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On the CLT for Linear Eigenvalue Statistics

of a Tensor Model of Sample Covariance

Matrices

Alicja Dembczak-Ko lodziejczyk and Anna Lytova

In [18], there was proved the CLT for linear eigenvalue statistics Trϕ(Mn)

of sample covariance matrices of the form Mn =
∑m
α=1 y

(1)
α ⊗ y

(2)
α (y

(1)
α ⊗

y
(2)
α )T , where (y

(1)
α , y

(2)
α )α are iid copies of y ∈ Rn satisfying EyyT = n−1In,

Ey2i y
2
j = (1+δijd)n−2+a(1+δijd1)n−3+O(n−4) for some a, d, d1 ∈ R. It was

shown that given a smooth enough test function ϕ, VarTrϕ(Mn) = O(n)
as m,n→∞, m/n2 → c > 0, and (Trϕ(Mn)− ETrϕ(Mn))/

√
n converges

in distribution to a Gaussian mean zero random variable with variance V [ϕ]
proportional to a + d. It was noticed that if y is uniformly distributed on
the unit sphere then a + d = 0 and V [ϕ] vanishes. In this note we show
that in this case VarTr(Mn − zIn)−1 = O(1), so that the CLT should be
valid for linear eigenvalue statistics themselves without a normalising factor
in front (in contrast to the Gaussian case.)
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1. Introduction: model and main results

Consider the following model. Let y = (y1, . . . , yn) ∈ Rn be a random vector
having an unconditional distribution (which means that (yi)i and (±yi)i have the
same distribution for any choice of signs) and satisfying the following moment
conditions as n→∞:

Eyi = 0, Eyiyj = n−1δij , i, j ≤ n,
a2,2 := Ey2i y

2
j = n−2 + an−3 +O

(
n−4

)
, ∀i 6= j,

Ey4j − 3a2,2 = bn−2 +O
(
n−3

)
(1.1)

for some a, b ∈ R. Note that a vector y ∼ U(Sn−1) uniformly distributed on the
unit sphere satisfies these conditions (with a = −2, b = 0) as well as a normalised
standard Gaussian vector y ∼ N (0, n−1In) (with a = b = 0). Given m =

m(n) ∈ N, let (y
(1)
α , y

(2)
α )mα=1 be independent copies of y and let {Y1, . . . , Ym} be

a multivariate sample of tensor products of pairs {y(1)
α , y

(2)
α }:

Yα = y(1)
α ⊗ y(2)

α = (y
(1)
α iy

(2)
α j)i,j ∈ Rn

2
, α = 1, . . . ,m. (1.2)
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Consider an n2 × n2 sample covariance matrix of the form

Mn =
m∑
α=1

YαY
T
α . (1.3)

In [18], there was studied the asymptotic behaviour of linear eigenvalue statistics
Trϕ(Mn) as m,n → ∞, m/n2 → c > 0. In particular, it was shown that for a
smooth enough test function ϕ, the variance of Trϕ(Mn) grows to infinity not
faster than n,

VarTrϕ(Mn) = O(n), (1.4)

and (Trϕ(Mn)−ETrϕ(Mn))/
√
n converges in distribution to a Gaussian random

variable with zero mean and variance

V (2)[ϕ] =
(a+ b+ 2)

2cπ2

(∫ a+

a−

ϕ(µ)
µ− am√

(a+ − µ)(µ− a−)
dµ

)2

, (1.5)

where
a± = (1±

√
c)2, am = (a+ + a−)/2 = 1 + c

(see Theorem 1.9 and Remark 1.10 of [18] for the details.)
If a + b + 2 = 0 then V [ϕ] vanishes and the limit of (Trϕ(Mn) −

ETrϕ(Mn))/
√
n is trivial. This is precisely the situation we have when vec-

tors (y
(1)
α , y

(2)
α )α in the definition of Mn are uniformly distributed on the unit

sphere. In this case in order to describe fluctuations of linear eigenvalue statistics
of corresponding matrix Mn, we need to refine (1.4) finding the correct order of
VarTrϕ(Mn) and then after proper normalization find the corresponding lim-
iting variance. This is the most important step while proving the CLT for the
linear eigenvalue statistics and this is the main aim of the present note.

The question of the validity of CLT for linear eigenvalue statistics of random
matrices, in particular sample covariance matrices, has been a subject of extensive
research with numerous significant findings. It dates back to the investigation of
fluctuations of the traces of matrix powers [2,15] and matrix resolvents [11]. The
first CLTs for the traces of arbitrary smooth enough test functions Trϕ(Mn) were
obtained in [9, 13, 14] for the case of Gaussian matrix entries and in [1, 4, 19] for
more general models. Further study of fluctuations of linear spectral statistics
has been caring out mostly in three main directions: relaxing regularity con-
ditions for the test functions, relaxing moment conditions, and exploring more
complex matrix structures (sparsification, considering different types of depen-
dence of matrix elements etc.) We refer the Reader to [6, 12, 16–18, 21, 23–26]
and the references therein. Based on our knowledge it is expected that, up to
certain moment and regularity conditions, the asymptotic behavior of eigenvalue
statistics of random matrices depends mostly on the structure of the matrix be-
ing considered and not on the precise distribution of matrix elements. Thus, in
the case of basic models for Wigner and sample covariance random matrices, the
CLTs for linear eigenvalue statistics depend only on the first four moments of the
corresponding matrix and sample entries, provided that the test functions are
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smooth enough. We also expect that the standard Gaussian vectors and vectors
uniformly distributed on the unit sphere result in similar asymptotic behavior of
samples dependent on these vectors, and this is precisely what we have in the case
of CLTs for linear eigenvalue statistics for matrices of the form

∑m
α=1 ταyαy

T
α ,

where up to a constant the limiting variance is the same for (yα)α ∼iid U(Sn−1)
and (yα)α ∼iid N (0, n−1In). What makes our model (1.2)–(1.3) special and in-
teresting for us is that not only the limiting expression of the variance but the
order of the variance of linear eigenvalue statistic depends on the distributions of

(y
(1)
α , y

(2)
α )α in the definition of Mn (compare (1.5) and (1.8) below.)

