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Inverse Scattering Problem for Linear
System of Four-Wave Interaction Problem
on the Half-Line with a General Boundary
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The first order hyperbolic system of four equations on the semi-axis in the
case of equal numbers of incident and scattered waves are considered when
the velocities of the scattering waves are coincident. It is determined the
criteria for inverse scattering problem (the problem of finding the potential
with respect to scattering operator) in terms of transmission matrices in
two different boundary conditions. The uniqueness of the inverse scattering
problem is studied by utilizing it to Gelfand—Levitan—Marchenko type linear
integral equation.

Key words: Inverse scattering problem, general boundary conditions,
first-order hyperbolic system, transformation operator

Mathematical Subject Classification 2020: 35R30, 35L50, 35P25, 37K15,
81U40

1. Introduction

There are many papers dealing with the inverse problems in wave propagation,
but only a few of them deal with the solution of the inverse problems for space
and time-dependent coefficients, [2,9,10]. Inverse scattering problem (ISP) for
the first-order hyperbolic system with the space and time depended potentials
were studied in [12] and references therein, where the ISP for a one-dimensional
hyperbolic system on the whole line was satisfactorily studied (see also [16]). But,
there are very few studies on the ISP on the half-line regarding the numbers of
incoming and outgoing waves.

Consider the first order hyperbolic system in the following form on the half-
line > 0 in the case of equal numbers of incoming and outgoing waves:

010i1 — 01 = Q191 + Q1292
020ih2 — Opthr = Qa1 + Qaothe

where 11 = 11 (z,t) and 1y = 19 (x,t) are 2—dimensional vector functions,

teR, (1.1)

o1 = diag [£1, &) , 02 = diag [£3, €4
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are diagonal matrices with & > & > 0 > & > &, Qi = Q45(x,t), 4,7 = 1,2
are 2 X 2 matrix functions with measurable complex-valued and square-integrable
entries.

The model problem which this type of system occurs can be found in paper [1]
which deals with the inverse problem for two-velocity dynamical system:

pOu — O2u+ V(z)u =0

with constant diagonal matrix p = diag[p?, p3], 0 < p1 < p2, and 2 x 2 matrix
potential
V=V(z)= o) ()
vgl(:c) 1)22(1:)
This system becomes first order system (1.1) where o7 = diag{p2,p1}, o2 =
diag{—p1, —p2} and

0 (vtzl(x) ) 0 (Utzz(r) )
= a(t+p2z = a(t+p2zx
Q1 0 J ) Q12 ot - pr2) 0 ;
0 v11 () 0 vi2(x)
= a(t—p12) = a(t—p12)
Q21 ot + pot) S ] ; Q22 [O K

with a differentiable nonzero function a(s). From the physical point of view this
class of systems is selected by the property of two types of waves (channels), which
propagate with different velocities and interact with one another. As examples
of two-velocity dynamical systems we could mention the Timoshenko beam in
elasticity theory and cable lines in electrical engineering. Various properties of
this systems were studied in [11,14,15].

The scattering problem for the system (1.1) on the semi-axis is the problem of

finding the solution ¢ (z,t) = [zl Ei’ iﬂ of the system (1.1) with known incident
2 )
wave and the boundary condition at x =0
w1<07t) = HwQ(Oat)v (12)

where H is the constant transmission matrix of order 2 with detH # 0.
The following situations are possible for the system (1.1) on the half-line:

1)  Two incident and two scattered waves with different velocities (&1 > & >
0 > & > &) : The ISP for this situation, under consideration of two
problems for the same system but different boundary conditions (1.2) with
H =1 and H = E were studied in [4], where [ = [(1) ﬂ and F = [(1) (1)]
The ISP for the first situation and some of its 2n generalization for the
special forms of potential but more general boundary conditions is studied
in [5].

2)  Two incident and two scattered waves with same velocities (§; = & > 0 >
& = &4): The second situation and its 2n-generalization are studied in [6]
under consideration of single scattering problem.
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3) Two incident waves with same velocities and two scattering waves with dif-
ferent velocities (£ = £ > 0 > &3 > &4): The ISP for this situation, under
consideration of two problems with the same system but different boundary
conditions were studied in [8].

4)  Two incident waves with different velocities and two scattered waves with
same velocities (§&1 > & > 0 > & = &): The conditionally ISP for this
situation, under consideration of two problems with the same system but
different boundary conditions (1.2) with H = I and H = E were studied
in [7].

