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Exponential Stability for a Flexible

Structure System with Thermodiffusion
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In the paper, the well-posedness and asymptotic behavior of solutions
to a flexible structure with thermodiffusion effects and distributed delay are
studied. Under suitable assumptions on the weight of the damping and the
weight of the distributed delay, we prove the existence and the uniqueness
of the solution using the semigroup theory. Then, by using the perturbed
energy method and constructing some Lyapunov functionals, we obtain the
exponential decay of the solution.
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1. Introduction

In the paper, we consider a flexible structure system with thermodiffusion
effects and distributed delay. The system is written as

m(x)utt − (p(x)ux + 2δ(x)uxt)x + µ0ut

+

∫ τ2

τ1

µ(s)ut (x, t− s) ds− γ1θx − γ2Px = 0, (1.1a)

cθt + dPt − kθxx − γ1uxt = 0, (1.1b)

dθt + rPt − hPxx − γ2uxt = 0, (1.1c)

where (x, t) ∈ (0, L)×(0,+∞), with the following initial and boundary conditions:

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ (0, L) , (1.2a)

θ (x, 0) = θ0 (x) , P (x, 0) = P0 (x) , x ∈ (0, L) , (1.2b)

u (0, t) = u (L, t) = 0, t > 0, (1.2c)

θx (0, t) = θx (L, t) = 0, Px (0, t) = Px (L, t) = 0, t > 0, (1.2d)

ut (x,−t) = f0(x, t), 0 < t ≤ τ2, (1.2e)

where u = u(x, t) is the displacement of a particle at position x ∈ (0, L) and
time t > 0, θ = θ(x, t) is the temperature difference, P = P (x, t) is the chemical
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potential, k and h are heat and mass diffusion conductivity coefficients. The
parameters m(x), δ(x) and p(x) are responsible for the non-uniform structure of
the body, where m(x) denotes mass per unit length of the structure, δ(x) is the
coefficient of internal material damping and p(x) is a positive function related
to the stress acting on the body at a point x. We recall the assumptions of the
functions m(x), δ(x) and p(x) from [2] such that

m, δ, p ∈W 1,∞(0, L), m(x), δ(x), p(x) > 0, x ∈ [0, L].

Physical positive constants γ1, γ2, r, c, and d satisfy

λ = rc− d2 > 0. (1.3)

The distributed delay considered in this paper is important because it is given
by a nonlocal time-delay control. The history of nonlocal problems with integral
conditions for partial differential equations goes back to [8]. See also [26] and
references therein. This kind of delay,∫ τ2

τ1

µ (s)ut (x, t− s) ds,

is called nonlocal because the integral is not a pointwise relation. This condition
provokes some mathematical difficulties which make the studying of the problem
particularly interesting. For the last several decades, various types of equations
have been employed as some mathematical models describing physical, chemical,
ecological and biological systems. See, for example, [14].

The coefficients µ0 are positive constants, and µ : [τ1; τ2] → R is a bounded
function, where τ1 and τ2 are two real numbers satisfying 0 ≤ τ1 < τ2. Here, we
prove the well-posedness and stability results for the problem with the following
parameters under the assumption:

µ0 >

∫ τ2

τ1

|µ (s)| ds. (1.4)

Condition (1.4) was previously assumed for viscoelastic waves with distributed
delay: in [24], where the authors used the energy method, and in [29], where a
different approach, the semigroup technique, was used.

One of the main issues concerning the vibrations in models of flexible struc-
tural systems is the question of the stabilization of the structure. The linear dif-
ferential equation describing the vibrations of an inhomogeneous flexible structure
with an exterior disturbing force can be described by the following equation:

m (x)utt − (p (x)ux + 2δ (x)uxt)x = f (x) in (0, L)× R+. (1.5)

The distributed force f : (0, L)×R+ → R is the uncertain disturbance appearing
in the model, which is assumed to be continuously differentiable for all t ≥ 0. In-
deed, one expects to prevent a system from resonance effects and wants to ensure
a decay of the total energy, at least polynomial and hopefully exponential. It is
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therefore of interest to investigate the theory behind the stabilization processes in
flexible structural systems and to control their vibrations. In [13], Gorain estab-
lished the uniform exponential stability of problem (1.5). It is physically relevant
to take into account thermal effects in flexible structures. In 2014, M. Siddhartha
et al. [20] showed the exponential stability of the vibrations of an inhomogeneous
flexible structure with thermal effect governed by the Fourier law,

m (x)utt − (p (x)ux + 2δ (x)uxt)x + κθx = f,

θt − θxx + κutx = 0.