Before stating our result, we present some of the results proven in [12]. Con-

sider the sample covariance matrix of the form M
(1)
n =

∑m
α=1 yαy

T
α , where (yα)α

are independent and identically distributed copies of a vector y with an uncondi-
tional distribution satisfying EyyT = n−1In and such that for any deterministic
n× n matrix An with ‖An‖op = 1, Var(Any,y) = o(1), as n → ∞. The almost
sure convergence of the empirical spectral distribution of these matrices to the
Marchenko–Pastur law [20] was proved in [22] (see also [5].) In [12] it was shown
that if additionally y satisfies (1.1) and E|(Any,y) − E(Any,y)|4 = O(n−2),
then given a test function ϕ ∈ H2+δ, δ > 0, the centered linear eigenvalue statis-

tic Trϕ(M
(1)
n ) − ETrϕ(M

(1)
n ) converges in distribution to a Gaussian random

variable with zero mean and variance

V (1)[ϕ] =
1

2π2

∫ a+

a−

∫ a+

a−

(
4ϕ
4λ

)2 (4c− (λ1 − am)(λ2 − am))dλ1dλ2√
(a+ − λ1)(λ1 − a−)

√
(a+ − λ2)(λ2 − a−)

+
a+ b

4cπ2

(∫ a+

a−

ϕ(µ)
µ− am√

(a+ − µ)(µ− a−)
dµ

)2

, (1.6)

where4ϕ/4λ = ϕ(λ1)−ϕ(λ2)/(λ1−λ2) (see Theorem 1.8 of [12] for the details.)
The proofs of (1.5) and (1.6) follow the method of Stieltjes transform used by

many authors before (see [4, 11, 20, 25] and references therein.) One of the main

steps of these proofs is to find the order of fluctuations of the traces γ
(1)
n (z) =

TrG(z) of the resolvent G(z) = (M
(1)
n − zIn)−1, =z 6= 0, and to find the limit of

the properly normalized covariance of the resolvent traces, which allows then to
get the limiting variance of the linear eigenvalue statistics. Thus, in [12] in order

to get (1.6) it was shown that Var γ
(1)
n (z) ≤ C|=z|−6, =z 6= 0, and

C(1)(z1, z2) : = lim
n→∞

Cov
{
γ(1)n (z1), γ

(1)
n (z2)

}
=

∂2

∂z1∂z2

(
2 log

∆f

∆z
+

c(a+ b)

(1 + f(z1))(1 + f(z2))

)
,

where f is the Stieltjes transform of the Marchenko–Pastur law.
In our work we focus mainly on this step and study the fluctuations of the

resolvent traces. Our main result is the following theorem.

Theorem 1.1. Given n,m ∈ N, let Mn =
∑m

α=1 y
(1)
α ⊗ y

(2)
α (y

(1)
α ⊗ y

(2)
α )T ,

where (y
(1)
α , y

(2)
α )α are independent and identically distributed vectors uniformly
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distributed on the unit sphere. Suppose that m = m(n) → ∞ and m/n2 → c >
0 as n → ∞. Let G(z) := (Mn − zIn)−1, γn(z) := TrG(z), =z 6= 0. Then
Var γn(z) = O(1), =z 6= 0, and there exists η0 ∈ (0,∞) such that

C(z1, z2) : = lim
n→∞

Cov{γn(z1), γn(z2)}

= C(1)(z1, z2)
∣∣∣
a+b=−2

+ 3

(
cf2(z1)

(1 + f(z1))2

)′(
cf2(z2)

(1 + f(z2))2

)′
, (1.7)

where z1, z2 ∈ {z ∈ C : =z ≥ η0} and f is the Stieltjes transform of the
Marchenko–Pastur law.

Remark 1.1.

1. In Section 2, for the Readers convenience we gather some useful properties
of f and give the explicit form of C(z1, z2).

2. In what follows for the sake of simplicity we suppose that m = cn2. Our main
results, Theorems 3.1 and 1.1, remain valid in general case m/n2 → c > 0,
m,n→∞ (see Remark 3.1.)

Having proved Theorem 1.1 and following step by step the scheme proposed
in [25] (used in [12, 18]), one can prove the corresponding CLT for the linear
eigenvalue statistics and show that under conditions of Theorem 3.1, given a
smooth enough test function ϕ (ϕ ∈ Hs for some s > 2), the centered linear
eigenvalue statistic Trϕ(Mn)−ETrϕ(Mn) converges in distribution to a Gaussian
random variable with zero mean and variance

V [ϕ] = V (1)[ϕ]
∣∣∣
a+b=−2

+
3

(cπ)2

(∫ a+

a−

ϕ(µ)
2c− (µ− am)2√
(a+ − µ)(µ− a−)

dµ

)2

. (1.8)

To find a regularity class for the test functions, one can get an analog of Lemma
3.2 of [12] and then apply Proposition 1 of [25]. (We also refer the Reader
to [17,26] as to some optimal results on regularity classes for the CLTs for Wigner
and sample covariance matrices.)

Though the scheme of the proof of Theorem 1.1 and similar results is quite
standard nowadays, there are some difficulties in the details, namely in the esti-
mating of the error terms, such as variances of various resolvent statistics, and in
showing that what we expect to be small is indeed small enough. In addition to
a bit complicate structure of the sample, we need to take into account some del-
icate cancellations we have due to the moment conditions specific to the vectors
uniformly distributed on a sphere. As in many other papers dealing with random
matrices without independence structures in columns (see, e.g., [22] and [5]), our
research is based on the asymptotic analysis of the bilinear forms (AY, Y ). In
Section 3, using a bootstrapping argument we get the order and find the limit
of the properly normalised covariance of bilinear forms (G(z)Y, Y ). Section 4
contains the proof of Theorem 1.1. In Section 5 we gather auxiliary technical
results.
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2. Notations and preliminary results

Moments of y ∼ U(Sn−1) and Y = y(1) ⊗ y(2). Let y = (y1, . . . , yn) ∈
Sn−1 be a random vector uniformly distributed on the unit sphere in Rn. It is
easy to see that this distribution is unconditional, and that

Eyi = 0, Eyiyj = n−1δij , i, j ≤ n.

Also it can be shown that

a2,2 = Ey2i y
2
j =

1

n(n+ 2)
=

1

n2
− 2

n3
+O(n−4), i 6= j,

Ey4j − 3a2,2 = 0, Ey4j − 3
(
Ey2j

)2
= − 6

n2(n+ 2)
,

Eyjysypyq = a2,2(δjsδpq + δjpδsq + δjqδsp).

This shows that in (1.1) a = −2 and b = 0, so that V [ϕ] = 0.
Now let y(1) and y(2) be independent and identically distributed copies of y

and let Y = y(1) ⊗ y(2) =
(
y
(1)
i y

(2)
j

)n
i,j=1

. We have

EYij = 0, EYijYpq = n−2δijδpq,

EY 2
ijY

2
pq = a22,2 =

1

n2(n+ 2)2
=

1

n4
− 4

n5
+

12

n6
+O

(
n−7

)
, (2.1)

EYjj′Yss′Ypp′Yqq′ = a22,2(δjsδpq + δjpδsq + δjqδsp)(δj′s′δp′q′ + δj′p′δs′q′ + δj′q′δs′p′).

Note that ‖Y ‖ = 1, though the distribution of Y is not uniform on Sn
2−1.

Here and in what follows given a vector X we use notation ‖X‖ for the
Euclidian norm of X. Also given a matrix M , we use ‖M‖op for its operator
norm, ‖M‖op = supX: ‖X‖=1 ‖MX‖, and ‖M‖HS for its Hilbert–Schmidt norm,

‖M‖HS = (
∑

i,jM
2
ij)

1/2.

