

Bk.

3.3. Formula for G0.

Theorem 3.3. The equations for G0 looks as follows

δG0 = θ
(0)
G =

1

2
〈v0, δv0〉+ 〈v1, δv〉 −

1

2
δ〈v1, v〉 (3.21)

and the solution is given by the formula

G0 = −12πi ln τB(CP 1, Q0) + F − 1

2
〈v1, v〉,

where

F

iπ
=

1

2

g∑
j=1

\
∫ λ

(1)
j

λ
(2)
j

v0 +
1

2
\
∫ ∞(1)

∞(2)

v0 + ln

∏
a,k(λa − zk)∏

j µj
∏
a<b(λa − λb)

− 1

4r∞
\
∫ ∞(1)

∞(2)

v −
g+2∑
k=1

1

4rk
\
∫ z

(1)
k

z
(2)
k

v,
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and τB(CP 1, Q0) is the Bergman tau-function defined by (3.28). The regulariza-
tion is the “z”–regularization, where we subtract the singular part computed in
the z–coordinate. Specifically,

\
∫ λ

(1)
j

λ
(2)
j

v0 = lim
p→λ(1)j
q→λ(2)j

∫ p

q
v0 −

1

2
ln(z(p)− λj)−

1

2
ln(z(q)− λj). (3.22)

Proof. Let us write the potential θ
(0)
G as follows:

θ
(0)
G = Θ(0) + 〈v̂1, δv〉+ δ〈v, v1〉, (3.23)

where

Θ(0) =
1

2
〈v0, δv0〉+ 〈ṽ1, δv〉 . (3.24)

Here we have set

v̂1 =
(dz)2

2v
S
(∫

v, z

)
, ṽ1 = −v

2
0

2v
− (dz)2

2v
S(c, z), (3.25)

so that the differential v1 is the sum

v1 = ṽ1 + v̂1. (3.26)

The integration of the last term in (3.23) is trivial. The second term can be
integrated in terms of the Bergman tau-function described in the Proposition 3.4
The integration of Θ(0) is provided in Lemma 3.5.

Proposition 3.4 (Proposition B.1). The solution to the equation

− 12πi δ ln τB(C, dz) = 〈v̂1, δv〉 (3.27)

is given by the Bergman tau-function:

τB = exp

{
−1

6

g+2∑
k=1

1

rk
reg

∫ zk

x1

v

}∏
j<k

(xj−xk)5/144
∏
j<k

(zj−zk)1/6
∏
j,k

(xj−zk)−7/72,

(3.28)
where the regularized integrals are defined by (B.4).

The integration of the term Θ(0) is provided by the following lemma:

Lemma 3.5. The solution to equation

δF = Θ(0) (3.29)

is given by

F

iπ
=

1

2

g∑
j=1

\
∫ λ

(1)
j

λ
(2)
j

v0 +
1

2
\
∫ ∞(1)

∞(2)

v0 + ln

∏
a,k(λa − zk)∏

j µj
∏
a<b(λa − λb)

− 1

4r∞
\
∫ ∞(1)

∞(2)

v −
g+2∑
k=1

1

4rk
\
∫ z

(1)
k

z
(2)
k

v. (3.30)
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Proof. The computation can be performed in any set of coordinates; we
choose to use coordinates λ′js and periods {Aj} (alternatively one could use any
any moduli of the spectral curve). Then the spectral curve is λj–independent.
By application of the Riemann bilinear identities we obtain

1

iπ
Θ(0) =

∑
res

(
v0(x)

∫ x

δv0 + 2ṽ1

∫ x

δv

)
, (3.31)

where the sum extends over all poles of the expression in the residue bracket.

These poles are located at: the points z
(1,2)
j , the branch points xj of the curve C,

the points λ
(1,2)
j , the points ∞(1,2).