In the above model, thermal waves propagate with infinite speed. This property
of the model is not consistent with the reality, where the heating or cooling of
a flexible structure usually takes some time. Many researches have thus been
conducted in order to modify the model of thermal effect.

Delay effects arise in many applications and practical problems (see, for in-
stance, [6, 27]) due to the fact that many phenomena depend on their past. It
has been established that a voluntary introduction of delay can benefit the con-
trol (see [1]). On the other hand, it may not only destabilize a system, which is
asymptotically stable in the absence of delay, but may also lead to ill-posedness
(see [9,28] and references therein). Moreover, it influences on the asymptotic be-
havior of the solution for different types of problems (see [4,5,7,10,15–19,22,23]).
Therefore, the issues of well-posedness and the stability result of systems with
delay are of practical and theoretical importance. In [12], the authors considered
the vibrations of an inhomogeneous flexible structure system with a constant
internal delay under the Cattaneo law of heat condition,

m (x)utt − (p (x)ux + 2δ (x)uxt)x + ηθx + µut (x, t− τ0) = 0, (1.6a)

θt + κqx + ηutx = 0, (1.6b)

τqt + βq + κθx = 0, (1.6c)

where (x, t) ∈ (0, L)× (0,+∞), with the boundary and initial conditions

u (0, t) = u (L, t) = 0, θ (0, t) = θ (L, t) = 0, t ≥ 0, (1.7a)

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ [0, L] , (1.7b)

θ (x, 0) = θ0 (x) , q (x, 0) = q0 (x) , x ∈ [0, L] , (1.7c)

and proved the well-posedness and the exponential stability. In [2], M.S. Alves et
al. considered system (1.6), (1.7) without delay term and obtained an exponential
stability result for one set of boundary conditions, and at least polynomial for
another set of boundary conditions.

Thermodiffusion in an elastic solid is due to the coupling of the fields of strain,
temperature and mass diffusion. The processes of heat and mass diffusion has
been widely used in many engineering applications, such as satellites problems,
returning space vehicles and aircraft landing on water or land. In 1921, Timo-
shenko [30] gave a distinguished model for vibrations of elastic beams, which is
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coupled by the shear force and the bending moment on the system. Aouadi et
al. [3] considered the following Timoshenko system with thermodiffusion effects:

ρ1ϕtt − κ(ϕx + ψ)x + µϕt = 0, (1.8a)

ρ2ψtt − αψxx + κ(ϕx + ψ)− γ1θx − γ2Px = 0, (1.8b)

cθt + dPt − kθxx − γ1ψxt = 0, (1.8c)

dθt + rPt − hPxx − γ2ψxt = 0, (1.8d)

together with Dirichlet boundary conditions and Neumann boundary conditions.
The lack of exponential stability for Neumann boundary conditions was proved
for µ = 0 and exponential stability for (1.8) without any restrictions on the
coefficients was established for µ 6= 0. In addition, some numerical results for
the two cases, µ = 0 and µ 6=, were given. In [11], Feng studied the Timoshenko
system only with thermodiffusion effects. He established the exponential energy
decay of the system with two kinds of boundary conditions under the assumption
of equal wave speeds. This result extends the last result obtained by Aouadi et
al. in [3].

Motivated by the above results, in the present work, our aim is to prove that
system (1.1), (1.2) is well-posed and exponentially stable. The main features
of this paper are summarized as follows. In Section 2, we adopt the semigroup
method and the Lumer–Philips theorem to obtain the well-posedness of system
(1.1), (1.2). In Section 3, we use the perturbed energy method and construct
some Lyapunov functionals to prove the exponential stability of system (1.1),
(1.2).

2. Well-posedness

In this section, we prove the existence and uniqueness of solutions for (1.1),
(1.2) using the semigroup theory [25]. As in [24], we introduce a new variable

z(x, ρ, s, t) = ut (x, t− ρs) , x ∈ (0, L) , ρ ∈ (0, 1) , s ∈ (τ1, τ2) , t > 0.

