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We consider dressing and explicit solutions for the scalar reduced Fokker–
Planck equation in the (1 + 1)-dimensional case and for the matrix Fokker–
Planck system in the (1 + `)-dimensional case. For this purpose, we use
our generalised Bäcklund–Darboux transformation (GBDT). There are only
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1. Introduction

Fokker–Planck (FP) equation is one of the most well-known and important
equations in statistical and quantum mechanics. Correspondingly, its explicit
solutions are of great interest in theory and applications. Following seminal works
of Bäcklund, Darboux and Jacobi, different kinds of Darboux transformations and
related dressing, commutation and factorization methods are fruitfully used to
obtain explicit solutions of linear and nonlinear equations (see, e.g. [3–5, 8–10,
12, 16, 19, 20, 23, 36] and numerous references therein). In particular, matrix and
operator identities were successfully used in these constructions. See, for instance,
the well-known book [19] by V.A. Marchenko and later works [1, 2, 14, 15, 18, 24,
25,30] (by different authors) for various results, discussions and references.

In this paper, we apply a generalised Bäcklund–Darboux transformation
(GBDT), which is based on the matrix identities and generalised matrix eigen-
values. GBDT was first introduced in our work [24] (for this approach see
also [3, 14,16,25–27,30] and references therein).

In the 1 + 1 case (of one time and one space variables) Bäcklund–Darboux
transformations have been applied to the FP equation in [13,22,35] (see also some
references therein). The 1 + 2 case of FP, where the term with second derivatives
has the form d∆u and d is constant, was studied in [34] using corresponding
results for Schrödinger equation. A related interesting work on the symmetries of
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an important case of FP equation (in 1 + 2 dimensions) [17] should be mentioned
as well.

The present work may be considered as an important development of the
classical work on the Darboux transformation for the 1+1 case of FP by C. Rogers
[22]. Namely, in his work C. Rogers introduced Darboux transformation in the
1 + 1 matrix FP case, where coefficients are matrix valued functions (matrix
functions), and studied in greater detail the applications to FP in the scalar
case. In both scalar and matrix cases, we apply a more developed iterated binary
GBDT. Even more essential is the fact that we apply GBDT to the FP with one
time and ` space variables (in the matrix case) for the arbitrary ` ∈ N. Here,
N stands for the set of positive integer numbers. Note that FP systems with
coefficients given by matrix functions are studied, for instance, in [6, 21]. Since
real-valued entries of the matrix coefficients and solutions are considered, some
natural requirements on the constructions are added.

We note that various forms of FP equations and systems appear in the litera-
ture, including quite general ones (see, e.g. [22, (2)] and [17, (1)]). Here, we deal
with the dynamical scalar reduced FP equation [22, (29)]:

∂

∂t
u(t, x) +

∂2

∂x2
u(t, x) + q(x)u(t, x) = 0 (q(x) ∈ R) (1.1)

in the case of one space variable, and with the matrix FP system (or FP-type
system):

∂

∂t
Υ(t, x1, . . . , x`) +

∑̀
k=1

2∑
p=1

qkp(t)
∂p

∂xpk
Υ(t, x1, . . . , x`) = 0, (1.2)

Υ(t, x1, . . . , x`) ∈ Rm, qkp(t) ∈ Rm×m, in the case of ` space variables. The
notation R in (1.1) stands, as usually, for the real axis, and by Rm×n we denote
m× n matrices with real-valued entries (Rm×1 = Rm).

Remark 1.1. GBDT is applied to dynamical systems as follows (see, e.g.
[26–29]). First, GBDT is applied to some auxiliary system in one variable. Next,
we multiply certain construction from this GBDT by a matrix exponent depend-
ing on other variables (see formulas (2.9) and (4.6)). In this way, one obtains
wide families of solutions of much greater variety than in the case of the standard
separation of variables (i.e. than in the case of a scalar exponent instead of the
matrix n× n exponent, where we may increase the number n).

While constructing solutions of (1.1) we apply GBDT first to Schrödinger
equation depending on x, and for the construction of solutions of (1.2) we apply
GBDT to a system (with second order poles of the spectral parameter) depending
on t.

In the next section, we apply GBDT to the scalar reduced FP system (in
the terminology of C. Rogers). The necessary information on GBDT in the case
of one variable (and with the second order poles of the spectral parameter) is
presented in Section 3. The following Section 4 is dedicated to GBDT for the FP
systems (1.2). Some non-stationary examples are presented in the appendix.
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Notations. Some notations were explained above. As usually, C stands for
the complex plane. The real part of a ∈ C is denoted by <(a), the imaginary
part of a is denoted by =(a), the complex conjugate of a is denoted by a, and the
absolute value of a is denoted by |a|. By Cn×m we denote n ×m matrices with
complex-valued entries and Cn×1 = Cn. The notation i stands for the imaginary
unit (i2 = −1) and Im denotes the m × m identity matrix. The notation q∗

stands for conjugate transpose of the matrix q, σ(A) stands for the spectrum of
the matrix A and the matrix inequality S > 0 (S ≥ 0) means that the eigenvalues
of the matrix S = S∗ are positive (nonnegative). In a similar way, one interprets
the inequalities S < 0 and S ≤ 0. The notation diag{A1,A2, . . . ,As} means
diagonal matrix with the entries (or blocks) A1,A2, . . . on the main diagonal.