In this paper, our aim is to study the ISP of finding the potential

QnZ[Ol 8}, lez[qlg 0}, QQlZ[qgl 0], Q2=0 (1.3

423 (24 d41  Qg42

for the system (1.1) in the fourth situation under more general boundary condi-
tions.

The paper is organized as follows. In Section 2, the preliminary results on
Volterra integral operators with Hilbert—Schmidt kernel are given. In Section 3 we
construct the scattering operator on the half-line corresponding to the scattering
problem. In Section 4, we prove that the considered system has a Volterra type
of transformation operator as  — 400, when matrix coefficients of the system
satisfy a certain triangular structure. Using such a transformation operator, in
this section it is shown that the scattering operators admit right factorization. In
Section 5, we give the formulation of the inverse scattering problem by scattering
operators of two scattering problems on the half-line. In this section, it is given
a transmission operator which relates the scattering problem on the half-line and
the scattering problem on the whole line, when the coefficients are zero for x <
0. This relation transforms the uniqueness of inverse scattering problem on the
half line to the uniqueness of inverse scattering problem on thewhole line [13]. In
this section, two examples are given showing that

(a) one scattering operator is insufficient for unambiguous reconstruction and
(b) that a condition det (H; — H3) # 0 on the transmission matrices in boundary
conditions of two scattering problems are crucial.

2. Preliminaries

Throughout the paper, we shall write F'f(t) = fj;o F(t,s)f(s)ds the Fred-

holm operator with Hilbert—-Schmidt kernel, A_f(t) = t+oo A_(t,s)f(s)ds and

Ay f(t) = ffoo A4 (t,s)f(s)ds the upper-triangular (upper Volterra) and lower-
triangular (lower Volterra) integral operators, respectively. We will say that the
operator I + F' in the space Lo(R,C") admits a right factorization, if it can be
represented as I+ F = (I + A, )(I+ A_), where the operators A_ and A, are the
lower and upper Volterra and Hilbert—Schmidt integral operators, respectively.
The left factorization I+ F = (I + A_)(I + Ay ) is similarly defined. The left and
right factorizations are unique. If an operator F' in the space L2(R,C") admits
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the right factorization (or left factorization) then the operators A, and A_ are
uniquely restored by F' since the kernels Ay(t,s) of the operators Ay are the
solution of well-known Gelfand—Levitan—Marchenko type integral equation in the
following form:

For the upper-triangular A_ and lower-triangular B, integral operators, we
obtain from the right factorization I + F = (I + By)~1(I + A_) that

A_ =B, +F+B,F.

The kernels of the integral operators A_, B4 we denote by A_ (t, s) and By (t,s).
Now let us rewrite the operator equations through the kernels

t

B+(t,s)+F(t,s)+/ By (b7) F (r, ) dr =0, s<t,
t

A(t,s)F(t,s)/ By (t,7)G (7,s)dr =0, s>t

where G (7, s) is the kernel of G = (I + F)~' — I. These equations are Gelfand—
Levitan—Marchenko type and uniquely solvable which follows from factorization
of the operator I + F' in the following form (see [3,12]):

By — F(I+QtF)_1L, A= [G(I+EtG)_1] ,

where @); is the projection on semi-axis s < t :

0, s>t

Quf(s) = {f(s), s<t

and Fy is the projection on semi-axis s > t:

Euf(s) = {f(s), s>t

0, s<t’

[K], and [K]_ are denote the “positive part”and “negative part”of integral opera-
tor K f(t) = fj;o K (t,s) f(s)ds respectively, i.e., [K], f(t) = ffOOK(t, s) f(s)ds
and [K]_ f(t) = [ K (t,s) f(s)ds.

3. Scattering Problem

Consider the problem (1.1), (1.2) with the potential in the form of (1.3). A
nonstationary scattering problem for the system (1.1), (1.3) on the semi-axis can

1,[)1 ({L‘, t)
W (a:,t)] of

be formulated as follows: It is required to find a solution ¥ (x,t) = {

(1.1) such that the solution satisfies the asymptotic relation

Y1 (z,t) = Spyza(t) +o(1), = — 400, (3.1)



Inverse Scattering Problem for Linear System 447

and the boundary condition (1.2), where H is given n x n matrix of constants,with
det H # 0 and a(t) defines the profile of the incident waves,

%alx = diag(T£1$a Tﬁgm)a %0'233 = diag(ngma Tﬁgm)

are shift operators, such that T¢ h(t) = h(t+ &), i =1,2,3.