Therefore, problem (1.1) takes the form

m(x)utt − (p(x)ux + 2δ(x)uxt)x + µ0ut

+

∫ τ2

τ1

µ(s)z(x, 1, s, t) ds− γ1θx − γ2Px = 0, (2.1a)

cθt + dPt − kθxx − γ1uxt = 0, (2.1b)

dθt + rPt − hPxx − γ2uxt = 0, (2.1c)

szt(x, ρ, t, s) + zρ(x, ρ, t, s) = 0, (2.1d)

where (x, t) ∈ (0, L)×(0,+∞), with the following initial and boundary conditions:

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ (0, L) , (2.2a)

θ (x, 0) = θ0 (x) , P (x, 0) = P0 (x) , x ∈ (0, L) , (2.2b)
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u (0, t) = u (L, t) = 0, t > 0, (2.2c)

θx (0, t) = θx (L, t) = 0, t > 0, (2.2d)

Px (0, t) = Px (L, t) = 0, t > 0, (2.2e)

z (x, 0, s, t) = ut (x, t) in (0, L)× (0,∞)× (τ1, τ2) , (2.2f)

z (x, ρ, s, 0) = f0 (x, ρs) in (0, L)× (0, 1)× (τ1, τ2) . (2.2g)

Introducing the vector function U = (u, v, θ, P, z)T , where v = ut, system (2.1),
(2.2) can be written as

U ′ (t) = AU (t) , t > 0, (2.3a)

U (0) = U0 = (u0, u1, θ0, P0, f0)
T , (2.3b)

where the operator A is defined by

AU

=



v
1

m (x)

[
(p(x)ux+2δ(x)vx)x+γ1θx+γ2Px−µ0v−

∫ τ2

τ1

µ(s)z(x, 1, s, t)ds

]
(
rk

λ

)
θxx −

(
hd

λ

)
Pxx +

(
rγ1 − dγ2

λ

)
vx(

ch

λ

)
Pxx −

(
kd

λ

)
θxx +

(
cγ2 − dγ1

λ

)
vx

−s−1zρ


.

Let

H = H1
0 (0, L)× L2 (0, L)× L2 (0, L)× L2 (0, L)× L2 ((0, L)× (0, 1)× (τ1, τ2))

be the Hilbert space equipped with the inner product

〈
U, Ũ

〉
H

=

∫ L

0
p(x)uxũx dx+

∫ L

0
m(x)vṽ dx+

∫ L

0
cθθ̃ dx

+

∫ L

0
dP θ̃ dx+

∫ L

0
dθP̃ dx+

∫ L

0
rP P̃ dx

+

∫ L

0

∫ 1

0

∫ τ2

τ1

s |µ (s)| z (x, ρ, s) z̃ (x, ρ, s) ds dρ dx.

Then the domain of A is given by

D (A) =
{
U ∈ H | u ∈ H2 (0, L) ∩H1

0 (0, L) , v, θ, P ∈ H1
0 (0, L) ,

z, zρ ∈ L2 ((0, L)× (0, 1)× (τ1, τ2)) , z (x, 0, s) = v (x)
}
.

It is clear that D (A) is dense in H.

We have the following existence and uniqueness result.
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Theorem 2.1. Assume that U0 ∈ H and (1.4) holds. Then, for problem
(2.1), (2.2), there exists a unique solution U ∈ C (R+;H). Moreover, if U0 ∈
D (A), then

U ∈ C
(
R+;D (A)

)
∩ C1

(
R+;H

)
.

Proof. We use the semigroup approach to prove that A is a maximal mono-
tone operator, which means that A is dissipative and Id−A is surjective. First,
we prove that A is dissipative. For any U = (u, v, θ, P, z)T ∈ D (A), by using the
inner product and integrating by parts, we obtain

〈AU,U〉H = −2

∫ L

0
δ(x)v2x dx−

(
µ0 −

1

2

∫ τ2

τ1

|µ (s)| ds
)∫ L

0
v2 dx

− k
∫ L

0
θ2xdx− h

∫ L

0
P 2
x dx−

1

2

∫ L

0

∫ τ2

τ1

|µ (s)| z2 (x, 1, s, t) ds dx

−
∫ L

0
v

∫ τ2

τ1

µ(s)z(x, 1, s, t) ds dx. (2.4)

