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1. Introduction

This paper deals with systems of equations which can be represented as a
differential-algebraic equation (DAE) of the form

d

dt
[Ax] +Bx = f(t, x), (1.1)

where A, B are linear operators from Rn into Rm or m × n-matrices. Various
systems consisting of ordinary differential equations (ODEs) (or partial differen-
tial equations (PDEs), which after applying spatial discretization become ODEs)
and of algebraic equations (not containing a derivative) can be written in this
form. Note that this type of DAEs includes underdetermined and overdetermined
systems of equations. DAEs of the form (1.1) are commonly referred to as non-
regular (or singular) semilinear DAEs. In general, they belong to the class of
ODEs unsolved for the higher derivative of the unknown function and are also
called descriptor systems or degenerate differential equations.

In the present paper, conditions for the existence, uniqueness and bounded-
ness of global solutions, as well as ultimate boundedness of solutions, and con-
ditions for the blow-up of solutions of nonregular semilinear DAEs are obtained.
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These conditions are presented both in the general form (Sections 3–7) and in
certain particular cases (Section 8) which are convenient for practical application.

DAEs arise from the modelling of various systems and processes in control
problems, gas industry, mechanics, radio engineering, chemical kinetics, eco-
nomics and other fields (see, e.g., [2, 5, 17, 18, 25]). The use of DAEs in electrical
circuit modelling is described in detail in [18] (see also [7, 8, 10, 11, 17, 22–25]).
Besides electrical networks, DAEs are also used in modelling other objects whose
structure is described by directed graphs, e.g., gas and neural networks. In [8,11]
nonlinear electrical circuits described by singular (nonregular) semilinear DAEs
have been considered. The present paper is focused on the DAEs describing
the dynamics of gas networks in the isothermal case. The theorems obtained in
this paper allow one to carry out the qualitative analysis of the dynamics of gas
networks described by DAEs of the form (1.1). The description of gas network
models, including the construction of models in the form of DAEs, is presented
in [1,2,5,14–16]. Generally, the dynamics of a gas flow in a pipeline (for a single
pipe) is modelled by PDEs, namely, by the isothermal Euler equations in the
case considered in Section 9.1, and by the equation of state for gases, which is an
algebraic equation. We apply the spatial discretization (described, e.g., in [2,15])
for the isothermal Euler equations, which leads to a semilinear DAE. A similar
discretization is used to obtain a DAE which describes the dynamics of flows in
gas networks (Section 9.2). This DAE arises from a system of differential and
algebraic equations which has been presented in [16].

Most of the works on DAEs are related to the study of regular DAEs: their
structure, index, local solvability, the Lyapunov stability of their equilibrium
positions and the development of numerical methods for solving them. Much
fewer works deal with nonregular DAEs in general and with the global solvability
of DAEs in particular. Nonregular DAEs have been studied by using the concept
of the “strangeness index” of a pair of matrices (or matrix functions) and a DAE
in [17]. We use the (different) concept of an index only for a regular block of the
characteristic pencil of the DAE (1.1) (see Section 2). To solve a singular linear
time-invariant DAE, one usually uses the Weierstrass-Kronecker canonical form
(see [13]) of a singular matrix pencil associated with the DAE. The solvability
of nonregular time-varying linear DAEs with the use of a generalized canonical
form and the application of the least squares method for their numerical solution
have been studied in [3]. In [4], the conditions for the solvability of the Cauchy
problem for a nonregular time-varying linear DAE with the use of a generalized
Green operator have been found. The conditions for the Lagrange stability and
instability of nonregular semilinear DAEs, which are a particular case of the
conditions obtained in this paper, have been presented in [8]. The local solvability
of nonregular semilinear DAEs in Banach spaces has been studied in [23]. Also,
in [23] the decomposition of a singular pencil into regular and purely singular
components, which was called the RS-splitting of the pencil, has been presented.

In this paper, we use the special block form of a singular operator pencil [9,11],
which consists of the singular and regular blocks where zero and invertible blocks
are separated out (see Section 2.2). The results from [13], related to singular
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matrix pencils, were used when constructing this block form. The presented
block form is used to reduce the DAE with the singular characteristic pencil to a
system of ODEs and algebraic equations (see Section 2.3). We also use differential
inequalities for the Lyapunov type functions, the spectral projectors introduced
in [22] and Yoshizawa’s method [26]. The main differential inequalities used in
the work are described in Section 2.1. An example demonstrating the application
of the obtained results is given in Section 10.

The notations and definitions given below will be used in the present paper.

The following notations will be used: IX is the identity operator in the space
X; A(−1) is the semi-inverse operator of an operator A (A−1 is the inverse opera-
tor of A); Ker(A) is the kernel of an operator A; R(A) is the range of an operator
A; Dc is the complement of a set D; D is the closure of a set D; L(X,Y ) is
the space of continuous linear operators from X to Y ; L(X,X) = L(X), and
similarly, C((a, b), (a, b)) = C(a, b); L1+̇L2 is the direct sum of the linear spaces
L1 and L2; δij is the Kronecker delta; X ′ is the conjugate space of X (it is also
called an adjoint or dual space); AT is the transposed operator (i.e., the adjoint
operator acting in real linear spaces to which the transposed matrix correspond)
or the transposed matrix; ‖ · ‖ denotes some norm in a finite-dimensional space
(it will be clear from the context in which one), unless it is explicitly stated which
norm is considered; both A ⊂ B and A ⊆ mean that A is a subset of B, i.e., A
can be a proper subset of B (A 6= B) or be equal to B; if A is a proper subset of
B, we write A $ B; ∂x := ∂/∂x denotes the partial derivative with respect to x.
Often, a function f is denoted by the same symbol f(x) as its value at the point
x in order to explicitly indicate its argument (or arguments), but it will be clear
from the context what exactly is meant.

In what follows, a convex set containing a point x0 ∈ X that is contained in
a ball {x ∈ X | ‖x − x0‖ ≤ δ} (where δ ≥ 0) or coincides with it will be called
a neighborhood of the point x0 and will be denoted by Nδ(x0) (in particular,
it is possible that Nδ(x0) = {x0} and in this case the neighborhood is degener-
ate). A neighborhood of some point that is an open (respectively, closed) set will
be called an open (respectively, closed) neighborhood. By Uδ(x0) and Nδ(x0)
we denote the open neighborhood and closed neighborhood, respectively. Note
that Uδ(x0) denotes the closure of the open neighborhood Uδ(x0) (accordingly,
δ > 0). Sometimes we will denote a neighborhood (respectively, open neighbor-
hood, closed neighborhood) of the point x0 simply by N(x0) (respectively, U(x0),
N(x0)), without indicating the radius of the ball which contains it.

In addition, if the variable t belongs to the interval [a, b] ⊂ R, a 6= b, then by
an open neighborhood Uδ(a) of the point a we mean a semi-open interval [a, a+
δ), 0 < δ < b − a, and, similarly, by an open neighborhood Uδ(b) we mean a
semi-open interval (b− δ, b], 0 < δ < b− a.

Let f : J → Y where J is an interval in R and Y is a normed linear space. If
J = [a, b), b ≤ +∞ (J = (a, b], a ≥ −∞), then the derivative of the function f at
the point a (at the point b) is understood as the derivative on the right (on the
left) at this point (see, e.g., [20]). If the function f : [a, b) → Y is continuously
differentiable on (a, b) and in addition the derivative of f on the right exists at a
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and is continuous from the right at a, then f is said to belong C1([a, b), Y ).

2. Problem statement, definitions and preliminary construc-
tions

Consider an implicit differential equation

d

dt
[Ax] +Bx = f(t, x), (2.1)

where A, B ∈ L(Rn,Rm) and f ∈ C([t+,∞) × Rn,Rm), t+ ≥ 0. In the case
when m 6= n or m = n and the operator A is noninvertible (degenerate), the
equation (2.1) is called a differential-algebraic equation (DAE) or degenerate
differential equation. In the DAE terminology, equations of the form (2.1) are
called semilinear. For the considered equation, the initial condition (Cauchy
condition) is given in the form

x(t0) = x0 (t0 ≥ t+). (2.2)

A DAE that contains a linear part
d

dt
[Ax] +Bx such that the pencil λA+B

is singular (see Definition 2.1) is called singular or nonregular (or irregular [8]).
The pencil λA+B corresponding to this linear part is called characteristic.

If rank(λA + B) = m < n, then the DAE (2.1) corresponds to an underde-
termined system of equations (that is, the number of equations is less than the
number of unknowns).

If rank(λA + B) = n < m, then the DAE (2.1) corresponds to an overdeter-
mined system of equations (that is, the number of equations is greater than the
number of unknowns).

The function x(t) is called a solution of the equation (2.1) on [t0, t1), t1 ≤ ∞,
if x ∈ C([t0, t1),Rn), (Ax) ∈ C1([t0, t1),Rm) and x(t) satisfies (2.1) on [t0, t1). If
the function x(t) additionally satisfies the initial condition (2.2), then it is called
a solution of the initial value problem (IVP) or the Cauchy problem (2.1), (2.2).

A solution x(t) (of an equation or inequality) is called global if it exists on
the whole interval [t0,∞) (where t0 is an initial value).

A solution x(t) is called Lagrange stable if it is global and bounded, i.e., x(t)
exists on [t0,∞) and supt∈[t0,∞) ‖x(t)‖ <∞.

A solution x(t) has a finite escape time (or is blow-up in finite time) and
is called Lagrange unstable if it exists on some finite interval [t0, τ) and is un-
bounded, i.e., there exists τ > t0 (τ <∞) such that limt→τ−0 ‖x(t)‖ =∞.

The equation (2.1) is called Lagrange stable (respectively, unstable) for the
initial point (t0, x0) if the solution of the IVP (2.1), (2.2) is Lagrange stable
(respectively, unstable) for this initial point.

The equation (2.1) is called Lagrange stable (respectively, unstable) if each
solution of the IVP (2.1), (2.2) is Lagrange stable (respectively, unstable) (i.e.,
the equation is Lagrange stable (unstable) for each consistent initial point).

Solutions of an equation are called ultimately bounded if there exists a con-
stant C > 0 (not depending on the choice of initial values) and for each solution



Qualitative Analysis of Nonregular DAEs and Gas Networks 723

x(t) with initial values t0, x0 there exists a number τ = τ(t0, x0) ≥ t0 such that
‖x(t)‖ < C for all t ∈ [t0 + τ,∞). If at the same time the number τ does not de-
pend on the choice of t0 (i.e., τ = τ(x0)), then the solutions are called uniformly
ultimately bounded.

The equation (2.1) is called ultimately bounded or dissipative (respectively,
uniformly ultimately bounded or uniformly dissipative) if for any consistent initial
point (t0, x0) there exists a global solution of the IVP (2.1), (2.2) and all solutions
are ultimately bounded (respectively, uniformly ultimately bounded).

2.1. Remarks on differential inequalities. Here we give brief informa-
tion about the existence of positive solutions (of different types) for differential
inequalities which will be used below. Consider two differential inequalities:

dv

dt
≤ χ(t, v), (2.3)

dv

dt
≥ χ(t, v), (2.4)

where χ ∈ C([t+,∞) × (0,∞),R). A scalar function v ∈ C1([t0,∞),R) which is
positive and satisfies the differential inequality (2.3) (or (2.4)) on [t0,∞) (t0 ≥ t+)
is called a positive solution of this inequality on [t0,∞). Let

χ(t, v) = k(t)U(v), (2.5)

where k ∈ C([t+,∞),R) and U ∈ C(0,∞) (that is, U ∈ C((0,∞),R) is a positive
function), then the inequalities (2.3) and (2.4) take the form

dv

dt
≤ k(t)U(v), (2.6)

dv

dt
≥ k(t)U(v), (2.7)

respectively, and the following statements hold (see, e.g., [19]):

• if
∫∞
c U−1(v) dv =∞ (c > 0 is some constant), then the inequality (2.6) does

not have positive solutions with finite escape time;

• if
∫∞
c U−1(v) dv =∞ and

∫∞
t0
k(t)dt <∞ (t0 ≥ t+ is some number), then the

inequality (2.6) does not have unbounded positive solutions for t ∈ [t+,∞);

• if
∫∞
c U−1(v) dv < ∞ and

∫∞
t0
k(t)dt = ∞, then the inequality (2.7) does not

have global (i.e., defined on [t+,∞)) positive solutions.

2.2. Block form of a singular pencil, the corresponding direct de-
compositions of spaces and projectors. The results from [11], [9] which will
be used hereinafter are given below. The detailed description of these results can
be found in [9] (where results from [11] have been generalized).

Let A, B be linear operators mapping Rn into Rm or Cn into Cm; by A, B
we also denote m×n-matrices corresponding to the operators A, B (with respect
to some bases in Rn, Rm or Cn, Cm respectively). Consider the operator pencil



724 Maria Filipkovska

λA+B, where λ is a complex parameter. The rank of an operator pencil λA+B
is the dimension of its range. The rank of a matrix pencil λA+B is the largest
among the orders of the pencil minors that do not vanish identically [13]. It
equals the maximum number of columns (or rows) of the pencil that are linearly
independent set of vectors for some λ = λ0. Clearly, the ranks of the operator
pencil and the corresponding matrix pencil coincide.

Definition 2.1 ([8,11]). A pencil of operators (or matrices) λA+B is called
regular if n = m = rank(λA + B); otherwise, i.e., if n 6= m or n = m and
rank(λA+B) < n, the pencil is called singular or nonregular (irregular).

For m × n matrices A, B, this definition is equivalent to that given in [13],
namely, the pencil λA + B is called regular if n = m and det(λA + B) 6≡ 0,
and singular otherwise (n 6= m or n = m and det(λA + B) ≡ 0). Definition 2.1
is also equivalent to the following (cf. [9]). An operator pencil λA + B : Cn →
Cm is called regular if the set of its regular points ρ(A,B) = {λ ∈ C | (λA +
B)−1 ∈ L(Cm,Cn)} is not empty, and singular if ρ(A,B) = ∅. A pencil λA +
B of the real operators A, B : Rn → Rm is called regular if the set of regular
points ρ(Â, B̂) of its complex extension λÂ + B̂ ∈ L(Cn,Cm) ( Â, B̂ : Cn → Cm
are the complex extensions of A, B respectively) is not empty, and singular if
ρ(Â, B̂) = ∅. Then the regular points λ of the complex extension λÂ + B̂ are
called regular points of the pencil λA + B (since for these points the resolvent
(λA+B)−1 exists). Recall that the ranks of the pencil λA+B and its complex
extension λÂ+ B̂ coincide.

In what follows, we will consider linear operators A, B : Rn → Rm. Instead
of the real operators we can consider the complex operators A, B : Cn → Cm,
for which Proposition 2.2 (see below) remains true, but when constructing di-
rect decompositions of the form (2.8) for the complex spaces Cn, Cm and the
corresponding projectors, it is necessary to replace transposition by Hermitian
conjugation everywhere.

Let A : X → Y be a linear operator and X0, Y0 be some subspaces in X, Y
respectively. The pair of subspaces {X0, Y0} is said to be invariant under the
operator A if A : X0 → Y0, i.e., AX0 ⊆ Y0 (cf. [23]; in the case when X = Y and
X0 = Y0, this is the classical definition of invariance [13]).

Recall the following definition: A linear space L is decomposed into the direct
sum L = L1+̇L2 of the subspaces L1 ⊆ L and L2 ⊆ L if L1 ∩ L2 = {0} and
L1 + L2 = {x1 + x2 | x1 ∈ L1, x2 ∈ L2} = L, or, equivalently, if every x ∈ L
can be uniquely represented in the form x = x1 + x2 where xi ∈ Li, i = 1, 2
(see, e.g., [6, p. 309]). The representation L = L1+̇L2 is also called a direct
decomposition of the space L.

Since the direct (Cartesian) product L1 × L2 is the direct sum of the spaces
L1 × {0} and {0} × L2, where 0 from L2 and L1 respectively, then it can be
identified with the direct sum L1+̇L2 by identifying L1 × {0} with L1 and {0} ×
L2 with L2. Thus, below, when indicating the block structures of operators,
we identify direct sums and the corresponding direct products of subspaces for
convenience of notation.
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Proposition 2.2 (see [9, 11]). For operators A, B : Rn → Rm, which form a
singular pencil λA+B, there exist the decompositions of the spaces Rn, Rm into
the direct sums of subspaces (which can always be constructed)

Rn = Xs+̇Xr = Xs1+̇Xs2+̇Xr, Rm = Ys+̇Yr = Ys1+̇Ys2+̇Yr, (2.8)

with respect to which A, B have the block structures

A =

(
As 0
0 Ar

)
, B =

(
Bs 0
0 Br

)
: Xs+̇Xr → Ys+̇Yr (Xs×Xr → Ys×Yr), (2.9)

where As = A
∣∣
Xs
, Bs = B

∣∣
Xs

: Xs → Ys and Ar = A
∣∣
Xr
, Br = B

∣∣
Xr

: Xr → Yr,
i.e., the pair of “singular” subspaces {Xs, Ys} and the pair of “regular” sub-
spaces {Xr, Yr} are invariant under the operators A, B (i.e., A,B : Xs → Ys,
A,B : Xr → Yr), and the blocks As, Bs, which are called singular, have the block
structure

As =

(
Agen 0

0 0

)
, Bs =

(
Bgen Bund

Bov 0

)
: Xs1+̇Xs2 → Ys1+̇Ys2

(Xs1 ×Xs2 → Ys1 × Ys2), (2.10)

where the operator Agen : Xs1 → Ys1 has the inverse A−1gen ∈ L(Ys1 , Xs1) (if
Xs1 6= {0}), Bgen : Xs1 → Ys1, Bund : Xs2 → Ys1, and Bov : Xs1 → Ys2. If
rank(λA+B) = m < n, then the structure of the singular blocks takes the form

As =
(
Agen 0

)
, Bs =

(
Bgen Bund

)
: Xs1+̇Xs2 → Ys (Xs1 ×Xs2 → Ys) (2.11)

and Ys1 = Ys, Ys2 = {0} in (2.8), and if rank(λA+B) = n < m, then the struc-
ture of the singular blocks takes the form

As =

(
Agen

0

)
, Bs =

(
Bgen

Bov

)
: Xs → Ys1+̇Ys2 (Xs → Ys1 × Ys2) (2.12)

and Xs1 = Xs, Xs2 = {0} in (2.8). The direct decompositions of spaces (2.8)
generate the pair S, P , the pair F , Q, the pair S1, S2 and the pair F1, F2 of the
mutually complementary projectors (i.e., S + P = IRn, S2 = S, P 2 = P , SP =
PS = 0; F + Q = IRm, F 2 = F , Q2 = Q, FQ = QF = 0; S1 + S2 = S, SiSj =
δijSi; F1 + F2 = F , FiFj = δijFi)

S : Rn → Xs, P : Rn → Xr, F : Rm → Ys, Q : Rm → Yr, (2.13)

Si : Rn → Xsi , Fi : Rm → Ysi , i = 1, 2, (2.14)

where F1 = F , F2 = 0 if rank(λA + B) = m < n, and S1 = S, S2 = 0 if
rank(λA+B) = n < m, which have the properties

FA = AS, FB = BS, QA = AP, QB = BP, (2.15)

AS2 = 0, F2A = 0, F2BS2 = 0. (2.16)

The converse assertion that there exist the pairs of mutually complementary
projectors (2.13), (2.14) satisfying (2.15), (2.16) which generate the direct decom-
positions of spaces (2.8) is also true.
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The method for constructing the subspaces from the decompositions (2.8)
and the corresponding projectors (2.13), (2.14) is described in [8, Section 3] and
in detail in [9, Section 3]. First we construct the singular subspaces Xs, Ys, Xsi ,
Ysi , i = 1, 2, and the corresponding projectors, then we construct the regular
subspaces Xr, Yr and the corresponding projectors. For the construction of the
singular spaces certain collections of linearly independent solutions of the equa-
tions (λA + B)x = 0 and (λAT + BT )y = 0 are used. Further, if the regular
block λAr +Br from (2.17) is a regular pencil of index not higher than 1 (see the
definition below), we construct the regular subspaces Xi, Yi, i = 1, 2, from the
decompositions (2.28) and the projectors (2.30), which are described below.