2. GBDT for the scalar reduced FP equation

1. Dynamical scalar reduced FP equation (1.1) coincides with the equation
[27, (7.12)]

(
for the case ω(x) ≡ 1 and p(x) ≡ −1 in [27, (7.12)]

)
. Based on [27],

we present GBDT for the equation (1.1). Without loss of generality, similar
to [30] we assume that x ∈ I, where I is an interval which contains 0 (0 ∈ I).

Each GBDT for the scalar reduced FP equations is determined by some initial
(“seed”) equation (1.1) (or, equivalently, the initial potential q(x)) and a triple
of matrices {A,S(0),Π(0)} such that

AS(0)− S(0)A∗ = Π(0)JΠ(0)∗, S(0) = S(0)∗, J =

[
0 1
−1 0

]
, (2.1)

A, S(0) ∈ Cn×n; Π(0) ∈ Cn×2, n ∈ N. (2.2)

Note that q(x) is the “seed” potential in the terminology of the Bäcklund–
Darboux transformations. The transformed equation and its solutions are ex-
pressed in terms of the matrix functions Π(x) and S(x), uniquely determined by
the values Π(0) and S(0) and first order systems (2.4) below. In order to write
down these systems, we partition Π into column vector function blocks Λ1 and
Λ2:

Π(x) =
[
Λ1(x) Λ2(x)

]
, Π(0) =

[
Λ1(0) Λ2(0)

]
, Λi(0) = ϑi (i = 1, 2). (2.3)

The following special case of [27, Proposition 7.3] presents the potential and
solutions of the transformed FP equation.

Proposition 2.1. Let an initial real-valued potential q(x) and a triple of ma-
trices {A,S(0),Π(0)} satisfying (2.1), (2.2) be given. Introduce matrix functions
Π(x) =

[
Λ1(x) Λ2(x)

]
and S(x) using differential systems

Λ′1(x) = AΛ2(x)− Λ2(x)q(x), Λ′2(x) = Λ1(x); S′(x) = Λ2(x)Λ2(x)∗, (2.4)

where Λ′1 = d
dxΛ1. Then, in the points of invertibility of S(x), the transformed

scalar reduced FP equation has the form

∂

∂t
ũ(t, x) +

∂2

∂x2
ũ(t, x) + q̃(x)ũ(t, x) = 0, (2.5)
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q̃(x) = q(x) + 2
(
X11(x)−X22(x)

)
− 2X12(x)2 = q̃(x), (2.6)

where Xik are the entries of X:

X(x) = {Xik(x)}2i,k=1 := JΠ(x)∗S(x)−1Π(x), (2.7)

J is given in (2.1) and the equalities

X12(x) = X12(x), X22(x) = −X11(x). (2.8)

hold. Moreover, the functions

ũ(t, x) =
[
1 0

]
JΠ(x)∗S(x)−1e−tAh = Λ2(x)∗S(x)−1e−tAh (h ∈ Cn×1) (2.9)

satisfy the transformed FP equation (2.5).

In view of (2.4), A and Π(x) =
[
Λ1(x) Λ2(x)

]
are so called generalised matrix

eigenvalue and generalised eigenfunction, respectively, for GBDT. A scheme of
the proof of Proposition 2.1 is given after remarks below.

Remark 2.2. In view of the last equality in (2.4), the inequality S(0) > 0
yields S(x) > 0 for x ≥ 0. In particular, S(x) is invertible for x ≥ 0.

Remark 2.3. We note that the vectors h in (2.9) determine various linear
combinations of the entries of the row vector Λ2(x)∗S(x)−1e−tA, which itself is a
vector solution of (2.5).

Remark 2.4. Clearly, both real and imaginary parts of ũ are real-valued so-
lutions of (2.5). That is, we set

either ψ(t, x) = <
(
ũ(t, x)

)
or ψ(t, x) = =

(
ũ(t, x)

)
(2.10)

in order to obtain real-valued solutions.

The matrix identity in (2.1) and relations (2.4) yield important identities

AS(x)− S(x)A∗ = Π(x)JΠ(x)∗ for x ∈ I. (2.11)

Scheme of the proof of Proposition 2.1. Relations (2.4) correspond to the
GBDT for Schrödinger equation y′′+ q(x)y = λy, where the sign before y′′ differs
from the standard one (for the convenience of the further application). There
is a general GBDT formula for the derivative

(
JΠ∗S−1

)′
(see, e.g. [30, Chapter

7]) and a formula for
(
JΠ∗S−1

)′
in the case of general Sturm–Liouville equation

in [27]. One may also obtain the corresponding relations in case of our Π =[
Λ1 Λ2

]
and S from (2.4) and (2.11). These relations have the form:(

Λ∗1S
−1)′ = Λ∗2S

−1A− qΛ∗2S−1 + X12Λ
∗
1S
−1 −X11Λ

∗
2S
−1 + X22Λ

∗
2S
−1,(

Λ∗2S
−1)′ = Λ∗1S

−1 −X12Λ
∗
2S
−1.