The Stieltjes transform of the Marchenko–Pastur law. Here we
gather some simple facts on the Stieltjes transform f(z) of the Marchenko–Pastur
law (see [20]) that we need in what follows. We have

zf2 + f(z + 1− c) + 1 = 0, f =
1

2z

[
−(z + 1− c) +

√
(z + 1− c)2 − 4z

]
, (2.2)

(z − c/(1 + f))−1 = −f,
(
z − c/(1 + f)2

)−1
= −f ′/f,

∆z

∆f
=

1

f(z1)f(z2)
− c

(1 + f(z1))(1 + f(z2))
,

f ′

f(f + 1)
= − 1

sq(z)
,(

1

f + 1

)′
= −1

2

[
1 +

z − (1 + c)

sq(z)

]
,

(
1

f

)′
= − 1

2c

[
1 +

z − (1 + c)

sq(z)

]
,

where sq(z) :=
√

(z + 1− c)2 − 4z. This allows to get the explicit expression in
(1.7):

C(z1, z2) = − 1

(∆z)2

[
1 +

4c− (z1 − am)(z2 − am)

sq(z1)sq(z2)

]
− 1

2c

∏
i=1,2

[
zi − am
sq(zi)

− 1

]
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+
3

c2

∏
i=1,2

[
zi − am +

2c− (zi − am)2

sq(zi)

]
,

where am = 1 + c. Note that compared with the previously known results for the

n×n sample covariance matrices M
(1)
n , here we have an additional term (the last

one, see [12,24].)

The resolvent and some related spectral statistics. Let G(z) =
(Mn − z)−1, z ∈ C, be the resolvent of Mn. We have ‖G(z)‖op ≤ 1/|=z|,
‖G(z)‖HS ≤ n1/2/|=z|. Introduce n× n matrices G and G̃ by the formulas

G =

(∑
q

Gjq,kq

)
j,k

, G̃ =

(∑
q

Gqj,qk

)
j,k

.

It is easy to check that ‖G(z)‖op ≤ n/|=z|, ‖G̃(z)‖op ≤ n/|=z|. Introduce also

γn(z) = TrG(z), gn = n−2γn, (2.3)

g(1)n (z1, z2) =
1

n3

∑
j,s,p,q

Gjs,ps(z1)Gjq,pq(z2) = n−3 TrG(z1)G(z2), (2.4)

g̃(1)n (z1, z2) = n−3 Tr G̃(z1)G̃(z2),

g(2)n (z1, z2) =
1

n2

∑
j,s,p,q

Gjs,pq(z1)Gps,jq(z2). (2.5)

Here and in what follows the summations over the Latin indices are from 1 to n
and over the Greek indices are from 1 to m. Let fn = Egn, f

(i)
n = Eg

(i)
n , i = 1, 2.

We normalize the introduced functions so that they are uniformly bounded in n.
The following statement was proved in [18, Lemmas 6.1,7.2]:

Lemma 2.1 ([18]). Let γn be defined in (2.3). Given a compact set K ⊂ C \
R, we have uniformly in z, z1, z2 ∈ K as n→∞:

(i) Var γn(z) = O(n), Var gn = O
(
n−3

)
,

(ii) Var g
(1)
n ,Var g̃

(1)
n = O

(
n−2

)
.

Here and in what follows the constants hidden in O
(
n−`
)

may depend only
on K. Let

Mα
n = Mn − YαY T

α =

m∑
β 6=α,β=1

YαY
T
α .

In what follows we use the upper index α for the quantities which does not depend
on Yα:

Gα(z) := (Mα
n − z)−1, gαn := n−2 TrGα, fαn := Egαn ,

and so on. Let Eα = EYα denote expectation with respect to Yα. We have by
(2.1),

Eα(GαYα, Yα) = gαn , E(GαYα, Yα) = fαn .
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Also given ξ = ξ(Y1, . . . , Ym), we put

ξ◦ = ξ −Eξ, (ξ)◦α = ξ −Eαξ,

so that Var ξ = E|ξ◦|2, Varα ξ = Eα|(ξ)◦α|2, Cov{ξ1, ξ2} = E ξ1ξ2
◦
.

3. Covariance and central moments of bilinear forms (G(z)Y, Y )

In this section we establish some auxiliary results concerning the asymptotic
properties of the bilinear forms (GαYα, Yα), α ≤ m. Let Y be defined in (1.2).
Take any two matrices F , H which do not depend on Y and have the operator
norms uniformly bounded in n. With the help of (2.1) one can get

EY (FY, Y )(HY, Y )◦Y =
(
a22,2 − n−4

)
TrF TrH + 2a22,2 TrFH

+ 2a22,2
∑
j,p,s,q

(Fjs,psHjq,pq + Fjs,jqHps,pq + Fjs,pqHps,jq), (3.1)

where |TrFH| ≤ n2‖F‖op‖H‖op and by the Cauchy–Schwarz inequality,∣∣∣∣ ∑
j,p,s,q

Fjs,pqHps,jq

∣∣∣∣ ≤ n2‖F‖op‖H‖op and

∣∣∣∣ ∑
j,p,s,q

Fjs,psHjq,pq

∣∣∣∣ ≤ n3‖F‖op‖H‖op.
This, (2.1), and (3.1) yield

|EY (FY, Y )(HY, Y )◦Y | ≤ Cn−1‖F‖op‖H‖op, (3.2)

where C is an absolute constant. Let now F = G(z1) and H = G(z2), z1, z2 ∈
C \ R, where G(z) = (Mn − z)−1 is the resolvent of Mn. Suppose that Y and
Y1, . . . , Ym in the definition of Mn are mutually independent. Let

Dn(z1, z2) := Cov{(G(z1)Y, Y ), (G(z2)Y, Y )} = E(G(z1)Y, Y )(G(z2)Y, Y )◦.

Since ‖G(z)‖op ≤ |=z|−1, we have by (3.2)

EY (G(z1)Y, Y )(G(z2)Y, Y )◦Y = O
(
n−1

)
. (3.3)

Also we have

Dn(z1, z2) = EY1,...,Ym
(
EY (G(z1)Y, Y ))(G(z2)Y, Y )◦Y

)
+ CovY1,...,Ym{gn(z1), gn(z2)}, (3.4)

where by Lemma 2.1(i) the second term is of order O
(
n−3

)
. Hence

Dn(z1, z2) = O
(
n−1

)
. (3.5)

The main purpose of this section is to show that Dn(z1, z2) = O
(
n−2

)
(see Lemma

3.1 below) and then to find the limit of n2Dn(z1, z2) as n → ∞ (see Theorem
1.1).
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Lemma 3.1. Let fn = Egn and f
(i)
n = Eg

(i)
n (see (2.3)–(2.5).) Given a

compact set K ⊂ C \ R, we have uniformly in z, z1, z2 ∈ K as n→∞, m = cn2:

(i) Dn(z1, z2) = O
(
n−2

)
,

(ii) fn(z) = f(z) +O
(
n−2

)
,

(iii) f (1)n (z1, z2) = f(z1)f(z2) +
1

n

cf2(z1)f
2(z2)

(1 + f(z1))(1 + f(z2))
+O

(
n−3/2

)
,

(iv) f (2)n (z1, z2) = f(z1)f(z2) +
cf2(z1)f

2(z2)

(1 + f(z1))(1 + f(z2))
+O

(
n−1/2

)
.

