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An extension of the solution set of the finite-time stabilization problem by
bounded feedback controls, which is also called the synthesis problem for the
canonical system via Korobov’s nonunique controllability function, is given.
We consider the case when the value of the controllability functions at the
initial point is exactly the time of motion from the initial point to the origin.
The family of positional controls resolving the synthesis problem is given in
terms of a certain real parameter. We enlarge the interval of the parameters
and explicitly compute its endpoints as functions of the dimension n of the
given system.
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1. Introduction

Consider the control system ẋ = f(x, u) with a Lipschitz function f on a
certain domain of Rn × Rr and a bounded control u ∈ Ω, where Ω ⊂ Rr is
a compact set containing the origin. Given an initial position x0 ∈ Rn, the
problem of finding positional controls u = u(x) with values in Ω such that the
trajectory x(t) of the system

ẋ = f(x, u(x)) (1.1)

starting at x0 satisfies the equality lim
t→T (x0)

x(t) = 0. Here T (x0) is a finite number.

This problem is known as a synthesis problem.
The synthesis problem or the finite-time stabilization problem by bounded

feedback controls is related to finite-time stability. In [14, 15, 21, 43], the finite-
time stability of solutions of ordinary differential equations without control is
studied. To the best of the author’s knowledge, in [22] the synthesis problem was
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studied for the first time. For further references on the finite-time stabilization
problem see [1, 14,34,37,39].

For solving the synthesis problem, in [23] the controllability function method
is proposed, which consists of the construction of positional controls u(x,Θ(x)),
where Θ(x) is a Lyapunov-type function. The controllability function differs from
the classical Lyapunov function [31–33] in the following. First, the controllability
function stabilizes the solution of a given controllable system in finite time in-
stead of infinite time. Second, the controllability function can be applied to the
nonequilibrium point or to an unstable equilibrium point, while the Lyapunov
function deals with equilibrium points, see [29]. The controllability function has
been used to solve a class of control problems, see [5,8,11,13,25–27] and references
therein.

The controllability function Θ(x) satisfies the following inequality:

Θ̇ ≤ −βΘ1− 1
α , α > 0, β > 0. (1.2)

The motion time from the initial point x0 to the origin is estimated by the
inequality T ≤ α

βΘ1/α(x0). See also [25, 28, 29]. In [25], instead of (1.2), a more

general condition is proposed: Θ̇ ≤ −φ(Θ(x(t))) with φ(Θ) > 0 at Θ 6= 0 and∫ Θ
a

dΘ
φ(Θ) <∞, (a > 0).

In [28], for the first time the case

Θ̇ = −1 (1.3)

was studied for an arbitrary linear control system. With the controllability func-
tion Θ(x), the unique positive solution to the equation

2a0Θ = (x,K(Θ)x) (1.4)

was used, where (·, ·) is a scalar product, K(Θ) is a positive matrix for Θ > 0,
and a0 a positive number. This equation we will refer as the Korobov equation.
The physical meaning of (1.3) is remarkable as for an initial point x0 belonging to
a certain neighborhood of the origin, the solution Θ0 to (1.4) for x = x0 exactly
represents the motion time from x0 to the origin.

Roughly speaking, the controllability function as the motion time can be
understood as a nonoptimal solution of the time-optimal control problem, which
consists of finding a bounded control u = u(t), u ∈ Ω such that the trajectory of
the system

ẋ = f(x, u(t)) (1.5)

starting at an initial state x0 terminates at another state x1 in minimum time.
The time-optimal control problem can be solved with the help of the Bellman
equation [2], [3]:

min
u∈Ω

n∑
i=1

∂T (x)

∂xi
fi(x, u) = −1. (1.6)

Here T (x) represents the motion time from x to x1 along the trajectory of system
(1.1). Let Ṫ (x)|(1.1) and Ṫ (x)|(1.5) be the time derivatives of T (x) along the
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trajectories of systems (1.1) and (1.5). Thus, the Bellman equation (1.6) can be
written as min

u∈Ω
Ṫ (x)|(1.5) = −1. On the other hand, equality (1.6) implies that

Ṫ (x)|(1.1) = −1. The latter equality is valid in the points where the function T (x)
is differentiable.

In [3, p. 47], considering the time optimal control for the two-dimensional
canonical system, the author explains that the function T (x) is not differentiable
on the switching curve x2 = 1

2 |x1|x1. This phenomenon is caused by the bang-
bang property of optimal control. A similar behavior occurs for time optimal
control of linear systems of higher dimensions.

In [10], for the canonical control system

ẋ1 = u, ẋj = xj−1, j = 2, · · · , n, |u| ≤ d, (1.7)

a family of positional bounded controls u = u(x, an,n) that depend on a certain
real negative parameter an,n was proposed. The parameter an,n was chosen in
such a way that the matrices

Cn(z) :=


z 1

2·3 . . . 1
n(n+1)

1
2·3

1
3·4 · · · 1

(n+1)(n+2)
...

... · · ·
...

1
n(n+1)

1
(n+1)(n+2) . . . 1

(2n−1)2n

 (1.8)

and

Cn,1(z) :=


2z 1

2 . . . 1
n

1
2

1
3 . . . 1

n+1
...

... · · ·
...

1
n

1
n+1 . . . 1

2n−1

 (1.9)

for z = ξ2,nan,n + ξ3,n, are both positive definite. Here the numbers ξ2,n and
ξ3,n are quantities depending on n, see (2.8). The positiveness of Cn and Cn,1
guarantees a uniqueness of the solution Θ(x) of equation (1.4). In the sequel, we
will use the notation Cn(an,n) and Cn,1(an,n) instead of Cn(z) and Cn,1(z).

In [10], it is proved that for an,n ∈ (−∞, â1
n,n) the positiveness of Cn(an,n)

and Cn,1(an,n) is satisfied. The number â1
n,n is the root of the equation

det(Cn,1(an,n) = 0. In [10], the negative real value of â1
n,n is not given.

The construction of the controllability function resembles the construction of
the Lyapunov function by using a quadratic form. The matrix associated with
this quadratic form is a positive definite matrix. That is the reason why the ma-
trix Cn(an,n), related to equation (1.4), in order to determine the controllability
function Θ(x), should also be positive definite. On the other hand, the matrix
Cn,1(an,n) is related to the calculation of the derivative of the function Θ(x) with
respect to time. In the frame of Korobov’s approach, the positive definiteness
of the matrix Cn,1(an,n) is not imperative. The latter matrix is related to the

quadratic form of the matrix
1

Θ
K − d

dΘ
K, which is the coefficient at Θ̇, as taking

the derivative with respect to time by virtue of system (1.7) of equation (1.4). In
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previous works on the controllability function, for example [10, p. 212], [27, Eq.
(3.4)], the quantity Θ̇ was expressed as a quotient of two quadratic forms. The

quadratic form of the matrix
1

Θ
K − d

dΘ
K appeared in the denominator of the

mentioned quotient. In the present work, for some states x 6= 0, the latter
quadratic form may vanish. Consequently, we can not express Θ̇ as a quotient.

This fact explains the role of the matrix
1

Θ
K − d

dΘ
K.

We mainly consider system (1.7) for three dimensions or higher. The two-
dimensional case was studied in [7]. We extend the solution set of the synthesis
problem to the case when the motion time coincides with the value of the con-
trollability functions at the initial position x0. This extension is achieved by
admitting that the matrix Cn,1(an,n) is not necessarily positive definite, while
the condition of positive definiteness of the matrix Cn(an,n) is maintained. Thus,
in terms of the parameter an,n, the interval (−∞, â1

n,n) is enlarged to the interval
(−∞, ân,n), where ân,n is the unique root of detCn(an,n) = 0 and â1

n,n < ân,n .
Notice that the interval (−∞, ân,n) cannot be enlarged because the matrix Cn
(equivalently, the matrix K(Θ)) should be a positive definite matrix.

On other hand, for the n-dimensional system (1.7), the aforementioned ex-
tension means that for certain initial states x0 there are up to 2n− 1 number of
controllability functions Θ and the same number of positional controls u(x, an,n)
for both fixed numbers an,n and a0. For the third and higher dimensions, this
fact essentially differs from those of previous works on the method of the con-
trollability function, where a unique positive controllability function Θ(x) was
used [10]. In the two-dimensional case, non-unique solutions of equation (1.4)
were considered in [7] and in [30]. In the latter work, the case when the end point
is a non-equilibrium point was studied.

The main results of this work are described below.

a) The roots ân,n and â1
n,n of the equations det(Cn,1(an,n)) = 0 and

det(Cn,1(an,n)) = 0 are precisely calculated.

b) With the help of the inverse of the Hilbert matrix, we propose an explicit form
of the matrix K(Θ) which appears in (1.4). This result is relevant because
equation (1.4) determines the controllability function Θ(x).

c) For an,n ∈ [â1
n,n, ân,n), we analyze the properties of the matrix

1

Θ
K − d

dΘ
K.