Branch points. We are going to show that the residues at the branchpoints
of the two terms in (3.31) cancel each other. To this end we observe that from

v0 =
Q1dz

2

2v
, (3.32)

we have

δv0 =
δQ1(dz)

2

2v
− Q1(dz)

2

2v2
δv =

δQ1(dz)
2

2v
− v0

v
δv. (3.33)

The first term does not have poles at the branch points because dz2 and v both
have double zeros. The second term is present only for differential in the moduli
of the curve (leaving λj ’s constant). Secondly, in the expression for ṽ1 the only
term with poles at the branch point are

ṽ1 = −v
2
0

v
+O(1). (3.34)

Thus, applying (3.33) we get∑
b.pts

res
xk

(
v0(p)

∫ p

∂Ajv0 + 2ṽ1

∫ p

∂Ajv

)

=
∑
b.pts

res
xk

(
−v0(p)

∫ p v0
v
∂Ajv + 2ṽ1

∫ p

∂Ajv

)

=
∑
b.pts

res
xk

(
−v0(p)

∫ p v0
v
∂Ajv −

v20
v

∫ p

∂Ajv

)
. (3.35)

The computation of this residue is easier if done in the local coordinate ζ given
by z = xk + ζ2: in this coordinate each of the differentials (being all odd under
the hyperelliptic involution) are expressed as functions of ζ2. We denote

v0 = f0(ζ
2)dζ, v = ζ2h(ζ2)dζ, ∂Ajv = g(ζ2)dζ, (3.36)

where we have used that v has a double zero at ζ = 0 (and h(0) 6= 0). We
also observe that in the computation of the residues the base point of integra-
tion of the integrals is irrelevant because it adds a constant and this yields no
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residue. Then we can represent the indefinite integral
∫ p v0

v ∂Ajv as a locally de-
fined meromorphic odd function with a simple pole at ζ = 0. In explicit terms
we have∑

b.pts

res
xk

(
v0(p)

∫ p

∂Ajv0 + 2ṽ1

∫ p

∂Ajv

)

= − res
ζ=0

(
−f0(ζ2)

f0(0)g(0)

ζh(0)
+

f0(0)2

ζ2h(ζ2)

∫ ζ

0
g(ξ2)dξ +O(1)

)
dζ = 0. (3.37)

Contribution of the other residues. Consider first one of the moduli,
Aj , of the curve that does not modify the z–projection of the divisor D.

Recall that res
λ
(1,2)
j

v0 = res∞(1,2) v0 = ±1
2 and thus ∂Ajv0 is locally analytic at

the points λj and ∞; the same applies to ∂Ajv. Viceversa, from (3.34) it follows
that ṽ1 has a double pole at λj with coefficient

ṽ1 = ± 1

4µj

1

(z − λj)2
+O(1) near λ

(1,2)
j , (3.38)

where we emphasize the absence of residue. Finally we need the residues of ṽ1 at

the points z
(1,2)
k ’s and ∞(1,2); a short computation using (3.25) yields

res
z
(1,2)
k

ṽ1 = ∓ 1

8rk
, res
∞(1,2)

ṽ1 = ∓ 1

8r∞
. (3.39)

Keeping this in mind, the result is then

∑
λ
(1,2)
j ,∞(1,2),z

(1,2)
k

res

(
v0(p)

∫ p

∂Ajv0 + 2ṽ1

∫ p

∂Ajv

)

=
1

2

∑
j

∫ λ
(1)
j

λ
(2)
j

∂Ajv0 +
1

2

∫ ∞+

∞−
∂Ajv0 −

∑
j

1

2µj

∂Ajv

dz

∣∣∣∣λ
(1)
j

λ
(2)
j

− 1

4r∞

∫ ∞(1)

∞(2)

∂Ajv −
n+2∑
k=1

1

4rk

∫ z
(1)
k

z
(2)
k

∂Ajv

=
1

2

∑
j

∫ λ
(1)
j

λ
(2)
j

∂Ajv0 +
1

2

∫ ∞+

∞−
∂Ajv0

− ∂Aj ln

g+2∏
k=1

µk−
1

4r∞

∫ ∞(1)

∞(2)

∂Aj −
g+2∑
k=1

1

4rk

∫ z
(1)
k

z
(2)
k

∂Ajv,

where we have used that
∂Aj v

dz

∣∣∣
λ
(1,2)
j

= ±∂Ajµj . We now observe that the deriva-

tive is made at z–value fixed under the integral sign; therefore we can pull the
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derivative outside provided we interpret the integration as a z–regularized inte-
gral:∑
j

res
λ±j

(
v0(p)

∫ p

∂Ajv0 + 2v1

∫ p

∂Ajv

)

= ∂Aj

1

2

∑
j

\
∫ λ

(1)
j

λ
(2)
j

v0 +
1

2
\
∫ ∞+

∞−
v0− ln

g+2∏
k=1

µk−
1

4r∞
\
∫ ∞(1)

∞(2)

v −
n+2∑
k=1

1

4rk
\
∫ z

(1)
k v

z
(2)
k

 ,

where, by definition, the regularization is made by subtraction of the singular
part in the z–coordinate of the antiderivative.