Dressing for Fokker–Planck Equations: 1 + 1 and 1 + ` Dimensions 507

Thus, we easily obtain:(
Λ∗2S

−1)′′ = −(q + X ′12 + X11 −X22 −X 2
12

)
Λ∗2S

−1 + Λ∗2S
−1A. (2.12)

According to [27, (6.9)] (the formula follows from (2.4) and (2.11) as well), we
have

X ′12 = X11 −X22 −X 2
12. (2.13)

In view of (2.6) and (2.13), the equality (2.12) may be rewritten in the form(
Λ2(x)∗S(x)−1

)′′
= −q̃(x)Λ2(x)∗S(x)−1 + Λ2(x)∗S(x)−1A. (2.14)

Clearly, (2.14) implies that ũ given by (2.9) satisfies FP equation (2.5).

2. Next, we consider the case of the trivial initial system (i.e. of the trivial
“seed” q(x) ≡ 0) and construct explicit potentials and solutions of the trans-
formed FP equations (2.5) determined by the triples {A,S(0),Π(0)}. We note
that the case q(x) ≡ c (c ∈ R) is equivalent to the case q(x) ≡ 0 with the matrix
A− cIn in the triple (taken instead of A).

The main part of the construction consists in solving the first two equations in
(2.4) in order to recover Λk(x) (k = 1, 2) and so to recover Π(x). It is convenient
to look for Λ2 after presenting it in the form Λ2 := exQf1 + e−xQf2, where Q is
a square root of A, that is,

A = Q2. (2.15)

(The situation is similar to the presentation of the solution of Schrödinger equa-

tion as a linear combination of ei
√
λx and −ei

√
λx.) It is well known that a square

root of Q always exists if detA 6= 0 and in many cases where detA = 0 (see [7]
and some results and discussion in [29]). After Λ2(x) is recovered, one easily
constructs S(x).

If q(x) ≡ 0 and (2.15) holds, relations (2.4) may be rewritten in the form

Λ′1(x) = Q2Λ2(x), Λ′2(x) = Λ1(x); (2.16)

S(x) = S(0) +

∫ x

0
Λ2(ξ)Λ2(ξ)

∗dξ. (2.17)

Similar to the slightly different [28, Lemma 2.1], it is easy to see that the following
lemma is valid.

Lemma 2.5. Let an n× n matrix Q be a square root of A : Q2 = A.
Then, the vector functions

Λ1(x) := Q
(
exQf1 − e−xQf2

)
, Λ2(x) := exQf1 + e−xQf2, (2.18)

where f1, f2 ∈ Cn, satisfy the equalities (2.16).
The equalities Λi(0) = ϑi in (2.3) are equivalent to

Q(f1 − f2) = ϑ1, f1 + f2 = ϑ2. (2.19)
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Thus, in the case (2.19) the matrix function
[
Λ1(x) Λ2(x)

]
takes the required

value
[
ϑ1 ϑ2

]
(determined by the triple {A,S(0),Π(0) =

[
ϑ1 ϑ2

]
}) at x = 0.

Moreover, the integral part in (2.17) may be explicitly calculated (for each Q and
Π(0)).

Example 2.6. In the simplest case, we assume that

A = Q = 0, ϑ1 = 0, (2.20)

and derive stationary solutions (see also [11,28] on the stationary case).

Proposition 2.7. Let (2.20) hold. Then, we have

Λ1(x) ≡ 0, Λ2(x) ≡ ϑ2, Π(x) ≡
[
0 ϑ2

]
, S(x) = S(0) + xϑ2ϑ

∗
2. (2.21)

If S(0) is invertible and ϑ2 6= 0, the corresponding stationary solutions of FP
(2.5) have the form

ũ(t, x) = ũ(x) =
b

1 + ax
(a := ϑ∗2S(0)−1ϑ2, b ∈ C). (2.22)

The solutions are real-valued iff b ∈ R.

Proof. In view of (2.20), identity (2.1) holds for any S(0) = S(0)∗ and any
ϑ2 ∈ Cn. The equalities (2.19) are valid in the case f1 + f2 = ϑ2. Thus, fixing ϑ2
and S(0), by virtue of (2.17)–(2.19) we have (2.21). Using (2.6), (2.7) and (2.21),
we obtain

q̃(x) = −2
(
ϑ∗2
(
S(0) + xϑ2ϑ

∗
2

)−1
ϑ2
)2
. (2.23)

If S(0) is invertible, expression (2.23) is easily simplified by using the equality [28,
(3.3)]:

(In + xS(0)−1ϑ2ϑ
∗
2

)−1
= In −

x

1 + ax
S(0)−1ϑ2ϑ

∗
2, a = ϑ∗2S(0)−1ϑ2. (2.24)

Namely, we derive

q̃(x) = − 2a2

(1 + ax)2
. (2.25)

In view of (2.9), (2.21), (2.24) and Proposition 2.1, the functions

ũ(t, x) = ϑ∗2(In + xS(0)−1ϑ2ϑ
∗
2

)−1
S(0)−1h

=

(
1− ax

1 + ax

)
ϑ∗2S(0)−1h =

b

1 + ax
, b := ϑ∗2S(0)−1h (2.26)

are stationary solutions of the corresponding FP equation (2.5). Since ϑ2 6= 0, it
is immediate that b may take all complex values (by different values of h.)