Proof. To prove (i)–(iv) we use a bootstrap argument: first we prove a weaker
statement and show that

fn(z) = f(z) +O
(
n−1

)
and f (1)n (z1, z2) = f(z1)f(z2) +O

(
n−1

)
(3.6)

and then repeating the argument and using (3.5) and (3.6) we get (i)–(iii).
We start with the first equality in (3.6). The rank one perturbation formula

G−Gα = − GαYαY
T
α G

α

1 + (GαYα, Yα)
(3.7)

implies that

TrG− TrGα = − (Gα2Yα, Yα)

1 + (GαYα, Yα)
:= −Bα

Aα
, (3.8)

(GYα, Yα) = (GαYα, Yα)− (GαYα, Yα)2

Aα
=

(GαYα, Yα)

Aα
= 1− 1

Aα
. (3.9)

Taking into account that ‖Yα‖2 = 1 and |(GαYα, Yα)k| ≤ |=z|−k, we get

|Aα|, |A−1α | ≤ 1 + |=z|−1. (3.10)

This and (3.8) lead to

|fn − fαn | = O(n−2), (3.11)

hence, EAα(z) = 1 + fαn (z) = 1 + fn(z) +O
(
n−2

)
. We also have

|(EAα)−1| = max{2, 4/|=z|} (3.12)

(see (4.9) in [18].) Applying the resolvent identity and (3.7) we get

zG(z) = −I +MnG(z) = −I +
∑
α

YαY
T
α G = −I +

∑
α

YαY
T
α G

α

Aα
, (3.13)

so that taking the trace and applying (3.9) and equality m = cn2 we get

z
1

n2
TrG(z) = −1 +

1

n2

∑
α

(GαYα, Yα)

Aα
= −1 + c− c

m

∑
α

1

Aα
. (3.14)



382 Alicja Dembczak-Ko lodziejczyk and Anna Lytova

Note that for every k ∈ N we have

1

Aα
=

1

EAα
− A◦α

(EAα)2
+

(A◦α)2

(EAα)3
+ · · ·+ (−1)k(A◦α)k

Aα(EAα)k−1
, (3.15)

and in particular,

1

Aα
=

1

1 + fn
− A◦α

(1 + fn)2
+

(A◦α)2

Aα(1 + fn)2
+O

(
n−2

)
,

where we also used (3.10)–(3.12). This and (3.14) leads to

zfn(z) = −1 + c− c

1 + fn
+

c

m(1 + fn)2

∑
α

E
A◦2α
Aα

+O
(
n−2

)
.

Since EαAα(z) = 1 + gαn(z) and

A◦α = (Aα)◦α + gα◦n , (3.16)

we get
VarAα ≤ 2

(
EEα|(Aα)◦α|2 + Var{gαn}

)
= O

(
n−1

)
, (3.17)

where we have applied Lemma 2.1(i) and used that by (3.3), Eα|(Aα)◦α|2 =
O
(
n−1

)
. Thus

zfn(z) = −1 + c− c

1 + fn
+O

(
n−1

)
. (3.18)

On the other hand,

zf(z) = −1 + c− c

1 + f

(see (2.2).) This implies

fn(z)− f(z) =
(
z − c(1 + f)−1(1 + fn)−1

)−1
O
(
n−1

)
, (3.19)

and the first statement of (3.6) follows. Now we turn to the second part of (3.6).
By (3.7),

Gjp = Gαjp −
(GαYα)j(G

αYα)p
Aα

, (MnG)jp =
∑
α

Yαj(G
αYα)p
Aα

.

This and (3.13) allows to get (cf (3.14))

z1g
(1)
n (z1, z2) = −gn(z2) + n−3

∑
j,p,s,q

∑
α

(Gα(z1)Yα)psYα js
Aα(z1)

Gαjq,pq(z2)

− n−3
∑
j,p,s,q

∑
α

Yα js(G
α(z1)Yα)ps

Aα(z1)

(Gα(z2)Yα)jq(G
α(z2)Yα)pq

Aα(z2)

= −gn(z2) + T1 − T2, (3.20)
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where

T1 =
1

n2

∑
α

hnα(z1, z2)

Aα(z1)
,

hnα =
1

n

∑
j,s,p

(Gα(z1)Yα)psYα jsGαjp(z2), (3.21)

T2 =
1

n3

∑
α

Hnα(z1, z2)

Aα(z1)Aα(z2)
,

Hnα =
∑
j,s,p,q

Yα js(G
α(z1)Yα)ps(G

α(z2)Yα)jq(G
α(z2)Yα)pq. (3.22)

Applying the Cauchy–Schwarz inequality we get∣∣∣∣ ∑
j,p,s,q

Yα js(G
αYα)ps(G

αYα)jq(G
αYα)pq

∣∣∣∣ ≤ ‖Yα‖ ‖GαYα‖ ‖GαYα‖2
= O(1). (3.23)

This and (3.10) yield T2 = O
(
n−1

)
. It is easy to check that Ehnα(z1, z2) =

f
(1)α
n (z1, z2). Also it can be shown that

hnα = O(1) and Varhnα = O
(
n−1

)
(see Lemma 5.1.) This, (3.15), and (3.17) allow to get

ET1 = n−2
∑
α

E
hnα(z1, z2)

Aα(z1)

= n−2
∑
α

f
(1)α
n (z1, z2)

1 + fαn (z1)
− n−2

∑
α

EA◦α(z1)hnα(z1, z2)A
−1
α (z1)

1 + fαn (z1)
,

where

EA◦αhnαA
−1
α =

EA◦αhnα + EA◦2α hnαA
−1
α

1 + fαn
= O

(
n−1

)
. (3.24)

Since replacing fαn and f
(1)α
n with fn and f

(1)
n results in terms of order O

(
n−2

)
,

this leads to ET1 = cf
(1)
n (z1, z2)/(1 + fn(z1)) + O

(
n−1

)
and we finally get from

(3.20)

z1f
(1)
n (z1, z2) = −fn(z2) +

cf
(1)
n (z1, z2)

1 + fn(z1)
+O

(
n−1

)
.

This and (3.19) yield the second equality in (3.6). In the second round of the
proof we repeat the schemes proposed above and equipped with (3.6) get (i)–(iii).