We prove that the set of points in Rn, where the quadratic form of the matrix
1

Θ
K − d

dΘ
K vanishes, does not contain trajectories from x0 to the origin.

d) We prove that for a fixed parameter an,n belonging to the interval [â1
n,n, ân,n)

and the certain fixed positive number a0 appearing in (1.4), there are at most
2n− 1 different motion times from the given initial position x0 to the origin.
This means that there are at most 2n − 1 solutions of equation (1.4). Thus,
there is the same number of positional controls that solve the synthesis prob-
lem. Note that if an,n ∈ (−∞, ân,n), then there is a unique positional control
and a unique time that resolve the mentioned problem.

The results of this work can be used to solve the synthesis problem for nonlinear



560 A.E. Choque-Rivero

control systems with a linear part that is completely controllable as well as for
systems which are mappable to canonical systems, see [22, Theorem on p. 552],
[8, 13, 24, 27, 42] and references therein. The presented extension of the solution
set for system (1.7) also extends the solution set of the mentioned nonlinear
control systems. At the same time, the extension of the solution set of the
synthesis problem proposed in the present work is a part of the solution set of
the admissible control problem for the canonical system. See [9] and [6].

2. Preliminaries and notations

In this section, we recall notations for the case of controllability function as
the motion time. See [10]. Let us rewrite the canonical system (1.7) in the
following form:

ẋ = Anx+ bnu, |u| ≤ d, (2.1)

where

An =


0 0 . . . 0 0 0
1 0 . . . 0 0 0
...

... · · ·
...

...
...

0 0 . . . 0 1 0

 , bn =


1
0
...
0

 . (2.2)

Now we reproduce some matrices and equations introduced in [10]. Let

Dn(Θ) :=diag
(

Θ−
2i−1

2

)n
i=1

, Jn := diag

(
(−1)j−1 1

(j − 1)!

)n
j=1

(2.3)

and

P̃n :=


−1 1

3·4 . . . 1
n(n+1)

0 1
4·5 . . . 1

(n+1)(n+2)
...

... · · ·
...

0 1
(n+1)(n+2) . . . 1

(2n−2)(2n−1)

 . (2.4)

Let also
∆n := det P̃n. (2.5)

Furthermore, we will use the following notation.

Notation A. The superscript T means the transpose of the matrix. Let

d′n =:

(
− 1

(n+ 1)(n+ 2)
, − 1

(n+ 2)(n+ 3)
, . . . , − 1

(2n− 1)2n

)T

,

d′′n =:

(
−3 + an,1

2 · 3
, −an,1

3 · 4
, . . . , − an,1

n(n+ 1)

)T

(2.6)

see [10, p. 218]. We denote by ∆′n,j , ∆′′n,j (j = 1, . . . , n−1) (see [10, p. 218]) the
determinants of the matrix (2.4), where instead of its j-th column the columns
d′n and d′′n are inserted. Here (see [10, Eq. (2.6)])

an,1 := −n(n+ 1)

2
. (2.7)
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Let ∆′n,1, ∆′′n,1 be as in Notation A and we denote

ξ2,n :=
(−1)n−1

(n−1)!

∆′n,1
∆n

, ξ3,n :=
∆′′n,1
∆n

. (2.8)

In [10], with the help of (1.8), (2.3) and (2.8), for an,n ∈ (−∞, â1
n,n), the matrix

Fn(an,n) := (JnCn(an,n)Jn)−1 (2.9)

was introduced. Note that the number â1
n,n was not explicitly given in [10]. The

controllability function Θ(x), with Θ(0) = 0, was proposed as the unique solution
of the following equation:

2a0Θ = (Kn(Θ, an,n)x, x), (2.10)

where
Kn(Θ, an,n) := Dn(Θ)Fn(an,n)Dn(Θ). (2.11)

In the sequel, we will omit the dependence of Kn(Θ, an,n) on an,n and sometimes
on Θ.

The quantity a0 satisfies the inequalities

0 < a0 ≤
d2

2(F−1
n an, an)

(2.12)

with
an := (an,1, an,2, . . . , an,n)T (2.13)

and

an,j :=(−1)j
(j − 1)!

∆n

(
∆′n,j

(−1)n−1

(n− 1)!
an,n + ∆′′n,j

)
, j = 2, . . . , n− 1. (2.14)

The set of positional controls is given in the form

u(x, an,n) = Θ−
1
2 (x)aTnDn(Θ(x))x =

n∑
j=1

an,j
Θj(x)

xj . (2.15)

In the following remark, we recall the relation between matrices (1.8) and (1.9).

Remark 2.1.

a) Equality (1.3) is verified [10] by taking the time derivative of equality (2.10)
with positional control (2.15), u = u(x, an,n):(

x,

(
1

Θ
Kn −

d

dΘ
Kn

)
x

)
Θ̇

= (Kn(Anx+ bnu), x) + (x,Kn(Anx+ bnu)). (2.16)

Let

Hn := diag

(
−2i− 1

2

)n
i=1

. (2.17)
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Using (2.11) and (2.15), equality (2.16) can be written as

xTDn(Θ) (Fn −HnFn − FnHn)Dn(Θ)x Θ̇

= xTDn(Θ)
(
FnAn +AT

nFn + Fnbna
T
n + anb

T
nFn

)
Dn(Θ)x. (2.18)

b) Since (2.18) holds for all x ∈ Rn, the following matrix equality is valid:

(Fn −HnFn − FnHn) Θ̇ = FnAn +AT
nFn + Fnbna

T
n + anb

T
nFn. (2.19)

This matrix equation is valid for Θ̇ = −1 and does not depend on a state x.

c) Matrices (1.8) and (1.9) satisfy the equality

Cn,1(an,n) = Cn(an,n)− Cn(an,n)Hn −HnCn(an,n), (2.20)

the matrix Cn,1(an,n) is a factor of a decomposition of the matrix

1

Θ
Kn −

d

dΘ
Kn =

1

Θ
Dn(Θ)FnJnCn,1JnFnDn(Θ). (2.21)

For the readers convenience, we paraphrase [10, Theorem 3.1] in terms of
the notation used in the present work. For the positive parameter c2n−2 used
in [10, Theorem 3.1], we set c2n−2 = 1

2n(2n−1) .

Theorem 2.2. Let An, bn, Cn, ∆n, ∆′n,1, ∆′′n,1, and u(x, an,n) be as in (2.2),
(1.8), (2.5), Notation A, and (2.15), respectively. Moreover, let

∆′n,1
∆n

(−1)n−1an,n
(n− 1)!

+
∆′′n,1
∆n

> max

{
ξ0,

(
1

2
+

1

2n

)
ξ0 +

1

4
− 1

4n

}
, (2.22)

where ξ0 is the root of the equation det(Cn(ξ)) = 0. The number a0 satisfies
the condition (2.12) and the controllability function Θ(x) for x 6= 0 is defined by
equality (2.10) and Θ(0) = 0.

Thus, the control u(x, an,n) (2.15) transfers an arbitrary x ∈ Rn to the origin
along the trajectory ẋ = Anx+ bnu(x, an,n) in time T (x) = Θ(x) and satisfies the
restriction |u(x, an,n)| ≤ d.

In Remark 3.9, we will see that in the right-hand side of inequality (2.22) it is
sufficient to indicate one number. In other words, we will observe that Theorem
2.2 is suitable for an,n ∈ (∞, â1

n,n).

3. The interval of extension for the parameter an,n

In this section, we calculate the value of the parameter an,n for which the
determinant of the matrix Cn(an,n) appearing in (1.8) (respectively, Cn,1(an,n)
and in (1.9)) is equal to zero. With these two values we form an interval in terms
of the parameter an,n. This interval performs the extension of the solution set
of the synthesis problem. For the calculation of the mentioned determinants, we
crucially use the determinant of the Hilbert matrix from [19]. Let us introduce
notations and assertions that will be relevant in the sequel.
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Notation B. Let n ∈ N and ` be a nonnegative integer number. Denote

Hn,` :=

(
1

k + i+ `− 1

)n
k,i=1

, (3.1)

h[j,k] :=

(
1

j
,

1

j + 1
, . . . ,

1

k

)T

, j ≤ k, (3.2)

Kn,` :=

(
1

(i+ j + `− 1)(i+ j + `)

)n
i,j=1

, (3.3)

k[i,j] =

(
1

i(i+ 1)
,

1

(i+ 1)(i+ 2)
, . . . ,

1

j(j + 1)

)T

, i ≤ j. (3.4)

The matrix Hn,0 is the well-known Hilbert matrix. The determinant of this
matrix can be written as

|Hn,0| =
(cn)4

c2n
, (3.5)

where ck =
k−1∏
j=1

j!, see [4, 20].

In the following lemma, we will concentrate on the calculation of the deter-
minant for certain submatrices of Cn and Cn,1 defined in (1.8) and (1.9). Our
calculations will be given in terms of the value of the determinant of the Hilbert
matrix. The equalities of the lemma below will be used in the sequel. In particu-
lar, with the help of these equalities we will compute the values of ∆n, ∆′n,1 and
∆′′n,1 defined in Notation A.