Several non-stationary examples are presented in the appendix.
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3. GBDT—general case of second order poles (preliminaries to
GBDT for FP systems)

A general case of the first order system depending rationally on the spectral
parameter was studied in [30, pp. 219–221] (see also the references therein). In
this paper, we will need a particular case of the second order poles

y′ = Gy, G(t, z) = −
∑̀
k=1

2∑
p=1

(z − ck)−pqkp(t) (` ∈ N, ck ∈ C). (3.1)

Similar to [30], we assume that ci 6= cs for i 6= s, that t ∈ I, where I is an
interval which contains 0 (0 ∈ I), and that the coefficients qkp(t) are m × m
locally summable matrix functions (m ∈ N). Note that the interesting case
of GBDT for systems with first order poles of the spectral parameter and for
the corresponding dynamical systems was studied in the recent paper [29]. The
GBDT of the initial (“seed”) system (3.1) is determined by a number n ∈ N, by
n× n matrices Ai (i = 1, 2) and S(0), and by n×m matrices Πi(0) (i = 1, 2). It
is required that these matrices form an S-node, that is, the matrix identity

A1S(0)− S(0)A2 = Π1(0)Π2(0)∗ (3.2)

holds. The matrix functions Πi(t) are introduced via their values at t = 0 and
equations

(
Π1

)′
=
∑̀
k=1

2∑
p=1

(A1 − ckIn)−pΠ1qkp,
(
Π∗2
)′

= −
∑̀
k=1

2∑
p=1

qkpΠ
∗
2(A2 − ckIn)−p.

(3.3)
Clearly, we assume above that ck 6∈ σ(Ai) for i = 1, 2 and 1 ≤ k ≤ `. Compare
(3.1) with (3.3) to see that Π∗2 can be viewed as a generalised eigenfunction of
the system u′ = Gu.

Matrix function S(t) is introduced via S(0) and via S′(t) given by the equality

S′ = −
∑̀
k=1

2∑
p=1

p∑
r=1

(A1 − ckIn)r−p−1Π1qkpΠ
∗
2(A2 − ckIn)−r. (3.4)

Equations (3.2)–(3.4)) yield the identity

A1S(t)− S(t)A2 = Π1(t)Π2(t)
∗, t ∈ I, (3.5)

of which (3.2) is a particular case of t = 0. For initial system (3.1), the GBDT-
transformed system is

ỹ ′ = G̃ ỹ, G̃(t, z) = −
∑̀
k=1

2∑
p=1

(z − ck)−pq̃kp(t), (3.6)

where the transformed coefficients q̃kp are given by the formulas

q̃kp = qkp +

2∑
r=p

(
qkrYk,p−r−1 −Xk,p−r−1qkr −

r∑
i=p

Xk,i−r−1qkrYk,p−i−1

)
, (3.7)
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and the matrix functions Xkp(t), Ykp(t) have the form

Xkp = Π∗2S
−1(A1 − ckIn)pΠ1, Ykp = Π∗2(A2 − ckIn)pS−1Π1. (3.8)

Our theorem below is a special case of a more general [30, Theorem 7.4]. It
shows that the transfer function wA(z) = Im − Π∗2S

−1(A1 − zIn)−1Π1 (that is,
the transfer matrix function in Lev Sakhnovich form [31–33]) is the so called
Darboux matrix for the systems (3.1) and (3.6).

Theorem 3.1. Let the first order system (3.1) and five matrices A1, A2,
S(0) and Π1(0), Π2(0) be given. Assume that the identity (3.2) holds and that
{ck}∩σ(Ai) = ∅ (i = 1, 2). Then (in the points of invertibility of S), the transfer
matrix function

wA(t, z) = Im −Π2(t)
∗S(t)−1(A1 − zIn)−1Π1(t), (3.9)

where Πi(t) and S(t) are determined by (3.3) and (3.4) respectively, satisfies the
equation

w′A(t, z) = G̃(t, z)wA(t, z)− wA(t, z)G(t, z), (3.10)

where G̃ is determined by the formulas (3.6)–(3.8).

Theorem 3.1 means that for y satisfying the initial system (3.1) the expression
ỹ = wA(t, z)y satisfies the transformed system (3.6).

4. GBDT for FP system with ` space variables

1. As already mentioned in the introduction, we start with GBDT for aux-
iliary systems with second order poles of the spectral parameter. General type
GBDT for systems with second order poles, that is, for the systems

y′ = Gy, G(t, z) = −
∑̀
k=1

2∑
p=1

(z − ck)−pqkp(t) (y′ =
d

dt
y, ` ∈ N), (4.1)

where y(t, z) ∈ Cm and ci 6= cs for i 6= s, is described in the previous Section 3
and is determined by five matrices A1, A2, S(0), Π1(0) and Π2(0) satisfying (3.2).
The coefficients qkp of (4.1) and of the corresponding initial system (1.2) are so
called “seed” coefficients in the terminology of Bäcklund–Darboux transforma-
tions theory.