Using Young’s inequality, the last term in (2.4), we have

−
∫ L

0
v

∫ τ2

τ1

µ(s)z(x, 1, s, t) ds dx

≤ 1

2

∫ τ2

τ1

|µ (s)| ds
∫ 1

0
v2 dx+

1

2

∫ 1

0

∫ τ2

τ1

|µ (s)| z2 (x, 1, s, t) ds dx. (2.5)

Substituting (2.5) in (2.4) and using (1.4), we obtain

〈AU,U〉H ≤ −2

∫ L

0
δ(x)v2x dx− k

∫ L

0
θ2x dx− h

∫ L

0
P 2
x dx

−
(
µ0 −

∫ τ2

τ1

|µ (s)| ds
)∫ L

0
v2 dx ≤ 0.

Hence the operator A is dissipative.
Next, we prove that the operator Id − A is surjective. Given F =

(f1, f2, f3, f4, f5)
T ∈ H, we prove that there exists U = (u, v, θ, P, z)T ∈ D (A)

satisfying
(Id−A)U = F, (2.6)

that is,

u− v = f1, (2.7a)

m (x) v −
[
(p(x)ux + 2δ(x)vx)x + γ1θx + γ2Px − µ0v

−
∫ τ2

τ1

µ(s)z(x, 1, s, t)ds
]

= m (x) f2, (2.7b)

λθ − rkθxx + hdPxx − (rγ1 − dγ2) vx = λf3, (2.7c)

λP − chPxx + kdθxx − (cγ2 − dγ1) vx = λf4, (2.7d)
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sz + zρ = sf5. (2.7e)

Suppose that we have found u. Then equation (2.7a) yields

v = u− f1. (2.8)

It is clear that v ∈ H1
0 (0, L) .

Moreover, using the approach as in Nicaise and Pignotti’s work [24], we obtain
that (2.7e) with z(x, 0, s, t) = v has a unique solution

z (x, ρ, s, t) = u(x)e−ρs − f1 (x) e−ρs + se−ρs
∫ ρ

0
f5(x, τ, s, t)e

τs dτ.

In particular, z (x, 1, s, t) = u(x)e−s + z0 (x, s, t) with z0 ∈ L2 ((0, L)× (τ1, τ2))
defined by

z0 (x, s, t) = −f1 (x) e−s + se−s
∫ 1

0
f5(x, τ, s, t)e

τs dτ.

Inserting (2.8) into (2.7b)–(2.7d), we get

µ1u− [(p(x)ux + 2δ(x)ux)x + γ1θx + γ2Px] = g1, (2.9a)

λθ − rkθxx + hdPxx − (rγ1 − dγ2)ux = g2, (2.9b)

λP − chPxx + kdθxx − (cγ2 − dγ1)ux = g3, (2.9c)

where

µ1 = m (x) + µ0 +

∫ τ2

τ1

µ(s)e−sds,

g1 = µ0f1 +m (x) (f1 + f2)− (2δ(x)f1x)x −
∫ τ2

τ1

µ(s)z0 (x, s, t) ds,

g2 = λf3 − (rγ1 − dγ2) f1x,
g3 = λf4 − (cγ2 − dγ1) f1x.

Multiplying (2.9a) by ũ, (2.9b) by
c

λ
θ̃, (2.9c) by

r

λ
P̃ , (2.9b) by

d

λ
P̃ , and (2.9c) by

d

λ
θ̃ and integrating their sum over (0, L), we can obtain the following variational

formulation:

B
(

(u, θ, P )T ,
(
ũ, θ̃, P̃

)T)
= G

(
ũ, θ̃, P̃

)T
, (2.10)

where the bilinear form B :
[
H1

0 (0, L)× L2 (0, L)× L2 (0, L)
]2 → R is defined by

B
(

(u, θ, P )T ,
(
ũ, θ̃, P̃

)T)
= µ1

∫ L

0
uũ dx+

∫ L

0
(p(x) + 2δ(x))uxũx dx+ γ1

∫ L

0
θũxdx+ γ2

∫ L

0
Pũx dx
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+ c

∫ L

0
θθ̃ dx+ k

∫ L

0
θxθ̃x dx+ r

∫ L

0
PP̃ dx+ h

∫ L

0
PxP̃x dx

+ d

∫ L

0
θP̃ dx+ d

∫ L

0
P θ̃ dx− γ2

∫ L

0
uxP̃ dx− γ1

∫ L

0
uxθ̃ dx,

and the linear form G :
[
H1

0 (0, L)× L2 (0, L)× L2 (0, L)
]
→ R is defined by

G
(
ũ, θ̃, P̃

)T
=

∫ L

0
g1ũ dx+

c

λ

∫ L

0
g2θ̃ dx+

r

λ

∫ L

0
g3P̃ dx

+
d

λ

∫ L

0
g2P̃ dx+

d

λ

∫ L

0
g3θ̃ dx.