Lemma 3.1. Let Hn,` and Kn,` be as in (3.1) and (3.3). Thus, the following
equalities are valid:

|Hn−1,0| =
(2n− 1)!(2n− 2)!

((n− 1)!)4
|Hn,0|, (3.6)

|Hn−1,2| = n2|Hn,0|, (3.7)

|Hn−2,3| =
n2(2n− 1)!

2((n− 2)!)2
|Hn,0|, (3.8)

|Hn−1,1| =
(2n− 1)!

((n− 1)!)2
|Hn,0|, (3.9)

|Hn−2,2| =
(2n− 1)!

((n− 1)!)2

(2n− 2)!

((n− 2)!)2
|Hn,0|, (3.10)

|Kn,0| =
(n!)2

(2n)!
|Hn,0|, (3.11)

|Kn−1,1| = n|Hn,0|, (3.12)

|Kn−1,2| =
n!(n+ 1)!

2(2n− 1)!
|Hn,0|, (3.13)

|Kn−2,3| =
(n2 − 1)n3

2
|Hn,0|. (3.14)
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Proof. Equality (3.6) readily follows from (3.5). To prove equality (3.7), one
uses the representation of the matrix Hn,0 (resp. matrix Hn−1,2) as a Cauchy

matrix C :=
(

1
xj+yk

)n
j,k=1

with xj = j and yk = k− 1 (resp. xj = j+ 1 and yk =

k). The determinant of the matrix C is equal to

|C| =

∏
1≤i<j≤n

(xi − xj)(yj − yi)∏
1≤i,j≤n

(xi + yj)
, (3.15)

see [4, p. 306] or [38, p. 92]. By employing (3.15), for xj = j and yk = k − 1,

the expression
|Hn,0|
|Hn−1,2| is equal to

n∏
j=2

(x1−xj)(y1−yj)

n∏
j=2

(x1+yj)(y1+xj)
, which in turn is equal to 1

n2 .

Thus, equality (3.7) is proven. In a similar manner, one can prove (3.8)–(3.10).
To prove (3.11) for 1 ≤ i ≤ n−1, add to each i-th row the rows from n-row to i−
1, and extract (n− i+1) from every i-th row. From each j-th column extract the
value 1/(2n+ j−1). Thus, equality (3.11) readily follows. Now we prove equality
(3.13). For i = 1 to n−1, from each row i of the determinant |Kn−1,2| subtract the

sum of the rows from i−1 to n. We attain that |Kn−1,2| = (n−1)!(n+1)!
(2n)! |Hn−1,2|. It

remains to use (3.7). In the same manner, equalities (3.12) and (3.14) are proven.

Here one uses the fact that |Kn−2,3| = (n+1)!(n−2)!
(2n−1)! |Hn−2,3|.

We recall the definition of the Schur complement first introduced by
E.V. Haynsworth [18].

Definition 3.2. Let P , Q, W and R be `× `, `× (m − `), (m− `)× ` and
(m− `)× (m− `), respectively. Additionally, let

M =

(
P Q
W R

)
.

If R is invertible, then P −WR−1Q is the Schur complement of R in M .
If P is invertible, then R−WP−1Q is the Schur complement of P in M .

The following remark is to be used in the sequel.

Remark 3.3. [41, p. 217], [35, p. 188] Under the conditions of Definition 3.2,
the following equality holds:

det

(
P Q
W R

)
= det(P −WR−1Q) detR. (3.16)

The following remark is readily proved by using the determinant of the Schur
complement (3.16), equalities (3.11) and (3.13).

Remark 3.4. Let Kn,` and k[j,n] be as in (3.3) and (3.4). Thus, the following
equalities are valid:

kT[2,n]K
−1
n−1,2k[2,n] =

1

2
− 1

n(n+ 1)
. (3.17)
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The next proposition allows us to express the determinants ∆n, ∆′n,1 and ∆′′n,1
in terms of the determinant |Hn,0|.

Proposition 3.5. Let ∆n, ∆′n,1 and ∆′′n,1 be defined as in (2.5) and Notation
A. Furthermore, let Hn,0 denote the Hilbert matrix (3.1). The following equalities
then hold:

∆n = −(n2 − 1)n3

2
|Hn,0|, (3.18)

∆′n,1 =
(−1)n+1(n− 1)!(n+ 1)!n2

(2n)!
|Hn,0|, (3.19)

∆′′n,1 = −(n− 2)n2(n+ 1)2

4
|Hn,0|. (3.20)

Proof. Equality (3.18) follows directly from (2.4) and (3.14). To prove (3.19),
we extract the minus sign from the first column and move it to the n-th column.
We also use the obvious equality ∆′n,1 = (−1)n+1|Kn−1,2| and equality (3.13).
Now we prove (3.20). We write (2.6) d′′n as

d′′n = −an,1
(

1

2 · 3
,

1

3 · 4
, . . . ,

1

n(n+ 1)

)T

−
(

1

2
, 0, . . . , 0

)T

.

Consequently,

∆′′n,1 =− an,1|Kn−1,1| −
1

2
|Kn−2,3|.

Thus, (2.7), (3.12), and (3.14) imply (3.20).

In the next lemma, we calculate the value of the (1, 1) entry of the matrix
Cn by replacing the parameter an,n by the numbers ân,n and â1

n,n, which are
introduced.

Lemma 3.6. Let the quantities ξ2,n and ξ3,n be as in (2.8). Furthermore, let

ân,n :=− (2n)!

(n+ 1)!
, (3.21)

â1
n,n :=− (n+ 1)(2n)!

4nn!
. (3.22)

Thus,

ân,n > â1
n,n (3.23)

and the following equalities hold:

ξ2,nân,n + ξ3,n =
1

n+ 1
− 1

n
+

1

2
, (3.24)

ξ2,nâ
1
n,n + ξ3,n =

1

2

(
1− 1

n2

)
. (3.25)
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Proof. Inequality (3.23) is obvious. Note that from (3.18)–(3.20), the next
equalities hold:

∆′n,1
∆n

=(−1)n2
(n− 2)!(n− 1)!

(2n)!
, (3.26)

∆′′n,1
∆n

=
(n− 2)(n+ 1)

2(n− 1)n
. (3.27)

We prove (3.24). By employing (2.8), (3.21), (3.26), and (3.27), we attain

ξ2,nân,n + ξ3,n =
∆′n,1
∆n

(−1)n−1ân,n
(n− 1)!

+
∆′′n,1
∆n

= −
(

2
(n− 2)!

(2n)!
ân,n −

(n+ 1)(n− 2)

2(n− 1)n

)
=

1

n+ 1
− 1

n
+

1

2
.

Equality (3.25) is proved in a similar manner.

Remark 3.7. Let an,n ∈ (−∞, ân,n) and Cn(an,n) be as in (1.8). By (2.8),
(3.26), and (3.27), the entry (1, 1) c11 = ξ2,nan,n + ξ3,n of the matrix Cn can be
written as

Cn(an,n) =

(
c11 kT[2,n]

k[2,n] Kn−1,2

)
, (3.28)

where

c11 = −
(

2
(n− 2)!

(2n)!
an,n −

(n+ 1)(n− 2)

2(n− 1)n

)
. (3.29)

We now state the main theorem of this section. We prove that the numbers
ân,n and â1

n,n introduced in (3.21) and (3.22), are the ones, where the determinants
of the matrices Cn and Cn,1 are 0.

Theorem 3.8. Let Cn and Cn,1 be as in (1.8) and (1.9). Furthermore, let
ân,n and â1

n,n be as in (3.21) and (3.22). Thus, the following assertions are valid:

a) The equalities detCn,1(â1
n,n) = 0 and detCn(ân,n) = 0 are satisfied.

b) For an,n < ân,n (respectively, an,n < â1
n,n ), matrix (1.8) (respectively, (1.9))

is positive definite.

Proof. Taking into account (3.25), the first column of the matrix Cn,1(â1
n,n)

can be written as (
1,

1

2
, . . . ,

1

n

)T

−
(

1

n2
, 0, . . . , 0

)T

.

Thus, by using (3.7), we have that

det(Cn,1(â1
n,n)) = |Hn,0| −

1

n2
|Hn−1,2| = 0.
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To prove the equality det(Cn(ân,n)) = 0, we express the first column of
Cn(ân,n) as (

1

2
,

1

2 · 3
, . . . ,

1

n(n+ 1)

)T

−
(

1

n(n+ 1)
, 0, . . . , 0

)T

.

Using (3.11) and (3.13), we readily have that

det(Cn(ân,n)) = |Kn,0| −
1

n(n+ 1)
|Kn−1,2| = 0.

Now we prove part b). The fact that the matrix Cn(an,n) is positive for an,n <
ân,n is proved in [10, Lemma 2.4]. In a similar manner, Cn,1(an,n) is a positive
definite matrix for an,n < â1

n,n, see [10, Lemma 2.5].