Recall that we deal here with the real-valued coefficients and entries of ma-
trices. Thus, we add the corresponding requirements on the initial system (4.1)
and the matrices Ai (i = 1, 2), Πi(0) (i = 1, 2) and S(0), which determine GBDT
(or, in other words, on the initial system and matrices which determine the trans-
formed system (3.6)). More precisely, we require that

ck ∈ R, qkp(t) ∈ Rm×m (1 ≤ k ≤ `, p = 1, 2); (4.2)

Ai, S(0) ∈ Rn×n (i = 1, 2); Πi(0) ∈ Rn×m (i = 1, 2). (4.3)
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Remark 4.1. Recall that the generalised matrix eigenfunctions Πi(t) are in-
troduced by the systems (3.3) and S(t) is introduced via (3.4). In view of (3.3)
and (3.4), the requirement that the scalars and matrix entries in (4.2) and (4.3)
are real-valued implies that the entries of Πi(t) and S(t) are also real-valued. It
follows that the entries of the transformed coefficients q̃kp(t) given by (3.7) and
(3.8) are real-valued as well.

In further constructions (similar to Proposition 2.1), formula [30, (7.61)] on
the derivative of Π2(t)

∗S(t)−1 plays a fundamental role. We require that

ck 6∈ σ(Ai) (i = 1, 2). (4.4)

Then, for the case of the initial system (4.1), formula (7.61) from [30] takes (in
the points of invertibility of S(t)) the form

(
Π2(t)

∗S(t)−1
)′

= −
∑̀
k=1

2∑
p=1

q̃kp(t)Π2(t)
∗S(t)−1(A1 − ckIn)−p. (4.5)

Using (4.5), we derive the main assertion of this section (where some of the for-
mulas from Section 3 are repeated for convenience). Note that we omit sometimes
the variable t in Πp(t), qkp(t), Xkp(t), Ykp(t) and some other matrix functions in
order to make formulas shorter.

Theorem 4.2. Let some locally summable matrix coefficients qkp(t) and a
set of numbers {ck} (1 ≤ k ≤ `, p = 1, 2) as well as five matrices A1, A2, S(0)
and Π1(0), Π2(0) be given. Assume that the relations (4.2)–(4.4) and the matrix
identity A1S(0) − S(0)A2 = Π1(0)Π2(0)∗ hold. Introduce Π1(t), Π2(t) and S(t)
by the values Π1(0), Π2(0) and S(0) and by the equations

(
Π1

)′
=
∑̀
k=1

2∑
p=1

(A1 − ckIn)−pΠ1qkp,
(
Π∗2
)′

= −
∑̀
k=1

2∑
p=1

qkpΠ
∗
2(A2 − ckIn)−p,

S′ = −
∑̀
k=1

2∑
p=1

p∑
r=1

(A1 − ckIn)r−p−1Π1qkpΠ
∗
2(A2 − ckIn)−r.

Then (in the points of invertibility of S), the m× n matrix function

Ψ(t, x1, . . . , x`) = Π2(t)
∗S(t)−1 exp

{∑̀
k=1

xk(A1 − ckIn)−1
}

(4.6)

satisfies the transformed FP system below (or, equivalently, each column of Ψ
satisfies that system) :

∂

∂t
Ψ(t, x1, . . . , x`) +

∑̀
k=1

2∑
p=1

q̃kp(t)
∂p

∂xpk
Ψ(t, x1, . . . , x`) = 0, (4.7)
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where Ψ(t, x1, . . . , x`) ∈ Rm×n,

q̃k2(t) = wA(t, ck)qk2(t)wA(t, ck)
−1, (4.8)

q̃k1(t) = wA(t, ck)qk1(t)wA(t, ck)
−1 + wA(t, ck)qk2(t)Yk,−2(t) (4.9)

−Xk,−2(t)qk2(t)wA(t, ck)
−1, (4.10)

Xkp = Π∗2S
−1(A1 − ckIn)pΠ1, Ykp = Π∗2(A2 − ckIn)pS−1Π, (4.11)

and wA(t, ck) = Im −Π2(t)
∗S(t)−1(A1 − ckIn)−1Π1(t).

Proof. Formula (3.7) for the transformed coefficients q̃kp may be easily rewrit-
ten in a more convenient way:

q̃k2 = (Im −Xk,−1)qk2(Im + Yk,−1), (4.12)

q̃k1 = (Im −Xk,−1)qk1(Im + Yk,−1)

+ (Im −Xk,−1)qk2Yk,−2 −Xk,−2qk2(Im + Yk,−1), (4.13)

where Xkp and Ykp are introduced in (4.11) and commas between the indices of
Xk,−1, Yk,−1, . . . are used in order to avoid ambiguousness. According to (3.9)
and (4.11), we have

Im −Xk,−1 = Im −Π2(t)
∗S(t)−1(A1 − ckIn)−1Π1(t) = wA(t, ck). (4.14)

The inverse to the transfer matrix function wA(t, ck) has the form

wA(t, ck)
−1 = Im + Π2(t)

∗(A2 − ckIn)−1S(t)−1Π1(t) (4.15)

(see [31] or [30, Section 1.2.1]). Taking into account (4.15) and (4.11), we obtain

Im + Yk,−1 = wA(t, ck)
−1. (4.16)

Substituting (4.14) and (4.16) into (4.12) and (4.13), we derive (4.8) and (4.10).
After the substitution of (4.6) into (4.7), the left-hand side of (4.7) transforms

into the expression

((
Π2(t)

∗S(t)−1
)′

+
∑̀
k=1

2∑
p=1

q̃kp(t)Π2(t)
∗S(t)−1(A1 − ckIn)−p

)

× exp
{∑̀
k=1

xk(A1 − ckIn)−1
}
,

which (according to (4.5)) equals zero (zero matrix). Thus, Ψ of the form (4.6)
satisfies (4.7).