With respect to the decompositions Rn = Xs+̇Xr, Rm = Ys+̇Yr (see (2.8))
the singular pencil λA+B of the operators A,B : Rn → Rm takes the block form

λA+B =

(
λAs +Bs 0

0 λAr +Br

)
, As, Bs : Xs → Ys, Ar, Br : Xr → Yr, (2.17)

where the regular block λAr + Br is a regular pencil and the singular block
λAs +Bs is a purely singular pencil, i.e., it is impossible to separate out a regular
block in this pencil. If Xr = {0}, Yr = {0}, then the regular block λAr + Br is
absent and λA+B = λAs +Bs is a purely singular pencil.

In [9], extensions of the operators from the block representations (2.9), (2.10),
(2.11), (2.12) to Rn and the corresponding semi-inverse operators have been in-
troduced. These operators are described below and used in subsequent sections.

Extensions of the operators As, Ar, Bs, Br from (2.9) to Rn are introduced
as follows:

As = FA, Ar = QA, Bs = FB, Br = QB. (2.18)

Then the operators As, Bs, Ar, Br ∈ L(Rn,Rm) act so that As, Bs : Rn → Ys,
Ar, Br : Rn → Yr (As,Bs : Xs → Ys, Ar,Br : Xr → Yr) and Xr ⊂ Ker(As),
Xr ⊂ Ker(Bs), Xs ⊂ Ker(Ar), Xs ⊂ Ker(Br) and

As

∣∣
Xs

= As, Ar

∣∣
Xr

= Ar, Bs

∣∣
Xs

= Bs, Br

∣∣
Xr

= Br. (2.19)

In the general case, when rank(λA+B) < n and rank(λA+B) < m, the spaces
Rn, Rm have the decompositions (2.8) and, accordingly, the singular subspaces
are decomposed into the direct sums Xs = Xs1+̇Xs2 , Ys = Ys1+̇Ys2 with respect
to which the operators (singular blocks) As, Bs have the structure (2.10), and
extensions of the operators (blocks) from (2.10) to Rn are introduced as follows:

Agen = F1A, Bgen = F1BS1, Bund = F1BS2, Bov = F2BS1 (2.20)

(notice that F1A = AS1 = FA). Then Agen, Bgen, Bund, Bov ∈
L(Rn,Rm) act so that AgenRn = AgenXs1 = Ys1 (Xs2+̇Xr = Ker(Agen)),
Bgen : Rn → Ys1 , Xs2+̇Xr ⊂ Ker(Bgen), Bund : Rn → Ys1 , Xs1+̇Xr ⊂ Ker(Bund),
and Bov : Rn → Ys2 , Xs2+̇Xr ⊂ Ker(Bov), and

Agen

∣∣
Xs1

= Agen, Bgen

∣∣
Xs1

= Bgen, Bund

∣∣
Xs2

= Bund, Bov

∣∣
Xs1

= Bov. (2.21)
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In the case when rank(λA+B) = m < n, the singular subspace Xs is decom-
posed into the direct sum Xs = Xs1+̇Xs2 with respect to which the operators
(singular blocks) As, Bs have the structure (2.11), and extensions of the operators
(blocks) from (2.11) to Rn are introduced as follows:

Agen = AS1, Bgen = BS1, Bund = BS2. (2.22)

Then Agen, Bgen, Bund ∈ L(Rn,Rm) act so that AgenRn = AgenXs1 = Ys
(Xs2+̇Xr = Ker(Agen)), Bgen : Rn → Ys, Xs2+̇Xr ⊂ Ker(Bgen), Bund : Rn → Ys,
Xs1+̇Xr ⊂ Ker(Bund), and

Agen

∣∣
Xs1

= Agen, Bgen

∣∣
Xs1

= Bgen, Bund

∣∣
Xs2

= Bund. (2.23)

In the case when rank(λA + B) = n < m, the singular subspace Ys is de-
composed into the direct sum Ys = Ys1+̇Ys2 with respect to which the operators
(singular blocks) As, Bs have the structure (2.12), and extensions of the operators
(blocks) from (2.12) to Rn are introduced as follows:

Agen = F1A, Bgen = F1B, Bov = F2B. (2.24)

Then Agen,Bgen,Bov ∈ L(Rn,Rm) act so that AgenRn = AgenXs = Ys1 (Xr =
Ker(Agen)), Bgen : Rn → Ys1 , Xr ⊂ Ker(Bgen), Bov : Rn → Ys2 , Xr ⊂ Ker(Bov),

Agen

∣∣
Xs

= Agen, Bgen

∣∣
Xs

= Bgen, Bov

∣∣
Xs

= Bov. (2.25)

Remark 2.3 ( [9]). The extension A
(−1)
gen ∈ L(Rm,Rn) of the operator A−1gen to

Rm that satisfies the properties

A(−1)
gen Agen = S1, AgenA

(−1)
gen = F1, A(−1)

gen = S1A
(−1)
gen , (2.26)

where F1 = F if rank(λA+ B) = m < n and S1 = S if rank(λA+ B) = n < m,

is the semi-inverse operator of Agen, i.e., A
(−1)
gen Rm = A

(−1)
gen Ys1 = Xs1 (Ys2+̇Yr =

Ker(A
(−1)
gen )) and A−1gen = A

(−1)
gen

∣∣
Ys1

(the definition of a semi-inverse operator can

be found in [6]). Thus, the semi-inverse operator A
(−1)
gen of Agen is defined by the

relations (2.26). Also, they enable one to find the form of A
(−1)
gen (or A−1gen), using

the form of the projectors. Note that A
(−1)
gen F1 = S1A

(−1)
gen = A

(−1)
gen (where F1 =

F if rank(λA+B) = m < n and S1 = S if rank(λA+B) = n < m).

Consider a regular pencil λAr + Br of operators Ar, Br : Xr → Yr acting in
finite-dimensional spaces (dimXr = dimYr). We assume that either λ = ∞ is a
removable singular point of the resolvent (λAr+Br)

−1, or Ar is invertible. Thus,
we assume that there exist constants C1, C2 > 0 such that∥∥(λAr +Br)

−1∥∥ ≤ C1, |λ| ≥ C2. (2.27)

If Ar is noninvertible and (2.27) holds (hence, µ = 0 is a simple pole of the
resolvent (Ar + µBr)

−1), then λAr +Br is a regular pencil of index 1. Note that
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if Ar = 0 and there exists B−1r , then λAr + Br ≡ Br can be considered as a
regular pencil of index 1. If Ar is invertible (hence, µ = 0 is a regular point of
Ar + µBr), then λAr + Br is a regular pencil of index 0. Thus, if λAr + Br is
a regular pencil and (2.27) holds, then λAr +Br is a regular pencil of index not
higher than 1 (cf. [8, 9]).

Remark 2.4. If the regular block λAr + Br from (2.17) is a regular pen-
cil of index not higher than 1 (i.e., satisfies (2.27)), then there exists the pair
P̃j : Xr → Xj , j = 1, 2, and the pair Q̃j : Yr → Yj , j = 1, 2, of mutually comple-
mentary projectors which generate the direct decompositions

Xr = X1+̇X2, Yr = Y1+̇Y2 (2.28)

such that the pairs of subspaces X1, Y1 and X2, Y2 are invariant under Ar, Br
(Ar, Br : Xj → Yj , j = 1, 2), i.e., Q̃jAr = ArP̃j , Q̃jBr = BrP̃j , and the restricted
operators Aj = Ar

∣∣
Xj

: Xj → Yj , Bj = Br
∣∣
Xj

: Xj → Yj , j = 1, 2, are such that

A2 = 0 (Q̃2Ar = 0) and there exist A−11 ∈ L(Y1, X1) (if X1 6= {0}) and B−12 ∈
L(Y2, X2) (if X2 6= {0}). For a regular pencil of operators, the pairs of projectors
with the specified properties were introduced in [22]. With respect to the direct
decompositions (2.28) the operators Ar, Br have the block structure

Ar =

(
A1 0
0 0

)
, Br =

(
B1 0
0 B2

)
: X1+̇X2 → Y1+̇Y2 (X1 ×X2 → Y1 × Y2),

(2.29)
where A1 and B2 are invertible (if X1 6= {0} and X2 6= {0} respectively).

Thus, if λAr + Br is a regular pencil of index not higher than 1, then there
exist the direct decompositions of the regular spaces (2.28) with respect to which
Ar and Br have the block structure (2.29).

The projectors P̃j and Q̃j can be calculated by using contour integration [22,
p. 2005] or defined by the formulas (28) from [9]. In addition, for a regular pencil
of index 1 one can obtain projectors onto the subspaces from the decompositions
(2.28) without using the formulas from [22] or the formulas [9, (28)] as described
in [9, Remark 3, p. 44–45].

Introduce the extensions Pj , Qj of the projectors P̃j , Q̃j to Rn, Rm, respec-
tively, so that Xj = PjRn, Yj = QjRm, j = 1, 2 (where Xj , Yj from (2.28)) [9].
Then the extended projectors

Pj : Rn → Xj , Qj : Rm → Yj , j = 1, 2, (2.30)

have the properties of the original ones, i.e., P1, P2 and Q1, Q2 are two pairs of
mutually complementary projectors (PiPj = δijPi, P1 + P2 = P , QiQj = δijQi,
Q1 + Q2 = Q) and QjA = APj , QjB = BPj , Q2A = 0. The properties of the
operators Aj = A

∣∣
Xj

: Xj → Yj and Bj = B
∣∣
Xj

: Xj → Yj , j = 1, 2, are also

retained, and extensions of the operators Aj , Bj to Rn are introduced as follows:

Aj = QjA, Bj = QjB, j = 1, 2. (2.31)
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Then the operators Aj , Bj ∈ L(Rn,Rm) act so that A1Rn = A1X1 = Y1
(X2+̇Xs = Ker(A1)), A2 = 0, B1 : Rn → Y1, X2+̇Xs ⊂ Ker(B1), and B2Rn =
B2X2 = Y2 (X1+̇Xs = Ker(B2)), and

Aj

∣∣
Xj

= Aj , Bj

∣∣
Xj

= Bj , j = 1, 2. (2.32)

Remark 2.5 ([9]). The extension A
(−1)
1 ∈ L(Rm,Rn) of the operator A−11 to

Rm that satisfies the properties

A
(−1)
1 A1 = P1, A1A

(−1)
1 = Q1, A

(−1)
1 = P1A

(−1)
1 , (2.33)

is the semi-inverse operator of A1, i.e., A
(−1)
1 Rm = A

(−1)
1 Y1 = X1 (Y2+̇Ys =

Ker(A
(−1)
1 )) and A−11 = A

(−1)
1

∣∣
Y1

. The semi-inverse operator B
(−1)
2 ∈ L(Rm,Rn)

of B2, i.e., B
(−1)
2 Rm = B

(−1)
2 Y2 = X2 (Y1+̇Ys = Ker(B

(−1)
2 )) and B−12 = B

(−1)
2

∣∣
Y2

,
is defined in a similar way as

B
(−1)
2 B2 = P2, B2B

(−1)
2 = Q2, B

(−1)
2 = P2B

(−1)
2 . (2.34)

Note that A
(−1)
1 Q1 = P1A

(−1)
1 = A

(−1)
1 and B

(−1)
2 Q2 = P2B

(−1)
2 = B

(−1)
2 . The

relations (2.33) and (2.34) enable one to find the form of A
(−1)
1 and B

(−1)
2 (or

A−11 , B−12 ), using the form of the projectors.

The decompositions (2.8) and (2.28) together give the decomposition of Rn
into the direct sum of subspaces

Rn = Xs+̇Xr = Xs1+̇Xs2+̇X1+̇X2 (2.35)

with respect to which any element x ∈ Rn can be uniquely represented (the
uniqueness of the representation follows from the definition of a direct sum of
subspaces) in the form

x = xs + xr = xs1 + xs2 + xp1 + xp2 (xs = xs1 + xs2 , xr = xp1 + xp2), (2.36)

where xs = Sx ∈ Xs, xr = Px ∈ Xr, xsi = Six ∈ Xsi , xpi = Pix ∈ Xi, i = 1, 2.
In what follows, it is assumed that the specified correspondence between the

subscript of an element from the subspace present in the decomposition (2.35)
(or a component from the representation (2.36)) and the subspace to which this
element belongs is always fulfilled, i.e., the element xsi (i = 1, 2) belongs to Xsi

because it has the subscript si (i = 1, 2), the element xpj belongs to Xj (j =
1, 2), and so on. Thus, we will not always explicitly indicate belonging to one of
the subspaces introduced in (2.35), when the element has one of the subscripts
given in (2.36), can be any element from the corresponding subspace, and it is
clear from the context what exactly is meant.

Similarly, the decompositions (2.8) and (2.28) together also give the decom-
position of Rm into the direct sum of subspaces

Rm = Ys+̇Yr = Ys1+̇Ys2+̇Y1+̇Y2, (2.37)

with respect to which any element y ∈ Rm can be uniquely represented as

y = ys + yr = ys1 + ys2 + yp1 + yp2 (ys = ys1 + ys2 , yr = yp1 + yp2), (2.38)

where ys = Fy ∈ Ys, yr = Qy ∈ Yr, ysi = Fi y ∈ Ysi and ypi = Qi y ∈ Yi, i = 1, 2.



730 Maria Filipkovska

2.3. Reduction of a DAE with the singular characteristic pencil to a
system of ordinary differential and algebraic equations. The information
given in Section 2.2 is used below.

Consider the DAE (2.1) with the singular characteristic pencil λA + B that
has the regular block λAr +Br (see (2.17)) of index not higher than 1.

Applying the projectors F1, Q1, Q2, F2 from (2.14), (2.30) to the equation
(2.1) and using their properties, we obtain the equivalent system

d

dt
(F1AS1x) + F1BSx = F1f(t, x), (2.39)

d

dt
(Q1AP1x) +Q1BP1x = Q1f(t, x), (2.40)

Q2BP2x = Q2f(t, x), (2.41)

F2BS1x = F2f(t, x). (2.42)

Using the representation (2.36), the operators (2.20), (2.31) and the semi-inverse

operators A
(−1)
gen , A

(−1)
1 and B

(−1)
2 (the method of their calculation is indicated in

Section 2.2), we obtain the following system equivalent to (2.39)–(2.42):

d

dt
xs1 = A(−1)

gen

(
F1f(t, x)−Bgenxs1 −Bundxs2

)
, (2.43)

d

dt
xp1 = A

(−1)
1

(
Q1f(t, x)−B1xp1

)
, (2.44)

0 = B
(−1)
2 Q2f(t, x)− xp2 , (2.45)

0 = F2f(t, x)−Bovxs1 , (2.46)

where xsi = Six ∈ Xsi , xpi = Pix ∈ Xi, i = 1, 2, and the representation of x in
the form x = xs1 + xs2 + xp1 + xp2 (see (2.36)) is unique.

Thus, the singular semilinear DAE (2.1) has been reduced to the equiva-
lent system (2.43)–(2.46) of ordinary differential equations (ODEs) and algebraic
equations (AEs). Instead of the system (2.43)–(2.46) one can also obtain the
equivalent system with the restricted operators.

By V ′(2.43),(2.44) we denote the derivative of a function V ∈ C1([t+,∞)×Ds1×
Dp1 ,R), where Ds1 ×Dp1 ⊂ Xs1 ×X1 is some open set, along the trajectories of
the system (2.43), (2.44), which has the form

V ′(2.43),(2.44)(t, xs1 , xp1) =
∂V

∂t
(t, xs1 , xp1) +

∂V

∂(xs1 , xp1)
(t, xs1 , xp1)Υ(t, x)

=
∂V

∂t
(t, xs1 , xp1) +

∂V

∂xs1
(t, xs1 , xp1)

[
A(−1)

gen

(
F1f(t, x)−Bgenxs1 −Bundxs2

)]
+

∂V

∂xp1
(t, xs1 , xp1)

[
A

(−1)
1

(
Q1f(t, x)−B1xp1

)]
, (2.47)

Υ(t, x) =

(
A

(−1)
gen

(
F1f(t, x)−Bgenxs1 −Bundxs2

)
A

(−1)
1

(
Q1f(t, x)−B1xp1

) )
(2.48)
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(Υ(t, x) consists of the right-hand sides of the equations (2.43), (2.44)). As usual,
∂

∂(xs1 , xp1)
=

(
∂

∂xs1
,
∂

∂xp1

)
.

When proving theorems, we will use the representation of an element x ∈ Rn
in the form (2.36) (with respect to the direct sum of subspaces (2.35)) and its
corresponding representation in the form x = (xs1 , xs2 , xp1 , xp2) (with respect
to the corresponding direct product of subspaces). The correspondence between
these representations is established below and, in general, is obvious.

Taking into account that the sum of subspaces in (2.35) is direct and, accord-
ingly, any element x ∈ Rn can be uniquely represented as (2.36), one can identify
an ordered collection (xs1 , xs2 , xp1 , xp2) ∈ Xs1×Xs2×X1×X2 (which is assumed
to be a column vector) with the corresponding element x = xs1 +xs2 +xp1 +xp2 ∈
Rn = Xs1+̇Xs2+̇X1+̇X2. A norm in the space Xs1 ×Xs2 ×X1×X2 is defined so
that the norms of any element of the form x = xs1 and the corresponding element
(ordered collection) x = (xs1 , 0, 0, 0) from Xs1×Xs2×X1×X2 coincide and, sim-
ilarly, the norms of the elements x = xs2 , x = xp1 , x = xp2 and the corresponding
ordered collections x = (0, xs2 , 0, 0), x = (0, 0, xp1 , 0), and x = (0, 0, 0, xp2) co-
incide. In addition, norms in Xs1+̇Xs2+̇X1+̇X2 and Xs1 × Xs2 × X1 × X2 are
defined so that they coincide for any element x. Obviously, dim(Xs1×Xs2×X1×
X2) = n and the space Rn = Xs1+̇Xs2+̇X1+̇X2 is isomorphic to the space Xs1 ×
Xs2 ×X1 ×X2. Thus, the representations x = (xs1 , xs2 , xp1 , xp2) and x = xs1 +
xs2 + xp1 + xp2 , where xsi ∈ Xsi , xpi ∈ Xi, i = 1, 2, define the same element x
which we will write in the form of the ordered collection (column vector) or sum
of the components xs1 , xs2 , xp1 , xp2 .