Variations of divisor D. We now consider a derivative ∂λj . Since v and
the spectral curve are independent of λj ’s, only the first term in (3.31) gives a
nonzero contribution.

Using the Riemann bilinear relations we find

Θ(∂λj ) =

((
res
∞(1)

+ res
∞(2)

)
+
∑
`

(
res
λ
(1)
`

+ res
λ
(2)
`

))
v0

∫
∂v0
∂λj

. (3.40)

Now observe that for ` 6= j and for the residues at infinity the integrand is locally
analytic and hence the differential v0

∫
∂λjv0 has a simple pole; we can pull the

derivative outside of the integration because the regularization depends on λ` but
not on λj . Thus we have

Θ(∂λj ) =
1

2

(∫ ∞(1)

∞(2)

+

g∑
`=1
` 6=j

∫ λ
(1)
`

λ
(2)
`

)
∂v0
∂λj

+

(
res
λ
(1)
j

+ res
λ
(2)
j

)
v0

∫
∂v0
∂λj

. (3.41)

We are left with the contribution of ` = j:

res
(λj ,±µj)

v0

∫
∂v0
∂λj

. (3.42)

The local behaviour of the indefinite integral is (near λ
(1)
j ):∫ p

∂λjv0 =

∫ p ∂

∂λj

(
1

2(z − λj)
+O(1)

)
δz

=

∫ p( 1

2(z − λj)2
+O(1)

)
δz =

−1

2(z − λj)
+O(1).

Therefore, the local behaviour of the function we are taking the residue of in
(3.42) is

v0

∫
∂v0
∂λj

=

(
±1

2(z − λj)
+A

(1,2)
j + · · ·

)(
∓1

2(z − λj)
+ C

(1,2)
j + · · ·

)
, (3.43)
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where A
(1,2)
j = vreg0 (λ

(1,2)
j ) = ±vreg0 (λ

(1)
j ). This means that the result is

A
(2)
j −A

(1)
j +C

(1)
j −C

(2)
j

2 . Now, by definition of regularization:

C
(1)
j − C

(2)
j

2
=

1

2
\
∫ λ

(1)
j

λ
(2)
j

∂v0
∂λj

. (3.44)

We then observe that

1

2
\
∫ λ

(1)
j

λ
(2)
j

∂v0
∂λj

=
1

2

∂

∂λj
\
∫ λ

(1)
j

λ
(2)
j

v0 −
1

2
vreg0

∣∣∣∣λ
(1)
j

λ
(2)
j

=
1

2

∂

∂λj
\
∫ λ

(1)
j

λ
(2)
j

v0 +
A

(2)
j −A

(1)
j

2
. (3.45)

Therefore we have

res
λ
(1,2)
j

(
v0

∫
∂λjv0

)
=
A

(2)
j −A

(1)
j + C

(1)
j − C

(2)
j

2
=

1

2
\
∫ λ

(1)
j

λ
(2)
j

∂

∂λj
v0 +

A
(2)
j −A

(1)
j

2

=
1

2

∂

∂λj
\
∫ λ

(1)
j

λ
(2)
j

v0 − 2A
(1)
j . (3.46)

It remains to compute A
(1)
j : from the definition of v0 (3.32) it follows promptly

A
(1)
j =

Qreg1 (λj)

2µj
+

1

2
∂λj lnµj

=
1

2µj

∑
` 6=j

µ`
λj − λ`

+
∑
k

γk
λj − zk

+
1

2
∂λj lnµj . (3.47)

Using the Bethe equations (2.25) one finds then

A
(1)
j =

1

2

∑
6̀=j

1

λj − λ`
−
∑
k

1

λj − zk

+
1

2
∂λj lnµj . (3.48)

Inserting this expression into (3.46) we then obtain:

res
λ
(1,2)
j

v0

∫
∂λjv0 =

1

2

∂

∂λj
\
∫ λ

(1)
j

λ
(2)
j

v0

−

∑
6̀=j

1

λj − λ`
−
∑
k

1

λj − zk

− ∂λj lnµj , (3.49)

where, again, the regularization so far is made in the z-coordinate.
Thus

g∑
j=1

〈
v0,

∂v0
∂λj

〉
δλj =

1

2
δλ

\∫ ∞(1)

∞(2)