2. It is interesting that for the case of the scalar coefficients qkp (i.e. for
the case m = 1) formula (4.8) yields qk2 = q̃k2. Moreover, (4.10) implies that
qk1 = q̃k1 in this case. Indeed, in case m = 1 we rewrite (4.10) as

q̃k1 = qk1 + qk2
(
wA(t, ck)Yk,−2 −Xk,−2wA(t, ck)

−1). (4.17)
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In view of (4.14), (4.15), and (4.11), we have

wA(t, ck)Yk,−2 −Xk,−2wA(t, ck)
−1

= Π∗2(A2 − ckIn)−2S−1Π1 −Π∗2S
−1(A1 − ckIn)−1Π1Π

∗
2(A2 − ckIn)−2S−1Π1

−Π∗2S
−1(A1 − ckIn)−2Π1 −Π∗2S

−1(A1 − ckIn)−2Π1Π
∗
2(A2 − ckIn)−1S−1Π1.

(4.18)

Using (3.5), we substitute the identity Π1Π
∗
2 = (A1− ckIn)S − S(A2− ckIn) into

(4.18). Thus, after simple calculations, we derive

wA(t, ck)Yk,−2 −Xk,−2wA(t, ck)
−1 = 0, (4.19)

and the equality qk1 = q̃k1 follows from (4.17) and (4.19). Therefore, we used
another modification of GBDT for the scalar case (in Section 2).

3. Next, we modify the results of Section 3 for an interesting special case of
FP systems (4.7) and of GBDT determined by a triple of matrices {A,S(0),Π(0)}
instead of the five matrices in the general case. For this purpose, we consider a
special class of systems (4.1), namely, the systems

y′ = Gy, G(t, z) = −
2∑̀
k=1

2∑
p=1

(z − ck)−pqkp(t) (` ∈ N), (4.20)

where 2` poles appear (instead of ` in (4.1)), ci 6= cs for i 6= s and the following
requirements are added for 1 ≤ k ≤ `:

ck > 0, ck+` = −ck, (−1)p+1jqkp(t)
∗j ≡ qk+`,p(t) (1 ≤ k ≤ `). (4.21)

(Recall that we separate sometimes the indices by commas, see above.) Switching
from five to three parameter matrices in GBDT, we introduce (and partly change)
notations:

A1 = A, Π1(t) = Π(t), j := diag{Im1 ,−Im2}, (4.22)

and assume that

A2 = −A∗, ck 6∈ σ(A) for 1 ≤ k ≤ 2`, S(0) = S(0)∗, Π2(0)∗ = jΠ(0)∗. (4.23)

According to (4.22) and (4.23), our GBDT transformed system is determined by
the triple of matrices {A,S(0),Π(0)} satisfying (3.2), which in this case takes the
form

AS(0) + S(0)A∗ = Π(0)jΠ(0)∗. (4.24)

Conditions (4.2), (4.3) are substituted by the conditions

qkp(t) ∈ Rm×m (1 ≤ k ≤ `, p = 1, 2); A,S(0) ∈ Rn×n, Π(0) ∈ Rn×m, (4.25)

which again imply that the entries of Π(t), S(t) and q̃kp(t) are real-valued.
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Proposition 4.3. Let relations (4.21)–(4.25) hold. Then, the transformed
coefficients q̃kp(t) given by (4.8) and (4.10) satisfy the same equalities as qkp,
namely,

(−1)p+1jq̃kp(t)
∗j ≡ q̃k+`,p(t) (1 ≤ k ≤ `). (4.26)

Proof. In view of (4.21)–(4.23), we rewrite the first equation in (3.3) (for the
case of 2` poles ck) in the form

(
jΠ∗

)′
=

2∑̀
k=1

2∑
p=1

(−1)pjq∗kpj
(
jΠ∗

)
(A2 + ckIn)−p

= −
2∑̀
k=1

2∑
p=1

qkp
(
jΠ∗

)
(A2 − ckIn)−p. (4.27)

Comparing (4.27) with the second equation in (3.3), we see that Π∗2 and
jΠ∗ satisfy the same first order differential equation. Moreover, we have
Π2(0)∗ = jΠ(0)∗. Hence,

Π2(t)
∗ = jΠ(t)∗. (4.28)

The first equation in (3.3) takes the form

Π′(t) =
2∑̀
k=1

2∑
p=1

(A− ckIn)−pΠ(t)qkp(t). (4.29)

The matrices A and Π(0) together with (4.29) determine Π(t). Then, the matrix
S(0) and equation (3.4) (for the case of 2` poles ck), which we rewrite as

S′(t) =

2∑̀
k=1

2∑
p=1

p∑
r=1

(−1)r+1(A−ckIn)r−p−1Π(t)qkp(t)jΠ(t)∗(A∗+ckIn)−r, (4.30)

determine S(t). The matrix identity (3.5) for S(t) takes the form

AS(t) + S(t)A∗ = Π(t)jΠ(t)∗, t ∈ I. (4.31)

In order to show that S′(t) = S′(t)∗ we split the first sum on the right-hand side
of (4.30) into the sum from 1 to ` and another sum from `+ 1 to 2` and set

r̃ = p− r + 1, k̃ = k − `.