In a similar way, an ordered collection (column vector) y = (ys1 , ys2 , yp1 , yp2) ∈
Ys1 × Ys2 × Y1 × Y2 can be identified with the corresponding element y = ys1 +
ys2 + yp1 + yp2 ∈ Rm = Ys1+̇Ys2+̇Y1+̇Y2.

Consider one more representation of a vector x ∈ Rn, which allows one to
reduce the DAE (2.1) to an equivalent system of ODEs and AEs with the op-
erators restricted to the subspaces from (2.35) (cf. [8]). Denote the dimensions
of the subspaces from the decomposition (2.35) as dimXs1 = b, dimXs2 = l,
dimX1 = a and dimX2 = d (b + l + a + d = n, dimXs = b + l, dimXr = a +
d). Further, we choose some bases {sj}bj=1, {sb+j}lj=1, {pj}aj=1 and {pa+j}dj=1

of the subspaces Xs1 , Xs2 , X1 and X2, respectively. The union of these bases
is a basis of the space Rn = Rb × Rl × Ra × Rd, and with respect to this ba-
sis each vector x ∈ Rn (x = xs1 + xs2 + xp1 + xp2) can be written in the form
of the column vector x = (wT , ξT , zT , uT )T , where w ∈ Rb, ξ ∈ Rl, z ∈ Ra
and u ∈ Rd are column vectors consisting of the coordinates of the vector x
with respect to the chosen bases in the subspaces Xs1 , Xs2 , X1 and X2 respec-
tively. The specified one-to-one correspondence between Xs1 , Xs2 , X1, X2 and
Rb, Rl, Ra, Rd (between each xs1 , xs2 , xp1 , xp2 and each w, ξ, z, u), respec-
tively, defines the linear operators Sb : Rb → Xs1 , Sl : Rl → Xs2 , Pa : Ra → X1,
Pd : Rd → X2 establishing an isomorphism between the spaces, which have the in-
verse S−1b : Xs1 → Rb, S−1l : Xs2 → Rl, P−1a : X1 → Ra and P−1d : X2 → Rd. Then
we restrict the operators in the equations (2.39)–(2.42) to the subspaces Xs1 , Xs2 ,
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X1, X2, make the change of variables

xs1 = Sbw, xs2 = Sl ξ, xp1 = Pa z, xp2 = Pd u,

and transform the system (2.39)–(2.42) into the following system (equivalent to
the DAE (2.1) and similar to the one in [8]):

d

dt
w = S−1b A−1gen

(
F1f̃(t, w, ξ, z, u)−BgenSbw −BundSl ξ

)
, (2.49)

d

dt
z = P−1a A−11

(
Q1f̃(t, w, ξ, z, u)−B1Pa z

)
, (2.50)

0 = P−1d B−12 Q2f̃(t, w, ξ, z, u)− u, (2.51)

0 = F2f̃(t, w, ξ, z, u)−BovSbw, (2.52)

where Agen, A1, B2 are defined in Section 2.2, f̃(t, w, ξ, z, u) = f(t, Sbw + Sl ξ +
Pa z+Pd u) and the projectors Fi, Qi (i = 1, 2) on the subspaces Ysi , Yi are con-
sidered as the operators from Rm into Ysi , Yi, respectively (i.e., Fi ∈ L(Rm, Ysi),
Qi ∈ L(Rm, Yi)), that have the same projection properties as the projectors Fi ∈
L(Rm), Qi ∈ L(Rm) defined in Section 2.2, i.e., Fiy = Fiysi = ysi ∈ Ysi and
Qiy = Qiypi = ypi ∈ Yi (i = 1, 2) for any y ∈ Rm (see the representation (2.38)).
For convenience, we keep the previous notation for these operators.

In what follows, when considering an equation with the restricted (induced)
operators, where the restricted operators are understood as Agen, Bgen, Bund,
Bov, Ai, Bi, i = 1, 2, A−1gen, A−11 and B−12 , the projectors Fi, Qi (i = 1, 2) are
considered as the operators Fi ∈ L(Rm, Ysi), Qi ∈ L(Rm, Yi) having the same
projection properties as the projectors Fi, Qi defined in Section 2.2 (see, e.g., the
comments to the system (2.49)–(2.52) for details). In general, the projectors Fi,
Qi by definition belong to L(Rm) (see Section 2.2), and Ysi , Yi are their ranges,
respectively ( KerFi = (Rm \ Ysi) ∪ {0}, KerQi = (Rm \ Yi) ∪ {0} ). Since,
in fact, the described differences are formal and become significant only in the
transition from the operators to the corresponding matrices, then we keep the
same notations for Fi, Qi (i = 1, 2) in all cases.

For clarity, note that if we choose some basis {ej}m−dj=1 of Ys+̇Y1 and some

basis {qj}dj=1 of Y2 (notice that dimY2 = dimX2 = d), and we take the basis of
Rm as the union of these bases, i.e., in the form {e1, . . . , em−d, q1, . . . , qd}, then
the matrix corresponding to the mentioned operator Q2 ∈ L(Rm, Y2) with respect
to the chosen bases in Rm and Y2 will have the form Q2 =

(
0 IY2

)
, where 0 is

the null d×m− d matrix and IY2 is the identity d× d matrix corresponding to
the identity operator IY2 with respect to the chosen basis of Y2.

3. Global solvability of singular (nonregular) semilinear DAEs

Remark 3.1. We introduce the manifold

Lt∗ = {(t, x) ∈ [t∗,∞)× Rn | (F2 +Q2)[Bx− f(t, x)] = 0}, (3.1)
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where t∗ ≥ t+. The manifold (3.1) is defined by the equations (2.41) (or Q2[Bx−
f(t, x)] = 0) and (2.42) (or F2[Bx− f(t, x)] = 0) and can be represented as

Lt∗ = {(t, x) ∈ [t∗,∞)× Rn | (t, x) satisfies the equations (2.41), (2.42) }.

The initial values t0, x0 satisfying the consistency condition (t0, x0) ∈ Lt+
(Lt+ has the form (3.1) where t∗ = t+) are called consistent initial values, and,
accordingly, the initial point (t0, x0) ∈ Lt+ is called a consistent initial point.

It is clear that the graph of a solution of the IVP (2.1), (2.2) as well as the
initial point (t0, x0) must lie in the manifold Lt0 .

Theorem 3.2. Let f ∈ C([t+,∞)×Rn,Rm) and λA+B be a singular pencil
of operators such that its regular block λAr + Br from (2.17) has the index not
higher than 1. Let the following conditions be fulfilled:

1. For any fixed t ∈ [t+,∞), xs1 ∈ Xs1, xs2 ∈ Ds2, where Ds2 ⊂ Xs2 is some set,
and xp1 ∈ X1, there exists a unique xp2 ∈ X2 such that (t, xs1 + xs2 + xp1 +
xp2) ∈ Lt+.

2. There exists the partial derivative ∂
∂xf ∈ C([t+,∞)× Rn,L(Rn,Rm)). For any

fixed t∗, x∗ = x∗s1 + x∗s2 + x∗p1 + x∗p2 such that (t∗, x∗) ∈ Lt+ and x∗s2 ∈ Ds2, the
operator Φt∗,x∗ defined by

Φt∗,x∗ :=

[
∂Q2f

∂x
(t∗, x∗)−B

]
P2 : X2 → Y2 (3.2)

is invertible.

3. There exists a number R > 0, a function V ∈ C1([t+,∞)×Ds1 ×Dp1 ,R) pos-
itive on [t+,∞)×Ds1 ×Dp1, where Ds1 × Dp1 = {(xs1 , xp1) ∈ Xs1 × X1 |
‖(xs1 , xp1)‖ > R}, and a function χ ∈ C([t+,∞)× (0,∞),R) such that:

(a) V (t, xs1 , xp1)→∞ as ‖(xs1 , xp1)‖ → ∞ uniformly in t on each finite in-
terval [a, b) ⊂ [t+,∞);

(b) for each (t, xs1 + xs2 + xp1 + xp2) ∈ Lt+, for which xs2 ∈ Ds2 and
‖(xs1 , xp1)‖ > R, the inequality

V ′(2.43),(2.44)(t, xs1 , xp1) ≤ χ
(
t, V (t, xs1 , xp1)

)
, (3.3)

where V ′(2.43),(2.44)(t, xs1 , xp1) has the form (2.47), is satisfied;

(c) the differential inequality (2.3), i.e., dv/dt ≤ χ(t, v) (t ∈ [t+,∞)), does
not have positive solutions with finite escape time.

Then for each initial point (t0, x0) ∈ Lt+, where S2x0 ∈ Ds2, the initial
value problem (2.1), (2.2) has a unique global (i.e., on [t0,∞)) solution x(t)
for which the choice of the function φs2 ∈ C([t0,∞), Ds2) with the initial
value φs2(t0) = S2x0 uniquely defines the component S2x(t) = φs2(t) when
rank(λA+B) < n; when rank(λA+B) = n, the component S2x is absent.

Remark 3.3. The operator defined (for fixed t∗, x∗) by the formula from (3.2),
i.e.,

Φ̂t∗,x∗ :=

[
∂Q2f

∂x
(t∗, x∗)−B

]
P2, (3.4)
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belongs to L(Rn,Rm) and acts so that Φ̂t∗,x∗ : Rn → Y2, X1+̇Xs ⊂ Ker(Φ̂t∗,x∗).

Its restriction to X2 is the operator Φt∗,x∗ = Φ̂t∗,x∗

∣∣
X2

defined by (3.2). Since

the operator (3.2) is invertible, then Φ̂t∗,x∗Rn = Φ̂t∗,x∗X2 = Y2 (Xs+̇X1 =

Ker(Φ̂t∗,x∗)), and the extension Φ̂
(−1)
t∗,x∗ ∈ L(Rm,Rn) of Φ−1t∗,x∗ to Rm that satisfies

the equalities Φ̂
(−1)
t∗,x∗Φ̂t∗,x∗ = P2, Φ̂t∗,x∗Φ̂

(−1)
t∗,x∗ = Q2, Φ̂

(−1)
t∗,x∗ = P2Φ̂

(−1)
t∗,x∗ is the semi-

inverse operator of Φ̂t∗,x∗ (i.e., Φ̂
(−1)
t∗,x∗R

m = Φ̂
(−1)
t∗,x∗Y2 = X2, Φ−1t∗,x∗ = Φ̂

(−1)
t∗,x∗

∣∣
Y2

).

The proof of Theorem 3.2. As shown above, the DAE (2.1) is equivalent to
the system (2.43)–(2.46), where the representation x = xs1 + xs2 + xp1 + xp2 (see
(2.36)), xsi = Six ∈ Xsi , xpi = Pix ∈ Xi, i = 1, 2, is uniquely determined for
each x ∈ Rn. Notice that the correspondence between Xs1+̇Xs2+̇X1+̇X2 and
Xs1 ×Xs2 ×X1×X2 (i.e., between the representations x = xs1 + xs2 + xp1 + xp2
and x = (xs1 , xs2 , xp1 , xp2) where xsi ∈Xsi , xpi ∈Xi, i = 1, 2) is established in
Section 2.3.

Since B
(−1)
2 Q2Rm = B

(−1)
2 Y2 = X2 = B−12 Y2 = B−12 (Q2Rm) (recall that

B−12 = B
(−1)
2

∣∣
Y2

) and Q2f(t, x) ∈ Y2 for any (t, x), then the equation (2.45) is
equivalent to the equation

B−12 Q2f(t, x)− xp2 = 0, (3.5)

where the projectorQ2 on Y2 is considered as the operator belonging to L(Rm, Y2),
while its projection properties are retained, i.e., Q2y = Q2yp2 = yp2 ∈ Y2 for any
y ∈ Rm, and, for convenience, its previous notation Q2 does not change. Denote

f̃(t, xs1 , xs2 , xp1 , xp2) = f(t, xs1 + xs2 + xp1 + xp2) = f(t, x)

and consider the mapping

Ψ(t, xs1 , xs2 , xp1 , xp2) := B−12 Q2f̃(t, xs1 , xs2 , xp1 , xp2)− xp2 , (3.6)

where Ψ: [t+,∞)×Xs1 ×Xs2 ×X1 ×X2 → X2. Then (3.5) can be written as

Ψ(t, xs1 , xs2 , xp1 , xp2) = 0, (3.7)

and this equation is equivalent to the equation (2.45), as shown above. Obviously,
Ψ ∈ C([t+,∞) × Xs1 × Xs2 × X1 × X2, X2) has continuous partial derivatives
with respect to xs1 , xs2 , xp1 , xp2 , and its partial derivative with respect to xp2 at
the point (t∗, x

∗
s1 , x

∗
s2 , x

∗
p1 , x

∗
p2) has the form

Wt∗,x∗ :=
∂Ψ

∂xp2
(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1 , x

∗
p2)

= B−12 Q2

[
∂Q2f

∂x
(t∗, x∗)−B

]
P2

∣∣
X2

= B−12 Φt∗,x∗ ∈ L(X2), (3.8)

where x∗ = x∗s1 + x∗s2 + x∗p1 + x∗p2 and Φt∗,x∗ ∈ L(X2, Y2) is the operator defined
by (3.2). Since for any fixed element (t, xs1 + xs2 + xp1 + xp2) ∈ Lt+ such that
xs2 ∈ Ds2 the operator Φt,x (where x = xs1 + xs2 + xp1 + xp2) has the inverse
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Φ−1t,x ∈ L(Y2, X2), then the operator Wt,x also has the inverse W−1t,x = Φ−1t,xB2 ∈
L(X2) for the indicated (t, x).

Note that a point (t, x) ∈ [t+,∞) × Rn belongs to the manifold Lt+ if and
only if it satisfies the equations (2.41), (2.42) or the equivalent equations, e.g.,
(2.45), (2.46) or (2.45), (3.7), where xs1 + xs2 + xp1 + xp2 = x.

Take any fixed t∗ ∈ [t+,∞), x∗s1 ∈ Xs1 , x∗s2 ∈ Ds2 , x∗p1 ∈ X1. Then,
by virtue of condition 1, there exists a unique x∗p2 ∈ X2 such that (t∗, x∗) ∈
Lt+ , where x∗ = x∗s1 + x∗s2 + x∗p1 + x∗p2 . Fix this point (t∗, x∗) and note that

the operator (3.8) has the inverse W−1t∗,x∗ ∈ L(X2) for it, as shown above. In
addition, the function Ψ(t, xs1 , xs2 , xp1 , xp2) has the continuous partial deriva-
tive with respect to (xs1 , xs2 , xp1 , xp2) at every point from [t+,∞) × Xs1 ×
Xs2 × X1 × X2. Using the implicit function theorems and fixed point theo-
rems [20], we obtain that there exist open neighborhoods Uδ1(t∗) (if t∗ = t+, then
Uδ1(t+) := [t+, t+ + δ1)), Uδ2(x∗s1), Uδ4(x∗p1), Uε(x

∗
p2), a neighborhood Nδ3(x∗s2)

(see the definitions in Section 1) and a unique function xp2 = µ(t, xs1 , xs2 , xp1) ∈
C(Nδ(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1), Uε(x

∗
p2)), where Nδ(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1) = Uδ1(t∗)×Uδ2(x∗s1)×

Nδ3(x∗s2) × Uδ4(x∗p1), which is continuously differentiable in xs1 , xp1 and such
that µ(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1) = x∗p2 and Ψ(t, xs1 , xs2 , xp1 , µ(t, xs1 , xs2 , xp1)) = 0 for all

(t, xs1 , xs2 , xp1) ∈ Nδ(t∗, x
∗
s1 , x

∗
s2 , x

∗
p1), i.e., the function µ(t, xs1 , xs2 , xp1) is a so-

lution of the equation (3.7) with respect to xp2 . Moreover, if the neighborhood
Nδ3(x∗s2) is open, then the function µ is continuously differentiable in xs2 on
Nδ(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1) as well. Since the implicit function theorems [20] assume that

the set of variables is open, then to prove the existence of an implicitly defined
function with the above properties when t∗ = t+ (i.e., Uδ1(t+) = [t+, t+ + δ1))
and when the set Ds2 is not open (accordingly, Nδ3(x∗s2) can be not open), the
fixed point theorems [20, Theorems 46, 462] as well as the proofs of the implicit
function theorems [20, Theorems 25, 28] are used.

Thus, it is proved that in some neighborhood Nr(t∗, x
∗
s1 , x

∗
s2 , x

∗
p1) = Ur1(t∗)×

Ur2(x∗s1)×Nr3(x∗s2)×Ur4(x∗p1) of each (fixed) point (t∗, x
∗
s1 , x

∗
s2 , x

∗
p1) ∈ [t+,∞)×

Xs1×Ds2×X1 there exists a unique solution xp2 = µt∗,x∗s1 ,x
∗
s2
,x∗p1

(t, xs1 , xs2 , xp1) of

the equation (3.7) and, hence, the equivalent equation (2.45), and this solution is
continuous in (t, xs1 , xs2 , xp1), continuously differentiable in (xs1 , xp1) and satisfies
the equality µt∗,x∗s1 ,x

∗
s2
,x∗p1

(t∗, x
∗
s1 , x

∗
s2 , x

∗
p1) = x∗p2 ∈ Dp2 , where the set Dp2 ⊂ X2

is such that for each xp2 ∈ Dp2 there exists (t, xs1 , xs2 , xp1) ∈ [t+,∞) × Xs1 ×
Ds2 ×X1 such that (t, xs1 + xs2 + xp1 + xp2) ∈ Lt+ . Recall that x∗p2 is uniquely
determined for each such (t∗, x

∗
s1 , x

∗
s2 , x

∗
p1) by virtue of condition 1. Introduce a

function

η : [t+,∞)×Xs1 ×Ds2 ×X1 → Dp2

and define it by η(t, xs1 , xs2 , xp1) = µt∗,x∗s1 ,x
∗
s2
,x∗p1

(t, xs1 , xs2 , xp1) at the point

(t, xs1 , xs2 , xp1) = (t∗, x
∗
s1 , x

∗
s2 , x

∗
p1) for each (t∗, x

∗
s1 , x

∗
s2 , x

∗
p1) ∈ [t+,∞) ×

Xs1 × Ds2 × X1. Then the function xp2 = η(t, xs1 , xs2 , xp1) is continuous in
(t, xs1 , xs2 , xp1), continuously differentiable in (xs1 , xp1) and satisfies the equation
(2.45) as well as the equation (3.7), i.e., Ψ(t, xs1 , xs2 , xp1 , η(t, xs1 , xs2 , xp1)) = 0,
for (t, xs1 , xs2 , xp1) ∈ [t+,∞) ×Xs1 ×Ds2 ×X1. Let us prove the uniqueness of
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the function η. Assume that there exists another function xp2 = ζ(t, xs1 , xs2 , xp1)
defined in the same way as the function η and, accordingly, having the same
properties, but differing from η at some point (t∗, x

∗
s1 , x

∗
s2 , x

∗
p1) ∈ [t+,∞)×Xs1 ×

Ds2 × X1. Then, due to condition 1, η(t∗, x
∗
s1 , x

∗
s2 , x

∗
p1) = ζ(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1) =

x∗p2 (since (t∗, x
∗
s1 + x∗s2 + x∗p1 + x∗p2) ∈ Lt+), which contradicts the assumption.