(i) It follows from (3.1) with F = G(z1) and H = G(z2) and (2.1) that

nEY (G(z1)Y, Y )(G(z2)Y, Y )◦Y =
−4n2 − 4n

(n+ 2)2
gn(z1)gn(z2) +

2 TrG(z1)G(z2)

n(n+ 2)2
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+
2n

(n+ 2)2

(
g(1)n (z1, z2) + g̃(1)n (z1, z2) + n−1g(2)n (z1, z2)

)
. (3.25)

Since G(z1)G(z2) = (G(z1)−G(z2))/(z1−z2) and Egn(z1)gn(z2) = fn(z1)fn(z2)+
O
(
n−3

)
(see Lemma 2.1(i)), this together with (3.4) lead to

nDn(z1, z2) = −(4− 12n−1)fn(z1)fn(z2) +
2

n

fn(z1)− fn(z2)

z1 − z2
+ (2− 8n−1)

(
f (1)n (z1, z2) + f̃ (1)n (z1, z2) + n−1f (2)n (z1, z2)

)
+O

(
n−2

)
. (3.26)

Substituting here (3.6), we get that the right-hand side is of order O
(
n−1

)
, and

so (i) follows.
(ii) The proof of (ii) repeats that one of (3.6) except that now by (i) we have

VarAα = O
(
n−2

)
, (3.27)

which leads to O
(
n−2

)
in the right-hand sides of (3.17)–(3.18).

(iii) We already have (3.20)–(3.24), where now applying (3.27), we get
O
(
n−3/2

)
in the right-hand side in (3.24) so that

ET1 = cf (1)n (z1, z2)/(1 + fn(z1)) +O
(
n−3/2

)
. (3.28)

It follows from (3.22) that

ET2 = n−3
∑
α

EHnα(z1, z2)

E(Aα(z1)Aα(z2))
− n−3

∑
α

E
Hnα(z1, z2)(Aα(z1)Aα(z2))

◦

Aα(z1)Aα(z2)E(Aα(z1)Aα(z2))
.

By (3.23), Hnα = O(1). Also it can be shown that EHnα = f(z1)f
2(z2)+O

(
n−1

)
,

n→∞ (see Lemma 5.2.) This and (3.27) allow to get

ET2 =
1

n

cf(z1)f
2(z2)

(1 + f(z1))(1 + f(z2))
+O

(
n−3/2

)
. (3.29)

Finally, applying (3.20) and (3.28) we get

z1f
(1)
n (z1, z2) = −f(z2) +

cf
(1)
n (z1, z2)

1 + f(z1)
− 1

n

cf(z1)f
2(z2)

(1 + f(z1))(1 + f(z2))
+O

(
n−3/2

)
.

This leads to (iii).
(iv) Similar to (3.20) we have

z1f
(2)
n (z1, z2) = −fn(z2) + ET ′1 −ET ′2, (3.30)

where

T ′1 = n−2
∑
α

bnα(z1, z2)

Aα(z1)
,

bnα(z1, z2) =
∑
j,p,s,q

(Gα(z1)Yα)pqYα jsG
α
ps,jq(z2),
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T ′2 =
1

n2

∑
α

H ′nα(z1, z2)

Aα(z1)Aα(z2)
,

H ′nα =
∑
j,s,p,q

Yα js(G
α(z2)Yα)ps(G

α(z2)Yα)jq(G
α(z1)Yα)pq.

It can be shown that |bnα| = O(n), Ebnα = f
(2)α
n = f

(2)
n +O(n−1), and E|bnα|2 =

O(n). This together with (3.15) and (3.27) leads to (cf (3.28))

ET ′1 = n−2
∑
α

f
(2)α
n (z1, z2)

1 + fαn (z1)
− n−2

∑
α

EA◦α(z1)bnα(z1, z2)A
−1
α (z1)

1 + fαn (z1)

=
f
(2)
n (z1, z2)

1 + fn(z1)
+O

(
n−1/2

)
. (3.31)

Also comparing T2 and T ′2 one can see that ET ′2 = nET2, where ET2 is given by
(3.29). Hence

z1f
(2)
n (z1, z2) = −f(z2) +

cf
(2)
n (z1, z2)

1 + f(z1)
− cf(z1)f

2(z2)

(1 + f(z1))(1 + f(z2))
+O

(
n−1/2

)
.

This implies (iv) and finishes the proof of the lemma.

Remark 3.1. Note that in general case when m is not identically equal
to cn2 but cn := m/n2 → c as n → ∞, the right-hand sides of (ii)–(iv) can
have additional terms of order bigger than O

(
n−3/2

)
, though item (i) as well as

Theorem 3.1 below remain valid. For example, if cn = c + n−γc1 for some c >
0, c1 6= 0, γ ∈ (0, 1), then as it follows from the proof above that fn = f +
c1n
−γf ′(1 + f)−1, but still Dn(z1, z2) = O

(
n−2

)
.

Now we are ready to prove the main result of this section.

Theorem 3.1. Given z1, z2 ∈ C \R, let Dn(z1, z2) be defined in (3.4). Then

D(z1, z2) := lim
n→∞

n2Dn(z1, z2) = 2
∆f

∆z
− 2f(z1)f(z2) +

6cf2(z1)f
2(z2)

(1 + f(z1))(1 + f(z2))
,

where ∆f/∆z = (f(z1)− f(z2))/(z1 − z2).

Proof. Let F := cf2(z1)f
2(z2)/(1 + f(z1))(1 + f(z2)). It follows from (3.26)

and Lemma 3.1 that

nDn(z1, z2) =(−4 + 12n−1)
(
f(z1) +O

(
n−2

)) (
f(z2) +O

(
n−2

))
+

2

n

∆f

∆z
+(2− 8n−1)

(
2f(z1)f(z2) + 2n−1F + n−1(f(z1)f(z2) + F )

)
+O

(
n−2

)
=

1

n

(
−2f(z1)f(z2) + 2

∆f

∆z
+ 6F

)
+O

(
n−2

)
,

and the theorem follows.
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Lemma 3.1 allows also to refine the results of Lemma 2.1 and, in particular,
to show that the variance of the resolvent’s trace is uniformly bounded in n.
Namely, we have

Lemma 3.2. Let γn and Aα be defined in (2.3) and (3.8), respectively. Given
a compact set K ⊂ C \ R, we have uniformly in z ∈ K as n→∞:

(i) Eα{|(Aα)◦α|p} = O
(
n−p

)
,

(ii) E{|γ◦n|p} = O(1),

(iii) E{|A◦α|p} = O
(
n−p

)
.

Proof. (i) The proof of the first part is similar to the proof of [12, Lemma 2.1].
It is based on (3.27) and the dimension free Khinchine–Kahane-type inequality
by Bourgain [8] (see also [7]), which says that if Pd is a polynomial of degree d,
and y ∈ Rn has a log-concave distribution, then

E{|Pd(y)|p} ≤ C(d, p)E{|Pd(y)|}p, (3.32)

where C(d, q) depends only on d and p and does not depend on n. Now since Y
defined in (1.2) has a log-concave distribution, substituting P4(Y ) = |(GαY, Y )◦|2
in (3.32) and applying (3.27) we get (i).