Clearly, (−1)r+1 = (−1)r̃+1(−1)r−r̃ = (−1)r̃+1(−1)p+1. Now, we rewrite (4.30)
as

S′ =
∑̀
k=1

2∑
p=1

p∑
r=1

(−1)r+1(A− ckIn)r−p−1ΠqkpjΠ
∗(A∗ + ckIn)−r
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+
∑̀
k̃=1

2∑
p=1

p∑
r̃=1

(−1)r̃+1(−1)p+1(A+ c
k̃
In)−r̃Πq

k̃+`,p
jΠ∗(A∗ − c

k̃
In)r̃−p−1. (4.32)

According to (4.21), we have (−1)p+1q
k̃+`,p

j = jq∗
k̃p

. Therefore, (4.32) yields

S′(t) = S′(t)∗. Taking into account that S(0) = S(0)∗ and S′(t) = S′(t)∗, we
derive

S(t) = S(t)∗. (4.33)

Using (4.22), (4.23) and (4.28), we rewrite formulas for wA(t, ck) and wA(t, ck)
−1

in (4.14), (4.15) as:

wA(t, ck) = Im − jΠ(t)∗S(t)−1(A− ckIn)−1Π(t), (4.34)

wA(t, ck)
−1 = Im − jΠ(t)∗(A∗ + ckIn)−1S(t)−1Π(t). (4.35)

Since ck+` = −ck, equalities (4.33)–(4.35) easily yield

jwA(t, ck)
∗j = wA(t, ck+`)

−1 (1 ≤ k ≤ `). (4.36)

Relations (4.8), (4.21) and (4.36) imply (4.26) for p = 2.
In a similar to (4.36) way one shows that

jY ∗k,−2j = Xk+`,−2, jX∗k,−2j = Yk+`,−2 (1 ≤ k ≤ `). (4.37)

where Xkp and Ykp are given (in the general case) by (3.8). Finally, (4.26) for
p = 1 follows from the relations (4.10), (4.21) and (4.36), (4.37).

In view of (4.28), formula (4.5) may be rewritten as:

(
Π∗S−1

)′
= −

2∑̀
k=1

2∑
p=1

jq̃kpjΠ
∗S−1(A− ckIn)−p. (4.38)

Correspondingly, Theorem 4.2 takes the following form.

Theorem 4.4. Let some locally summable matrix coefficients qkp(t) and a
set of numbers {ck} (1 ≤ k ≤ `, p = 1, 2) as well as a triple of matrices
{A,S(0),Π(0)} be given. Assume that the relations (4.21) and (4.25) as well
as the second and third relations in (4.23) and the matrix identity (4.24) hold.
Then (in the points of invertibility of S), the m× n matrix function

Ψ(t, x1, . . . , x2`) = Π(t)∗S(t)−1 exp
{ 2∑̀
k=1

xk(A− ckIn)−1
}

(4.39)

satisfies the transformed FP system

∂

∂t
Ψ(t, x1, . . . , x2`) +

2∑̀
k=1

2∑
p=1

jq̃kp(t)j
∂p

∂xpk
Ψ(t, x1, . . . , x2`) = 0, (4.40)

where the equalities (−1)p+1jq̃kp(t)
∗j ≡ q̃k+`,p(t) (1 ≤ k ≤ `) are valid.
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A. Non-stationary solutions: examples

In the following examples, we consider rational non-stationary solutions.
In our first example, the parameter matrix S(0) is degenerate (i.e.
detS(0) = 0) and the non-stationary part of the solution contains strong sin-
gularity at x = 0 (although the solution is nonsingular on (0,∞)).

Example A.1. Let

n = 3, ϑ1 =

1
0
0

 , ϑ2 =

0
0
1

 , (A.1)

Q =

0 1 0
0 0 1
0 0 0

 , and so let A = Q2 =

0 0 1
0 0 0
0 0 0

 . (A.2)

Clearly, the matrix

S(0) = S(0)∗ =

0 0 0
0 1 0
0 0 1

 (A.3)

satisfies (2.1) and we fix S(0) given above. In formula (2.9), we fix

h =

0
0
1

 . (A.4)

Proposition A.2. Let relations (A.1)–(A.4) hold. Then, the function

ψ(t, x) = − 3x2 + 15x+ 15

2(x3 + 6x2 + 15x+ 15)
− t 15x2 + 45x+ 45

x2(x3 + 6x2 + 15x+ 15)
. (A.5)

is a real-valued non-stationary solution of the corresponding transformed FP. We
note that x3 + 6x2 + 15x+ 15 > 0 (x > 0) in the denominators above.