Remark 3.9. From part b) of Theorem 3.8, it is clear that inequality (2.22)
can be replaced by

∆′n,1
∆n

(−1)n−1an,n
(n− 1)!

+
∆′′n,1
∆n

> 1− 1

n2
.

4. Calculation of the matrix Kn via the inverse of the Hilbert
matrix

In this section, we calculate the matrix Kn (2.11) that appears in equation
(2.10). By considering the form of the matrix Kn in (2.11) and in turn the form
of the matrix Fn as in (2.9), we see that we should calculate the inverse of the
matrix Cn(an,n) with an,n ∈ (−∞, ân,n). Obtaining an explicit expression for
the matrix Kn is crucial because, with the help of the solution Θ(x) of equation
(2.10), we construct the positional control (2.15). On the other hand, with an
explicit expression of the matrix Kn, we calculate the motion time from x0 to
the origin T (x0) = Θ0, which is the solution of (2.10) for x equal to the initial
condition x0.

In the following remark, we reproduce [36] on the inverse of the Hilbert-type
matrix defined in (3.1).

Remark 4.1. Let Hn,` be as in (3.1). The inverse of this matrix has the form

H−1
n,` = (ν

(`)
αβ)nα,β=1, (4.1)

where

ν
(`)
αβ =

n∏
j=1
j 6=α

(j + β + `− 1)

n∏
j=1
j 6=β

(j − β)

n∏
k=1

(k + α+ `− 1)

n∏
k=1
k 6=α

(k − α)

.

The next remark can be readily verified.
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Remark 4.2. Let Hn−1,2, h[n+1,2n−2], Kn−1,2 and k[n+2,2n−2] be as in (3.1)–
(3.4), respectively. Furthermore, let

Sn :=


1 0 · · · 0 0
−1 1 · · · 0 0

...
. . .

. . .
...

...

0 0
. . . 1 0

0 0 · · · −1 1

 , λn :=


0
0
...
0
1

 , (4.2)

where Sn is an n × n matrix and λn is an n × 1 matrix. Thus, the following
equalities are valid:

Kn−2,2 = Hn−2,2Sn−2 + h[n+1,2n−2]λ
T
n−2, (4.3)

kT[n+1,2n−2] = hT[n+1,2n−2]Sn−2 +
1

2n− 1
λTn−2. (4.4)

Furthermore, the inverse matrix of Sn is equal to

S−1
n =


1 0 . . . 0 0
1 1 . . . 0 0
...

...
. . .

...
...

1 1 . . . 1 0
1 1 . . . 1 1

 .

In the next lemma, by using the inverse (4.1) of the Hilbert-type matrix (3.1),
we calculate the inverse of the submatrix Kn−1,2, which in turn will be used to
compute the inverse of the matrix Cn(an,n), see (1.8). We use the fact that the
Schur complement

1

(2n− 1)2n
− kT[n+1,2n−2]K

−1
n−2,2k[n+1,2n−1]

of the matrix Kn−1,2 is a positive number since Kn−1,2 is a positive definite matrix.
We use 0p×q and Iq to denote the p × q zero matrix and the q × q identity

matrix.

Lemma 4.3. Let Hn−1,2, h[n+1,2n−2], Kn−1,2, k[n+1,2n−2], Sn and λn be as in
(3.1)–(3.4) and (4.2), respectively. Let

mn−2 := −
1

2n−1 − k
T
[n+1,2n−2]K

−1
n−2,2h[n+1,2n−2]

1
(2n−1)2n − k

T
[n+1,2n−2]K

−1
n−2,2k[n+1,2n−2]

,

dn−2 := K−1
n−2,2(h[n+1,2n−2] −mn−2k[n+1,2n−2]).

Thus, the inverse of the matrix Kn−1,2 is given by

K−1
n−1,2 =

(
In−2 dn−2

01×n−2 mn−2

)
S−1
n−1H

−1
n−1,2. (4.5)
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Proof. Since Kn−1,2 is invertible, the number mn−2 is not equal to zero.
Equality (4.5) is equivalent to the equality

Kn−1,2 = Hn−1,2Sn−1

(
In−2 − 1

mn−2
dn−2

01×n−2
1

mn−2

)
. (4.6)

Rewriting the matrices Hn−1,2, Kn−1,2 in the forms

Hn−1,2 =

(
Hn−2,2 h[n+1,2n−2]

hT[n+1,2n−2]
1

2n−1

)
, Kn−1,2 =

(
Kn−2,2 k[n+1,2n−2]

kT[n+1,2n−2]
1

(2n−1)2n

)
,

and using the equality

Sn−1 =

(
Sn−2 0n−2×1

λTn−2 1

)
as well as (4.3) and (4.4), we readily verify (4.6). Consequently, equality (4.5)
holds.

In the following lemma, we calculate the (1, 1) entry of the inverse of matrix
(1.8). Notice that this entry is equal to the corresponding Schur complement of
the matrix Cn(an,n).

Lemma 4.4. Let the matrix Cn be as in (3.28). Thus, the Schur complement
ĉ11(an,n) of Kn−1,2 in Cn(an,n) satisfies the equality

ĉn(an,n) :=− 2

(
(n− 2)!

(2n)!
an,n +

1

n3 − n

)
. (4.7)

Proof. By Definition 3.2, the Schur complement of Kn−1,2 in Cn(an,n) can be
written as follows:

ĉn(an,n) = −
(

2
(n− 2)!

(2n)!
an,n −

(n+ 1)(n− 2)

2(n− 1)n

)
− kT[2,n]K

−1
n−1,2k[2,n]

= −
(

2
(n− 2)!

(2n)!
an,n −

(n+ 1)(n− 2)

2(n− 1)n

)
− 1

2
+

1

n(n+ 1)

= −2

(
(n− 2)!

(2n)!
an,n +

1

n3 − n

)
.

In the second equality, we used identity (3.17).

Remark 4.5. [35, Eq. (1.11)] Let M and R as in Definition 3.2 be both
nonsingular. Then the Schur complement of R in M

T = P −QR−1W

is also nonsingular and

M−1 =

(
T−1 −T−1QR−1

−R−1WT−1 R−1 +R−1WT−1QR−1

)
.
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Now we are ready to write the main result of this section. This result consists
of the calculation of the matrix Kn appearing in equation (2.10). As seen from
(2.9) and (2.11), the calculation of Kn returns to the calculation of the inverse of
the matrix Cn(an,n). Notice that for the matrix Kn we calculate it by employing
the inverse of Hilbert type matrices, see (4.1).

Theorem 4.6. Let kT[2,n] and K−1
n−1,2 be as in (3.4) and (4.5). Furthermore,

let ân,n be as in (3.21) and an,n ∈ (−∞, ân,n). Let ĉ11(an,n) be as in (4.7). Thus,
the following assertions are valid:

a) The inverse of the matrix Cn(an,n) defined as in (1.8) is equal to

1

ĉn(an,n)

(
1 −kT[2,n]K

−1
n−1,2

−K−1
n−1,2k[2,n] ĉn(an,n)K−1

n−1,2 +K−1
n−1,2k[2,n]k

T
[2,n]K

−1
n−1,2

)
. (4.8)

b) Let Dn(Θ) and Jn be as in (2.3). The matrix Kn(Θ, an,n) can be written as
follows:

Kn(Θ, an,n) = Dn(Θ)J−1
n C−1

n (an,n)J−1
n Dn(Θ).

Proof. Write Cn(an,n) as in (3.28). By using [35, Eq. (1.11)] or [12, p. 1661],
the inverse of the matrix Cn(an,n) can be written as in (4.8), where the Schur
complement ĉ11 of Kn−1,2 in Cn(an,n) is given by (4.7). Part b) readily follows
from part a), (2.9), and (2.11).

Let us write the matrix Cn(an,n) in the form(
Cn−1
n k[n,2n−2]

kT[n,2n−2]
1

(2n−1)2n

)
, (4.9)

where

Cn−1
n (an,n) :=

(
c11 kT[2,n−1]

k[2,n−1] Kn−2,2

)
(4.10)

and c11 is as in (3.29).
Our next goal is to compute the (1, 1), (1, n), (n, 1) and (n, n) entries of the

inverse of the matrix Cn(â1
n,n). Let

C−1
n (an,n) =

t11(an,n) · · · t1n(an,n)
... · · ·

...
t1n(an,n) · · · tnn(an,n)

 . (4.11)

This matrix as the inverse of the Hankel matrix Cn is a symmetric matrix.
Using the adjoint of a matrix for calculating the matrix inverse, equalities

(1.8), (3.3), (3.28) for Kn−1,1 and (4.9), the following remark is readily verified.

Remark 4.7. Let the inverse of the matrix Cn(an,n) be as in (4.11). Thus,
the following equalities hold:

t11(ann) :=
|Kn−1,2|
|Cn(an,n)|

, (4.12)
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t1n(ann) := (−1)n+1 |Kn−1,1|
|Cn(an,n)|

, (4.13)

tnn(ann) :=
|Cn−1
n (an,n)|
|Cn(an,n)|

. (4.14)

In the next lemma, we calculate the value of the entries (4.12)–(4.14) for
ann = â1

n,n.