(ii) The proof of the second part repeats the proof of [25, Proposition 2] (see
also [12, Lemma 3.2]) combined with (i). For the Reader’s convenience we provide
here the main steps. It follows from [10] that for every p ≥ 2 there exists Cp > 0
such that

E{|γ◦n|p} ≤ Cpnp−2
∑
α

E{|(γn)◦α|p}, (3.33)

where by (3.8), (3.10), and (3.12) we have

E{|(γn)◦α|p} = E{|γn − γαn −Eα{γn − γαn}|p}

≤ CE
{∣∣∣Bα
Aα
− Eα{Bα}

Eα{Aα}

∣∣∣p} = CE
{∣∣∣ (Bα)◦α

Eα{Aα}
− Bα
Aα
· (Aα)◦α
Eα{Aα}

∣∣∣p}
≤ C ′E

{
Eα{|(Bα)◦α|p}+ Eα{|(Aα)◦α|p}

}
.

Here C,C ′ depends only on z ∈ K and p. Since both Aα and Bα satisfy (i), this
and (3.33) imply (ii).

It remains to note, that now (iii) follows from (3.16) and (ii).

4. Proof of Theorem 1.1

We start with a technical lemma.

Lemma 4.1. Let Aα be defined in (3.8). As n→∞, we have

VarEα{(A◦α)2} = O
(
n−9/2

)
uniformly in z1, z2 ∈ {z ∈ C : =z ≥ η0 > 0}.
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Proof. It follows from (3.25) and Lemma 2.1 that

VarEα
{

(A◦α)2
}
≤ Cn−2

(
Var gα2n + n−2Var ∂gαn/∂z

+ 2Var g(1)αn + n−2Var g(2)αn

)
≤ Cn−2Var g(1)αn + Cn−4Var g(2)αn +O

(
n−5

)
,

where we do not distinguish between g
(1)α
n and g̃n

(1)α. It can be shown that

Var g
(1)
n = O

(
n−5/2

)
(cf Lemma 2.1(ii)) and Var g

(2)
n = O

(
n−1/2

)
. We postpone

the proof of this bound to Section 5 (see Lemma 5.3). This finishes the proof of
the lemma.

Let Cn(z1, z2) := Eγn(z1)γ
◦
n(z2). In order to prove Theorem 1.1 we need to

show that the limit of every converging subsequence of {Cn(z1, z2)}n is given by

C(z1, z2) =
∂2

∂z1∂z2

[
2 log

∆f

∆z
− 2c

(1 + f(z1))(1 + f(z2))

+
3c2f2(z1)f

2(z2)

(1 + f(z1))2(1 + f(z2))2

]
, (4.1)

z1, z2 ∈ {z ∈ C : =z ≥ η0} for some η0 ∈ (0,∞). By (3.14), we have

z1Cn(z1, z2) = −
∑
α

E{A−1α (z1)γ
α◦
n (z2)} −

∑
α

E{A−1α (z1)(γn − γαn )◦(z2)}

=: T (1)
n + T (2)

n . (4.2)

It follows from (3.15) with k = 3 that

T (1)
n =

∑
α

[
E{Aα(z1)γ

α◦
n (z2)}

(1 + fαn (z1))2
− E{A◦2α (z1)γ

α◦
n (z2)}

(1 + fαn (z1))3
+

E{A−1α A◦3α (z1)γ
α◦
n (z2)}

(1 + fαn (z1))3

]
=

1

n2

∑
α

E{γαn (z1)γ
α◦
n (z2)}

(1 + fαn (z1))2
+O

(
n−1/4

)
,

where we used that by the Cauchy–Schwarz inequality and Lemmas 3.2 and 4.1,∣∣E{A◦2α (z1)γ
α◦
n (z2)}

∣∣ ≤ (VarEα
{

(A◦α)2
}
Var γαn

)1/2
= O

(
n−9/4

)
, and∣∣E{A−1α A◦3α (z1)γ

α◦
n (z2)

}∣∣ ≤ C(E{|A◦α|6}Var γαn
)1/2

= O
(
n−3

)
.

Applying (3.8), (3.15), the Cauchy–Schwarz inequality, and Lemma 3.2 we also
get ∣∣E{(γαn − γn)◦(z1)γ

α◦
n (z2)

}∣∣ =
∣∣E{(Bα/Aα)◦(z1)γ

α◦
n (z2)

}∣∣
≤
(
Var{Bα/Aα}Var γαn

)1/2
= O

(
n−1

)
.

Hence,

T (1)
n =

cCn(z1, z2)

(1 + f(z1))2
+O

(
n−1/4

)
. (4.3)
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Consider now T
(2)
n of (4.2). By (3.8),

T (2)
n =

∑
α

E
{
A−1α (z1)(Bα/Aα)◦(z2)

}
.

Denote for the moment Ai := Aα(zi), i = 1, 2, B2 := Bα(z2). Applying (3.15)
with k = 2 with respect to A1 and A2 and Lemma 3.2(iii) with p = 3 to estimate
the reminder term, we get

E{(1/A1)
◦(B2/A2)

◦} =
E{(−A◦1 +A−11 A◦21 )(B2E{A2} −B2A

◦
2 +B2A

−1
2 A◦22 )◦}

E{A1}2E{A2}2

=
−E{A◦1B2}E{A2}+ E{B2}E{A◦1A2}

E{A1}2E{A2}2
+O

(
n−3

)
.

Taking into account that Bα(z) = ∂Aα(z)/∂z, and applying Theorem 3.1 we get

T (2)
n = −

∑
α

1

E{Aα(z1)}2
∂

∂z2

E{Aα(z1)A
◦
α(z2)}

E{Aα(z2)}
+O

(
n−1

)
= − c

(1 + f(z1))2
∂

∂z2

D(z1, z2)

1 + f(z2)
+O

(
n−1

)
.

This, (4.2)–(4.3), and (2.2) lead to

C(z1, z2) = − c

f1

(
∂

∂z1

1

1 + f1

)
∂

∂z2

D(z1, z2)

1 + f2
,

where for shortness we use notations fi = f(zi). Substituting the expression for
D, we get

C(z1, z2) = −2
c

f1

(
∂

∂z1

1

1 + f1

)
∂

∂z2

1

1 + f2

∆f

∆z

+
∂2

∂z1∂z2

[
− 2c

(1 + f1)(1 + f2)
+

3c2f21 f
2
2

(1 + f1)2(1 + f2)2

]
.

By (2.2), we have for the first term on the right-hand side

− c

f1

∂

∂z1

(
1

1 + f1

)
∂

∂z2

1

1 + f2

∆f

∆z
=

∂

∂z2

1

f1f2

(
∂

∂z1

cf1f2
(1 + f1)(1 + f2)

)
∆f

∆z

= − ∂2

∂z1∂z2
log f1f2

∆z

∆f
=

∂2

∂z1∂z2
log

∆f

∆z
.

This leads to (4.1) and finishes the proof.