+

g∑
j=1

\
∫ λ

(1)
j

λ
(2)
j

 v0

+ δλ ln

∏
a,k(λa − zk)∏

µj
∏
a<b(λa − λb)

. (3.50)

This concludes the proof.
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A. Kirillov–Kostant symplectic potential

A.1. Szegö kernel and its variations. Here we list the necessary infor-
mation about Szegö kernel and its variations. For a Riemann surface of genus g
denote the Abel map by A(x), introduce holomorphic differentials uj normalized
via

∫
aj
uk = δjk and the prime-form E(x, y). Let q ∈ Cg. The Szegö kernel Sq is

then given by

Sq(x, y) =
Θ(A(x)−A(y) + q)

Θ(q)E(x, y)
. (A.1)

The Szegö kernel has the following properties. First, it has simple pole on the
diagonal of the form:

Sq(x, y) =

(
1

ξ(x)− ξ(y)
+O(1)

)√
dξ(x)

√
dξ(y), (A.2)

where ξ is a local coordinate near the diagonal. Second, it has the following
periodicity properties: Sq(x, y) remains invariant (up to a sign) when x or y are
analytically continued along any a-cycle aj ; under analytical continuation along
bj one has

Sq(x+ bj , y) = e−2πiqjSq(x, y), Sq(x, y + bj) = e2πiqjSq(x, y).

The Szegö kernel satisfies the following identity due to Fay [20]:

Sq(x, y)Sq(y, x) = −B(x, y)−
g∑

α,β=1

∂α∂β log Θq(0)uα(x)uβ(y), (A.3)

where B(x, y) = dxdy logE(x, y) is the canonical bimeromorphic differential.

The Szegö kernel depends on the moduli of the Riemann surface C (we consider
here the moduli space of hyperelliptic curves of genus g defined by (1.13)) and on
the vector q, which defines a point of the Jacobian of C. Variational formula for
Szegö kernel on the space Ar can be conveniently written in terms of coordinate
system (Aj , qj) where Aj =

∫
aj
v and qj are components of vector q. The moduli

of the curve C (for fixed r and zj) depend (locally) only on the periods Aj .

The variational formulas are given in the next proposition.

Proposition A.1. The following variational formulas hold:

∂

∂Aj
Sq(x, y) = −2πi

4

2g+2∑
i=1

uj
d ln(v/dz)

(xi) res
xi

Wt[Sq(x, t), Sq(t, y)]

v(t)
, (A.4)

∂

∂qγ
Sq(x, y) = −

∫
t∈aγ

Sq(x, t)Sq(t, y), (A.5)

where Wt(f, g) denotes Wronskian of two functions f(t) and g(t).
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Proof. The formula (A.5) was proved in [36] (Proposition 1).

The formula (A.4) follows from two results. The first is Theorem 2 of [36]
where the variational formulas for Sq on moduli spaces of meromorphic abelian
differentials were derived. Then (A.4) can be obtained from the formula of [36]
via chain rule, following verbatim the proof of formula (3.10) from [6] where the
variational formulas for Abelian differentials were derived.

We shall need the following lemma which is valid for any n-sheeted cover of
P1; this statement is equivalent to relations (4.12), (4.13) from [39].

Lemma A.2. Let C be an n-sheeted cover of P1 with projection f : C → P1.
Then the following identity holds:

n∑
i=1

Sq(x, t
(i))Sq(t

(i), y) = Sq(x, y)

(
1

f(x)− t
− 1

f(y)− t

)
dt. (A.6)

Proof. For completeness here we give a short independent proof of this fact.
The left-hand side of (A.6) is a 1-form in t depending only on the point of the
base. It has simple poles at z = f(x) and z = f(y). The coefficient depends on x
and y and must coincide with Sq(x, y) due to the holonomy properties of Sq.

We shall also use the following notations. First, introduce the system of
distinguished local coordinates on C. Near a branch point xj it is given by
ζj(z) =

√
z − xj . Near∞(1,2) the distinguished coordinate is chosen to be ξ(z) =

1/z. Finally, near any other point with projection z0 on z-plane the distinguished
coordinate is z − z0. Now we define the following:

Sq(x,∞(j)) =
Sq(x, y)√
d(z−1(y))

∣∣∣∣∣
y=∞(j)

, j = 1, 2, (A.7)

Sq(x, xk) =
Sq(x, y)√

d
√
f(y)− xj

∣∣∣∣∣∣
y=xk

, k = 1, . . . , 2g + 2. (A.8)