This holds for each point (t∗, x
∗
s1 , x

∗
s2 , x

∗
p1) ∈ [t+,∞)×Xs1 ×Ds2 ×X1, and hence

η(t, xs1 , xs2 , xp1) ≡ ζ(t, xs1 , xs2 , xp1).
Choose any initial point (t0, x0) ∈ Lt+ , where S2x0 ∈ Ds2 , and any function

φs2 ∈ C([t0,∞), Ds2) satisfying the condition φs2(t0) = S2x0. Substitute the
chosen function into η and denote q(t, xs1 , xp1) = η(t, xs1 , φs2(t), xp1). Further,
we substitute the functions xp2 = q(t, xs1 , xp1) and xs2 = φs2(t) in (2.43), (2.44)
and write the obtained system in the form

d

dt
ω = Υ̃(t, ω), (3.9)

where ω =

(
xs1
xp1

)
,

Υ̃(t, ω) =

(
A

(−1)
gen

[
F1f̃(t, xs1 , φs2(t), xp1 , q(t, xs1 , xp1))−Bgenxs1 −Bundφs2(t)

]
A

(−1)
1

[
Q1f̃(t, xs1 , φs2(t), xp1 , q(t, xs1 , xp1))−B1xp1

] )
= Υ(t, xs1 + φs2(t) + xp1 + q(t, xs1 , xp1))

(Υ(t, x) is defined in (2.48)).
Due to the properties of f̃ , q and φs2 , the function Υ̃(t, ω) is continuous in

(t, ω) and continuously differentiable in ω on [t0,∞)×Xs1 ×X1. Consequently,
there exists a unique solution ω = ω(t) of (3.9) on some interval [t0, β) which
satisfies the initial condition

ω(t0) = ω0, ω0 = (xTs1,0, x
T
p1,0

)T, xs1,0 = S1x0, xp1,0 = P1x0. (3.10)

This solution can be extended over a maximal interval of existence [t0, β) ⊆
[t0,∞) (i.e., the solution exists on [t0, β) and does not exist on a larger interval),
and the extended solution ω(t) is a unique solution of the IVP (3.9), (3.10) on
the whole interval [t0, β) (see, e.g., [21]).

Let us introduce the function V (t, ω) := V (t, xs1 , xp1), where V (t, xs1 , xp1)
follows the theorem condition 3. It follows from condition 3 that the derivative
of V along the trajectories of the equation (3.9) satisfies the inequality

V ′(3.9)(t, ω) =
∂V

∂t
(t, ω) +

∂V

∂ω
(t, ω)Υ̃(t, ω) ≤ χ

(
t, V (t, ω)

)
(3.11)

for all t ≥ t0, ‖ω‖ > R. Due to condition (c), the differential inequality (2.3),
t ≥ t0, does not have positive solutions with finite escape time. Hence, by [19,
Chapter IV, Theorem XIII] every solution of (3.9) exists on [t0,∞) (or is defined
in the future [19]), and, consequently, the solution ω(t) = (ωs1(t)T, ωp1(t)T)T is
global (i.e., the maximal interval of existence is [t0,∞)).
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Thus, the functions ωs1 ∈ C1([t0,∞), Xs1), ωp1 ∈ C1([t0,∞), X1) (the compo-
nents of the solution ω(t)) and q(t, ωs1(t), ωp1(t)) = η(t, ωs1(t), φs2(t), ωp1(t)) are
a unique solution of the system (2.43), (2.44) and (2.45) on [t0,∞), and the equa-
tion (2.46) is an identity since

(
t, ωs1(t) + φs2(t) + ωp1(t) + q(t, ωs1(t), ωp1(t))

)
∈

Lt0 for all t ∈ [t0,∞). Therefore, the function

x(t) = ωs1(t) + φs2(t) + ωp1(t) + q(t, ωs1(t), ωp1(t))

is a unique solution of the IVP (2.1), (2.2) on [t0,∞). The chosen function φs2 ∈
C([t0,∞), Ds2) with the initial value φs2(t0) = S2x0, which can be regarded as
a functional parameter, uniquely defines the component S2x(t) = φs2(t) of the
solution x(t). If rank(λA + B) = n ≤ m, then Xs2 = {0}, S2 = 0 and the
component S2x is absent. Since the initial point (t0, x0) was chosen arbitrarily,
then it is proved that the IVP (2.1), (2.2) has a unique global solution x(t) with
the fixed component S2x(t) = φs2(t) (where φs2 is an arbitrary function belonging
to C([t0,∞), Ds2) with the initial value φs2(t0) = S2x0 ) for each initial point
(t0, x0) ∈ Lt+ where S2x0 ∈ Ds2 .

A mapping f(t, x) of a set J × D, where J is an interval in R, D ⊂ X and
X is a linear space, into a linear space Y is said to satisfy locally a Lipschitz
condition (or to be locally Lipschitz continuous) with respect to x on J×D if for
each (fixed) (t∗, x∗)∈J ×D there exist open neighborhoods U(t∗), Ũ(x∗) of the
points t∗, x∗ and a constant L ≥ 0 such that ‖f(t, x1)− f(t, x2)‖ ≤ L‖x1 − x2‖
for any t ∈ U(t∗), x1, x2 ∈ Ũ(x∗).

Theorem 3.4. Let f ∈ C([t+,∞)×Rn,Rm) and λA+B be a singular pencil
of operators such that its regular block λAr + Br from (2.17) has the index not
higher than 1. Assume that conditions 1 and 3 of Theorem 3.2 hold and that
condition 2 of Theorem 3.2 is replaced by the following:

2. A function f(t, x) satisfies locally a Lipschitz condition with respect to x on
[t+,∞)×Rn. For any fixed t∗, x∗ = x∗s1+x∗s2+x∗p1+x∗p2 such that (t∗, x∗) ∈ Lt+
and x∗s2 ∈ Ds2, there exists a neighborhood Nδ(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1) = Uδ1(t∗) ×

Uδ2(x∗s1) × Nδ3(x∗s2) × Uδ4(x∗p1), an open neighborhood Uε(x
∗
p2) (the numbers

δ, ε > 0 depend on the choice of t∗, x∗) and an invertible operator Φt∗,x∗ ∈
L(X2, Y2) such that for each (t, xs1 , xs2 , xp1) ∈ Nδ(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1) and each

xip2 ∈ Uε(x
∗
p2), i = 1, 2, the mapping

Ψ̃(t, xs1 , xs2 , xp1 , xp2) := Q2f(t, xs1 + xs2 + xp1 + xp2)

−B
∣∣
X2
xp2 : [t+,∞)×Xs1 ×Xs2 ×X1 ×X2 → Y2 (3.12)

satisfies the inequality

‖Ψ̃(t, xs1 , xs2 , xp1 , x
1
p2)− Ψ̃(t, xs1 , xs2 , xp1 , x

2
p2)− Φt∗,x∗ [x1p2 − x

2
p2 ]‖

≤ c(δ, ε)‖x1p2 − x
2
p2‖, (3.13)

where c(δ, ε) is such that limδ, ε→0 c(δ, ε) < ‖Φ−1t∗,x∗‖
−1.
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Then for each initial point (t0, x0) ∈ Lt+, where S2x0 ∈ Ds2, the initial value
problem (2.1), (2.2) has a unique global solution x(t) for which the choice
of the function φs2 ∈ C([t0,∞), Ds2) with the initial value φs2(t0) = S2x0
uniquely defines the component S2x(t) = φs2(t) when rank(λA+B) < n; when
rank(λA+B) = n, the component S2x is absent.

Remark 3.5. If a function f(t, x) has the partial derivative ∂
∂xf ∈ C([t+,∞)×

Rn,L(Rn,Rm)), then the function (3.12) has the continuous partial derivatives
with respect to xs1 , xs2 , xp1 , xp2 on [t+,∞) × Xs1 × Xs2 × X1 × X2 and

∂Ψ̃

∂xp2
(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1 , x

∗
p2) = Φt∗,x∗ , where the operator Φt∗,x∗ is defined by (3.2),

x∗ = x∗s1 + x∗s2 + x∗p1 + x∗p2 .

Corollary 3.6. If the conditions of Theorem 3.2 are fulfilled, then the con-
ditions of Theorem 3.4 are also fulfilled.

Proof. Obviously, it follows from the existence of
∂

∂x
f ∈ C([t+,∞) ×

Rn,L(Rn,Rm)) that f(t, x) satisfies locally a Lipschitz condition with respect
to x on [t+,∞) × Rn. Take Φt∗,x∗ defined by (3.2) as the operator Φt∗,x∗ ap-

pearing in condition 2 of Theorem 3.4. Then Φt∗,x∗ =
∂Ψ̃

∂xp2
(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1 , x

∗
p2),

where x∗ = x∗s1 + x∗s2 + x∗p1 + x∗p2 , and there exists Φ−1t∗,x∗ ∈ L(Y2, X2) by virtue
of condition 2 of Theorem 3.2. It is readily verified that condition 2 of Theo-
rem 3.4, where Φt∗,x∗ is the operator (3.2), is satisfied. The rest of the conditions
of Theorems 3.2 and Theorem 3.4 coincide.

The proof of Theorem 3.4. We define the norm ‖ · ‖ in Xs1+̇Xs2+̇X1+̇X2

as ‖x‖ = ‖xs1‖ + ‖xs2‖ + ‖xp1‖ + ‖xp2‖, where we denote by ‖xs1‖ = ‖xs1‖Xs1
,

‖xs2‖ = ‖xs2‖Xs2
, ‖xp1‖ = ‖xp1‖X1 and ‖xp2‖ = ‖xp2‖X2 the norms of the com-

ponents xs1 , xs2 , xp1 and xp2 in the subspaces Xs1 , Xs2 , X1 and X2, respectively.
Taking into account the correspondence between Xs1+̇Xs2+̇X1+̇X2 and Xs1 ×
Xs2 × X1 × X2 which is established in Section 2.3, the norm ‖x‖ of x ∈ Xs1 ×
Xs2 ×X1 ×X2 is defined in the same way and coincides with the above-defined
norm of the corresponding element x ∈ Xs1+̇Xs2+̇X1+̇X2. Since for any norm
‖ · ‖Rn in Rn the inequality ‖x‖Rn ≤ ‖xs1‖Rn +‖xs2‖Rn +‖xp1‖Rn +‖xp2‖Rn holds
(due to (2.36)), then the chosen norm is “maximal”. Similarly, in R×Rn we use
the norm ‖(t, x)‖ = ‖t‖+ ‖xs1‖+ ‖xs2‖+ ‖xp1‖+ ‖xp2‖.

Consider the equation (3.7), that is, Ψ(t, xs1 , xs2 , xp1 , xp2) = 0 where Ψ is
defined by (3.6). Recall that this equation is equivalent to the equation (2.45)
and that B

∣∣
X2

= B2

∣∣
X2

= B2. The mapping (3.12) can be represented as

Ψ̃(t, xs1 , xs2 , xp1 , xp2) = Q2f̃(t, xs1 , xs2 , xp1 , xp2)−B2xp2

= B2Ψ(t, xs1 , xs2 , xp1 , xp2),

and we can rewrite the equation (3.7) in the form

xp2 = N (t, xs1 , xs2 , xp1 , xp2), (3.14)
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where N (t, xs1 , xs2 , xp1 , xp2) := xp2 − Φ−1t∗,x∗Ψ̃(t, xs1 , xs2 , xp1 , xp2). Recall that if
(t∗, x∗) ∈ Lt+ , then (t∗, x∗) satisfies (3.7), i.e., Ψ(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1 , x

∗
p2) = 0 where

x∗s1 + x∗s2 + x∗p1 + x∗p2 = x∗.

Lemma 3.7. For any fixed elements t∗ ∈ [t+,∞), x∗s1 ∈ Xs1, x∗s2 ∈
Ds2, x∗p1 ∈ X1, x∗p2 ∈ X2 for which (t∗, x

∗
s1 + x∗s2 + x∗p1 + x∗p2) ∈ Lt+, there

exists a neighborhood Nr(t∗, x
∗
s1 , x

∗
s2 , x

∗
p1) = Ur1(t∗) × Ur2(x∗s1) × Nr3(x∗s2) ×

Ur4(x∗p1) (where Nr3(x∗s2) 6= {x∗s2} if the neighborhood Nδ3(x∗s2) defined in con-
dition 2 does not degenerate into the point x∗s2, i.e., Nδ3(x∗s2) 6= {x∗s2}), an
open neighborhood Uρ(x

∗
p2) and a unique function xp2 = µ(t, xs1 , xs2 , xp1) ∈

C(Nr(t∗, x
∗
s1 , x

∗
s2 , x

∗
p1), Uρ(x

∗
p2)) which satisfies the equality µ(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1) =

x∗p2 and a Lipschitz condition with respect to (xs1 , xp1) (with respect to
(xs1 , xs2 , xp1) if Nδ3(x∗s2) 6= {x∗s2}) on Nr(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1) and is a solution of

the equation (3.7) with respect to xp2, i.e., Ψ(t, xs1 , xs2 , xp1 , µ(t, xs1 , xs2 , xp1)) =
0, for all (t, xs1 , xs2 , xp1) ∈ Nr(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1) (the numbers r, ρ > 0 depend on

the choice of t∗, x
∗
s1 , x

∗
s2 , x

∗
p1 , x

∗
p2).

Proof. It follows from condition 2 that for any fixed point (t∗, x
∗
s1 +

x∗s2 + x∗p1 + x∗p2) ∈ Lt+ for which x∗s2 ∈ Ds2 , there exists a closed neigh-

borhood Nδ̃(t∗, x
∗
s1 , x

∗
s2 , x

∗
p1) = Uδ̃1(t∗) × Uδ̃2(x∗s1) × Nδ̃3

(x∗s2) × Uδ̃4(x∗p1) ⊂
Nδ(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1) = Uδ1(t∗) × Uδ2(x∗s1) × Nδ3(x∗s2) × Uδ4(x∗p1), where 0 < δ̃i <

δi, i = 1, 2, 4, δ̃3 = δ3 = 0 if Nδ3(x∗s2) = {x∗s2} and 0 < δ̃3 < δ3 (i.e.,
{x∗s2} 6= Nδ̃3

(x∗s2) $ Nδ3(x∗s2)) otherwise, and a closed neighborhood Uε̃(x
∗
p2) ⊂

Uε(x
∗
p2) such that N is a contractive mapping with respect to xp2 (uniformly in

(t, xs1 , xs2 , xp1) ) on Nδ̃(t∗, x
∗
s1 , x

∗
s2 , x

∗
p1)× Uε̃(x∗p2), i.e.,

‖N (t, xs1 , xs2 , xp1 , x
1
p2)−N (t, xs1 , xs2 , xp1 , x

2
p2)‖ ≤ l‖x1p2 − x

2
p2‖, l < 1 (3.15)

(l is a constant), for every (t, xs1 , xs2 , xp1) ∈ Nδ̃(t∗, x
∗
s1 , x

∗
s2 , x

∗
p1), xip2 ∈ Uε̃(x

∗
p2),

i = 1, 2. Indeed, due to (3.13), there exist numbers δ̃ ∈ (0, δ) (accordingly,
numbers δ̃i ∈ (0, δi), i = 1, 2, 4, and δ̃3 ∈ (0, δ3] such that δ̃3 = δ3 = 0 if
Nδ3(x∗s2) = {x∗s2} and 0 < δ̃3 < δ3 otherwise) and ε̃ ∈ (0, ε) such that for every
α = (t, xs1 , xs2 , xp1) ∈ Nδ̃(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1) = Uδ̃1(t∗) × Uδ̃2(x∗s1) × Nδ̃3

(x∗s2) ×
Uδ̃4(x∗p1) and every x1p2 , x

2
p2 ∈ Uε̃(x

∗
p2) the following holds:

‖N (α, x1p2)−N (α, x2p2)‖ = ‖x1p2 − x
2
p2 − Φ−1t∗,x∗ [Ψ̃(α, x1p2)− Ψ̃(α, x2p2)‖

≤ ‖Φ−1t∗,x∗‖c(δ0, ε0)‖x
1
p2 − x

2
p2‖,

where ‖Φ−1t∗,x∗‖c(δ0, ε0) ≤ l < 1 for every δ0 ∈ (0, δ̃], ε0 ∈ (0, ε̃]. This implies
(3.15).

Choose a point (t∗, x∗) = (t∗, x
∗
s1 + x∗s2 + x∗p1 + x∗p2) such that x∗s2 ∈ Ds2 and

(t∗, x∗) ∈ Lt+ , and fix it. As above, denote α = (t, xs1 , xs2 , xp1), and denote α∗ =
(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1), then N (t, xs1 , xs2 , xp1 , xp2) = N (α, xp2).

Since Ψ̃ is continuous on [t+,∞) ×Xs1 ×Xs2 ×X1 ×X2, then Ψ̃(α, x∗p2) →
Ψ̃(α∗, x

∗
p2) = 0 as α → α∗, and therefore there exists a closed neighborhood
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Nδ∗(α∗) = Uδ∗1 (t∗)× Uδ∗2 (x∗s1)×Nδ∗3
(x∗s2)× Uδ∗4 (x∗p1) ⊆ Nδ̃(α∗), where δ∗ ∈ (0, δ̃],

δ∗i ∈ (0, δ̃i], i = 1, 2, 4, δ∗3 ∈ [0, δ̃3] and δ∗3 6= 0 if Nδ3(x∗s2) 6= {x∗s2}, such that

‖Φ−1t∗,x∗‖‖Ψ̃(α, x∗p2)‖ ≤ (1− l)ε̃ (where l is the constant from (3.15)) for every α ∈
Nδ∗(α∗). Hence, for each (fixed) α ∈ Nδ∗(α∗) and every xp2 ∈ Uε̃(x∗p2) we have

‖N (α, xp2)− x∗p2‖ ≤ ‖N (α, xp2)−N (α, x∗p2)‖+ ‖Φ−1t∗,x∗‖ ‖Ψ̃(α, x∗p2)‖ ≤ lε̃+ (1−
l)ε̃ = ε̃. Thus, N (α, xp2) maps Uε̃(x

∗
p2) into itself for each α ∈ Nδ∗(α∗).

From the foregoing it follows that, by the fixed point theorems (see, e.g., [20,
Theorems 46, 462]), the mapping N (α, xp2) as a function of xp2 , depending on
the parameter α = (t, xs1 , xs2 , xp1), has a unique fixed point µα = µ(α) (i.e.,
N (α, µ(α)) = µ(α)) in Uε̃(x

∗
p2) for each α ∈ Nδ∗(α∗) = Nδ∗(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1),

which satisfies the equality µ(α∗) = x∗p2 , and µ(α) depends continuously on α.

The continuity of the function µ : Nδ∗(α∗) → Uε̃(x
∗
p2) is proved in the same way

as in [20, Theorem 462].