Now we introduce the Hilbert space V = H1
0 (0, L)×L2 (0, L)×L2 (0, L) equipped

with the norm

‖(u, θ, P )‖2V = ‖u‖22 + ‖ux‖22 + ‖θ‖22 + ‖θx‖22 + ‖P‖22 + ‖Px‖22 .

It is clear that B (·, ·) and G (·) are bounded. Furthermore, we can obtain that
there exists a positive constant κ such that

B
(

(u, θ, P )T , (u, θ, P )T
)

= µ1

∫ L

0
u2 dx+

∫ L

0
(p(x) + 2δ(x))u2x dx+ c

∫ L

0
θ2 dx

+ k

∫ L

0
θ2x dx+ r

∫ L

0
P 2 dx+ h

∫ L

0
P 2
x dx+ 2d

∫ L

0
Pθ dx ≥ κ ‖(u, θ, P )‖2V ,

which implies that B (·, ·) is coercive.
Consequently, by the Lax–Milgram theorem, problem (2.10) has a unique

solution
(u, θ, P ) ∈ H1

0 (0, L)× L2 (0, L)× L2 (0, L) .

To obtain more regularity, we take
(
θ̃, P̃

)
= (0, 0) to obtain from (2.10)

µ1

∫ L

0
uũ dx+

∫ L

0
(p(x) + 2δ(x))uxũx dx+ γ1

∫ L

0
θũx dx+ γ2

∫ L

0
Pũx dx

=

∫ L

0
g1ũdx, ũ ∈ H1

0 (0, L) ,

which implies

−(p(x) + 2δ(x))uxx = −µ1u+ γ1θx + γ2Px + g1.

Thus, by the regularity theory for the linear elliptic equations, it follows that

u ∈ H2 (0, L) ∩H1
0 (0, L) .

By the same arguments, we can get

θ, P ∈ H1
0 (0, L) .

Hence, there exists a unique U = (u, v, θ, P, z)T ∈ D (A) such that (2.10) is
satisfied. Therefore, the operator Id − A is surjective. At last, the result of
Theorem 2.1 follows from the Lumer–Phillips theorem.
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3. Exponential stability

In this section, we prove the exponential decay for system (2.1), (2.2). It is
achieved by using the perturbed energy method. We define the energy functional
E (t) as

E (t) =
1

2

∫ L

0

[
m (x)u2t + p (x)u2x + cθ2 + 2dθP + rP 2

]
dx

+
1

2

∫ L

0

∫ 1

0

∫ τ2

τ1

s |µ (s)| z2 (x, ρ, s, t) ds dρ dx. (3.1)

Noting (1.3), we have for θ, P 6= 0,

cθ2 + 2dθP + rP 2 =
λ

r
θ2 +

(
d√
r
θ +
√
rP

)2

> 0.

Thus we get that the energy E (t) is positive.

The stability result reads as follows.

Theorem 3.1. Let (u, v, θ, P, z) be the solution to (2.1), (2.2) and let (1.4)
hold. Then there exist two positive constants k0 and k1 such that

E(t) ≤ k0e−k1t, t ≥ 0. (3.2)

To prove the theorem we will use the following lemmas.

Lemma 3.2 (Poincaré-type Scheeffer’s inequality [21]). Let φ ∈ H1
0 (0, L).

Then ∫ L

0
|φ|2 dx ≤ L2

π2

∫ L

0
|φx|2 dx.