5. Auxiliary results

Lemma 5.1. Let Y, Y1, . . . , Ym be mutually independent identically dis-
tributed vectors defined in (1.2), Mn =

∑m
α=1 YαY

T
α , m = cn2, G(z) = (Mn −

zIn)−1, G =
(∑

q Gjq,kq
)
j,k

, and

hn(z1, z2) = n−1
∑
j,s,p

(G(z1)Y )psYjsGjp(z2).

Then hn = O(1) and Varhn(z1, z2) = O
(
n−1

)
.
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Proof. Since ‖G‖op = O(n), we have |hn| ≤ ‖G(z2)‖op‖Y ‖‖G(z1)Y ‖ = O(1).
Applying (2.1) we get

VarY hn =
1

n2

∑
j,p,s,t,u,v

GjpGuvEY (GY )psYjs(GY )utYut

− 1

n2

∣∣∣∣∑
j,p,s

GjpEY (GY )psYjs

∣∣∣∣2
=
a22,2
n2

∑
j,p,s,d,u,v

GjpGuv
[
Gps,jdGus,vd +Gps,jdGud,vs

+Gps,vdGus,jd +Gps,vdGud,js

]
+

2a22,2
n2

TrG2G2 +
1

n6

∑
j,p,s

(GG)up(GG)us,ps

+
a22,2
n2

∑
j,p,s,d

(GG)upGps,jdGud,js +
(
a22,2n

−2 − n−6
)

(TrGG)2.

To estimate the terms on the right-hand side we use the Cauchy–Schwartz in-
equality and bounds ‖G‖op = O(1), ‖G‖op = O(n), a22,2 = n−4 + O

(
n−5

)
. Thus

for the first term on the right-hand side we have

1

n6

∣∣∣∣ ∑
j,p,s,d,u,v

GjpGuvGps,jdGus,vd
∣∣∣∣

≤ 1

n6

( ∑
j,p,u,v

|GjpGuv|2
∑
j,p,u,v

∣∣∣∣∑
s,d

Gps,jdGus,vd

∣∣∣∣2)1/2

≤ 1

n6
TrGG

∑
j,p,s,d

|Gps,jd|2 = O
(
n−1

)
.

Similarly, it can be shown that the remaining terms also have order at most

O
(
n−1

)
. Hence VarY hn = O

(
n−1

)
. Since Ehn = Eg

(1)
n and by Lemma 2.1

Var g
(1)
n = O

(
n−2

)
, we have Varhn = O

(
n−1

)
. This finishes the proof of the

lemma.

Lemma 5.2. Let Y, Y1, . . . , Ym be mutually independent identically dis-
tributed unit vectors satisfying (2.1), Mn =

∑m
α=1 YαY

T
α , m = cn2, G(z) =

(Mn − zIn)−1, G =
(∑

q Gjq,kq
)
j,k

, and

Hn(z1, z2) =
∑
j,s,p,q

Yjs(G(z1)Y )ps(G(z2)Y )jq(G(z2)Y )pq.

Then we have as n→∞
(i) VarEYHn = O

(
n−1

)
,

(ii) EHn = f(z1)f
2(z2) +O

(
n−1

)
.
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Proof. (i) For the moment we skip the arguments z1, z2 in the resolvents and
use the same notation G for

(∑
q Gjq,kq

)
j,k

and
(∑

q Gqj,qk
)
j,k

. It follows from

(2.1) that

EYHn =
1

n4

∑
p,q,u,v

GpuGqvGpq,uv

+

[
2

n4

∑
p,q,u

Gpu(G2)uq,pq +
1

n4

∑
p,q,u,v

(G2)pq,uvGpv,uq

+
2

n4

∑
p,q,u,v,j

GpuGjq,uvGpq,jv +
3

n4

∑
p,q,u,v,j,s

Gps,jvGjq,usGpq,uv

]
. (5.1)

It can be shown that the term in the square brackets is of order O
(
n−1/2

)
and

that

Tn :=
1

n4

∑
p,q,u,v

GpuGqvGpq,uv = O(1).

Hence, to get (i) it is enough to show that VarTn = O
(
n−1

)
. Similarly to (3.33)

we have

VarTn ≤
∑
α

E
{
|Tn −EαTn|2

}
=
∑
α

E
{
|Tn − Tαn −Eα(Tn − Tαn )|2

}
,

where Tαn = 1
n4

∑
p,q,u,v GαpuGαqvGαpq,uv, Gα =

(∑
q G

α
jq,kq

)
j,k

. We have

Tn − Tαn =
1

n4

∑
p,q,u,v

(
(G − Gα)puGqvGpq,uv + Gαpu(G − Gα)qvGpq,uv

+ GαpuGαqv(G−Gα)pq,uv
)

=: S(1)
n + S(2)

n + S(3)
n .

Since (G − Gα)pq,uv = −(GYα)pq(G
αYα)uv, applying the Cauchy–Schwartz in-

equality we get∣∣∣S(1)
n

∣∣∣2 =
1

n8

∣∣∣∣∑
p,u

(∑
t

(GYα)pt(G
αYα)ut

)(∑
q,v

GqvGpq,uv
)∣∣∣∣2

≤ 1

n8

∑
p,t

|(GYα)pt|2
∑
u,t

|(GαYα)ut|2
∑
q,v

|Gqv|2
∑
p,q,u,v

|Gpq,uv|2 = O
(
n−3

)
.

Similarly,
∣∣S(2)
n

∣∣2 = O
(
n−3

)
. Also,∣∣∣S(3)

n

∣∣∣2 =
1

n8

∣∣∣ ∑
p,q,u,v

GαpuGαqv(GYα)pq(G
αYα)uv

∣∣∣2 ≤ 1

n8
‖B‖2op‖GY ‖4 ≤

C

n8
‖B‖2op,

where B is a n2×n2 matrix such that Bpq,uv = GαpuGαqv. Since for every unit vector

X = (Xuv)
n
u,v=1 ∈ Rn2

we have

‖BX‖2 =
∑
p,q

∣∣∣∣∑
u,v

GαpuGαqvXuv

∣∣∣∣2 =
∑
p,q

∑
u,v,s,t

GαpuGαqvG
α
psG

α
qtXuvXst
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=
∑
u,v,s,t

(GαGα)su(GαGα)tvXuvXst ≤ Tr(GαGα)2‖X‖2 = O
(
n5
)

then
∣∣S(3)
n

∣∣2 = O
(
n−3

)
. Thus VarTn ≤ 3

∑
αE
(∣∣S(1)

n

∣∣2 +
∣∣S(2)
n

∣∣2 +
∣∣S(3)
n

∣∣2) =

O
(
n−1

)
. This together with (5.1) finishes the proof of the first part.

(ii) It follows from (5.1) that EHn = ETn +O
(
n−1/2

)
. Let

f (3)n (z1, z2) := ETn(z1, z2) =
1

n4

∑
p,q,u,v

EGpq,uv(z2)Gqv(z1)Gpu(z2).