Using these notations we get from (A.6) in the limit t→∞:

n∑
i=1

Sq(x,∞(i))Sq(∞(i), y) = Sq(x, y)(f(x)− f(y)). (A.9)

A.2. Eigenvectors of rational matrix functions via Szegö kernel
on spectral curve. The Szegö kernel can be conveniently used to construct
eigenvectors of the rational matrix-valued function R(z) (1.10). The construction
is parallel to the one used in [39] to construct solutions of matrix Riemann-Hilbert
problems.
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Proposition A.3. Consider a pair (C, q) where q ∈ Cg and C is the spectral
curve given by equation

µ2 = C

∏2g+2
j=1 (z − xj)∏g+2
j=1(z − zj)2

(A.10)

such that for the differential v = µdz we have

res
z
(1,2)
j

v = ±rj , res
∞(1,2)

v = ±r∞, (A.11)

where r1, . . . , r2g+2, r∞ are some constants. Consider the divisor D = λ
(1)
1 + · · ·+

λ
(1)
g defined by

A∞(2)(D) = −q +K∞
(2)
. (A.12)

Consider the canonical polygon C̃ invariant under the hyperelliptic involution
ν. Define the following column-vector for x ∈ C̃:

ψ(x) =
1√

df(x)

(
Sq(x,∞(1))

Sq(x,∞(2))

)
(A.13)

and the 2× 2 matrix on C̃

Ψ(x) = (ψ(x), ψ(x∗)) =
1√

df(x)

(
Sq(x,∞(1)) Sq(x

∗,∞(1))

Sq(x,∞(2)) Sq(x
∗,∞(2))

)
. (A.14)

Then the matrix R defined by

R(x) dz(x) = Ψ(x)

(
v 0
0 −v

)
Ψ−1(x) (A.15)

is a rational matrix invariant under the transformation x → xν , i.e. it depends
only on z, and

1. R(z) has simple poles only at zj:

R(z) =

g+2∑
j=1

Rj
z − zj

. (A.16)

2. The eigenvalues of Rj are equal to ±rj and

R∞ := −
g+2∑
j=1

Rj =

(
r∞ 0
0 −r∞

)
.

3. C coincides with the spectral curve det(R(z)− µI) = 0.

4. The matrix entry R21(z) has on C exactly g zeros situated at λj ≡ f
(
λ
(1)
j

)
.

5. The points λ
(1)
j = (λj , µj) are such that µj = R11(λj), i.e. the divisor D

defined by (A.12) is given by D =
∑g

j=1(λj , R11(λj)). Another characteriza-
tion of the divisor is that it consists of the points of the spectral curve above
the finite part of the plane where the eigenvector is proportional to the vector
(1, 0).
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Proof. To prove that the matrix R is invariant under the involution x→ xν

we notice that Ψ(xν) = Ψ(x)σ1 and v(xν) = −v(x). Therefore, R(xν) = R(x).

The eigenvalues of the matrices Rj coincide with residues of v at the points

z
(1,2)
j which are equal to ±rj due to (A.11).

According to [39] (see p.350, and formula (4.14)), Fay’s identities imply that
detΨ = ±1 and

Ψ−1(x) =
1√

df(x)

(
Sq(∞(1), x) Sq(∞(2), x)

Sq(∞(1), xν) Sq(∞(2), xν)

)
. (A.17)

The matrix element R21 is a rational function of z = f(x) given by

R21(z) = 2
v(x)

(df(x))2
Sq
(
x,∞(2)

)
Sq
(
xν ,∞(2)

)
,

which vanishes at the points of divisor D + Dν due to (A.12). Equivalently, it
means that R21, considered as function of z, vanishes at the points of π(D).

Finally, the eigenvalues of Rj from (A.16) are equal to ± residues of v at

z
(1,2)
j , i.e. ±rj .