Lemma 3.3 (Mean value theorem [2]). Let (u, v, θ, P ) be the solution to
system (1.1), (1.2), with an initial data in D (A). Then, for any t > 0, there
exists a sequence of real numbers (depending on t), denoted by ξi ∈ [0, L] (i =
1, . . . , 6), such that∫ L

0
p (x)u2xdx = p (ξ1)

∫ L

0
u2xdx,

∫ L

0
m (x)u2dx = m (ξ2)

∫ L

0
u2dx,∫ L

0
m (x)u2tdx = m (ξ3)

∫ L

0
u2tdx,

∫ L

0
δ (x)u2dx = δ (ξ4)

∫ L

0
u2dx,∫ L

0
δ (x)u2xdx = δ (ξ5)

∫ L

0
u2xdx,

∫ L

0
δ (x)u2xtdx = δ (ξ6)

∫ L

0
u2xtdx.

Proof. Since p (x), m (x) and δ (x) are continuous functions on x ∈ [0, L],
the conclusion is straightforward using the mean value theorem. Moreover, it is
obvious that p (ξ1), m (ξ2), m (ξ3), δ (ξ4), δ (ξ5) and δ (ξ6) all are positive and
bounded from above and below.
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Lemma 3.4. Let (u, v, θ, P, z) be the solution to (2.1), (2.2) and let (1.4)
hold. Then the energy functional, defined by equation (3.1), satisfies

E′(t) ≤ −2

∫ L

0
δ(x)u2txdx−

(
µ0 −

∫ τ2

τ1

|µ (s)| ds
)∫ L

0
u2tdx

− k
∫ L

0
θ2xdx− h

∫ L

0
P 2
xdx. (3.3)

Proof. Multiplying (2.2a)–(2.2c) by ut, θ, and P , respectively, and integrating
over (0, L), using integration by parts and the boundary conditions, we obtain

1

2

d

dt

∫ L

0
m(x)u2t dx+

1

2

d

dt

∫ L

0
p(x)u2x dx

= −
∫ L

0
2δ(x)u2tx dx−

∫ L

0
µ0u

2
t dx−

∫ L

0
ut

∫ τ2

τ1

µ(s)z(x, 1, s, t) ds dx

+

∫ L

0
γ1θxut dx+

∫ L

0
γ2Pxut dx, (3.4)

1

2

d

dt

∫ L

0
cθ2 dx+

∫ L

0
dPtθdx = −

∫ L

0
kθ2x dx−

∫ L

0
γ1utθx dx, (3.5)

1

2

d

dt

∫ L

0
rP 2dx+

∫ L

0
dθtPdx = −

∫ L

0
hP 2

xdx−
∫ L

0
γ2utPxdx. (3.6)

On the other hand, multiplying (2.2d) by |µ (s)| z and integrating over (0, L) ×
(0, 1)× (τ1, τ2), recalling that z (x, 0, s, t) = ut, we obtain

1

2

d

dt

∫ L

0

∫ 1

0

∫ τ2

τ1

s |µ (s)| z2 (x, ρ, s, t) ds dρ dx

= −1

2

∫ L

0

∫ τ2

τ1

|µ (s)| z2 (x, 1, s, t) ds dx+
1

2

∫ L

0
u2t

∫ τ2

τ1

|µ (s)| ds dx. (3.7)

A combination of equations (3.4)–(3.7) gives

1

2

d

dt

∫ L

0

[
m(x)u2t + p(x)u2x + cθ2 + 2dθP + rP 2

]
dx

+
1

2

d

dt

∫ L

0

∫ 1

0

∫ τ2

τ1

s |µ (s)| z2 (x, ρ, s, t) ds dρ dx

= −
∫ L

0
2δ(x)u2txdx−

∫ L

0
µ0u

2
tdx−

∫ L

0
ut

∫ τ2

τ1

µ(s)z(x, 1, s, t) ds dx

−
∫ L

0
kθ2x dx−

∫ L

0
hP 2

xdx−
1

2

∫ L

0

∫ τ2

τ1

|µ (s)| z2 (x, 1, s, t) ds dx

+
1

2

∫ L

0
u2t

∫ τ2

τ1

|µ (s)| ds dx. (3.8)
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Now, using Young’s inequality, we obtain

−
∫ L

0
ut

∫ τ2

τ1

µ(s)z(x, 1, s, t) ds dx

≤ 1

2

∫ τ2

τ1

|µ (s)| ds
∫ 1

0
u2t dx+

1

2

∫ 1

0

∫ τ2

τ1

|µ (s)| z2 (x, 1, s, t) ds dx. (3.9)

The substitution of (3.9) into (3.8), by using (1.4), gives (3.3), which concludes
the proof.