Let us prove that µ(α) = µ(t, xs1 , xs2 , xp1) satisfies a Lipschitz condition with
respect to (xs1 , xp1) (with respect to (xs1 , xs2 , xp1) if Nδ3(x∗s2) does not degenerate
into the point x∗s2) on Nr(α∗) = Nr(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1), where the neighborhood

Nr(α∗) is specified below (α∗ = (t∗, x
∗
s1 , x

∗
s2 , x

∗
p1)). Recall that here we use the

notation f̃(t, xs1 , xs2 , xp1 , xp2) = f(t, x) introduced in the proof of Theorem 3.2.
Since the function f(t, x) satisfies locally a Lipschitz condition with respect to x
on [t+,∞)×Rn, then there exists an open neighborhood U(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1 , x

∗
p2) =

Û(t∗)× Ũ(x∗s1 , x
∗
s2 , x

∗
p1 , x

∗
p2) and a constant L ≥ 0 such that

‖f̃(t, x1s1 , x
1
s2 , x

1
p1 , x

1
p2)− f̃(t, x2s1 , x

2
s2 , x

2
p1 , x

2
p2)‖

≤ L‖(x1s1 , x
1
s2 , x

1
p1 , x

1
p2)− (x2s1 , x

2
s2 , x

2
p1 , x

2
p2)‖

= L
(
‖x1s1 − x

2
s1‖+ ‖x1s2 − x

2
s2‖+ ‖x1p1 − x

2
p1‖+ ‖x1p2 − x

2
p2‖
)

(3.16)

for any (t, xis1 , x
i
s2 , x

i
p1 , x

i
p2) ∈ U(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1 , x

∗
p2), i = 1, 2. Choose num-

bers r ∈ (0, δ∗], ri ∈ (0, δ∗i ], i = 1, 2, 4, a number r3 ∈ [0, δ∗3 ] such that r3 6= 0
if Nδ3(x∗s2) 6= {x∗s2} and a number ρ ∈ (0, ε̃] so that Nr(α∗) = Ur1(t∗) ×
Ur2(x∗s1)×Nr3(x∗s2)×Ur4(x∗p1) ⊂ Nδ∗(α∗), Uρ(x

∗
p2) ⊂ Uε̃(x∗p2), Nr(α∗)×Uρ(x∗p2) ⊆

U(t∗, x
∗
s1 , x

∗
s2 , x

∗
p1 , x

∗
p2) and µ maps Nr(α∗) into Uρ(x

∗
p2). Then, carrying out cer-

tain transformations and using (3.15), (3.16), we obtain that

‖µ(t, x1s1 , x
1
s2 , x

1
p1)− µ(t, x2s1 , x

2
s2 , x

2
p1)‖ ≤ L̂ ‖(x1s1 , x

1
s2 , x

1
p1)− (x2s1 , x

2
s2 , x

2
p1)‖

= L̂
(
‖x1s1 − x

2
s1‖+ ‖x1s2 − x

2
s2‖+ ‖x1p1 − x

2
p1‖
)
,

where

L̂ = L‖Φ−1t∗,x∗‖ ‖Q2‖/(1− l) ≥ 0,

for any (t, xis1 , x
i
s2 , x

i
p1) ∈ Nr(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1), i = 1, 2, where x1s2 = x2s2 = x∗s2

if Nδ3(x∗s2) = {x∗s2}. Hence, µ(t, xs1 , xs2 , xp1) satisfies a Lipschitz condition
with respect to (xs1 , xp1) (with respect to (xs1 , xs2 , xp1) if Nδ3(x∗s2) 6= {x∗s2})
on Nr(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1).

Since the equations (3.7) and (3.14) are equivalent, the lemma is proved.
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Due to condition 1 of Theorem 3.2, for any fixed (t∗, x
∗
s1 , x

∗
s2 , x

∗
p1) ∈ [t+,∞)×

Xs1 ×Ds2 ×X1 there exists a unique x∗p2 ∈ X2 such that (t∗, x
∗
s1 + x∗s2 + x∗p1 +

x∗p2) ∈ Lt+ . Further, it follows from Lemma 3.7 that in some neighborhood
Nr(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1) = Ur1(t∗)×Ur2(x∗s1)×Nr3(x∗s2)×Ur4(x∗p1) of each (fixed) point

(t∗, x
∗
s1 , x

∗
s2 , x

∗
p1) ∈ [t+,∞)×Xs1 ×Ds2 ×X1 there exists a unique solution xp2 =

µt∗,x∗s1 ,x
∗
s2
,x∗p1

(t, xs1 , xs2 , xp1) of the equation (3.7), and this solution is continuous

in (t, xs1 , xs2 , xp1), satisfies a Lipschitz condition with respect to (xs1 , xp1) and
the equality µt∗,x∗s1 ,x

∗
s2
,x∗p1

(t∗, x
∗
s1 , x

∗
s2 , x

∗
p1) = x∗p2 ∈ Dp2 , where the set Dp2 ⊂ X2

is such that for each xp2 ∈ Dp2 there exists (t, xs1 , xs2 , xp1) ∈ [t+,∞)×Xs1×Ds2×
X1 such that (t, xs1 + xs2 + xp1 + xp2) ∈ Lt+ . As in the proof of Theorem 3.2,
we introduce a function η : [t+,∞) × Xs1 × Ds2 × X1 → Dp2 and define it by
η(t, xs1 , xs2 , xp1) = µt∗,x∗s1 ,x

∗
s2
,x∗p1

(t, xs1 , xs2 , xp1) at the point (t, xs1 , xs2 , xp1) =

(t∗, x
∗
s1 , x

∗
s2 , x

∗
p1) for each (t∗, x

∗
s1 , x

∗
s2 , x

∗
p1) ∈ [t+,∞)×Xs1 ×Ds2 ×X1. Then the

function xp2 = η(t, xs1 , xs2 , xp1) is continuous in (t, xs1 , xs2 , xp1), satisfies locally
a Lipschitz condition with respect to (xs1 , xp1) on [t+,∞)×Xs1×Ds2×X1 and is
a unique solution of the equation (3.7) (i.e., Ψ(t, xs1 , xs2 , xp1 , η(t, xs1 , xs2 , xp1)) =
0) as well as the equation (2.45) with respect to xp2 . The uniqueness of η is proved
in the same way as the uniqueness of the function η in the proof of Theorem 3.2.

Choose any initial point (t0, x0) ∈ Lt+ , where S2x0 ∈ Ds2 , and any func-
tion φs2 ∈ C([t0,∞), Ds2) satisfying the condition φs2(t0) = S2x0. We substi-
tute the function xs2 = φs2(t) into η, denote q(t, xs1 , xp1) = η(t, xs1 , φs2(t), xp1),
and then we substitute the functions xs2 = φs2(t) and xp2 = q(t, xs1 , xp1) in
(2.43), (2.44). We write the obtained system in the form (3.9). Due to the prop-
erties of f̃(t, xs1 , xs2 , xp1 , xp2), η(t, xs1 , xs2 , xp1) (and, accordingly, q(t, xs1 , xp1))

and φs2(t), the function Υ̃(t, ω) is continuous in (t, ω) and satisfies locally a Lip-
schitz condition with respect to ω on [t0,∞) × Xs1 × X1. Consequently, there
exists a unique solution ω = ω(t) of (3.9) on some interval [t0, β) which satisfies
the initial condition (3.10) (this follows from, e.g., [21, Theorem 1]).

The subsequent proof coincides with the proof of Theorem 3.2 (see the part
of the proof after (3.10)).

4. Lagrange stability of singular semilinear DAEs

Theorem 4.1. Let f ∈ C([t+,∞)×Rn,Rm) and λA+B be a singular pencil
of operators such that its regular block λAr + Br from (2.17) has the index not
higher than 1. Assume that condition 1 of Theorem 3.2 holds and condition 2 of
Theorem 3.2 or condition 2 of Theorem 3.4 holds. Let the following condition be
satisfied :

3. There exists a number R > 0, a function V ∈ C1([t+,∞)×Ds1 ×Dp1 ,R)
positive on [t+,∞)×Ds1 ×Dp1, where Ds1 ×Dp1 = {(xs1 , xp1) ∈ Xs1 ×X1 |
‖(xs1 , xp1)‖ > R}, and a function χ ∈ C([t+,∞)× (0,∞),R) such that :

(a) V (t, xs1 , xp1)→∞ as ‖(xs1 , xp1)‖ → ∞ uniformly in t on [t+,∞);

(b) for each (t, xs1 + xs2 + xp1 + xp2) ∈ Lt+, for which xs2 ∈ Ds2 and
‖(xs1 , xp1)‖ > R, the inequality (3.3) is satisfied ;
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(c) the differential inequality (2.3), i.e.,
dv

dt
≤ χ(t, v) (t ∈ [t+,∞)), does not

have unbounded positive solutions for t ∈ [t+,∞).

Then for each initial point (t0, x0) ∈ Lt+, where S2x0 ∈ Ds2, the initial value
problem (2.1), (2.2) has a unique global solution x(t) for which the choice of
the function φs2 ∈ C([t0,∞), Ds2) with the initial value φs2(t0) = S2x0 uniquely
defines the component S2x(t) = φs2(t) when rank(λA+B) < n.

Let, in addition to the above conditions, the following conditions also hold :

4. For all (t, xs1 + xs2 + xp1 + xp2) ∈ Lt+, for which xs2 ∈ Ds2 and ‖xs1 + xs2 +
xp1‖ ≤M <∞ (M is an arbitrary constant), the inequality

‖xp2‖ ≤ KM <∞

or the inequality

‖Q2f(t, xs1 + xs2 + xp1 + xp2)‖ ≤ KM <∞,

where KM = K(M) is a constant, holds.

5. ‖F2f(t, x)‖ < ∞ for all (t, x) ∈ Lt+ such that S2x ∈ Ds2 and ‖x‖ ≤ C <∞
(C is an arbitrary constant).

Then, for the initial points (t0, x0) ∈ Lt+ where S2x0 ∈ Ds2 and any
function φs2 ∈ C([t0,∞), Ds2) satisfying the relations φs2(t0) = S2x0 and
supt∈[t0,∞) ‖φs2(t)‖ < ∞, the equation (2.1), where S2x = φs2(t), is Lagrange
stable; when rank(λA+B) = n < m, the component S2x is absent.

Remark 4.2. If condition 3 of Theorem 4.1 holds, then condition 3 of Theo-
rem 3.2 holds. This is easily verified since conditions (a) and (c) of Theorem 4.1
imply conditions (a) and (c) of Theorem 3.2, respectively, and conditions (b) of
Theorem 4.1 and (b) of Theorem 3.2 coincide. Note that condition 3 of Theo-
rem 3.2 must also hold for Theorem 3.4.

The proof of Theorem 4.1. We will carry out the proof, assuming that condi-
tion 2 of Theorem 3.2 holds. If we replace it by condition 2 of Theorem 3.4, then
in the proof of the present theorem it will be necessary to replace “Theorem 3.2”
by “Theorem 3.4”.

Considering Remark 4.2, we conclude that all conditions of Theorem 3.2 hold.
Consequently, for an arbitrary initial point (t0, x0) ∈ Lt+ , where S2x0 ∈ Ds2 ,
there exists a unique solution x(t) of the IVP (2.1), (2.2) on [t0,∞), such that
S2x(t) = φs2(t) where φs2 ∈ C([t0,∞), Ds2) is some chosen function with the
initial value φs2(t0) = S2x0. Thus, the existence of a global solution of the IVP
(2.1), (2.2) is proved.

Let us prove the Lagrange stability. As shown in the proof of Theorem
3.2, the solution of the IVP (2.1), (2.2) can be represented in the form x(t) =
ωs1(t) + φs2(t) + ωp1(t) + q(t, ωs1(t), ωp1(t)). It is assumed that the function
φs2(t) defining the component S2x(t) of the solution x(t) was chosen so that
supt∈[t0,∞) ‖φs2(t)‖ <∞. This is fulfilled due to the requirements of the present
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theorem and, obviously, does not affect the proof of Theorem 3.2. It follows from
condition 3 that the derivative of the function V along the trajectories of the
equation (3.9) satisfies the inequality (3.11) for all t ≥ t0, ‖ω‖ > R, and the
differential inequality (2.3) does not have unbounded positive solutions for t ∈
[t+,∞). Then by [19, Chapter IV, Theorem XV] the equation (3.9) is Lagrange
stable. Consequently, supt∈[t0,∞) ‖ω(t)‖ <∞. Hence there exists a constant M >
0 such that

‖ωs1(t) + φs2(t) + ωp1(t)‖ ≤M, t ∈ [t0,∞). (4.1)

Recall that the function q(t, ωs1(t), ωp1(t)) = η(t, ωs1(t), φs2(t), ωp1(t)) is a
solution of the equation (2.45), as well as (3.7), with respect to the variable xp2 .
Denote u(t) := q(t, ωs1(t), ωp1(t)). Therefore,

u(t) = B
(−1)
2 Q2f(t, ωs1(t) + φs2(t) + ωp1(t) + u(t)). (4.2)

Then from (4.1), condition 4 and the boundedness of the norm of the operator

B
(−1)
2 ∈ L(Rm,Rn) it follows that there exists a constant KM = K(M) (depend-

ing on the constant M , in general) such that ‖u(t)‖ ≤ KM for all t ∈ [t0,∞).
It follows from the above that ‖x(t)‖ ≤ M + KM < ∞ for all t ∈ [t0,∞),

i.e., the solution x(t) is bounded on [t0,∞) and, therefore, is Lagrange stable.
Condition 5 ensures the correctness of the equality (2.46), which is equivalent to
the equality F2Bx(t) = F2f(t, x(t)). Thus, the theorem is proved.

5. Lagrange instability of singular semilinear DAEs (the blow-
up of solutions in finite time)

Theorem 5.1. Let f ∈ C([t+,∞)×Rn,Rm) and λA+B be a singular pencil
of operators such that its regular block λAr + Br from (2.17) has the index not
higher than 1. Assume that condition 1 of Theorem 3.2 holds and condition 2 of
Theorem 3.2 or condition 2 of Theorem 3.4 holds. Let the following conditions
hold :

3. There exists a region Ω1 ⊂ Xs1 × X1 such that the vector (S1x(t), P1x(t))
consisting of the components S1x(t), P1x(t) of any solution x(t) with the initial
point (t0, x0) ∈ Lt+, where (S1x0, P1x0) ∈ Ω1 and S2x0 ∈ Ds2, remains all the
time in Ω1 (i.e., remains in Ω1 for all t from the maximal interval of existence
of the solution).

4. There exists a function V ∈ C1([t+,∞)×Ω1,R) positive on [t+,∞)×Ω1 and
a function χ ∈ C([t+,∞)× (0,∞),R) such that:

(a) for each (t, xs1+xs2+xp1+xp2) ∈ Lt+, for which xs2 ∈ Ds2 and (xs1 , xp1) ∈
Ω1, the inequality

V ′(2.43),(2.44)(t, xs1 , xp1) ≥ χ
(
t, V (t, xs1 , xp1)

)
, (5.1)

where V ′(2.43),(2.44)(t, xs1 , xp1) has the form (2.47), is satisfied;

(b) the differential inequality (2.4), i.e., dv/dt ≥ χ(t, v) (t ∈ [t+,∞)), does
not have global positive solutions.
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Then for each initial point (t0, x0) ∈ Lt+, where S2x0 ∈ Ds2 and (S1x0, P1x0) ∈
Ω1, the initial value problem (2.1), (2.2) has a unique solution x(t) for which
the choice of the function φs2 ∈ C([t0,∞), Ds2) with the initial value φs2(t0) =
S2x0 uniquely defines the component S2x(t) = φs2(t) when rank(λA+B) < n
(when rank(λA+B) = n < m, the component S2x is absent), and this solution
is Lagrange unstable (has a finite escape time).

Proof. It is proved in the same way as in Theorem 3.2 (or 3.4) that there
exists the unique solution ω(t) of the IVP (3.10), (3.9) on the interval [t0, β).
In addition, it follows from the proof of Theorem 3.2 (or 3.4) that there exists a
unique solution x(t) = ωs1(t)+φs2(t)+ωp1(t)+q(t, ωs1(t), ωp1(t)) of the IVP (2.1),
(2.2) on the maximal interval of existence [t0, β). Further, it is assumed that the
initial point (t0, x0) for the solution mentioned above has been chosen so that
condition 3 is satisfied. Then the initial value ω0 = (xTs1,0, x

T
p1,0

)T from condition
(3.10) belongs to the region Ω1, which is defined in condition 3. Therefore, the
solution ω(t) of (3.9) remains all the time in Ω1. By virtue of condition 4,
V ′(3.9)(t, ω) ≥ χ

(
t, V (t, ω)

)
for all t ≥ t0, ω ∈ Ω1, and the inequality (2.4), t ≥ t0,

does not have global positive solutions. Hence, using the theorem [19, Chapter IV,
Theorem XIV], we obtain that the solution ω(t) has a finite escape time, i.e., it is
defined on some finite interval [t0, T ) and limt→T−0 ‖ω(t)‖ = +∞. Consequently,
[t0, β) = [t0, T ) and the solution x(t) has a finite escape time. Accordingly, it is
Lagrange unstable.

The statement of Theorem 5.1 means that (2.1) is Lagrange unstable for the
initial points (t0, x0) ∈ Lt+ for which S2x0 ∈ Ds2 and (S1x0, P1x0) ∈ Ω1.

6. Dissipativity (ultimate boundedness) of singular semilinear
DAEs

Below, we will use the notation (z, w)H := (H(t)z, w) for a scalar product
with the weight H(t).

An operator function H : J → L(X), where X is a finite-dimensional linear or
Hilbert space and J ⊆ R is an interval, is called self-adjoint if the operator H(t) is
self-adjoint (for each t∈J). A self-adjoint operator H(t) ∈ L(X) (t∈J) is called
positive definite if there exists a constant c > 0 such that (H(t)x, x) ≥ c‖x‖2 for
all t, x. A self-adjoint operator function H : J → L(X) is called positive definite
if the operator H(t) is positive definite (see, e.g., [12, Definition 2.2]).

Theorem 6.1. Let f ∈ C([t+,∞)×Rn,Rm) and λA+B be a singular pencil
of operators such that its regular block λAr + Br from (2.17) has the index not
higher than 1. Assume that condition 1 of Theorem 3.2 holds and condition 2 of
Theorem 3.2 or condition 2 of Theorem 3.4 holds. Let the following conditions
be satisfied :

3. There exists a number R > 0, a function V ∈ C1([t+,∞)×Ds1 ×Dp1 ,R) pos-
itive on [t+,∞)×Ds1 ×Dp1, where Ds1 × Dp1 = {(xs1 , xp1) ∈ Xs1 × X1 |
‖(xs1 , xp1)‖ > R}, and functions Uj ∈ C([0,∞)), j = 0, 1, 2, such that U0(r)
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is non-decreasing and U0(r)→ +∞ as r → +∞, U1(r) is increasing, U2(r) > 0
for r > 0, and for all (t, xs1 + xs2 + xp1 + xp2) ∈ Lt+, for which xs2 ∈ Ds2 and
‖(xs1 , xp1)‖ > R, the inequality

U0(‖(xs1 , xp1)‖) ≤ V (t, xs1 , xp1) ≤ U1(‖(xs1 , xp1)‖)

and one of the following inequalities (where V ′(2.43),(2.44)(t, xs1 , xp1) has the

form (2.47)) hold :

(a) V ′(2.43),(2.44)(t, xs1 , xp1) ≤ −U2

(
‖(xs1 , xp1)‖

)
;

(b) V ′(2.43),(2.44)(t, xs1 , xp1) ≤ −U2

(
((xs1 , xp1), (xs1 , xp1))H

)
, where H ∈

C([t+,∞),L(Xs1×X1)) is a positive definite self-adjoint operator function
such that H(t)

∣∣
Xs1

: Xs1 → Xs1 × {0} and H(t)
∣∣
X1

: X1 → {0} × X1 for

any fixed t, and supt∈[t+,∞) ‖H(t)‖ <∞;

(c) V ′(2.43),(2.44)(t, xs1 , xp1) ≤ −αV (t, xs1 , xp1), where α > 0 is some constant.