The expression (A.14) can be alternatively written as follows:

Ψαβ(z) =
1√

df(x)
Sq
(
z(β),∞(α)

)
(A.18)

and (A.17) as

(Ψ−1)αβ(z) =
1√

df(x)
Sq
(
∞(β), z(α)

)
. (A.19)

Corollary A.4. The matrices Rj can be diagonalized as follows:

Rj = Gj

(
rj 0
0 −rj

)
G−1j , (A.20)

where the formulas for Gj are obtained for (A.14), (A.18):

(Gj)αβ = Sq(z
(β)
j ,∞(α)) (A.21)

such that

(G−1j )αβ = Sq(∞(β), z
(α)
j ). (A.22)

A.3. Kirillov–Kostant potential. The Kirillov–Kostant symplectic form
looks as follows in terms of eigenvector matrices Gj [4]:

ωKK = −
n∑
j=1

trLjG
−1
j δGj ∧G−1j δGj . (A.23)
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The natural choice of symplectic potential θKK such that dθKK = ωKK is

θKK =

n∑
j=1

trLjG
−1
j δGj (A.24)

or, alternatively,

θKK =

g+2∑
j=1

res
zj

tr
(
v̂Ψ−1δΨ

)
=

g+2∑
j=1

res
zj

tr
(
µ̂Ψ−1δΨ

)
dz, (A.25)

where

v̂ = µ̂dz =

(
v 0
0 −v

)
.

Theorem A.5. The form θKK in (Aj , qj)-coordinates looks as follows:

θKK =

g∑
j=1

Ajδqj , (A.26)

where Aj =
∫
aj
v are a-period of v (defined up to an integer linear combination

of Casimirs rj).

Proof. Consider first the contribution of δqj in (A.24). First, using (A.18),
(A.19) and variational formula (A.5), we get(

Ψ−1(z)∂qjΨ(z)
)
αβ

dz

= −
2∑

γ=1

∮
x∈aj

Sq
(
z(β), x

)
Sq(x,∞(γ))Sq

(
∞(γ), z(α)

)
(A.27)

or, using Lemma A.2,(
Ψ−1(z)∂qjΨ(z)

)
αβ

dz = −
∮
x∈aj

Sq
(
z(β), x

)
Sq
(
x, z(α)

)
(f(x)− z). (A.28)

Recall that µ(z) is a meromorphic function with simple poles at the points p →
z
(1,2)
j with singular parts µ =

±rj
z−zj .

The contribution to θKK of δqj is therefore given by:

θKK(∂qj ) = −
g+2∑
k=1

2∑
α=1

(Lk)αα

∮
x∈aj

Sq(p, x)Sq(x, p)

df(p)

∣∣∣∣
p=z

(α)
k

(f(x)− f(p)), (A.29)

which, using (A.25), gives

−
g+2∑
k=1

2∑
α=1

res
p=z

(α)
k

µ(p)

∮
x∈aj

Sq(p, x)Sq(x, p)(f(x)− f(p)). (A.30)
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The integration contours aj in the x–variable can be chosen so as not to intersect
the integration contours for the residues in the p–variable and hence the integrand
is regular. Thus we can interchange the order of integrations:

θKK(∂qj ) = −
∮
x∈aj

g+2∑
k=1

2∑
α=1

res
p=z

(α)
k

µ(p)Sq(p, x)Sq(x, p)(f(x)− f(p)). (A.31)

The sum over the residues is the sum over all poles above the zj ’s of the differential
(in the p variable)

µ(p)Sq(p, x)Sq(x, p)(f(x)− f(p)). (A.32)

This differential does not have a pole at p =∞(1,2) because the eigenvalue, µ(p) of
R has a simple zero, which cancels the pole of f(p). Moreover it has an additional
simple pole at p = x, with residue

res
p=x

µ(p)Sq(p, x)Sq(x, p)(f(x)− f(p)) = µ(x) df(x). (A.33)

Thus we can use residue theorem and rewrite (A.31) as follows:

θKK(∂qj ) =

∮
x∈aj

res
p=x

µ(p)Sq(p, x)Sq(x, p)(f(x)− f(p)). (A.34)

Furthermore, using Fay’s identity (A.3), and using the fact that B(p, x) behaves
on the diagonal as (f(p)− f(x))−2df(p)df(x), we get

res
p=x

µ(p)Sq(p, x)Sq(x, p)(f(x)− f(p)) = µ(x) df(x) (A.35)

and, therefore,

θKK(∂qj ) =

∮
aj

v = Aj . (A.36)

Consider now the contribution of δAj to θKK . Remind that Ψ(λj) = Gj while
res |zj v̂ = Lj . Now, using variational formulas (A.4) we have(

Ψ−1∂AjΨ
)
αα

=
2∑

γ=1

Sq(∞(γ), p)

df(p)

(
πi

2

∑
xi

uj(xi) res |x=xi
Wx[Sq(p, x), Sq(x,∞(γ))]

v(x)