Lemma 3.5. Let (u, v, θ, P, z) be the solution to (2.1), (2.2) and let (1.4)
hold. Then the functional

L1 (t) =

∫ L

0
m(x)uut dx+

∫ L

0
δ(x)u2x dx

satisfies, for any ε > 0, the estimate

L′1 (t) ≤ −
(
p(ξ1)−

L2ε

π2

)∫ L

0
u2x dx+

µ0
ε

∫ L

0

∫ τ2

τ1

|µ (s)| z2 (x, 1, s, t) ds dx

+
γ21
ε

∫ L

0
θ2x dx+

γ22
ε

∫ L

0
P 2
x dx+

(
m(ξ3) +

µ20
ε

)∫ L

0
u2t dx. (3.10)

Proof. Taking the derivative of L1 (t) with respect to t, using (2.2a), we have

L′1 (t) = −
∫ L

0
p(x)u2x dx− µ0

∫ L

0
utu dx−

∫ L

0
u

∫ τ2

τ1

µ(s)z(x, 1, s, t) ds dx

+ γ1

∫ L

0
θxu dx+ γ2

∫ L

0
Pxu dx+

∫ L

0
m(x)u2t dx. (3.11)

By using Young’s inequality, Lemma 3.2 and (1.4), we get for all ε > 0,

−µ0
∫ L

0
utu dx ≤

µ20
ε

∫ L

0
u2t dx+

L2ε

4π2

∫ L

0
u2x dx, (3.12)

−
∫ L

0
u

∫ τ2

τ1

µ (s) z (x, 1, s, t) ds dx

≤ L2ε

4π2

∫ L

0
u2x dx+

µ0
ε

∫ L

0

∫ τ2

τ1

|µ (s)| z2 (x, 1, s, t) ds dx, (3.13)

γ1

∫ L

0
θxu dx ≤

γ21
ε

∫ L

0
θ2x dx+

L2ε

4π2

∫ L

0
u2x dx, (3.14)

γ2

∫ L

0
Pxu dx ≤

γ22
ε

∫ L

0
P 2
x dx+

L2ε

4π2

∫ L

0
u2x dx. (3.15)

From Lemma 3.3, we have

−
∫ L

0
p(x)u2x dx = −p(ξ1)

∫ L

0
u2x dx, (3.16)
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∫ L

0
m(x)u2t dx = m(ξ3)

∫ L

0
u2t dx. (3.17)

Then (3.10) follows from (3.11)–(3.17).

Lemma 3.6. Let (u, v, θ, P, z) be a solution to (2.1), (2.2) and let (1.4) hold.
Then the functions

L2 (t) =

∫ L

0

∫ 1

0

∫ τ2

τ1

se−sρ |µ(s)| z2(x, ρ, s, t) ds dρ dx

satisfy, for some positive constant n1, the estimates

L′2 (t) ≤ −n1
∫ L

0

∫ 1

0

∫ τ2

τ1

s |µ(s)| z2(x, ρ, s, t)dsdρdx

− n1
∫ L

0

∫ τ2

τ1

|µ(s)| z2(x, 1, s, t)dsdx+ µ0

∫ L

0
u2tdx. (3.18)

Proof. By differentiating L2 (t) with respect to t and using equation (2.2d),
we obtain

L′2(t) = −2

∫ L

0

∫ 1

0

∫ τ2

τ1

e−sρ |µ(s)| z(x, ρ, s, t)zρ(x, ρ, s, t) ds dρ dx

= − d

dρ

∫ L

0

∫ 1

0

∫ τ2

τ1

e−sρ |µ(s)| z2(x, ρ, s, t) ds dρ dx

−
∫ L

0

∫ 1

0

∫ τ2

τ1

se−sρ |µ(s)| z2(x, ρ, s, t) ds dρ dx

= −
∫ L

0

∫ τ2

τ1

|µ1(s)| [e−sz2(x, 1, s, t)− z2(x, 0, s, t)] ds dx

−
∫ L

0

∫ 1

0

∫ τ2

τ1

se−sρ |µ(s)| z2(x, ρ, s, t) ds dρ dx.