We shall consider generalized solutions of system (1.1), which are ordinary
functions measurable in x and ¢. Here, with respect to variable ¢, these functions
belong to the space Lo (R, (C4) and their Lo-norms are uniformly bounded with
respect to . We refer to such solutions as admissible.

The scattering problem (1.1)—(3.1) is equivalent to following systems of inte-
gral equation:

+oo
1 (@, 1) = Sorealt) + / Sy (omsy a1t + qratiol (s, ) ds,

+00
¢2(9E, t) = %O'QLL‘b(t) + / SUg(m—s) [Qlel + (&2%](8, t) ds, (32)

xT

where

+oo
b(t) = Ha(t) + /0 {HS o,slqnvr + qi2e](s, 1)
— S uslqa11 + qoaw](s, t) } ds. (3.3)

Theorem 3.1. If the coefficients of the system (1.1) is given by (1.3), then
for a given arbitrary incident wave vector a(t) € Lg (R, Cz) there exists a unique
admissible solution of the scattering problem (1.1), (1.2), (3.1) and the second
component of the solution satisfies the asymptotic relation

Yo (z,1) = Sopzb(t) +0(1), x — +o0, (3.4)
where b(t) € Ly (R, (CQ) defines the profile of the scattered waves.

The proof of this theorem is omitted since system (3.2)—(3.3) is Volterra in-
tegral equation by ¢ with square-integrable kernel and the similar assertion is
proved in [5, Theorem 1]|. In the view of Theorem 1, for every vector function
a(t) € Lo (R, C2), which represents incident waves, when the system (1.1) satisfies

the conditions (2.3), (2.4) there exist a unique solution ¢ (z,t) = [il Ei’ iﬂ . For
2 )

this solution there exist scattered waves b(t) € Lo (R, (CQ) according to (3.2). By
comparing the incident and scattered waves,we can define the scattering operator
Sy by

b=SgHa. (3.5)

Operator Sy is an n X n matrix operator and defined on Lo (]R,(CQ). We
call this operator as the scattering operator that corresponds to the scattering
problem (1.1), (1.3), (3.1) on the semi-axis.
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4. Volterra properties of scattering operator

In solving inverse scattering problems the Volterra type integral representa-
tion of the solution plays an important role. Such representation can be taken
from transformation operator as x — 4o00. The properties of the scattering op-
erators will be given in detail after studing the transformation operator.

Finding the bounded solution to the system (1.1) with the given asymptotic
Soy20(t), Sepab(t) as x — 400 is equivalent to the solvability of the following
system of integral equations in Lo (R, (C4) :

+o0
Y1 (2,t) = Soyza(t) + / St (a—s) [q1101 + qu2102] (5, 1) ds,

+oo
P2 (x’ t) = %szb(t) + / %az(:v—s) [Q217J)1 + QQ2'¢2] (57 t) ds. (4'1)

x

Theorem 4.1. Let the coefficients of system (1.1) be given by (1.3). Then for
any a(t),b(t) € Ly (R, C?) there exist a unique admissible solution of the system
(1.1), and the solution admits the representation

+oo
V1 (2.1) = Sonmalt) + / Aut (2,1, 5) Soppals) ds
t

t
+ / Avs (2.1, 5) Sopab(s) ds, (4.2)

—00

+o0o
Vo (2,1) = Sopub(t) + / Aot (2,1, 5) Sy pals) ds
t
t
n / Ag (2,1, 5) Spub(s) ds, (4.3)

where A11 = A11 (m,t,s), A12 = A12 (l‘,t,S), A21 = A21 (l’,t,s), A22 =
Agg (x,t,5) is 2 X 2 matriz kernels. These kernels are determined uniquely by
the coefficients (1.3) of system (1.1) and for the fized = these kernels are the
Hilbert—Schmidt kernels.

Proof. The system (4.1) has unique solution since it is the system of Volterra
integral equations by x with square-integrable kernel. If the solution of (4.1) can
be represented as in the form of (4.2) for each a,b € Ly, then substituting (4.2)
in (4.1) we obtain the system of equations for the kernels under assumption that

qrj =0
(B, 5) = {(1,1);(1,2); (1,4);(2,2); (3,2);(3,3); (3,4); (4, 3); (4,4)}

we have

i T—1
[A]; (2,8, 7) = 3, qhj (m + b= L (r— t))
§i—Ek §i—Ek §i—k

-

4 o4+ Tt
g ¢
+Z/ T Gy (st & (@ = 8) T+ by (= 5))
p=177
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x [A]; (3,t+§k(x—8),7— ’S’f@c—s)) ds,