Lemma 4.8. Let the inverse of the matrix Cn(an,n) be as in (4.11). Further-
more, let â1

n,n be as in (3.22). Thus, the following equalities hold:

t11(â1
n,n) :=

2n2(n+ 1)

n− 1
, (4.15)

t1n(â1
n,n) := (−1)n+1 2(2n)!

(n− 1)((n− 1)!)2
, (4.16)

tnn(â1
n,n) :=

(n+ 1)(2n)!(2n− 1)!

(n− 1)((n− 1)!)2(n!)2
. (4.17)

Proof. Using (3.25), we calculate the determinant of the matrix Cn(â1
n,n) as

in (1.8). To this end, we express the first column of this matrix as follows:(
1

2
,

1

2 · 3
, . . . ,

1

n(n+ 1)

)T

− 1

n2
(1, 0, . . . , 0)T . (4.18)

Thus, using (3.11) and (3.13), we have that

|Cn(â1
n,n)| = |Kn,0| −

1

2n2
|Kn−1,2| =

(n− 1)(n!)2

2n(2n)!
|Hn,0|. (4.19)

Using a similar decomposition as in (4.18) of the first column of (4.10) and (3.29),
we obtain

|Cn−1
n (an,n)| = |Kn−1,0|+

(
c11 −

1

2

)
|Kn−2,2|

= −((n− 1)!)2(n− 2)!n

(2n− 3)!(2n)!
an,n|Hn−1,0|

= − an,n
(n− 1)!

|Hn,0|. (4.20)

For an,n = â1
n,n, using (3.22) and (4.20), we obtain

|Cn−1
n (â1

n,n)| = (n+ 1)(2n− 1)!

2n((n− 1)!)2
|Hn,0|. (4.21)

To prove (4.15), we use (3.13), (4.12), and (4.19),

t11(â1
n,n) =

|Kn−1,2|
|Cn(â1

n,n)|
=

2n2(n+ 1)

n− 1
.
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Using (4.13), we prove equality (4.16),

t1n(â1
n,n) = (−1)n+1 |Kn−1,1|

|Cn(â1
n,n)|

= (−1)n+1 2(2n)!

(n− 1)((n− 1)!)2
.

In the second equality, we used (3.12) and (4.19).

Finally, to prove equality (4.17), we use (4.14),

tnn(â1
n,n) =

|Cn−1
n (â1

n,n)|
|Cn(â1

n,n)|
=

(n+ 1)(2n)!(2n− 1)!

(n− 1)((n− 1)!)2(n!)2
.

In the second equality, we used (3.16), (4.19) and (4.21).

5. Properties of the matrix 1
Θ
Kn − d

dΘ
Kn

Recall that for ann ∈ (−∞, â1
nn) the matrix 1

ΘKn− d
dΘKn is a positive definite

matrix. See [10]. In this section, we focus on some properties of the matrix 1
ΘKn−

d
dΘKn for case when the parameter ann belongs to [â1

nn, ânn).

Lemma 5.1. Let ân,n be as in (3.21) and an,n < ân,n. Let Kn and Cn,1 be
as in (2.11) and (1.9). Thus, equality

det

(
1

Θ
Kn(Θ, an,n)− d

dΘ
Kn(Θ, an,n)

)
= 0

is equivalent to equality detCn,1(an,n) = 0.

Proof. By using equality d
dΘKn = −Kn

d
dΘK

−1
n Kn, (2.3), (2.9), (2.11), and

(2.20), we have(
1

Θ
Kn −

d

dΘ
Kn

)
= Kn

(
1

Θ
K−1
n +

d

dΘ
K−1
n

)
Kn

=
1

Θ
KnD

−1
n (Θ)Jn (Cn − CnHn −HnCn) JnD

−1
n (Θ)Kn

=
1

Θ
KnD

−1
n (Θ)JnCn,1JnD

−1
n (Θ)Kn. (5.1)

From part b) of Theorem 3.8, for an,n < ân,n, the inequality det(JnD
−1
n (Θ)Kn) 6=

0 holds. Consequently, the assertion of the lemma is proven.

Now we present one of the main results of this section.

Theorem 5.2. Let Kn be defined as in (2.11). For an,n = â1
n,n, the null

space of the matrix 1
ΘKn − d

dΘKn consists of all vectors of the form

x̄ :=

(
x1, 0, . . . , 0,−

n!

(2n− 1)!
Θn−1x1

)T

. (5.2)
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Proof. Let k̃11 · · · k̃1n
... · · ·

...

k̃1n · · · k̃nn

 :=
1

Θ
Kn −

d

dΘ
Kn. (5.3)

Using (2.3), (2.9), (2.11), and (4.15)–(4.17), we obtain

k̃11 =
2n2(n+ 1)

(n− 1)Θ2
,

k̃1n =
2(n+ 1)(2n)!

(n− 1)(n− 1)!Θn+1
,

k̃nn =
2n(n+ 1)(2n)!(2n− 1)!

(n− 1)n!Θ2n
.

By a direct calculation, we havek̃11 · · · k̃1n
... · · ·

...

k̃1n · · · k̃nn

 x̄ = 0.

Taking into account that the rank of the matrix Cn,1(â1
n,n) is equal to n− 1 and

by (5.1) and (5.3), we have that the null space of the matrix 1
ΘKn − d

dΘKn is
given by vectors of the form (5.2).

The next result allows us to express Cn,1 with the help of a diagonal matrix
that has entries that are all positive numbers except the first entry, which can be
zero or a negative number. We also express the matrix 1

ΘKn − d
dΘKn with the

help of a certain diagonal matrix.

Theorem 5.3. Let ân,n and â1
n,n be as in (3.21) and (3.22). Furthermore, let

an,n ∈ [â1
n,n, ân,n). Moreover, let Cn,1(an,n) be as in (1.9). The following equality

then holds:

PTCn,1(an,n)P = Λn(an,n), (5.4)

where P is a real orthogonal matrix and

Λn(an,n) :=

{
diag(0, λ2

2(an,n), . . . , λ2
n(an,n)), an,n = â1

n,n

diag(−λ2
1(an,n), λ2

2(an,n), . . . , λ2
n(an,n)), an,n ∈ (â1

n,n, ân,n).

(5.5)
Additionally, let Kn be as in (2.11). Thus, the following equality is valid:

1

Θ
Kn −

d

dΘ
Kn =

1

Θ
Dn(Θ)V T

n ΛnVnDn(Θ), (5.6)

where Vn is an invertible matrix.
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Proof. It is well known that since Cn,1(an,n) is a real symmetric matrix,
there is an orthogonal matrix P such that the left-hand side of (5.4) is equal
to a diagonal matrix that consists of the eigenvalues of the matrix Cn,1(an,n).
See [17, Theorem 8.1.1]. Now we prove that the mentioned diagonal matrix has
the form (5.5). By (2.8), (3.1), (3.2), and (3.29), the matrix Cn,1(an,n) can be
written in the form

Cn,1 =

(
2c11 hT[2,n+1]

h[2,n+1] Hn−1,2

)
(5.7)

Using part a) of Theorem 3.8 and the fact that the matrix Hn−1,2 is a positive
definite matrix, we attain the first part of (5.5). Now we prove the second part
of (5.5). By [10, Lemma 2.2] and the continuity of the determinant with respect
to its entries, we have that the determinant detCn,1(an,n) is negative for an,n ∈
(ân,n, â

1
n,n). By employing Cauchy’s interlacing theorem [16], we verify that the

matrix Λn has the form as in (5.5). Here again we have used the fact that the
matrix Hn−1,2 is positive definite.

Now we prove (5.6). Note that the matrix on the left-hand side of (5.6) is a
symmetric matrix. Using (2.21), (5.1), and (5.7), we have

1

Θ
Kn −

d

dΘ
Kn =

1

Θ
Dn(Θ)FnJnP

−1TΛnP
−1JnFnDn(Θ).

Denote Vn := P−1JnFn. Clearly, this matrix is invertible. Consequently, equality
(5.6) is proved.

Next, we consider the set of fix states x described by the following definition.

Definition 5.4. Let an,n ∈ [â1
n,n, ân,n). The set MΘ of states x, where the

equality (
x,

(
1

Θ
Kn −

d

dΘ
Kn

)
x

)
= 0 (5.8)

is satisfied for x 6= 0, and Θ being a solution to (2.10) is called the Θ-degenerated
set.

In Section 6, in the case when Θ̇ = −1, we prove that (5.8) for n = 3 does
not contain complete trajectories of system (1.7).