Repeating the scheme based on (3.13) and (3.15) and omitting the details, we get

z2f
(3)
n (z1, z2) = −fn(z1)fn(z2) +

1

n4

∑
u,v,p,q

∑
α

E
Yαuv(G

α(z2)Yα)pv
Aα(z2)

Gαqv(z1)Gαpu(z2)

+
1

n4

∑
u,v,p,q,a,b

∑
α

E
Yαuv(G

α(z1)Yα)pv
Aα(z1)

(
Gqv(z1)Gpu(z2)− Gαqv(z2)Gαpu(z1)

)
= −fn(z1)fn(z2) +

cf
(3)
n (z1, z2)

1 + fn(z2)
+O

(
n−1

)
.

Hence,
f (3)n (z1, z2) = f(z1)f

2(z2) +O
(
n−1

)
.

This finishes the proof of the lemma.

Lemma 5.3. Let g
(1)
n and g

(2)
n be defined in (2.4) and (2.5). Then there exists

η0 ∈ (0,∞) such that we have uniformly in z1, z2 ∈ {z ∈ C : =z ≥ η0}

Var g(1)n (z1, z2) = O
(
n−5/2

)
, Var g(2)n (z1, z2) = O

(
n−1/2

)
as n→∞.

Proof. Let V = V (z1, z2) := Var g
(1)
n (z1, z2) = E g

(1)
n g

(1)◦
n . By (3.20)–(3.22),

z1V = E
(

(−gn(z2) + T1 − T2)g(1)◦n

)
= ET1g

(1)◦
n −ET2g

(1)◦
n +O

(
n−3

)
, (5.2)

where we used that by Lemma 2.1 and Lemma 3.2(ii), E gng
(1)◦
n = O

(
n−3

)
. We

have

ET1g
(1)◦
n = n−2

∑
α

Ehnαg
(1)◦
n

EAα(z1)
− Ehnαg

(1)◦
n A◦α(z1)

(EAα(z1))2
+

Ehnαg
(1)◦
n A◦ 2α (z1)A

−1
α (z1)

(EAα(z1))2

=: R1 +R2 +R3.

It follows from the Cauchy-Schwartz inequality, boundedness of hnαA
−1 and

Lemma 3.2 (i) with p = 4 that |R3| ≤ Cn−2V 1/2. To treat R1, we note first
that

Ehnαg
(1)◦
n = E (Eαhnα)g(1)α◦n + Eh◦nα(g(1)n − g(1)αn ) = V +O

(
n−5/2

)
,
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where we used that similar to (3.11)

g(1)αn = g(1)n +O
(
n−2

)
and that by Lemma 5.1, |Eh◦nα(g

(1)
n −g(1)αn )| ≤ Cn−2E |h◦nα| ≤ Cn−5/2. Together

with (3.12) this yields

|R1| ≤ CV +O
(
n−5/2

)
.

Treating R2 similarly to R1 we get

Ehnαg
(1)◦
n A◦α = E (EαhnαA

◦
α)g(1)α◦n +O

(
n−3

)
,

where by Lemma 3.2 (i) with p = 2 and Lemma 5.1, EαhnαA
◦
α = O

(
n−3/2

)
. This

leads to

|R2| ≤ Cn−3/2V 1/2 +O
(
n−3

)
.

Hence, ∣∣∣ET1g(1)◦n

∣∣∣ ≤ C[V + n−3/2V 1/2 + n−5/2
]
. (5.3)

Consider ET2g
(1)◦
n . It can be written in the form

ET2g
(1)◦
n =

1

n3

∑
α

E
Hnαg

(1)α◦
n

Aα(z1)Aα(z2)
+

1

n3

∑
α

E
Hnα(g

(1)
n − g(1)αn )◦

Aα(z1)Aα(z2)

=
1

n3

∑
α

E(EαHnα)◦g
(1)α◦
n

EAαAα
− 1

n3

∑
α

E
Hnαg

(1)α◦
n (AαAα)◦

(AαAα)E(AαAα)
+O

(
n−3

)
.

Since Hnα = O(1) and by Lemmas 3.2(iii) and 5.2 we have Var(AαAα) = O
(
n−2

)
and VarEαHnα = O

(
n−1

)
, then∣∣∣ET2g(1)◦n

∣∣∣ ≤ C[n−2V 1/2 + n−3
]
.

This, (5.2) and (5.3) lead to

ηV ≤ |z1V | ≤ C
[
V + n−3/2V 1/2 + n−5/2

]
.

Choosing η big enough we get V − C1n
−3/2V 1/2 − C2n

−5/2 ≤ 0, where C1, C2 >

0. Hence V = Var g
(1)
n = O

(
n−5/2

)
.

The proof of the second part of the lemma follows the same scheme, for g
(2)
n

this scheme is based on (3.30)–(3.31). This finishes the proof of the lemma.
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Про ЦГТ для для лiнiйних статистик власних
значень тензорної моделi вибiркових коварiацiйних

матриць
Alicja Dembczak-Ko lodziejczyk and Anna Lytova

В [18] було доведено центральну граничну теорему (ЦГТ) для лi-
нiйних статистик власних значень Trϕ(Mn) вибiркових коварiацiйних
матриць Mn =

∑m
α=1 y

(1)
α ⊗ y

(2)
α (y

(1)
α ⊗ y

(2)
α )T , де (y

(1)
α , y

(2)
α )α є незале-

жними копiями вектора y ∈ Rn, що задовольняє умови EyyT = n−1In,
Ey2i y

2
j = (1 + δijd)n−2 + a(1 + δijd1)n−3 + O(n−4) для деяких a, d, d1 ∈

R. Було показано, що для достатньо гладких тестових функцiй ϕ ма-
ємо VarTrϕ(Mn) = O(n), коли m,n → ∞, m/n2 → c > 0, крiм того

mailto:alicja.dembczak@uni.opole.pl
mailto:alytova@uni.opole.pl
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(Trϕ(Mn)−ETrϕ(Mn))/
√
n збiгається за розподiлом до гаусiвської ви-

падкової величини з нульовим середнiм та дисперсiєю V [ϕ] пропорцiй-
ною a+ d. Зокрема, якщо y рiвномiрно розподiлено на одиничнiй сферi,
то a + d = 0 i V [ϕ] = 0. У цiй роботi ми показуємо, що в цьому ви-
падку VarTr(Mn − zIn)−1 = O(1), так що ЦГТ має бути справедливою
для самих лiнiйних статистик власних значень без нормалiзувального
коефiцiєнта (на вiдмiну вiд випадку вiдповiдних гаусiвських вибiркових
коварiацiйних матриць).

Ключовi слова: вибiрковi коварiацiйнi матрицi, центральна гранична
теорема, лiнiйна статистика власних значень


	Introduction: model and main results
	Notations and preliminary results
	Covariance and central moments of bilinear forms (G(z)Y,Y)
	Proof of Theorem 1.1
	Auxiliary results