;
ret (e s E <1 bi=123af, @y
4 e !
[A]kj (ZC’taT) :E/ Qkp57t+§k ($—8),T+fn+j (x—s))
p=1"%

x [Aly; (s;t+ & (x—s), 7T —x+5)ds,
T < t, (k'a.j) € {(k7.7) :gk :€j7 ka] = 1727374}7

where [A]; . denotes the i, j element of the matrix function A = [All Alﬂ . The
j Ao Ago
system of integral equation (4.4) is Volterra by = with square-integrable kernel
that is why unique solvable. O
For i = 1,2, let us denote that
+00
A @0 = [ Aa(ts) f6)ds, Ans=Aa-(0),
t
t
Ajpy () f(t) = / Az (2., 8) f(s) ds, Az = Ai4 (0).
The formulas (4.2) can be written in the form of
U1 (@) = [I + An- (2)] Soyza(t) + Aray (2) Sopeb(t),
V2 (2,t) = An— (2) Sorzal(t) + [I + Ay ()] Sopab(t). (4.5)

Using the representation (4.5) and the boundary conditions (1.2) we obtain that
Agi—a(t) + (I + A ) b(t) = H|[(I + An-)a(t) + A124b(t)]
or
(I+ Agor —HA)b(t) = (I+ HAn-_H ' — An_H ') Ha(2) (4.6)

By Theorem 4.1, the kernels of the integral operators Aoy, Agat, Aj1— and Agy—
are Hilbert—Schmidt kernels. Therefore the kernels of the integral Volterra opera-
tors Ay = Agoy —HAjoy and A_ = HAll_H_l — A21_H_1 are Hilbert—Schmidt
kernels. Then the operators Agy and Ag_ are Hilbert—Schmidt operators. Taking
into account the definition (3.5) of scattering operator, we obtain from (4.6) the
right factorization of scattering operator, as

Sp=I+A) P I+A). (4.7)

If (I + Ay)~ ' = I+ B, where By is Hilbert-Schmidt integral Volterra operator,
then the scattering operators Sy have the form Sy=I + F, where F' = B, +
A_ + B+ A_. Thus the operator F' is Hilbert—Schmidt integral operator.
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Remark 4.2. The equalities (4.5) demonstrate that the system (1.1) with the
coefficients (1.3) has the transformation operators as x — +o0 is in the following
form

p_ |1+ A () At (o)
Agi_(z) I+ Ay (2)

where A;1— (z) and Ajo+ (z) are 2 X 2 matrix Volterra integral operators such
that the kernels satisfy the integral equation (4.4).

5. Inverse scattering problem

Let Sy be a scattering operator for the system (1.1) with the coefficients
giving by (1.3). Inverse scattering problem for the system (1.1) is the problem of
finding 4 x 4 matrix potential

Qui(z,t) Qr2(z,1)

Q21(x,t) Qoa(x,t)|’ v>0

(contains 7 nonzero functions) by the 2 x 2 matrix integral operator F' = Sy — I
(its kernel contains 4 functions on line and 8 function on half-line). The follow-
ing Example shows that one scattering operator is insufficient for unambiguous
reconstruction.

Example 5.1. Let us consider the scattering problem for the system (1.1)—
(1.3) in its an explicitly solvable case ¢31(xz,t) = 0, qa2(x,t) = 0. Let us denote

wen =200 e = (200 w0 =0 0] 00 = [ 0]

This problem can be explicitly solvable as

+oo
oi1(z,t) = a1 (t + &ix) + / (qraws)(s,t + &1(x — 5)) ds,

“+00
pa(z,t) = az(t + &) + / (2191 + q23p3) (s, t + &2(x — s)) ds,
903($7t) = b3(t +§3‘T)7

+00

(@, 1) = ba(t + E5z) + / (@0101) (5,1 + Ea( — 5)) ds,

xT

where

[I — h11Biy — hi2(Bsy + Byy)|bs(t)
= h1ra1(t) + higaz(t) + hioAi_ai(t),
ba(t) + [Bot — ho1Bi4 — hoa(Bsy + Bay)|bs(t)
= horai(t) + hosaa(t) + (hoaA1— — Az_) ay(t).
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Here By_,k=1,2,3,4 and A;_, Ao_ are lower and upper Volterra integral oper-
ators with the kernels respectively,

1 s—t . & B
&*&”‘&—&“%&—&J H-g ”)

o 1 s—1t . fg _
Bs-(s.1) = & <f3 - 52’7j £ —& (s t)> ’

+oo
By_(s,t) = s /0 qa1(7,t — &37)qu3

s—t—(G—&)r , __ Glt—s)
X( G-g et &—f1>d“

s—t

By (s,t) = & i&)’ /053_52 g21(7,t — &) 13
s—t+(&—-&)r, . §i(t — s+ (& —&2)s)
X( G- ey )“”S“

and

Mot = g (Fo gt - g - 0).