Using the fact that z (x, 0, s, t) = ut and e−s ≤ e−sρ ≤ 1 for all 0 < ρ < 1, we
obtain

L′2(t) ≤ −
∫ L

0

∫ τ2

τ1

e−s |µ(s)| z2 (x, 1, s, t) ds dx+

∫ τ2

τ1

|µ(s)| ds
∫ L

0
u2t dx

−
∫ L

0

∫ 1

0

∫ τ2

τ1

se−sρ |µ(s)| z2(x, ρ, s, t) ds dρ dx.

Because −e−s is an increasing function, we have −e−s ≤ −e−τ2 for all s ∈ [τ1, τ2].

Finally, setting n1 = e−τ2 and recalling (1.4), we obtain (3.18).

Further, we turn to the proving of our main result in this section.
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Proof of Theorem 3.1. We define the Lyapunov functional L(t) by

L(t) = NE(t) + L1 (t) +N1L2 (t) , (3.19)

where N and N1 are positive constants that will be chosen later.
By differentiating L(t), exploiting (3.3), (3.10), and (3.18), and using Lemmas

3.2 and 3.3, we get

L′(t) ≤ −
[(
p(ξ1)−

L2ε

π2

)]∫ L

0
u2x dx

−
[
2Nδ (ξ6) +

(
µ0 −

∫ τ2

τ1

|µ (s)| ds
)
L2

π2
N

−
(
m(ξ3) +

µ20
ε

)
L2

π2
− µ0L

2

π2
N1

] ∫ L

0
u2tx dx

−
[
kN − γ21

ε

] ∫ L

0
θ2xdx−

[
hN − γ22

ε

] ∫ L

0
P 2
x dx

− n1N1

∫ L

0

∫ 1

0

∫ τ2

τ1

s |µ(s)| z2(x, ρ, s, t) ds dρ dx

−
[
n1N1 −

µ0
ε

] ∫ L

0

∫ τ2

τ1

|µ(s)| z2(x, 1, s, t) ds dx.

At this point, taking

ε =
π2p(ξ1)

2L2
,

we then choose N1 large enough such that

N1 >
2L2µ0

n1π2p(ξ1)
.

After that we choose N sufficiently large such that

N > max

 4L2γ21
π2p(ξ1)k

,
4L2γ22
π2p(ξ1)h

,

n1π
2p(ξ1)m(ξ3)L

2 + 2L4µ20n1 + 2L4µ20

n1π2p(ξ1)
(

2δ (ξ6)π2 +
(
µ0 −

∫ τ2
τ1
|µ (s)| ds

)
L2
)
 .

Consequently, from the above, we deduce that there exists a positive constant α0

such that
L′(t) ≤ −α0E (t) , t ≥ 0. (3.20)

On the other hand, it is not hard to see that L(t) ∼ E(t), i.e., there exist two
positive constants α1 and α2 such that

α1E(t) ≤ L(t) ≤ α2E(t), t ≥ 0. (3.21)
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Combining (3.20) and (3.21), we obtain that

L′(t) ≤ −k1L(t), t ≥ 0, (3.22)

where k1 =
α0

α2
. A simple integration of (3.22) over (0, t) yields

L(t) ≤ L(0)e−k1t, t ≥ 0.

It gives the desired result, Theorem 3.1, when combined with the equivalence of
L(t) and E (t).

Acknowledgments. The authors wish to thank deeply the anonymous ref-
eree for his/her useful remarks and careful reading of the proofs presented in this
paper.
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Експоненцiальна стабiльнiсть для системи iз
гнучкою структурою з ефектами термодифузiї та

розподiленого загаювання
Madani Douib, Salah Zitouni, and Abdelhak Djebabla

У статтi дослiджується коректнiсть та асимптотика розв’язкiв для
гнучкої структури з ефектами термодифузiї та розподiленого загаюва-
ння. За вiдповiдних припущень щодо ваги демпфування та ваги роз-
подiленого загаювання, доведено iснування i єдинiсть розв’язку з ви-
користанням теорiї пiвгруп. Далi за допомогою методу збуреної енергiї
та побудови деяких функцiоналiв Ляпунова доведено експоненцiальну
спаднiсть розв’язку.

Ключовi слова: гнучка структура, термодифузiйнi ефекти, розподi-
лене загаювання, коректнiсть, експоненцiальна стабiльнiсть
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