)∣∣∣∣∣
p=z

(α)
j

,

where

uj(xi) =
uj

d ln(v/δξ)
(xi). (A.37)

Therefore, using (A.9) we have

θKK(∂Aj ) =

g+2∑
k=1

2∑
α=1

(Lk)αα
(
Ψ−1∂AjΨ

)
αα

= −πi
2

g+2∑
`=1

2∑
α=1

res
∣∣
p=z

(α)
`
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×

 ∑
xi∈b.pts

uj(xi) res
t=xi

Wx

[
Sq(p, x), Sq(x, p)(f(x)− f(p))

]
µ(x) df(x)

µ(p)

 (A.38)

or, since the branch points are simple,

θKK(∂Aj ) = −πi
2

g+2∑
`=1

2∑
α=1

res
p=z

(α)
`

 ∑
xi∈b.pts

res
t=xi

uj(x)

d lnµ(x))

×
Wx

[
Sq(p, x), Sq(x, p)(f(x)− f(p))

]
µ(x) df(x)

µ(p)

 . (A.39)

Once again we can swap the order of residues because the branch-points are

away from the points z
(α)
j . One can verify that the differential of p in the inmost

residue has poles only above the zj ’s and at p = t, with no pole at ∞, for the
same reason as in equation (A.32). To compute the residue at p = x, we use
(A.2) that specifies the behavior of Sq(p, x) for p ∼ x:

res
p=x

Wx

(
Sq(p, x), Sq(x, p)[f(x)− f(p)]

)
µ(x)df(x)

µ(p)

= res
p=x

µ(p)

µ(x)df(x)

(
∂xSq(p, x)Sq(x, p)(f(x)− f(p))

− Sq(p, x)∂xSq(x, p)(f(x)− f(p))− Sq(p, x)Sq(x, p)
)

= res
p=x

1

(f(p)− f(x))2
µ(p)

µ(x)
= d logµ(x).

Therefore,

θKK(∂Aj ) = −πi
2

∑
xi

res
x=xi

uj(x)

d lnµ(x)
d lnµ(x) = 0.

B. Bergman tau-function

Here we summarize the key facts from the theory of Bergman tau-function
(see [36,38,39] and the review [41]).

First, let us write the function (2.13) as follows:

Q0(z) = C0
P (z)

R2(z)
, (B.1)

where

P (z) =

2g+2∏
j=1

(x− xj), R(z) =

g+2∏
j=1

(z − zj),

and

C0 =

g+2∑
j=1

r2j .
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B.1. Definition of τB(Q0) and its properties. Here we remind the defi-
nition of the Bergman tau-function on the space of quadratic differentials (see [7],
where the tau-function needed here is denoted by τ+, and the review [41]). The
constructions of [7] are adjusted to the case of genus zero base curve (then in the
notations of [7] we have g− = g).

In the genus zero case the Bergman tau-function τB is defined by the following
equations with respect to the periods of v along canonical cycles on C (see [7,36]):

δ log τB
δAi

= − 1

24πi

∫
bi

S
(∫ x

v, z(x)
)

(dz)2

v
,

δ log τB
δBi

=
1

24πi

∫
ai

S
(∫ x

v, z(x)
)

(dz)2

v
(B.2)

for i = 1, . . . , g. Here z is the global coordinate on CP1 and S(·, ·) is the
Schwarzian derivative (notice that in z-coordinate the Bergman projective con-
nection SB on the Riemann sphere is identically zero).

Therefore, the differential of log τB on the symplectic leaf Qg,n[r] is given by
the following expression:

δ log τB =
1

24πi

g∑
j=1

[(∫
ai

S
(∫ x

v, z(x)
)

(dz)2

v

)
δBj

−

(∫
bi

S
(∫ x

v, z(x)
)

(dz)2

v

)
δAj

]
. (B.3)

B.2. Explicit formula for τ(Q0). Let us introduce the following regular-
ized integrals on C of v =

√
Q0dz:

reg

∫ zk

x1

v := lim
x→zk

{∫ x

x1

v − rk ln(z(x)− zk)
}
. (B.4)

The explicit formula for τB(Q0) is then given by the following proposition:

Proposition B.1. Choose the contours lj connecting x1 with zj such that
they lie entirely inside of the fundamental polygon C. Then

τB = exp

{
−1

6

g+2∑
k=1

1

rk
reg

∫ zk

x1

v

}∏
j<k

(xj−xk)5/144
∏
j<k

(zj−zk)1/6
∏
j,k

(xj−zk)−7/72.