4. There exist constants β > 0, T > t+ such that ‖Q2f(t, xs1 +xs2 +xp1 +xp2)‖ ≤
β ‖(xs1 , xp1)‖ for all (t, xs1 + xs2 + xp1 + xp2) ∈ LT where xs2 ∈ Ds2.

5. ‖F2f(t, x)‖ < ∞ for all (t, x) ∈ Lt+ such that S2x ∈ Ds2 and ‖x‖ ≤ C < ∞
(C is an arbitrary constant).

Then, for the initial points (t0, x0) ∈ Lt+ where S2x0 ∈ Ds2 and any
function φs2 ∈ C([t0,∞), Ds2) satisfying the relations φs2(t0) = S2x0 and
supt∈[t0,∞) ‖φs2(t)‖ < ∞ the equation (2.1), where S2x = φs2(t), is uniformly
dissipative (uniformly ultimately bounded); when rank(λA + B) = n < m, the
component S2x is absent.

Remark 6.2. If condition 3 of Theorem 6.1 holds, then condition 3 of Theo-
rem 3.2 holds.

The proof of theorem 6.1. It follows from the conditions of the present the-
orem and Remark 6.2 that the conditions of Theorem 3.2 (or Theorem 3.4) are
satisfied. Hence, there exists a unique global solution x(t) of the IVP (2.1),
(2.2) for each consistent initial point (t0, x0) with S2x0 ∈ Ds2 and some chosen
function φs2 ∈ C([t0,∞), Ds2) with the initial value S2x0 which defines the com-
ponent S2x(t) = φs2(t). As shown in the proof of Theorem 3.2, the solution can
be represented as x(t) = ωs1(t) + φs2(t) + ωp1(t) + q(t, ωs1(t), ωp1(t)). By virtue
of the conditions of the present theorem, it is assumed that supt∈[t0,∞) ‖φs2(t)‖ =
γ <∞. In a similar way as in the proof of the theorem [12, Theorem 4.3], using
condition 3 and the proof of the theorem [26, Theorem 10.4] and its corollary, we
obtain that solutions of (3.9) are uniformly dissipative, i.e., there exists a num-
ber M > 0 and, for each solution ω(t) = (ωs1(t)T, xp1(t)T)T satisfying the initial
condition (3.10), there exists a number τ1 = τ1(x0) ≥ t0 such that ‖ω(t)‖ < M
for each t ≥ t0 + τ1. Recall that the function u(t) = q(t, ωs1(t), ωp1(t)) satisfies
the equality (4.2). Therefore, according to condition 4, there exists a constant
β0 > 0 and a number τ2 = τ2(x0) > t0 such that ‖u(t)‖ ≤ β0 ‖ω(t)‖ < β0M for
all t ≥ τ2. Hence, for each solution with the initial values t0, x0 there exists a
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number τ = τ(x0) ≥ t0 such that ‖x(t)‖ < (2 + β0)M + γ = k for all t ∈ [t0 +
τ,∞), where the constant k > 0 does not depend on t0, x0. Consequently, the
DAE (2.1) is uniformly dissipative, and condition 5 ensures the correctness of the
equality (2.46).

7. Replacement of some conditions of the theorems by weaker
ones

This section shows how we can weaken some requirements of Theorems 3.2,
3.4 and, as a consequence, some requirements of the other theorems as well.

Let Z and W be n-dimensional linear spaces. A system of n pairwise disjoint
projectors {Θi}ni=1 (Θl Θj = δlj Θl; the projectors are one-dimensional), where
Θi ∈ L(Z), such that their sum is the identity operator IZ =

∑n
i=1 Θi in Z

is called an additive resolution (or decomposition) of the identity in Z (cf. [8,
24]). Notice that an additive resolution of the identity in Z generates the direct
decomposition Z = Z1+̇ · · · +̇Zn where Zi = Θi Z, i = 1, . . . , n. An operator
function Φ: D → L(W,Z), where D ⊂W , is called basis invertible on an interval
J ⊂ D (or on a convex hull J = Conv{w1, w2} of w1, w2 ∈ D) if for some
additive resolution (decomposition) of the identity {Θi}ni=1 in Z and for each
set of elements {wk}nk=1 ⊂ J the operator Λ =

∑n
i=1 ΘiΦ(wi) ∈ L(W,Z) has

the inverse Λ−1 ∈ L(Z,W ) (cf. [8, 24]). This definition in terms of matrices
is given in [10, p. 176]. Note that the property of basis invertibility does not
depend on the choice of an additive resolution of the identity in Z. Obviously,
it follows from the basis invertibility of the mapping Φ on an interval J that for
each w∗ ∈ J the operator Φ(w∗) ∈ L(W,Z) is invertible. The converse statement
does not hold true, except for the case when W , Z are one-dimensional spaces
(see [8, Example 1]).

Theorem 7.1. Theorem 3.2 remains valid if conditions 1 and 2 are replaced
by the following:

1. For any fixed t ∈ [t+,∞), xs1 ∈ Xs1, xs2 ∈ Ds2, where Ds2⊂Xs2 is a some set,
and xp1 ∈ X1, there exists xp2 ∈ X2 such that (t, xs1 + xs2 + xp1 + xp2) ∈ Lt+.

2. There exists the partial derivative ∂
∂xf ∈ C([t+,∞)× Rn,L(Rn,Rm)). For any

fixed t∗, x
i
∗ = x∗s1 + x∗s2 + x∗p1 + xip2 such that (t∗, x

i
∗) ∈ Lt+ and x∗s2 ∈ Ds2, the

operator function Φt∗,x∗s1 ,x
∗
s2
,x∗p1

(xp2) defined by

Φt∗,x∗s1 ,x
∗
s2
,x∗p1

:X2 → L(X2, Y2),

Φt∗,x∗s1 ,x
∗
s2
,x∗p1

(xp2) =

[
∂Q2f

∂x
(t, x∗s1 + x∗s2 + x∗p1 + xp2)−B

]
P2, (7.1)

is basis invertible on [x1p2 , x
2
p2 ].

Remark 7.2. Note that Φt∗,x∗s1 ,x
∗
s2
,x∗p1

(x∗p2) = Φt∗,x∗ , where x∗ = x∗s1 + x∗s2 +

x∗p1 + x∗p2 and Φt∗,x∗ is the operator defined by (3.2), for any fixed x∗p2 ∈ X2. In
addition, if the space X2 is one-dimensional, then condition 2 of Theorem 7.1 is
equivalent to condition 2 of Theorem 3.2.
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The proof of Theorem 7.1. The partial derivative of the mapping (3.6) with
respect to xp2 at the point (t∗, x

∗
s1 , x

∗
s2 , x

∗
p1 , x

∗
p2) has the form (3.8) and can

be written as Wt∗,x∗ =
∂Ψ

∂xp2
(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1 , x

∗
p2) = B−12 Φt∗,x∗s1 ,x

∗
s2
,x∗p1

(x∗p2) ∈

L(X2), where x∗ = x∗s1 + x∗s2 + x∗p1 + x∗p2 and Φt∗,x∗s1 ,x
∗
s2
,x∗p1
∈ C(X2,L(X2, Y2))

is the operator function defined by (7.1). Define the operator function
Wt∗,x∗s1 ,x

∗
s2
,x∗p1

: X2 → L(X2),

Wt∗,x∗s1 ,x
∗
s2
,x∗p1

(xp2) :=
∂Ψ

∂xp2
(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1 , xp2) = B−12 Φt∗,x∗s1 ,x

∗
s2
,x∗p1

(xp2),

where t∗, x
∗
s1 , x∗s2 and x∗p1 are arbitrary fixed elements of [t+,∞), Xs1 , Xs2

and X1, respectively. Recall that the basis invertibility of the operator function
Φt∗,x∗s1 ,x

∗
s2
,x∗p1

: X2 → L(X2, Y2) on some interval J imply the invertibility of the

operator Φt∗,x∗s1 ,x
∗
s2
,x∗p1

(x∗p2) for each (fixed) x∗p2 ∈ J . Thus, it follows from condi-

tion 2 of the present theorem that for any fixed element (t∗, x
∗
s1 +x∗s2 +x∗p1 +x∗p2) ∈

Lt+ such that x∗s2 ∈ Ds2 the operator Wt∗,x∗ = Wt∗,x∗s1 ,x
∗
s2
,x∗p1

(x∗p2) (where x∗ =

x∗s1 + x∗s2 + x∗p1 + x∗p2 , and Wt∗,x∗ was defined in (3.8)) has the inverse W−1t∗,x∗ =(
Φt∗,x∗s1 ,x

∗
s2
,x∗p1

(x∗p2)
)−1

B2 ∈ L(X2).
Let us prove that condition 1 of Theorem 3.2 holds. Due to condition 1 of

the present theorem, for each (fixed) t ∈ [t+,∞), xs1 ∈ Xs1 , xs2 ∈ Ds2 , xp1 ∈
X1 there exists xp2 ∈ X2 such that (t, xs1 + xs2 + xp1 + xp2) ∈ Lt+ , and it is
necessary to prove the uniqueness of such a xp2 in order to show that condition 1
of Theorem 3.2 is satisfied.

Take an arbitrary fixed t∗ ∈ [t+,∞), x∗s1 ∈ Xs1 , x∗s2 ∈ Ds2 , x∗p1 ∈
X1 and xip2 ∈ X2, i = 1, 2, such that (t∗, x

∗
s1 + x∗s2 + x∗p1 + xip2) ∈ Lt+ , then

(t∗, x
∗
s1 , x

∗
s2 , x

∗
p1 , x

i
p2) must satisfy (3.7), i.e., Ψ(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1 , x

i
p2) = 0, i = 1, 2.

Note that the projector P2 restricted to X2 is the identity operator in X2. It fol-
lows from the basis invertibility of the operator function Φt∗,x∗s1 ,x

∗
s2
,x∗p1

on [x1p2 , x
2
p2 ]

that for some additive resolution of the identity {Θi}di=1 in X2

(
where d = dimX2;∑d

i=1 Θi = IX2 = P2

∣∣
X2

)
the operator

Λ =

d∑
i=1

ΘiWt∗,x∗s1 ,x
∗
s2
,x∗p1

(xp2,i) = B−12

d∑
i=1

ΘiΦt∗,x∗s1 ,x
∗
s2
,x∗p1

(xp2,i) (7.2)

is invertible for each set of the elements {xp2,k}dk=1 ⊂ [x1p2 , x
2
p2 ]. Hence, the

operator function Wt∗,x∗s1 ,x
∗
s2
,x∗p1

is basis invertible on [x1p2 , x
2
p2 ]. Using the additive

resolution of the identity {Θi}di=1, we define the functions

Ψi := ΘiΨ: [t+,∞)×Xs1 ×Xs2 ×X1 ×X2 → X2,i = ΘiX2, i = 1, . . . , d.

Note that X2,i, i = 1, . . . , d, are one-dimensional spaces isomorphic to R, and
X2 = X2,1+̇ · · · +̇X2,d. By the finite increment formula, there exist xp2,i ∈
[x1p2 , x

2
p2 ], i = 1, ..., d, such that

Ψi(t∗, x
∗
s1 , x

∗
s2 , x

∗
p1 , x

2
p2)−Ψi(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1 , x

1
p2)
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=
∂Ψi

∂xp2
(t∗, x

∗
s1 , x

∗
s2 , x

∗
p1 , xp2,i)

(
x2p2 − x

1
p2

)
= ΘiWt∗,x∗s1 ,x

∗
s2
,x∗p1

(xp2,i)
(
x2p2 − x

1
p2

)
, i = 1, . . . , d.

Since Ψ(t∗, x
∗
s1 , x

∗
s2 , x

∗
p1 , x

i
p2) = 0, i = 1, 2, then, summing the obtained expres-

sions over i, we obtain
∑d

i=1 ΘiWt∗,x∗s1 ,x
∗
s2
,x∗p1

(xp2,i)
(
x2p2 − x

1
p2

)
= Λ

(
x2p2 − x

1
p2

)
=

0, where Λ is defined in (7.2). Since the operator Λ−1 exists, then x2p2 = x1p2 .
This holds for each point (t∗, x

∗
s1 + x∗s2 + x∗p1 + xip2) ∈ Lt+ , i = 1, 2, where x∗s2 ∈

Ds2 , since these points were chosen arbitrarily. Thus, the proof of condition 1 of
Theorem 3.2 is complete.

As in the proof of Theorem 3.2, take arbitrary fixed t∗ ∈ [t+,∞), x∗s1 ∈ Xs1 ,
x∗s2 ∈ Ds2 , x∗p1 ∈ X1. As proved above, there exists a unique x∗p2 ∈ X2 such that
(t∗, x∗) ∈ Lt+ , where x∗ = x∗s1 +x∗s2 +x∗p1 +x∗p2 , and for this (t∗, x∗) the operator

Wt∗,x∗ = Wt∗,x∗s1 ,x
∗
s2
,x∗p1

(x∗p2) has the inverse W−1t∗,x∗ ∈ L(X2).

The further proof coincides with the proof of Theorem 3.2. Generally, we
proved above that conditions 1, 2 of Theorem 3.2 are satisfied, and the rest of
the conditions of Theorem 3.2 are the same as in the present theorem.

Corollary 7.3. Theorems 4.1, 5.1, and 6.1 (which contain conditions 1, 2 of
Theorem 3.2) remain valid if one requires that conditions 1 and 2 of Theorem 7.1
hold instead of condition 1 of Theorem 3.2 and instead of condition 2 of Theorem
3.2 or condition 2 of Theorem 3.4.

Below we show how condition 3 of Theorem 3.2 can be weakened.

First, we consider an ODE

dx

dt
= F (t, x), (7.3)

where t ∈ [t+,∞), t+ ≥ 0, x ∈ W and W is an n-dimensional Euclidean space,
and the function F ∈ C([t+,∞)×W,W ) satisfies locally a Lipschitz condition
with respect to x on [t+,∞) × W , i.e., for each (t∗, x∗) ∈ [t+,∞) × W there
exist open neighborhoods U(t∗), Ũ(x∗) of the points t∗, x∗ and a constant L ≥ 0
such that ‖F (t, x1) − F (t, x2)‖ ≤ L‖x1 − x2‖ for any t ∈ U(t∗), x1, x2 ∈ Ũ(x∗).
According to [19], a solution x(t) of the ODE (7.3), which satisfies some initial
condition x(t0) = x0, is called defined in the future, if it can be extended for all
t ≥ t0, i.e., to the whole interval [t0,∞), and hence this solution is global by the
definition given in this paper. Thus, these definitions are equivalent. Consider
the ODE (the ODE (7.3) with a truncation)

dx

dt
= FT (t, x), (7.4)

where T is a parameter,

FT (t, x) :=

{
F (t, x), t+ ≤ t ≤ T
F (T, x), t > T

.
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The function FT (t, x) is called the truncation of the function F (t, x) over t, and it
has the same properties as F (t, x), i.e., FT (t, x) is continuous and locally satisfies
a Lipschitz condition with respect to x on [t+,∞)×W .

Below is the lemma proved in [7], which generalizes Theorem [19, Chapter IV,
Theorem XIII] and will be used in the sequel.

Lemma 7.4 (cf. [7, Lemma 3.1]). Let there exist a function V ∈ C1([t+,∞)×
Dc,R) positive on [t+,∞) × Dc, where Dc is the complement of some bounded
set D ⊂W containing 0 (the origin). Let for each number T > 0 there exist a
set DT ⊃ D and a function χT ∈ C([t+,∞)× (0,∞),R) such that :

1. V (t, x) → ∞ as ‖x‖ → ∞ uniformly in t on each finite interval [a, b) ⊂
[t+,∞);

2. V ′(7.4)(t, x) =
∂V

∂t
(t, x) +

∂V

∂x
(t, x)FT (t, x) ≤ χT (t, V (t, x)) for all t ∈ [t+,∞),

x ∈ Dc
T (V ′(7.4) is the derivative of V along the trajectories of (7.4));

3. the differential inequality dv/dt ≤ χT (t, v) (t ∈ [t+,∞)) does not have positive
solutions with finite escape time.

Then every solution of the ODE (7.3) is global (defined in the future).

Proof. The proof is carried out in the same way as the proof of the lemma [7,
Lemma 3.1].

We return to the consideration of the DAE (2.1). Recall that it is equivalent to
the system (2.43)–(2.46). Introduce the truncation of the function f(t, x) over t:

fT (t, x) :=

{
f(t, x), t+ ≤ t ≤ T
f(T, x), t > T

, T ≥ t+ is a parameter.

Then the truncation of the function Υ(t, x) (see (2.48)) over t has the form

ΥT (t, x) :=

(
A

(−1)
gen

(
F1fT (t, x)−Bgenxs1 −Bundxs2

)
A

(−1)
1

(
Q1fT (t, x)−B1xp1

) )

=

{
Υ(t, x), t+ ≤ t ≤ T
Υ(T, x), t > T

. (7.5)

It consists of the right-hand sides of the equations (2.43), (2.44) with a truncation:

dxs1
dt

= A(−1)
gen [F1fT (t, x)−Bgenxs1 −Bundxs2 ], (7.6)

dxp1
dt

= A
(−1)
1 [Q1fT (t, x)−B1xp1 ]. (7.7)

The derivative of a function V ∈ C1([t+,∞)×Ds1 ×Dp1 ,R) (Ds1 ×Dp1 ⊂ Xs1 ×
X1 is an open set) along the trajectories of the system (7.6), (7.7) has the form

V ′(7.6),(7.7)(t, xs1 , xp1) =
∂V

∂t
(t, xs1 , xp1) +

∂V

∂(xs1 , xp1)
(t, xs1 , xp1)ΥT (t, x)
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=
∂V

∂t
(t, xs1 , xp1)

+
∂V

∂xs1
(t, xs1 , xp1)

[
A(−1)

gen

(
F1fT (t, x)−Bgenxs1 −Bundxs2

)]
+

∂V

∂xp1
(t, xs1 , xp1)

[
A

(−1)
1

(
Q1fT (t, x)−B1xp1

)]
. (7.8)

Theorem 7.5. Theorems 3.2 and 3.4 remain valid if condition 3 of Theo-
rem 3.2 (which must also hold for Theorem 3.4) is replaced by the following :

3. There exists a function V ∈ C1([t+,∞)×Ds1 ×Dp1 ,R) positive on [t+,∞)×
Ds1 ×Dp1, where Ds1 ×Dp1 = {(xs1 , xp1)∈Xs1 ×X1 | ‖(xs1 , xp1)‖ > R} and
R > 0 is some number, and for each number T > 0 there exists a number
RT ≥ R and a function χT ∈ C([t+,∞)× (0,∞),R) such that :

(a) V (t, xs1 , xp1)→∞ as ‖(xs1 , xp1)‖ → ∞ uniformly in t on each finite in-
terval [a, b) ⊂ [t+,∞);

(b) for all (t, xs1 + xs2 + xp1 + xp2) ∈ Lt+, for which xs2 ∈ Ds2 and
‖(xs1 , xp1)‖ ≥ RT , the inequality

V ′(7.6),(7.7)(t, xs1 , xp1) ≤ χT

(
t, V (t, xs1 , xp1)

)
, (7.9)

where V ′(7.6),(7.7)(t, xs1 , xp1) has the form (7.8), holds;

(c) the differential inequality dv/dt ≤ χT (t, v) (t ∈ [t+,∞)) does not have
positive solutions with finite escape time.