In the three-dimensional case, the left-hand side of (5.8) can be written as

−1

(a3,3 + 30) Θ6

(
720Θ4x2

1 + 10800Θ3x1x2 + 28800Θ2x1x3

−480 (a3,3 − 45) Θ2x2
2 − 3600 (a3,3 − 20) Θx2x3 − 7200a3,3x

2
3

)
. (5.9)

The Korobov equation (2.10) for the maximal value of the quantity a0,

a0 =
1080

a2
3,3 + 12a3,3 + 360

and d = 1, has the form

Ψ6(x,Θ) = 0, (5.10)
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where

Ψ6(x,Θ) :=
1080Θ6

a2
3,3 + 12a3,3 + 360

+
360Θ4x2

1

a3,3 + 30
+

3600Θ3x1x2

a3,3 + 30
+

7200Θ2x1x3

a3,3 + 30

+
120 (45− a3,3) Θ2x2

2

a3,3 + 30
− 720 (a3,3 − 20) Θx2x3

a3,3 + 30
− 1200a3,3x

2
3

a3,3 + 30
.

Example 5.5. Let a3,3 = −40. For x0 = (1, 0,−37/45)T, equation (5.10) has

the form
(
9Θ2 − 148

)3
= 0. This equation has a positive root of multiplicity 3

equal to Θ0 = 2
√

37
3 . For the indicated initial positions x0 and Θ0, using (5.9),

we see that equality (5.8) holds. The eigenvalues of the matrix 1
ΘKn − d

dΘKn for
Θ = Θ0

2 are

λ1 = 0, λ2 =
81
(
16223−

√
261302059

)
101306

, λ3 =
81
(
16223 +

√
261302059

)
101306

.

Example 5.6. Let a3,3 = −30.01. For x0 = (−0.5442, 0.1916,−0.042)T, equa-
tion (5.10) has the form

1.19936Θ6 − 10664.8Θ4 + 37557.2Θ3 − 49538.8Θ2 + 29004.7Θ− 6360.27 = 0.

This equation has three positive roots: Θ0
1 = 0.812683, Θ0

2 = 0.974682, Θ0
3 =

92.5117. For x0 and Θ0
2, using (5.9), we verify that the value of the left-hand side

of (5.8) is equal to −23.0429. The eigenvalues of the matrix 1
ΘKn − d

dΘKn for
Θ = Θ0

2 are λ1 = −164987, λ2 = 4.35248, and λ3 = 29431300.

In the following remark, we explain the value of the coefficient at Θ̇ appearing
in (2.16) in the case when equality (5.8) holds.

Remark 5.7. We emphasize that if the left-hand side of (5.8) vanishes for
some x and Θ, then the right-hand side of (2.16) also vanishes. Using (2.18), we
see that equality (2.16) holds for all states x ∈ Rn, including for the states x that
satisfy (5.8) if Θ̇ = −1. The reason for that is that the matrix equality (2.19) is
satisfied for Θ̇ = −1.

6. Trajectories on the Θ-degenerated set

In this section, we consider the question whether the Θ-degenerated set MΘ

contains the trajectories x(t) of system (1.7) with a positional control (2.15) such
that Θ̇ = −1.

Remark 6.1. In the two-dimensional case, for Θ̇ 6= −1, the corresponding
set MΘ is a parabolic arc. The motion time from the initial position x0 to
the origin is less than the value of the controllability function Θ(x) at x0. The
corresponding positional control is a bang-bang control having the values of ±d.
The trajectories starting at x0 ∈MΘ remain in MΘ, see [7].
For n ≥ 3, we leave open the question of whether there are solutions of the
synthesis problem belonging to MΘ for the case when an,n ∈ [â1

n,n, ân,n) and

Θ̇ 6= −1.
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The next remark allows us to claim that in the case when the equality Θ̇ = −1
is satisfied for all x ∈ Rn, including the states belonging to MΘ as in (5.8), the
trajectory of system (1.7) achieves the origin at finite T (x0) = Θ0. We partially
reproduce a remark written on p. 121 of [25].

Remark 6.2. Let VΘ(x) := (Kn(Θ)x, x) be a family of positive definite
quadratic forms. Using (2.11) and (2.16), the time derivative of VΘ with respect
to system (1.7) with positional control (2.15) has the form

V̇Θ(x) = xT
(
KnAn +AT

nKn +Knbna
T + abTnKn

)
x = − 1

Θ
VΘ(x). (6.1)

In the first equality, we used the notation a = Θ−
1
2Dn(Θ)an. From equality

(6.1), it is seen that VΘ(x) is a Lyapunov function for system (1.7) with positional
control (2.15). Moreover,

VΘ(x(t)) = cΘ e
− 1

Θ
t, cΘ > 0, 0 < Θ ≤ Θ0. (6.2)

Here x(t) is the trajectory of system (1.7) with control (2.15). If one chooses the
parameter Θ equal to Θ(x) such that Θ(x) → 0 as x → 0, then the trajectory
of system (1.7) with control (2.15) achieves the origin at a finite time from an
arbitrary initial state x0 including the states belonging to MΘ as in (5.8).

In the sequel, we will use the equalities Kn = Kn(Θ, an,n) and Fn = Fn(an,n).

Remark 6.3. Let Kn be as in (2.11). Thus, the left-hand side of the equality
2a0Θ−(xTKnx) = 0, which is equivalent to (2.10), contains complete trajectories
of system (1.7), i.e., the following identity is valid:

d

dt

(
2a0Θ− (xTKn, x)

)
=

1

Θ
xTDn(Θ)

(
(Fn −HnFn − FnHn)Θ̇− FnAn −AT

nFn − FnbnaTn − anbTnFn
)

×Dn(Θ)x ≡ 0. (6.3)

This identity is verified by using (2.19) and Θ̇ = −1.

Now, for n = 3, we explain that the Θ-degenerated set MΘ does not contain
complete trajectories x(t) of system (1.7). For dimension n > 3, the mentioned
question will be considered elsewhere.

Let us denote by

Γ(x(t)) :=

(
x,

(
1

Θ
K3 −

d

dΘ
K3

)
x

)∣∣∣∣
x=x(t)

(6.4)

the left-hand side of (5.8) on the trajectory x = x(t) for some initial position x0.
We will prove that

d

dt
Γ(x(t)) 6≡ 0 (6.5)
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for every initial position x0. The derivative in (6.5) is calculated along the tra-
jectory x(t).

Let a3,3 < −30. Positional control (2.15) has the form

u(x, a3,3) = −6x1

Θ
+

(a3,3 − 30)x2

3Θ2
+
a3,3x3

Θ3
. (6.6)

Since the controllability function Θ satisfies (1.3), the right-hand side of (6.6) can
be written as

u(x, a3,3) = − 6x1

Θ0 − t
+

(a3,3 − 30)x2

3(Θ0 − t)2
+

a3,3x3

(Θ0 − t)3
.

Here Θ0 = Θ(x0). As a consequence, with this control, system (1.7) is equivalent
to Euler’s differential equation

(Θ0 − t)3x
(3)
3 + 6(Θ0 − t)2ẍ3 − (Θ0 − t)a3,3 − 30

3
ẋ3 − a3,3x3 = 0 (6.7)

with initial conditions x3(0) = x0
3, ẋ3(0) = x0

2, and ẍ3(0) = x0
1. Using the change

of the variables t = Θ0 − eτ and y(τ) = x3(Θ0 − eτ ), the Euler-type equation
(6.7) is reduced to the equation

y′′′ − 9y′′ − a3,3 − 54

3
y′ + a3,3y = 0

with initial conditions y(τ0) = x0
3, y′(τ0) = −Θ0x0

2 and y′′(τ0) = −Θ0x0
2+(Θ0)2x0

1,
where τ0 = ln Θ0. The solution of the latter Cauchy problem has the form

y(τ) = e3τ (c1 + c2 cos(ντ) + c3 sin(ντ))

with

ν =

√
−a3,3+27

3
, a3,3 < −30, (6.8)

and

c1 =

(
−ξ1 +

x0
3

(Θ0)3

)
, (6.9)

c2 =
(
ξ1 cos(ν ln Θ0)− νξ2 sin(ν ln Θ0)

)
, (6.10)

c3 =
(
ξ1 sin(ν ln Θ0) + νξ2 cos(ν ln Θ0)

)
. (6.11)

Here,

ξ1 = − 1

ν2(Θ0)3

(
(Θ0)2x0

1 + 5Θ0x0
2 + 9x0

3

)
and ξ2 = − 1

ν2(Θ0)3

(
Θ0x0

2 + 3x0
3

)
.

Taking into account the equalities x3(t) = y(ln(Θ0−t)), x2(t) = ẋ3(t) and x1(t) =
ẍ3(t), we have

x1(t) =
(
Θ0 − t

) (
−
(
c3

(
ν2 − 6

)
+ 5c2ν

)
sin(α(t))
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+
(
c2

(
6− ν2

)
+ 5c3ν

)
cos(α(t)) + 6c1

)
, (6.12)

x2(t) =
(
Θ0 − t

)2
((c2ν − 3c3) sin(α(t))− (c3ν + 3c2) cos(α(t))− 3c1) , (6.13)

x3(t) =
(
Θ0 − t

)3
(c3 sin(α(t)) + c2 cos(α(t)) + c1) , (6.14)

where

α(t) = ν ln(Θ0 − t). (6.15)

Clearly, x(t) = (x1(t), x2(t), x3(t))T approaches zero as t→ Θ0.