Ta-6™\g-u" a4
Aoy (s,t) = ! q <s—t t— & (s—t)) s<t
T g g \a-6 a-én =T

It is clear from the definition of the scattering operator Sy :H [Zl} — [23] that
2 4

it admits right side factorization in the following form

I — hi1B1s — hia(Bss + Bay) o} -
Boy — ho1Biy — hoo(Bsy + Bay) 1

hi1l + +hi2A1— hial 7!
hotl + hogA1— — Aa hool ’

|

Then h11B14 — h12(B34+ + Bay), Bay — ho1Bi4 — hoa(Bsq + Bay), hi2A1— and
hosA1_ — Ao can be uniquely determined by Sgx. If his = 0 with det H =
hi1hes # 0 then it is clear to see that the coefficients are not uniquely determined
by the scattering operator on the semi-axis.

Consider two scattering problems on semi-axis for the system (1.1), (1.3).

3
, . . . . Lz, t
First scattering problem: It is required to find a solution ! (z,t) = [z% ( tﬂ

xz,
2 (.’IJ,

of the system (1.1) such that the asymptotic relation
i (x,1) = Syypa(t) +o(1), x — 400,
and boundary condition

U3 (0,¢) = Hig} (0,), det Hy #0
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are satisfied.
Second scattering problem: It is required to find a solution 2 (z,t) =
[1/1% (2, 1)

5 ] of the system (1.1) such that the asymptotic relation
¢2 (1}, t)

V3 (x,t) = Syypa(t) +o(1), x — 400,
and boundary condition
V3 (0,) = Hotp? (0,¢), det Hy # 0

are satisfied. We are going to investigate the solution of the inverse scattering
problem considering the first and the second scattering problems together under

the following assumption
det (H1 — H2) 75 0. (5.1)

According to the Theorem (3.1) for arbitrary a(t) € Lg (R, C?) first and second
scattering problems have unique bounded solutions. Moreover, these solutions
satisfy the following asymptotic relations

@Z)S (z,t) = %gﬂbk(t) +o(1), x— +oo, k=1,2,

where b*(t) € Ly (R, C?) defines the profile of the scattered waves. The scatter-
ing operators corresponding to the first and the second scattering problems are
denoted by Sy, and Sg,:

Sw, : Hya(t) — b*(t), k=1,2. (5.2)

The operators Sy, and Sp, are evidently matrix operators on Lg (R,CQ) . In
the subsequent sections, the operators Sy, (k = 1,2) will be studied in the space
Lo (R,CQ) , i.e., under Sy, we will understand the closure in Lo (R, (CQ) by the
operator Sg, contracted on Lo (R, (CQ). It is proved in (4.7) that the scattering
operators admits right factorizations:

Si, = (I + Apy) (I + A) (5.3)

where Ak+ = A9, — Hi Aoy and A = HkAH,HIJI — A21,H];1, k=1,2. It
is known (see [5]) that the transmission matrix operator

rfi-[263)

is a scattering operator on the whole-axis for a system of first order hyperbolic
equations, with the coefficients of system (1.1) equal to zero for x < 0. From the
representation (4.2) we determine that

T_ [14- An— Ay } '

5.4
Ao T+ Apay (54)

Since the inverse scattering problem for the system of hyperbolic equations on the
whole-axis is solved in [13], then using from (5.4) to obtain the following result
about scattering problem for the system (1.1) on semi-axis.
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Theorem 5.2. Let Sy, and Sp, be two scattering operators on the semi-
azis for the system (1.1) with the coefficients giving by (1.3), where the matrices
Hy, Hy satisfy condition (5.1). Then the coefficients (1.3) of the system (1.1) are
uniquely determined by the scattering operators Sy, and Sw,.

Proof. Let Sy, (k =1,2) be given scattering operators on the semi-axis. Let
us define the operator T" by (5.4). For operators Sy,and Sy, the following for-
mulas are correct with respect to (5.2):

I+ HyAy—H; ' — An_H; ' = (I + Asay — HiAvay) Sy, k= 1,2.
From this it follows that

I+ A22+ — HkA12+ = (I + HkAH_Hk_l — Agl_Hk_l) S;Ii,k =1,2.