Proof. The proof coincides with the proof of Theorem 3.2 (or 3.4), except for

the part where the existence of a global solution of (3.9), i.e.,
dω

dt
= Υ̃(t, ω), is

proved. Let us prove this part using the conditions of the present theorem.
As shown in the proof of Theorem 3.2 (as well as Theorem 3.4), there exists

the unique solution ω = ω(t) of the IVP (3.9), (3.10) on the maximal interval
of existence [t0, β). Recall that (t0, x0) ∈ Lt+ , where S2x0 ∈ Ds2 , is an arbitrar-
ily chosen initial point and that φs2 ∈ C([t0,∞), Ds2) is an arbitrarily chosen
function with the initial value φs2(t0) = S2x0.

Consider the ODE (3.9) with a truncation, that is,

d

dt
ω = Υ̃T (t, ω), (7.10)

where T is a parameter,

ω =

(
xs1
xp1

)
, Υ̃T (t, ω) :=

{
Υ̃(t, ω), t0 ≤ t ≤ T
Υ̃(T, ω), t > T

.

Note that

Υ̃T (t, ω) :=

{
Υ̃(t, ω) = Υ(t, xs1 + φs2(t) + xp1 + q(t, xs1 , xp1)), t0 ≤ t ≤ T
Υ̃(T, ω) = Υ(T, xs1 + φs2(T ) + xp1 + q(T, xs1 , xp1)), t > T

.
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We choose a number R > 0 (R < ∞) and a function V (t, xs1 , xp1) such
that condition 3 of the theorem holds, and introduce the function V (t, ω) :=
V (t, xs1 , xp1). Due to condition 3, for each T > 0 there exists a number RT ≥ R
and a function χT ∈ C([t+,∞) × (0,∞),R) such that the derivative of V along
the trajectories of the equation (7.10) satisfies the inequality

V ′(7.10)(t, ω) =
∂V

∂t
(t, ω) +

∂V

∂ω
(t, ω)Υ̃T (t, ω) ≤ χT

(
t, V (t, ω)

)
(7.11)

for all t ≥ t0 and ‖ω‖ ≥ RT . Since, by virtue of condition (c), the differential

inequality
dv

dt
≤ χT (t, v) (t ∈ [t0,∞)) does not have positive solutions with finite

escape time, then by Lemma 7.4 the solution ω(t) = (ωs1(t)T, ωp1(t)T)T is global,
i.e., exists on [t0,∞). Thus, what was needed has been proved.

8. On the choice of the functions χ and V when checking the
conditions of proved theorems

The proved theorems contain conditions in a general form, and the main
difficulty in applying the theorems lies in choosing suitable functions χ and V .

Choose the function χ ∈ C([t+,∞)×(0,∞),R), which is present in Theorems
3.2, 3.4, 4.1, 5.1, and 7.1, in the form (2.5), that is,

χ(t, v) = k(t)U(v),

where k ∈ C([t+,∞),R) and U ∈ C(0,∞), then the conditions of the theorems
take the following form:

• In Theorems 3.2, 3.4 and 7.1 on the global solvability all conditions remain
unchanged, except for condition 3 which takes the form:

3. There exists a number R > 0, a function V ∈ C1([t+,∞)×Ds1 ×Dp1 ,R)
positive on [t+,∞)×Ds1 ×Dp1 , where Ds1×Dp1 = {(xs1 , xp1)∈Xs1×X1 |
‖(xs1 , xp1)‖ > R}, and functions k ∈ C([t+,∞),R), U ∈ C(0,∞) such that
condition (a) of Theorem 3.2 holds,∫ ∞

v0

dv

U(v)
=∞

(v0 > 0 is some number) and

V ′(2.43),(2.44)(t, xs1 , xp1) ≤ k(t)U
(
V (t, xs1 , xp1)

)
(8.1)

for all (t, xs1 +xs2 +xp1 +xp2) ∈ Lt+ for which xs2 ∈ Ds2 , ‖(xs1 , xp1)‖ > R.

• In Theorem 4.1 on the Lagrange stability all conditions remain unchanged,
except for condition 3 which takes the form:

3. There exists a number R > 0, a function V ∈ C1([t+,∞) ×Ds1 ×Dp1 ,R)
positive on [t+,∞)×Ds1 ×Dp1 , where Ds1 ×Dp1 ={(xs1 , xp1)∈Xs1 ×X1 |
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‖(xs1 , xp1)‖ > R}, and functions k∈C([t+,∞),R), U ∈C(0,∞) such that
condition (a) of Theorem 4.1 holds,∫ ∞

v0

dv

U(v)
=∞,

∫ ∞
t0

k(t)dt <∞

(t0 ≥ t+, v0 > 0 are some numbers) and the inequality (8.1) holds for all
(t, xs1 + xs2 + xp1 + xp2) ∈ Lt+ for which xs2 ∈ Ds2 , ‖(xs1 , xp1)‖ > R.

• In Theorem 5.1 on the Lagrange instability all conditions remain unchanged,
except for condition 4 which takes the form:

4. There exists a function V ∈ C1([t+,∞) × Ω1,R) positive on [t+,∞) × Ω1

and functions k ∈ C([t+,∞),R), U ∈ C(0,∞) such that∫ ∞
v0

dv

U(v)
<∞,

∫ ∞
t0

k(t)dt =∞

(t0 ≥ t+, v0 > 0 are some numbers) and

V ′(2.43),(2.44)(t, xs1 , xp1) ≥ k(t)U
(
V (t, xs1 , xp1)

)
for all (t, xs1 + xs2 + xp1 + xp2) ∈ Lt+ for which xs2 ∈ Ds2 , (xs1 , xp1) ∈ Ω1.

Recall that V ′(2.43),(2.44) has the form (2.47). The validity of the theorems
with the above changes in the conditions follows directly from the remarks on
differential inequalities given in Section 2.1.

Now, consider the scalar function V which is present in all theorems proved
above and will be called a Lyapunov type function. Choose it in the form

V (t, xs1 , xp1) =
(
(xs1 , xp1), (xs1 , xp1)

)
H

=
(
H(t)(xs1 , xp1), (xs1 , xp1)

)
, (8.2)

where H ∈ C([t+,∞),L(Xs1 × X1)) is a positive definite self-adjoint operator
function such that H(t)

∣∣
Xs1

: Xs1 → Xs1 × {0} and H(t)
∣∣
X1

: X1 → {0} × X1

for any fixed t and (xs1 , xp1) is a column vector. Due to the properties of the
operator function H, the function (8.2) satisfies the conditions of Theorems 3.2,
3.4, 7.1, 4.1, 5.1 on the global solvability, Lagrange stability and instability, and
if in addition supt∈[t+,∞) ‖H(t)‖ <∞, then the function (8.2) also satisfies the
conditions of Theorem 6.1 on the uniform dissipativity, however, of course, the
conditions on the derivative V ′(2.43),(2.44)(t, xs1 , xp1) in these theorems need to be
checked.

The conditions H(t)
∣∣
Xs1

: Xs1 → Xs1 × {0} and H(t)
∣∣
X1

: X1 → {0} × X1

(t ≥ t+ is fixed) mean that the pair of subspaces {Xs1 , Xs1×{0}} and the pair of
subspaces {X1, {0} ×X1} are invariant under the operator H(t) ∈ L(Xs1 ×X1)
(for each t) and it has the block structure

H(t) =

(
Hs1(t) 0

0 H1(t)

)
: Xs1 ×X1 → Xs1 ×X1, (8.3)

where Hs1 ∈ C([t+,∞),L(Xs1)) and H1 ∈ C([t+,∞),L(X1)) are positive definite
self-adjoint operator functions. Note that if we identify Xs1 × {0} with Xs1
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and {0} × X1 with X1, i.e., identify Xs1 × X1 = Xs1 × {0}+̇{0} × X1 with
Xs1+̇X1 as in Section 2.2, then H(t) (t fixed) can be considered as the operator
H(t) : Xs1+̇X1 → Xs1+̇X1.

If H(t) ≡ H ∈ L(Xs1 ×X1) is a time-invariant operator, then for all theorems
it suffices to require it to be self-adjoint and positive and the pairs of subspaces
{Xs1 , Xs1 × {0}} and {X1, {0} × X1} to be invariant under H. Then the func-
tion (8.2) takes the form V (t, xs1 , xp1) ≡ V (xs1 , xp1) =

(
H(xs1 , xp1), (xs1 , xp1)

)
and satisfies the conditions of all theorems, except for the conditions on
V ′(2.43),(2.44)(t, xs1 , xp1) which need to be checked.

For a function V of the form (8.2) the derivative (2.47) takes the form

V ′(2.43),(2.44)(t, xs1 , xp1) =

(
d

dt
H(t)(xs1 , xp1), (xs1 , xp1)

)
+ 2
(
H(t)(xs1 , xp1),Υ(t, x)

)
=
( d
dt
H(t)(xs1 , xp1), (xs1 , xp1)

)
+ 2
(
Hs1(t)xs1 ,

[
A(−1)

gen

(
F1f(t, x)−Bgenxs1 −Bundxs2

)])
+ 2
(
H1(t)xp1 ,

[
A

(−1)
1

(
Q1f(t, x)−B1xp1

)])
,

where Hs1(t), H1(t) are operators defined in (8.3), and Υ(t, x) has the form (2.48).

9. Isothermal models of gas networks in the form of DAEs

9.1. A model of a gas flow for a single pipe (in the isothermal case).
The mathematical model of the dynamics of a gas flow in a pipe in the case when
the gas temperature is constant consists of the isothermal Euler equations, which
we write in the form (see, e.g., [5, (ISO1), p. 38])

∂tρ+ ∂x(ρv) = 0, (9.1)

∂t(ρv) + ∂x(p+ ρv2) = −κ ρv|v| − gρ slope, (9.2)

where x ∈ [0, L], L <∞ is the length of the pipe, and t ∈ I ⊂ [0,∞), I is the time
interval, and the equation of state for real gases for the constant temperature:

p = RsT0ρz(p). (9.3)

Here ρ = ρ(t, x) denotes the density, v = v(t, x) is the velocity of the gas, p =
p(t, x) is the pressure, g is the gravitational acceleration, κ := 0.5λfrD

−1 where
λfr is the pipe friction coefficient and D is the pipe diameter, T0 = const is

the gas temperature, Rs is the specific gas constant, slope(x) =
dh

dx
(x) (cf. [14])

denotes the slope
dh

dx
(x) of the pipe, where h = h(x) is the height profile of the

pipe over ground, and z = z(p) is the compressibility factor (see the description of
the model in [5]). In particular, the compressibility factor z(p) = 1+αp, where α
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is a certain constant (see, e.g., [5, p. 5]), is a good approximation for pressures up
to 70 bar which is used by the American Gas Association. If this compressibility
factor is used, then p = RsT0ρ/(1 − αRsT0ρ) that is one of the commonly used
equation of state in the isothermal case.

When modelling the dynamics of a gas flow, the assumption (ρv2)x = 0 (i.e.,
we assume that this term is negligibly small) can be used (see, e.g., [16]) in order
to simplify the model, then we obtain the gas dynamics equations in the form
(9.1) and

∂t(ρv) + ∂xp = −κ ρv|v| − gρ slope (9.4)

(see [5, (ISO2), p.12]; the similar system is used in [16]) with the same equation
of state (9.3). The equations (9.1), (9.4) are often referred to as a semilinear
model of the gas flow dynamics [5, 16].

In [5, p.26] and [16, p.2,3], q denotes a mass flow and it is defined as q =
Sρv, where S is the cross-sectional area of a pipe. We denote by q := ρv a mass
flow by the cross-sectional area equal to 1, in order not to introduce additional
notation, and assume that the total mass flow is q̃ = qS. We can assume that
|q| = ρ|v| (cf. [5, 16]). Also, assume that slope(x) ≡ sin θ where the parameter θ
denotes the angle of the pipe slope (cf. [5,16]). Then the system of the isothermal
Euler equations (9.1), (9.4) and the gas state equation (9.3) takes the form

∂tρ+ ∂xq = 0, (9.5)

∂tq + ∂xp+ ρ g sin θ = −κ q|q|ρ−1, (9.6)

p = RsT0ρz(p). (9.7)

Suppose that a pipe was previously divided into parts of a short length
through the introduction of artificial nodes and L is the length of such a part
(subpipe). In Section 9.2 we consider the model of a gas network, where a gas flow
in each pipe is described by a system of the type (9.5)–(9.7), and show that it also
can be represented as the DAE (2.1). Thus, the pipe of the original length can
be considered as a gas network consists of pipes of a short length, and the model
obtained in Section 9.2 (generally, this model describes a gas network including
pipes, valves, regulators and compressors) can be applied for the description of
this network. We discretize the equations (9.5), (9.6) (for the pipe of the length
L) in the phase variable (in space) and obtain the spatially discretized equations

dρr
dt

+
qr − ql
L

= 0, (9.8)

dql
dt

+
pr − pl
L

+ ρr g sin θ = −κ ql|ql|
ρr

, (9.9)

pr = RsT0ρrz(pr). (9.10)

where qr(t) := q(t, L), pr(t) := p(t, L), ρr(t) := ρ(t, L) and ql(t) := q(t, 0), pl(t) :=
p(t, 0). If we represent the pipe as a graph consisting of an edge and two vertices
(nodes), define the vertices as the left and right nodes and fix the edge orientation
from the left node to the right node, then qr(t), pr(t) and ρr(t) are defined at
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the right end of pipe and ql(t), pl(t) are defined at the left end of pipe. For a
gas network, the spatial discretization is performed on each pipe. Here we use a
scheme similar to the topology-adapted discretization scheme from [2,15].

Let the functions qr and pl be given, that is, we consider the boundary con-
ditions of the form

q(t, L) = qr(t), p(t, 0) = pl(t), t ∈ I. (9.11)

Then functions pr, ρr and ql need to be found.
We introduce the variable vector x = (ρr, ql, pr)T (we denote it by x for

convenience and comparison with further results, since the original variable x is
already absent from the equations) and denote

A =

1 0 0
0 1 0
0 0 0

 , B =

 0 − 1
L 0

g sin θ 0 1
L

0 0 1

 , f(t, x) =

 − qr(t)
L

pl(t)
L −

κ ql|ql|
ρr

RsT0 ρrz(pr)

 . (9.12)

Then the system (9.8)–(9.10) can be written in the vector form

d

dt
[Ax] +Bx = f(t, x), t ∈ I, (9.13)

where A, B ∈ R3×3 and f ∈ C(I × R3,R3). The initial condition for (9.13) can
be given as

x(t0) = x0, x0 = (ρ0r , q
0
l , p

0
r)

T. (9.14)

where ρ0r and p0r have to satisfy (9.10) for t = t0, i.e., p0r = RsT0ρ
0
rz(p

0
r).

In general, the DAE (9.13) is regular (since the pencil λA + B is regular),
but if any of the input parameters (i.e., qr(t) or pl(t)) is not specified, then the
system (9.8)–(9.10) is underdetermined and the corresponding DAE is singular
(nonregular). Also, if it is required to realize the evolution of some variable (i.e.,
pr, or ρr, or ql) such that it becomes equal to the prescribed function, then this
system is overdetermined and the corresponding DAE is singular.

9.2. A model of a gas network (in the isothermal case). Now, con-
sider the mathematical model of a gas network, where a gas flow in each pipe is
described by a system of the type (9.5), (9.6), (9.7). In addition to pipes, the gas
network also includes valves, regulators and compressors.

Following [5], [16], we describe a gas network as oriented connected graph G =
(V, E), where V denotes a set of nodes (vertices), E denotes a set of edges, and each
edge joins two distinct nodes (i.e., there are no self-loops). We fix the orientation
of edge e ∈ E , denoting its endpoints by vl and vr and assuming that the edge is
oriented from the left node vl to the right node vr. Note that the orientation of the
edge may not coincide with the direction of a gas flow. We collect all nodes with a
fixed pressure in Vpset and refer to them as pressure nodes [2,16]. Fixed pressure
means the existence of a time-dependent function chosen in advance, which yields
the respective pressure value at each point in time. All other nodes we collect in
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Vqset. Accordingly, V = Vpset ∪ Vqset. We denote the sets of edges corresponding
to the pipes, valves and regulating elements (regulators and compressors) by Epip,
Eval and Ereg, respectively. Thus, E = Epip ∪ Eval ∪ Ereg.

First, introduce the vector p of the pressures of nodes u ∈ Vpset, and the
vectors qpip,r, qpip,l, qval and qreg of flows at the right ends of pipes, at the left
ends of pipes, through valves and through regulating elements, respectively.

As mentioned above, at the pressure nodes u ∈ Vpset, the pressure func-
tion pset(t) = (. . . , psetu (t), . . .)Tu∈Vpset is given. At the nodes u ∈ Vqset=V\Vpset
(which include junction, demand and source nodes), the function qset(t) =
(. . . , qsetu (t), . . .)Tu∈Vqset specifying the relationships between the flows qpip,r, qpip,l,

qval, qreg in a Kirchhoff-type flow balance equation (see (9.19) below) is given.
The mathematical model of a gas network consisting of pipes, valves, reg-

ulators and compressors after applying spatial discretization (more precisely, a
topologically adaptive discretization of the isothermal Euler equations for pipes
and pipelines [2, 15]) has the form [16, (9), p. 7]:

AT
pip,r

d

dt
φ(p) +Dq(qpip,r − qpip,l) = 0, (9.15)

d

dt
qpip,l +Dp(AT

pip,r +AT
pip,l)p = −fpip(p, qpip,l, t), (9.16)

Dval
d

dt
qval = −fval(p, qval, t), (9.17)

Dreg
d

dt
qreg = freg(p, qreg, t), (9.18)

Apip,lqpip,l +Avalqval +Aregqreg +Apip,rqpip,r = qset(t), (9.19)

0 = fpb(p), (9.20)

0 = fqb(qpip,l, qpip,r, qval, qreg), (9.21)

where

Apip,l :=
(
apip,lij

)
i=1,...,|Vqset|,
j=1,...,|Epip|

, Apip,r :=
(
apip,rij

)
i=1,...,|Vqset|,
j=1,...,|Epip|

,

Aval :=
(
avalij

)
i=1,...,|Vqset|,
j=1,...,|Eval|

, Areg :=
(
aregij

)
i=1,...,|Vqset|,
j=1,...,|Ereg|

are constant incidence matrices with the entries presented in [16, Section 3.1,
p. 4],

Dq := diag{. . . , κe
Le
, . . .}e∈Epip , Dp := diag{. . . , Se

Le
, . . .}e∈Epip ,

Dval := diag{. . . , µe, . . .}e∈Eval , Dreg := diag{. . . , µe, . . .}e∈Ereg

are constant diagonal matrices, where µe ≥ 0, κe = RsT0/Se (as above, T0 =
const is the temperature and Rs is the specific gas constant), Se and Le are
the cross-sectional area and the length of pipe e, respectively. Here p, qpip,r,
qpip,l, qval and qreg are unknown and the remaining functions and parameters are
given. The functions fpip(p, qpip,l, t), fval(p, qval, t) and freg(p, qreg, t) are specified
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in [16, (4),(5),(8), p.5,6,7]; fpb(p) and fqb(qpip,l, qpip,r, qval, qreg) are given contin-
uous functions (see [16] for details).