(B.5)

Proof. Denote by

E(z, w) =
z − w√
dz
√
dw

(B.6)

the prime-form on P1. In terms of the prime-form the Bergman tau-function is
given by the following expression valid for the base curve of genus zero in terms



334 Marco Bertola, Dmitry Korotkin, and Fabrizio del Monte

of the divisor (Q0) =
∑
djpj (see [7, 36,38,42]):

τB =

(
Q0(x)∏

j E
di(x, pj)

)−1/6∏
i<j

E(pi, pj)
didj
24 . (B.7)

The prime-forms in (B.7) are evaluated at the points pi as follows:

E(x, qi) = lim
y→pi

E(x, y)
√
dζi(y), (B.8)

E(pi, pj) = lim
x→pj ,y→pi

E(x, y)
√
dζi(y)

√
dζj(x), (B.9)

where ζ are distinguished local coordinates near points pj .
Let us apply (B.7) to our case, when

(Q0) =

2g+2∑
k=1

xj − 2

g+2∑
k=1

zk

and

τB =

(
Q0(x)

∏
j E

2(x, zk)∏
j E(x, xj)

)−1/6(∏
i<j E(xi, xj)

∏
k<lE

4(zk, zl)∏
k,lE

2(xk, zl)

)1/24

. (B.10)

Locally near z
(1)
k we have

v ∼ rk
z − zk

dz + · · · (B.11)

and the distinguished local coordinate ζk near zk is given by

ζk(x) = exp

{
1

rk

∫ z

x1

v

}
, (B.12)

such that
dζk
dz

∣∣∣∣
zk

= exp

{
1

rk
reg

∫ zk

x1

v

}
, (B.13)

where the regularized integral is given by (B.4).
The total power of dζj/dz(zj) in (B.7) is

− 1

6
+

1

12
(g + 1)− 1

24
(2g + 2) = −1

6
(B.14)

which gives the second term in (B.5).
The distinguished local coordinates ξj near xj are given by:

ξj(x) =

(∫ z

xj

v

)2/3

. (B.15)
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Since locally, near the branch point xj , we have

v ∼ aj(z − xj)1/2, (B.16)

we get

ξj(z) ∼ a2/3j (z − xj) (B.17)

and
dξj(z)

dz
(xj) = a

2/3
j , (B.18)

where

aj = C
1/2
0

∏
k 6=j(xk − xj)1/2∏

k(xj − zk)
.

The total power of dξj/dz(xj) in (B.10) is

1

12
+

1

2

1

24
(2g + 1)− 1

24
(g + 2) =

1

48
. (B.19)

Therefore, the total power of aj is 1
72 .

The total power of C0 comes from Q and all aj which gives

−1

6
+

1

2

1

72
(2g + 2) =

g − 11

72
.

However, we don’t include the C0 multiplier into τB since the latter is defined up
to a constant which might depend on residues.

Let us now compute the powers of xj − xk, zj − xk and zj − zk.
The product of zj − zk comes only from E(zj , zk), thus equals to 1/6.

The product of xj − zk comes from E(xj , zk) (gives −1/12) and from product
of aj (gives −1/72), and in total we get

− 1

12
− 1

72
= − 7

72
.

Finally, the product of xj −xk comes from E(xj , xk) (gives 1/48) and product of
aj (gives 1/72). In total we get 5/144.
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IHP Phys. Théor. 39 (1983), 211–338.

Received January 2, 2023, revised May 10, 2023.

Marco Bertola,

Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve
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Генерувальна функцiя монодромного
симплектоморфiзму для 2× 2 системи Фукса та її

ВКБ розвинення
Marco Bertola, Dmitry Korotkin, and Fabrizio del Monte

Ми вивчаємо ВКБ розвинення 2 × 2 системи лiнiйних диференцi-
альних рiвнянь з фуксовими сингулярностями. Основна увага сфокусо-
вана на генерувальнiй функцiї монодромного симплектоморфiзму, яка,
вiдповiдно до недавньої роботи [10], є тiсно пов’язаною з тау-функцiєю
Джимбо–Мiви. Ми обчислюємо першi три члени ВКБ розвинення гене-
рувальної функцiї та встановлюємо її зв’язок з тау-функцiєю Бергмана.

Ключовi слова: системи Фукса, вiдображення монодромiї, генеру-
вальна функцiя, тау-функцiя, ВКБ розвинення
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