In the following result, for n = 3, we prove that in the case when Θ̇ = −1, the
Θ-degenerated set defined as in (5.8) does not contain a trajectory of system (1.7).
We emphasize that if Θ̇ = −1, equality (2.18) is satisfied for x ∈ R3 including
the states x belonging to the Θ-degenerated set defined as in (5.8). This fact is
used in the following result.

Lemma 6.4. Let â3,3 and â1
3,3 be as in (3.21) and (3.22). Let a3,3 ∈ [â1

3,3, â3,3)

and MΘ be as in Definition 5.4 with Θ̇ = −1. For any initial state x0 ∈ R3, the
set MΘ does not contain a complete trajectory of (1.7) under the influence of
positional control (2.15).

Proof. Using (6.8)–(6.14) and

p1 = 6 (a3,3 + 24) c2
1 − (a3,3 + 30) 2

(
c2

2 + c2
3

)
,

p2 = 6c1

(
(a3,3 + 25) c2ν −

1

3
(a3,3 + 45) c3

)
,

p3 = 2c1 (− (a3,3 + 45) c2 − 3 (a3,3 + 25) c3ν) ,

p4 =
2

3
(a3,3 + 30)

(
(a3,3 + 18) c2c3 + 3

(
c2

3 − c2
2

)
ν
)
,

p5 =
1

3
(a3,3 + 30)

(
(a3,3 + 18) c2

2 − (a3,3 + 18) c2
3 + 12c3c2ν

)
,

the expression (6.4) can be written in the following form:

Γ(x(t)) =
120 (p1 + p2 sin(α(t)) + p3 cos(α(t)) + p4 sin(2α(t)) + p5 cos(2α(t)))

a3,3 + 30
.

Notice that for j = 1, . . . , 5, pj are not simultaneously equal to zero for a3,3 ∈
[â1

3,3, â3,3) and
∑3

k=1 c
2
k 6= 0. On the other hand, the Wronskian of the functions

{1, sin(α(t)), cos(α(t)), sin(2α(t)), cos(2α(t))} is equal to −8 (a3,3 + 27)5

27 (t−Θ0)10 . Thus,

{1, sin(α(t)), cos(α(t)), sin(2α(t)), cos(2α(t))} are linear independent functions on
[0,Θ0]. Therefore, Γ(x(t)) 6≡ 0. Consequently, Γ(x(t)) does not contain complete
trajectories of system (1.7).

A similar result may be proved for the n-dimensional case.
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7. Nonunique solutions of the synthesis problem

Let ân,n and â1
n,n be as in (3.21) and (3.22). In this section, we present the

main result of the present work. For the extension from (−∞, â1
n,n) to the interval

(−∞, ân,n), we prove that equation (2.10) for system (1.7) may have more than
one solution up to 2n− 1.

Theorem 7.1. Let an,j, j = 1, . . . , n − 1 be as in (2.7), (2.14) and an,n ∈
(−∞, ân,n). Furthermore, let system (1.7) be influenced by positional control
(2.15), where Θ(x) is the solution of equation (2.10). Thus, the following asser-
tions are valid:

a) For an,n ∈ (−∞, â1
n,n), for any initial position x0 ∈ Rn, there is a unique

solution Θ(x0) of the Korobov equation (2.10) for a fixed number a0 satisfying
(2.12). The positional control u(x, an,n), constructed via Θ(x) as in (2.15),
solves the synthesis problem of system (1.7).

b) Let an,n ∈ [â1
n,n, ân,n). For a given initial point x0, the Korobov equation (2.10)

has k(x0) number of solutions {Θk(x
0)}, where k(x0) ∈ {1, . . . , 2n−1} and a0

is a fixed number satisfying (2.12). The set of solutions is performed by the
positional controls u(x, an,n) as in (2.15), where Θ(x) is one of the functions
Θk(x) such that Θ̇ = −1.

c) In a) and b), the value of the controllability function at the initial position
Θ(x0) is exactly the motion time T (x0) from x0 to the origin.

Proof. Let

Fn = (fjk)
n
j,k=0. (7.1)

The proof of part a) is given in the proof of [10, Theorem 3.1]. Now we prove
part b). By using (2.11) and (7.1), equation (2.10) can be written in the form

2a0Θ2n − f11(an,n)Θ2n−2x2
1 − · · · − fnn(an,n)x2

n = 0. (7.2)

Taking into account the fact that a0 > 0 and that the matrix Kn(Θ, an,n) is
positive definite for an,n ∈ [â1

n,n, ân,n) and consequently for fnn(an,n) > 0, we have
that equation (2.10) has at least one positive and one negative real root Θ for each
fixed x. This fact is discussed in [25, p. 24] and [22, p. 540]. On the other hand,
equation (7.2) or equality (2.10) has at most 2n real roots. Consequently, equation
(2.10) may have k(x0) ∈ {1, . . . , 2n−1} number of real positive roots. With each
of these solutions, one can construct a positional control of the form (2.15). We
attain a set of k(x0) number of solutions to the synthesis problem. Finally, part
c) readily follows from the fact that the derivative of the controllability function
Θ(x) on the trajectory satisfies the equality Θ̇ = −1. By Remark 5.7, this equality
holds for states in the Θ-degenerated set.

The next example considers the three-dimensional case. We show that de-
pending on the initial position x0, there may be from 1 to 5 solutions to the
synthesis problem such that the value of the controllability function Θ at x0

represents the motion time from x0 to the origin.
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Example 7.2. By Theorem 7.1, the interval for the parameter a3,3 is extended
from (−∞,−40) [10] to the interval (−∞,−30). Depending on the initial position
of system (2.1), there can be k(x0) different solutions, where k(x0) ∈ {1, 2, 3, 4, 5}.
In Tables 7.1 and 7.2, for d = 1 and a3,3 = −30.01, we show the examples of
nonunique solutions to equation (2.10).

Nonunique solutions of the Korobov equation for a3,3 = −30.01

x0 = (−1, 1, 4)T x0 = (0.0118,−0.3368, 1)T x0 = (−1, 1,−1)T

Θ1(x0) = 8.9984 Θ1(x0) = 9.20328 Θ1(x0) = 168.161
Θ2(x0) = 9.6623 Θ2(x0) = 5.56634
Θ3(x0) = 167.844

Table 7.1: In the first column, for the initial position x0 = (−1, 1, 4)T, we have
three roots of equation (5.10). In the second column, for the initial position x0 =
(0.0118,−0.3368, 1)T, we have two roots of equation (5.10). In the third column,
for x0 = (−1, 1,−1)T, we have a unique positive solution of equation (5.10).

Nonunique solutions of the Korobov equation for a3,3 = −30.01

x0 = (−1, 1,−0.6)T x0 = (1.3345,−1.4673, 1)T

Θ1(x0) = 1.9746 Θ1(x0) = 2.43243
Θ2(x0) = 2.03212 Θ2(x0) = 2.70391
Θ3(x0) = 2.8659 Θ3(x0) = 3.16287
Θ4(x0) = 3.1379 Θ4(x0) = 225.609
Θ5(x0) = 168.136

Table 7.2: In the first column, for the initial position x0 = (−1, 1,−0.6), we have
five roots of equation (5.10). In the second column, for x0 = (1.3345,−1.4673, 1)T,
we have four roots of equation (5.10).

We do not establish the regions on R3, where equation (5.10) has a given
number of positive roots. To compute the number of roots of (5.10) for the
initial point x0 = (−1, 1,−0.6)T appearing in Table 7.2, we rewrite (5.10) in the
equivalent form Φ6(x,Θ) = 0, where

Φ6(x,Θ) = Θ6kw − k
(
Θ2x2

2 + 6Θx3x2 + 10x2
3

)
+ 3

(
Θ2x1 + 5Θx2 + 10x3

)2
with k := 30 − a3,3 and w := 9

a2
3+12a3+360

. Use the resultant R(Φ6,Φ
′
6,Θ) of

polynomials Φ6 and Φ′6, where the prime means the derivative of Φ6 with respect
to Θ. See [40, p. 20]. By using Wolfram Mathematica, we attain the next
expression for the resultant R(Ψ6,Ψ

′
6,Θ):

R(Ψ6,Ψ
′
6,Θ) = −64k4w2x2

3

(
2430x9

1

((
31k2 − 5175k + 168750

)
x6

2x3 − 96000

×
(
3k2 − 100k + 300

)
wx5

3

)
− 243

(
253k2 − 113700k + 3802500

)
x4

2x
2
3x

10
1 + 81x8

1

×
(
3600

(
37k3 + 11900k2 − 451100k + 1440000

)
wx4

3x
2
2 + (k − 150)(k − 75)2x8

2

)
− 48600

(
449k3 + 119885k2 − 4974000k + 16312500

)
wx4

2x
3
3x

7
1 + 6750kw2x3

3x
3
1

×
((
−1347k4 + 434090k3 − 42634500k2 + 1613295000k − 20709000000

)
x6

2

+ 86400(k − 30)3(3k − 10)wx4
3

)
− 135wx2

3x
6
1

(
432000

(
k4 − 270k3 + 9300k2
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− 65000k + 60000)wx4
3 +