Note that the elements of φ(p) = (. . . , ϕ(pu), . . .)Tu∈Vqset from (9.15) are ex-

pressed as ϕ(p) = p/z(p), p = pu, u ∈ Vqset (see [16, p. 2,5]), where the function
ϕ(p) can be also derived from the equation of state for real gases (in the isothermal
case) p = RsT0ρz(p) (9.3), i.e., ϕ(p) = RsT0ρ. Thus, we introduce an additional

variable % =


...
ρu
...


u∈Vqset

, and instead of (9.15) we use the system

AT
pip,r

d

dt
%+Dq(qpip,r − qpip,l) = 0, (9.22)

% = φ(p), (9.23)

which is equivalent to (9.15), taking into account that κe = RsT0/Se. Also, we
rewrite the function fpip(p, qpip,l, t) (this function also includes φ(p) [16, p. 4,5]),
without changing its notation, as fpip(%, qpip,l, t). Then the equation (9.16) takes
the form

d

dt
qpip,l +Dp(AT

pip,r +AT
pip,l)p = −fpip(%, qpip,l, t). (9.24)

Finally, we obtain the differential-algebraic system (9.22), (9.24), (9.17),
(9.18), (9.19), (9.23), (9.20) and (9.21). It is assumed that the resulting sys-
tem with the spatially discretized equations satisfies conditions sufficient for its
solution to approximate a solution of the original system sufficiently accurately.

The system (9.22), (9.24), (9.17), (9.18), (9.19), (9.23), (9.20), (9.21) can be
written in the form of the singular (nonregular) DAE

d

dt
[Ax] +Bx(t) = f(t, x), where (9.25)

A =



AT
pip,r 0 0 0 0 0

0 I 0 0 0 0
0 0 Dval 0 0 0
0 0 0 0 Dreg 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, f(t, x) =



0
−fpip(%, qpip,l, t),
−fval(p, qval, t)
freg(p, qreg, t),

qset(t)
φ(p)
fpb(p)

fqb(qpip,l, qpip,r, qval, qreg)


,

B =



0 −Dq 0 0 Dq 0
0 0 0 0 0 Dp(AT

pip,r +AT
pip,l)

0 0 0 0 0 0
0 0 0 0 0 0
0 Apip,l Aval Areg Apip,r 0
I 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, x =



%
qpip,l
qval
qreg
qpip,r
p

.
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The initial condition for the DAE (9.25) has the form

x(0) = x0, (9.26)

where x0 = (%0, q0pip,l, q
0
val, q

0
reg, q

0
pip,r, p

0)T is chosen so that the values t0, x0 satisfy
the algebraic equations (9.19), (9.23), (9.20) and (9.21) (or satisfy the consistency
condition defined in Remark 3.1).

In [16], the vector form of the DAE corresponding to the system (9.15)–(9.21)
is slightly different from the above, but, in general, it is also a nonregular DAE in
the sense that the number of unknowns is not equal to the number of equations.
However, in [16], it is mentioned that with a proper choice of the directions of
pipe and some additional conditions to the positions of regulators and valves (as
described in, e.g., [15]), the resulting DAE system will have index 1 that means it
will be a regular as well. A gas network model in the form of a nonregular DAE
of the type (9.25) is also obtained in [1].

10. Analysis of a singular (nonregular) semilinear DAE with
the characteristic pencil of the rank rank(λA+B) < n,m

In this section, we consider a simple example which demonstrates the appli-
cation of the obtained results.

Consider the singular semilinear DAE (a DAE of the form (2.1))

d

dt
[Ax] +Bx = f(t, x), (10.1)

where t ∈ [t+,∞) (t+ ≥ 0), x = (x1, x2, x3)T ∈ R3, a function f(t, x) =
(f1(t, x), f2(t, x), f3(t, x))T ∈ C([t+,∞) × R3,R3) has the continuous partial
derivative ∂xf on [t+,∞) × R3, and A, B ∈ L(Rn,Rm) (here the terminology
from Section 2.2 is used), n = m = 3, are the operators to which the matrices

A =

1 0 −1
0 0 0
0 0 0

 , B =

1 −1 −1
1 1 −1
0 2 0

 (10.2)

correspond with respect to the standard bases in Rn, n = 3, and Rm, m = 3. As
usual, a basis in Rk is standard if the ith coordinate of the basis vector ej (j =
1, . . . , k) is equal to δij . The pencil λA + B of the operators (10.2) is singular
and its rank equals rank(λA+B) = 2.

Generally, in this section we consider the matrices corresponding to the op-
erators (from R3 into R3) with respect to the standard bases in R3 (as well as
we consider the coordinates of vectors with respect to the standard basis in R3),
and if the bases are different, then this will be explicitly indicated.

The singular pencil (10.2) was studied in [9, Section 4.4].
In [9], it is shown that the subspaces from the decomposition (2.35)

where n = 3, i.e., R3 = Xs+̇Xr = Xs1+̇Xs2+̇X1+̇X2, and from the decompo-
sition (2.37) where m = 3, i.e., R3 = Ys+̇Yr = Ys1+̇Ys2+̇Y1+̇Y2, can be rep-
resented as Xs = Xs1+̇Xs2 = Lin{si}2i=1, Xs1 = Lin{s1}, Xs2 = Lin{s2}, Ys =
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Ys1+̇Ys2 = Lin{li}2i=1, Ys1 = Lin{l1}, Ys2 = Lin{l2}, Xr = Lin{p}, X1 = {0},
X2 = Xr, Yr = Lin{q}, Y1 = {0}, Y2 = Yr, where

s1 =

1
0
0

, s2 =

1
0
1

, p =

0
1
0

, l1 =

1
0
0

, l2 =

0
1
0

, q =

−1/2
1/2
1

, (10.3)

and that the projection matrices corresponding to the projectors S : R3 → Xs,
S = S1 + S2, Si : R3 → Xsi , F : R3 → Ys, F = F1 + F2, Fi : R3 → Ysi , P : R3 →
Xr, P = P1 + P2, Pi : R3 → Xi, Q : R3 → Yr, Q = Q1 + Q2, Qi : R3 → Yi, i =
1, 2, which are defined in (2.13), (2.14) and (2.30), have the form

S1 =

1 0 −1
0 0 0
0 0 0

 , S2 =

0 0 1
0 0 0
0 0 1

 , S =

1 0 0
0 0 0
0 0 1

 ,

F1 =

1 0 1/2
0 0 0
0 0 0

 , F2 =

0 0 0
0 1 −1/2
0 0 0

 , F =

1 0 1/2
0 1 −1/2
0 0 0

 ,

P =

0 0 0
0 1 0
0 0 0

 , P1 = 0, P2 = P,

Q =

0 0 −1/2
0 0 1/2
0 0 1

 , Q1 = 0, Q2 = Q. (10.4)

Note that if in R3, instead of the standard basis, we take the basis which is
the union of the bases of the summands from the decomposition (2.35) of the
space Rn where n = 3, i.e., we take the vectors s1, s2, p defined in (10.3), then
the matrices corresponding to the projectors S, P , Si, Pi, i = 1, 2, with respect
to the basis s1, s2, p in R3 will have the simple form (and will be self-adjoint):

S1 =

1 0 0
0 0 0
0 0 0

 , S2 =

0 0 0
0 1 0
0 0 0

 , S =

1 0 0
0 1 0
0 0 0

 ,

P =

0 0 0
0 0 0
0 0 1

 , P1 = 0, P2 = P.

Similarly, if in R3, instead of the standard basis, we take the basis which is the
union of the bases of the summands from the decomposition (2.37) of the space
Rm where m = 3, i.e., we take l1, l2, q defined in (10.3), then the matrices
corresponding to the projectors F , Q, Fi, Qi, i = 1, 2, with respect to the basis
l1, l2, q in R3 will have a simple form (and will be self-adjoint):

F1 =

1 0 0
0 0 0
0 0 0

 , F2 =

0 0 0
0 1 0
0 0 0

 , F =

1 0 0
0 1 0
0 0 0

 ,
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Q =

0 0 0
0 0 0
0 0 1

 , Q1 = 0, Q2 = Q.

However, in this case, the operators A, B as the operators from Rn into Rm,
where n = m = 3, and in general the DAE (10.1), (10.2), must be considered
with respect to the new bases s1, s2, p in Rn and l1, l2, q in Rm (n = m = 3). In
what follows, we continue to use the standard bases in R3 (Rn, Rm, n = m = 3).

As shown in [9], the matrices (with respect to the standard bases in R3)

Ar = 0, Agen = A, Bund = 0, Br =

0 −1 0
0 1 0
0 2 0

 ,

Bgen =

1 0 −1
0 0 0
0 0 0

 , Bov =

0 0 0
1 0 −1
0 0 0

 , A(−1)
gen =

1 0 1/2
0 0 0
0 0 0


correspond to the operators Ar, Br, Agen, Bgen, Bund, Bov introduced in (2.18),

(2.20) and the operator A
(−1)
gen defined in Remark 2.3. Since Ar = Ar

∣∣
Xr

= 0 and

Br = Br

∣∣
Xr

has the inverse B−1r ∈ L(Yr, Xr), then λAr + Br is a regular pencil
of index 1.

The DAE (10.1), (10.2), is the vector form of the system

d

dt
(x1 − x3) + x1 − x2 − x3 = f1(t, x), (10.5)

x1 + x2 − x3 = f2(t, x), (10.6)

2x2 = f3(t, x). (10.7)

Note that a point (t, x) belongs to the manifold Lt+ (introduced in Re-
mark 3.1) if and only if it satisfies the equations (2.41), (2.42) or the equations
equivalent to them, e.g., (2.45), (2.46). It is readily verified that the equations
(2.41) and (2.42) (as well as (2.45), (2.46)) are equivalent to the equations

x2 =
1

2
f3(t, x), (10.8)

x1 − x3 = f2(t, x)− 0.5f3(t, x) (10.9)

respectively, which are the “algebraic part” of the DAE (10.1), (10.2), and are
equivalent to the algebraic equations (10.6), (10.7). Also, notice that the ODE
(2.44) (or (2.40)) is not present in the system (10.5)–(10.7) since the projector
Q1 = 0, and the ODE (2.43) (or (2.39)) is equivalent to

d

dt
(x1 − x3) = −(x1 − x3) + f1(t, x) +

1

2
f3(t, x), (10.10)

that is, the equation (10.5) into which (10.7) (or (10.8)) is substituted.
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The components (projections) of a vector x = (x1, x2, x3)T ∈ R3 represented
as (2.36) have the form

xs1 = S1x = (x1 − x3, 0, 0)T, xs2 = S2x = (x3, 0, x3)T,

xp1 = P1x = 0, xp2 = P2x = (0, x2, 0)T,

xs = xs1 + xs2 , xr = xp2 , where Si, Pi, i = 1, 2, were presented in (10.4).
Obviously, x1 − x3, x3, x2 are the coordinates of the vector x = (x1, x2, x3) with
respect to the basis s1, s2, p in R3, i.e., x = (x1 − x3)s1 + x3s2 + x2p, where s1,
s2, p are the vectors defined in (10.3). Make the change of variables

w = x1 − x3, ξ = x3, u = x2, (10.11)

then xs1 = w (1, 0, 0)T, xs2 = ξ (1, 0, 1)T, xp2 = u (0, 1, 0)T.

Taking into account the new notations (10.11), we consider the function

f̃(t, w, ξ, u) := f(t, w + ξ, u, ξ) = f(t, x1, x2, x3) = f(t, x) ∈ C([t+,∞)× R3,R3),
(10.12)

which, obviously, has the continuous partial derivative
∂f

∂(w, ξ, u)
(t, w, ξ, u) for

all (t, w, ξ, u) ∈ [t+,∞) × R × R × R. In the new notations the system of the
equations (10.10), (10.8), (10.9) takes the form

d

dt
w = −w + f̃1(t, w, ξ, u) + 0.5f̃3(t, w, ξ, u), (10.13)

u =
1

2
f̃3(t, w, ξ, u), (10.14)

w = f̃2(t, w, ξ, u)− 0.5f̃3(t, w, ξ, u). (10.15)

Now we find the conditions under which there exists a global solution of the
DAE (10.1), (10.2), and, accordingly, the system (10.5)–(10.7). To do this, we
use Theorems 3.2 and 7.1, and in addition the remarks regarding the functions χ
and V from Section 8.

It follows from the above that condition 1 of Theorem 3.2 is satisfied if:

(i) There exists a set D̃s2 ⊂ R such that for any fixed t ∈ [t+,∞), w ∈ R and
ξ ∈ D̃s2 there exists a unique u ∈ R such that the equalities (10.14), (10.15)
are satisfied.

The matrix corresponding to the operator Φ̂t∗,x∗ defined (for fixed t∗, x∗) by
(3.4) has the form

Φ̂t∗,x∗ =


0 −1

2

∂f3
∂x2

(t∗, x∗) + 1 0

0
1

2

∂f3
∂x2

(t∗, x∗)− 1 0

0
∂f3
∂x2

(t∗, x∗)− 2 0

 ,
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and since the equality Φ̂t∗,x∗xp2 = 0, xp2 ∈ X2, yields xp2 = 0 if the relation
∂f3
∂x2

(t∗, x∗) − 2 6= 0 holds, then the operator Φt∗,x∗ = Φ̂t∗,x∗

∣∣
X2

(3.2) has the

inverse Φ−1t∗,x∗ ∈ L(Y2, X2) if this relation is satisfied. Note that

∂f3
∂x2

(t, x1, x2, x3) =
∂f3
∂x2

(t, w + ξ, u, ξ) =
∂f̃3
∂u

(t, w, ξ, u).

Thus, condition 2 of Theorem 3.2 is satisfied if:

(ii)
∂f̃3
∂u

(t∗, w∗, ξ∗, u∗) 6= 2 for any fixed t∗ ∈ [t+,∞), w∗ ∈ R, ξ∗ ∈ D̃s2 , u∗ ∈ R
satisfying the equalities (10.14), (10.15).

Also, since the space X2 is one-dimensional, then condition 2 of Theorem 7.1
is satisfied if condition (ii) holds (see Remark 7.2 for explanation). Consequently,
we can use condition 1 of Theorem 7.1 instead of more restrictive condition 1 of
Theorem 3.2 and, accordingly, replace condition (i) by the following:

(i)′ There exists a set D̃s2 ⊂ R such that for any fixed t ∈ [t+,∞), w ∈ R and
ξ ∈ D̃s2 there exists u ∈ R such that the equalities (10.14), (10.15) hold.

Recall that X1 = {0}, the equation (2.44) is not present in the system (10.13)–
(10.14), and the equation (2.43) is equivalent to (10.13). Thus, condition 3 of
Theorem 3.2 (as well as Theorem 7.1) is fulfilled if:

(iii) There exists a number R > 0 (R can be sufficiently large), a function Ṽ ∈
C1([t+,∞)× D̃s1 ,R) positive on [t+,∞)× D̃s1 , where D̃s1 = {|w| > R}, and
a function χ ∈ C([t+,∞)× (0,∞),R) such that:

(a) Ṽ (t, w) → ∞ as |w| → ∞ uniformly in t on each finite interval [a, b)⊂
[t+,∞);

(b) Ṽ ′(10.13)(t, w)=
∂Ṽ

∂t
(t, w)+

∂Ṽ

∂w
(t, w)

[
−w+f̃1(t, w, ξ, u)+

1

2
f̃3(t, w, ξ, u)

]
≤

χ
(
t, Ṽ (t, w)

)
for all t ∈ [t+,∞), w ∈ R, ξ ∈ D̃s2 , u ∈ R satisfying (10.14),

(10.15) and |w| > R.

(c) the differential inequality
dv

dt
≤ χ(t, v) (t ∈ [t+,∞)) does not have posi-

tive solutions with finite escape time.

Condition (iii) is given in the most general form, and if we take the function Ṽ of
the type (8.2) and the function χ of the form (2.5), then we obtain a particular
case of this condition, which is convenient for practical application. Namely,
let Ṽ (t, w) = Hw2, where H = const > 0, w ∈ R, and χ(t, v) = k(t)U(v),
where k ∈ C([t+,∞),R) and U ∈ C(0,∞). Then Ṽ ′(10.13)(t, w) = −2H w2 +

2H w
[
f̃1(t, w, ξ, u) + 1

2 f̃3(t, w, ξ, u)
]
, and, taking into account the remarks from

Section 8, condition (iii) is converted into the following one:

(iii)′ There exists a number R > 0 and functions k ∈ C([t+,∞),R), U ∈ C(0,∞)
such that ∫ ∞

v0

dv

U(v)
=∞
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(v0 > 0 is a constant) and

−2H w2 + 2H w
[
f̃1(t, w, ξ, u) +

1

2
f̃3(t, w, ξ, u)

]
≤ k(t)U(Hw2),

where H > 0 is some constant, for all t ∈ [t+,∞), w ∈ R, ξ ∈ D̃s2 , u ∈ R
satisfying (10.14), (10.15) and |w| > R.

Finally, the following conclusions can be drawn.

Let conditions (i)′ and (ii), where the function f̃(t, w, ξ, u) is defined by
(10.12), be fulfilled and let condition (iii) or (iii)′ hold, then by Theorem 7.1
(as well as by Theorem 3.2 if condition (i)′ is replaced by (i)) for each ini-
tial point (t0, x0) ∈ [t+,∞) × R3, where x0 = (x0,1, x0,2, x0,3)T, for which the

equalities (10.8), (10.9) hold and x0,3 ∈ D̃s2 , the initial value problem (10.1),
(10.2), x(t0) = x0 has a unique global solution x(t) with the component xs2(t) =
S2x(t) = ϕs2(t) (1, 0, 1)T, where ϕs2 ∈ C([t0,∞), D̃s2) is some function with the
initial value ϕs2(t0) = x0,3.
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Якiсний аналiз нерегулярних
диференцiально-алгебраїчних рiвнянь та динамiка

газових мереж
Maria Filipkovska

Одержано умови iснування, єдиностi та обмеженостi глобаль-
них розв’язкiв, а також граничної обмеженостi розв’язкiв, та умо-
ви руйнування розв’язкiв нерегулярних напiвлiнiйних диференцiально-
алгебраїчних рiвнянь. Розглянуто приклад, який демонструє застосува-
ння одержаних результатiв. В якостi застосувань наводяться iзотермiчнi
моделi газових мереж.

Ключовi слова: нерегулярне диференцiально-алгебраїчне рiвняння,
вироджене диференцiальне рiвняння, сингулярний жмуток, глобальна
розв’язнiсть, обмеженiсть розв’язкiв, руйнування, дисипативнiсть
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