Proof. According to (2.18), (2.19) and (A.1), we have

Λ1(x) =

x+ 1
0
0

 , Λ2(x)

(x/2)(x+ 2)
0
1

 . (A.6)

It follows from (2.17), (A.3) and (A.6) that

S(x) =

(x3/60)(3x2 + 15x+ 20) 0 (x2/6)(x+ 3)
0 1 0

(x2/6)(x+ 3) 0 x+ 1

 , (A.7)
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which yields

S(x)−1 =
1

detS(x)

 x+ 1 0 −(x2/6)(x+ 3)
0 1 0

−(x2/6)(x+ 3) 0 (x3/60)(3x2 + 15x+ 20)

 , (A.8)

detS(x) = (x3/45)(x3 + 6x2 + 15x+ 15). (A.9)

Taking into account (2.9), (2.10) and (A.2), we see that

ũ(t, x) = ψ(t, x) = Λ2(x)∗S(x)−1(I3 − tA)h. (A.10)

Finally, relations (A.2), (A.4), (A.6), (A.8)–(A.10) imply that the solution ψ of
the corresponding FP is given by the formula (A.5).

4. In the same way, wide families of solutions are constructed.

Example A.3. Let

n = 3, ϑ1 =

c20
0

 , ϑ2 =

ab
1

 (a, b, c ∈ C); (A.11)

Q = c

0 1 0
0 0 1
0 0 0

 , and so let A = Q2 = c2

0 0 1
0 0 0
0 0 0

 . (A.12)

It is easy to see that

S(0) = S(0)∗ =

1 0 a
0 1 b

a b 1

 (A.13)

satisfies (2.1). In view of (A.11) and (A.12), the vectors f1 and f2 given by

f1 =

 a
(b+ c)/2

1/2

 , f2 =

 0
(b− c)/2

1/2

 (A.14)

satisfy (2.19). Next, we calculate explicitly Λi(x) and S(x) whereupon the ex-
pressions for q̃(x) and ũ(t, x) follow from (2.7), (2.6) and (2.9). One does not
need (A.14) in those calculations. Indeed, according to (2.18), (2.19), (A.11) and
(A.12), we have

Λ1(x) = Q(f1 − f2) + xQ2(f1 + f2) =

c2(x+ 1)
0
0

 ; (A.15)

Λ2(x) = f1 + f2 + xQ(f1 − f2) + x2Q2(f1 + f2)/2 =

g1(x)
b
1

 , (A.16)
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g1(x) := (c2/2)x2 + c2x+ a. (A.17)

Relations (2.17), (A.13) and (A.16) yield

S(x) = S(x)∗ =

g3(x) + 1 b g2(x) g2(x) + a

b g2(x) |b|2x+ 1 b(x+ 1)

g2(x) + a b(x+ 1) x+ 1

 , (A.18)

g2(x) := (c2/6)x3 + (c2/2)x2 + ax, (A.19)

g3(x) := (|c|4/20)x5 + (|c|4/4)x4 + ((ac2 + ac2 + 2|c|4)x3/6)

+ ((ac2 + ac2)x2/2) + |a|2x. (A.20)

Finally, for A given in (A.12), the expression e−tA in (2.9) takes the form

e−tA = I3 − tA. (A.21)

Clearly, the expressions for q̃(x) and ũ(t, x) get more transparent if one sets b = 0,
which we do in the next proposition.

Proposition A.4. Let relations (A.11)–(A.13) hold and assume that b = 0.
Then, we have

q̃(x) =
4|c|4

g0(x)
(x+ 1)

(
(x3/3) + x2 + x

)
− 2

g0(x)2

(
(x+ 1)|g1(x)|2 + g3(x) + 1

− g1(x)(g2(x) + a)− g1(x)(g2(x) + a)
)2

; (A.22)

ũ(t, x) =
1

g0(x)

(
− |c|4t

(
(x3/3) + x2 + x

)
+ g3(x)− g1(x)

(
g2(x) + a

)
+ 1
)
,

(A.23)

where

g0(x) = |c|4
(x6

45
+

2x5

15
+
x4

3
+
x3

3

)
+ (1− |a|2)x+ 1, (A.24)

and other gk are given by (A.17), (A.19) and (A.20).

Proof. It easily follows from (A.18)–(A.20) that g0(x) := detS(x) has the
form (A.24) and

S(x)−1 =
1

g0(x)

 x+ 1 0 −g2(x)− a
0 1 0

−g2(x)− a 0 g3(x) + 1

 (for b = 0). (A.25)

Relation (2.9) together with (2.3), (A.16) and (A.25) yields formula (A.23) for a
time-dependent solution ũ of (2.5). Here, we take into account that (x+1)g1(x)−
g2(x)−a = c2

(
(x3/3)+x2+x

)
. Similar computations for the formula (2.6) imply

that the transformed potential q̃ in (2.5) is given by (A.22).
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Процедура одягнення для рiвняння
Фоккера–Планка: випадки розмiрностей 1 + 1 та 1 + `

Alexander Sakhnovich

Ми розглядаємо процедуру одягнення та явнi розв’язки скороченого
скалярного рiвняння Фоккера–Планка у випадку розмiрностi 1 + 1 i ма-
тричної системи Фоккера–Планка у випадку розмiрностi 1 + `. Для цьо-
го ми використовуємо наше узагальнене перетворення Беклунда–Дарбу
(УПБД). Є лише декiлька праць щодо процедури одягнення для важли-
вого рiвняння Фоккера–Планка i цi працi стосуються випадкiв розмiр-
ностей 1 + 1 та 1 + 2.

Ключовi слова: скорочене рiвняння Фоккера–Планка, матрична си-
стема Фоккера–Планка, процедура одягнення, перетворення Дарбу, ма-
трична тотожнiсть, явний розв’язок
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