(
413k4 − 67560k3 − 35048250k2 + 1507275000k

− 5011875000)x6
2

)
+ 270wx2

2x3x
5
1

(
135000

(
19k4 − 2302k3 + 80212k2

− 810600k + 120000) · wx4
3 +

(
226k4 + 11775k3 − 7228125k2 + 302906250k

− 1012500000)x6
2

)
+ 6750kw2x2

2x
2
3x

2
1

(
540(k − 30)2 ×

(
7k3 − 1360k2 + 73500k

− 210000)wx4
3 +

(
−2k5 + 1703k4 − 358905k3 + 30801750k2 − 1152787500k

+ 15474375000)x6
2

)
− 18000kw2x4

2x3x1

(
270

(
7k5 − 1380k4 + 110400k3

− 4104000k2 + 59850000k −135000000)wx4
3 − (k − 75)3

(
k2 − 168k + 5100

)
× x6

2

)
+ 9wx4

2x
4
1

(
(k − 75)2

(
8k3 + 300k2 − 230625k +843750)x6

2 + 6750
(
49k5

− 33570k4 + 3578600k3 − 131106000k2 + 1556850000k − 22500000
)
wx4

3

)
+ kw2

(
−3375

(
19k6 − 6210k5 + 775800k4 − 50058000k3 + 1718550000k2

− 26122500000k + 54000000000)wx4
3x

6
2 + 72900000(k − 30)5kw2x8

3 + 16

× (k − 150) (k − 75)5x12
2

)
+ 11664000(k − 30)x4

3x
12
1 − 583200(49k − 1590)

× x2
2x

3
3x

11
1

)
.
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1.0

x1(t)
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x3(t)

(a) Coordinates of the trajectory x(t)

for x0 =
(
1, 0,− 37

45

)T
, a3,3 = −40

and Θ0 = 2
√
37
3 .

1 2 3 4

1

2

3

4

θ(x(t))

(b) The controllability function on
the trajectory x(t) for x0 =(
1, 0,− 37

45

)T
, a3,3 = −40 and Θ0 =

2
√
37
3 .

1 2 3 4

-1.0

-0.5

0.5
u(x(t))

(c) The positional control on the tra-

jectory x(t) for x0 =
(
1, 0,− 37

45

)T
,

a3,3 = −40 and Θ0 = 2
√
37
3 .

1 2 3 4

1

2

3

4

5

Γ(x(t))

(d) Graph of the function Γ(x(t)) for

x0 =
(
1, 0,− 37

45

)T
, a3,3 = −40 and

Θ0 = 2
√
37
3 .

Fig. 7.1: The graphs of the coordinates of the trajectories, the controllability
function, the positional control on the trajectory and the function (6.4).
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Substitute on left-hand side of the equality R(Φ6,Φ
′
6,Θ) = 0 the values a3,3 =

−30.01, x1 = −1, and x2 = 1. Solve the resulting equation for the variable x3.
With the found real roots x3, in the points x = (−1, 1, x3)T with a3,3 = −30.01
the polynomial Φ6 or equivalently Ψ6 on Θ will have from 1 to 5 positive real
roots.

In the next examples, for the three-dimensional case, we provide graphs of the
trajectory x(t), the controllability function Θ(x(t)), the positional control u(x(t))
on the trajectory and the function Γ(x(t)).

Example 7.3. We continue Example 5.5. As we have seen, for x0 =(
1, 0,−37

45

)T
, a3,3 = −40, there is a unique positive solution of the Korobov equa-

tion (5.10) Θ(x0) =
2
√

37

3
. The time motion T (x0) from x0 to the origin is equal

to Θ(x0). The corresponding graphs of the coordinates of the trajectories, the
controllability function, the positional control on the trajectory and the function
(6.4) are given in Fig. 7.1.
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(a) Coordinates of the tra-
jectory x(t) for x0 =
(−0.5442, 0.1916,−0.042)T, a3,3 =
−30.01 and Θ0

1 = 0.812683.

0.2 0.4 0.6 0.8

-0.4

-0.2

0.2

x1(t)

x2(t)

x3(t)

(b) Coordinates of the tra-
jectory x(t) for x0 =
(−0.5442, 0.1916,−0.042)T, a3,3 =
−30.01 and Θ0

2 = 0.974682.
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(c) The positional control on
the trajectory x(t) for x0 =
(−0.5442, 0.1916,−0.042)T and
a3,3 = −30.01. The dotted (resp.
solid) curve corresponds to Θ0

1 =
0.812683 (resp. Θ0

2 = 0.974682).
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(d) Graph of the function Γ(x(t)) for
x0 = (−0.5442, 0.1916,−0.042)T

and a3,3 = −30.01. The dot-
ted (resp. solid) curve corresponds
to Θ0

1 = 0.812683 (resp. Θ0
2 =

0.974682).

Fig. 7.2: The trajectory x(t), the controllability function on the trajectory
Θ(x(t)), the control u(x(t)) and Γ(x(t)) for x0 = (−0.5442, 0.1916,−0.042)T,
a3,3 = −30.01 and Θ0

1 = 0.812683 or Θ0
2 = 0.974682.
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In these graphs, the horizontal axis represents time whereas the vertical axis
represents a certain value which is indicated at the caption of each figure.

Notice that the initial position x0 belongs to MΘ. The function Γ(x(t)) is
non negative and there are values of t in the interval (0, T (x0)] where Γ(x(t)) = 0.

Example 7.4. We continue Example 5.6. For x0 = (−0.5442, 0.1916,−0.042)T,
a3,3 = −30.01, Θ0

1 = 0.812683, Θ0
2 = 0.974682 and Θ0

3 = 92.5117, the correspond-
ing graphs are given in Figures 7.2–7.3. Again, in these graphs, the horizontal
axis represents time whereas the vertical axis represents a certain value which is
indicated at the caption of each figure.

Observe that the function Γ(x(t)) takes negative and positive values and in
certain values of t in the interval [0, T (x0)], Γ(x(t)) = 0.

The following four figures represent the graphs of the trajectory x(t), the
controllability function on the trajectory Θ(x(t)), the control u(x(t)) and Γ(x(t))
for x0 = (−0.5442, 0.1916,−0.042)T, a3,3 = −30.01 and Θ0

3 = 92.5117.

From Figures 7.2(c) and 7.3(d), we see that the positional control for Θ0
1

(resp. Θ0
2) takes its values in the interval [−0.96, 0.96] (resp. [−0.8, 0.8]), whereas
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(a) Coordinates of the tra-
jectory x(t) for x0 =
(−0.5442, 0.1916,−0.042)T, a3,3 =
−30.01 and Θ0

3 = 92.5117.
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(b) The controllability function on
the trajectory x(t) for x0 =
(−0.5442, 0.1916,−0.042)T, a3,3 =
−30.01 and Θ0

3 = 92.5117.
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(c) The positional control on
the trajectory x(t) for x0 =
(−0.5442, 0.1916,−0.042)T, a3,3 =
−30.01 and Θ0

3 = 92.5117.
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(d) Graph of the function Γ(x(t)) for
x0 = (−0.5442, 0.1916,−0.042)T,
a3,3 = −30.01 and Θ0

3 = 92.5117.

Fig. 7.3: The trajectory x(t), the controllability function on the trajectory
Θ(x(t)), the control u(x(t)) and Γ(x(t)) for x0 = (−0.5442, 0.1916,−0.042)T,
a3,3 = −30.01 and Θ0

3 = 92.5117.
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the values of the positional control for Θ0
3 belong to [−0.024, 0.093]. From this

observation, we conclude that the larger the interval [0,Θ0
k], for k = 1, 2, 3, is, the

“milder” is the influence of the positional control on system (1.7). Notice that
Θ0

3 is hundred times greater than Θ0
1.
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Функцiя керованостi Коробова як час руху:
розширення множини розв’язкiв проблеми синтезу

A.E. Choque-Rivero

Знайдено розширення множини розв’язкiв проблеми стабiлiзацiї за
скiнченний час за допомогою обмеженого позицiйного керування, яка
також називається проблемою синтезу для канонiчної системи за до-
помогою функцiї керованостi Коробова. Ми розглядаємо випадок, коли
значення функцiй керованостi в початковiй точцi є часом руху з цiєї
початкової точки до нуля. У термiнах певних реальних параметрiв зна-
йдено сiм’ю позицiйних керувань, що розв’язують проблему синтезу. Ми
збiльшуємо iнтервал параметрiв i явно обчислюємо його кiнцевi точки
як функцiї вiд розмiрностi n системи, що розглядається.

Ключовi слова: проблема сиснтезу, стабiлiзацiя за скiнченний час,
обмежене керування, канонiчна система
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