Since the operators Sy, = I + F k k = 1,2 admit right factorization, equations

(5.3) are uniquely solvable with respect to the factorization multiplications I +

HkAu_Hk_1 - A21_Hk_1 and I + Agoy — HipAj24,k = 1,2. Thus we obtain that
HypAioy — Aoy =Ty,

Ap_H_ ' — H Ay _H ' =Ty, (5.5)

where Ty = |Fy (I + QtFk)’l} Ty = [Gk (I+ EtGk)*l} .k =1,2. Consid-
_l’_ J—
ering det (Hy — Hs) # 0, then from (5.5) we get

Avgy = (Hy — Hy) ™ (T1y —Tay),

Agyy = Hy (Hy — Hy) ™' (T4 — Tay) — Ty,

Ay = (Hy — Hy) ' (Tg-Hy —T1_Hy),

Agy_ =T\ Hy+ H, (H, — Hy) ' (Ty_Hy —T'1_Hy).

The theorem is proved. O

The following example shows that the condition (5.1) on the transmission
matrices in boundary conditions of two scattering problems is crucial.

Example 5.3. Consider scattering problem for the system in Example (5.1)
with boundary condition of the form

- -~ [h1 0
¢2(07t):H¢1(07t), H= |:~11 7 :|
ha1  haoa
with detH = Bllfzgg = 0. It is clear from Example 5.1 that the scattering operator
has the form

- 1
S, = I —hi1Bi+ 0}

Boy — ho1Biy — haa(Bsy + Bay) 1
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ol Chud hial gt

hotl 4 hogA1— — As_ haal
The operators hllBl+7 Bg+ — h2131+ — h22(33+ —I-B4+) and h22A1_ — Az_ can be
uniquely determined by Sysince it admits left factorization. But the coefficients
are not uniquely determined by the scattering operator Sp.

If det [H —H ] = 0 then the coefficients are unique determined by the scat-
tering operators Sy and Sy. If det [H — ]:I] =0 by h11 # hi1, has = hos then
the unique restoration of coefficients are also violated.

6. Conclusion

This paper considers the ISP for the first order hyperbolic system of four
equations on the semi-axis in the case of two incident and two scattered waves.
The transmission matrix in boundary condition is general nonsingular matrix but
the matrix coefficients of the system satisfy some triangular structures. Such type
of systems occur in elasticity theory and cable lines in electrical engineering. The
ISP for the first order hyperbolic system of 2n (n > 2) equations on the semi-axis
in the case of equal number of incident and scattered waves partially studied in [5],
but the problem were not generally studied. The same sort of uniqueness results
should be true in general case, which suggests a line for further investigation.
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OOGepHeHa 3aja4a po3CilOBaHHH JIJId JIIHINHOI cUCTEMU
YOTHUPUXBUJILOBOI IIPOOJIeMU B3a€MO/Iil Ha ITiBIIPsAMIiii i3
3arajibHOI KpaiioBOIO YMOBOIO

Mansur I. Ismailov

PosristayTo rinepbostiuny cucTeMy YOTHPBHOX PIBHSIHD IEPIITOTO TOPSIKY
Ha TiBOCI y BUHAJKY PIBHOI KIJIBKOCTI MajHOI 1 PO3CIAHNX XBWJIb 3& YMO-
BH, III0 IIBUKOCTI PO3CISTHUX XBUJIb 30iral0ThCsA. YCTAHOBJIEHO KPUTEPIl /15t
ofbepHeHOT 3a1a4i po3ciroBanHsl (3a1a1i 3HAXOMYKEHHs OTEHIIATy 38 Omepa-
TOPOM PO3CIFOBaHHsI) B TEPMiHAX MATPUIIb IIEPeIadi ¥ IBOX PI3HUX KpaioBux
yMmoBax. BuBueHo €auHicTh 0OepHEHOI 3a/1a9i PO3CIIOBAHHS 33 JIOTIOMOTOI0
3BeJIeHHST 3a/a4i 0 JiHiiHOrO iHTerpaspHOro piBHsHHs THIy Ierndbana—
JleBiTtana-Mapduenka.

KitrouoBi cjioBa: obepHeHa 3aja4a PO3CIIOBaHHsI, 3arajibHi KpailoBi yMo-
B, rinepbosigHa cucTeMa IEePINoro MOPSIIKY, OepaTop MePEeTBOPEHHS
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