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Conditions for the existence, uniqueness and boundedness of global so-
lutions, as well as ultimate boundedness of solutions, and conditions for the
blow-up of solutions of nonregular semilinear differential-algebraic equations
have been obtained. An example demonstrating the application of the ob-
tained results has been considered. Isothermal models of gas networks have
been proposed as applications.
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1. Introduction

This paper deals with systems of equations which can be represented as a
differential-algebraic equation (DAE) of the form

%[Aﬂ + Bx = f(t,z), (1.1)
where A, B are linear operators from R" into R™ or m X n-matrices. Various
systems consisting of ordinary differential equations (ODEs) (or partial differen-
tial equations (PDEs), which after applying spatial discretization become ODEs)
and of algebraic equations (not containing a derivative) can be written in this
form. Note that this type of DAEs includes underdetermined and overdetermined
systems of equations. DAEs of the form (1.1) are commonly referred to as non-
regular (or singular) semilinear DAEs. In general, they belong to the class of
ODEs unsolved for the higher derivative of the unknown function and are also
called descriptor systems or degenerate differential equations.

In the present paper, conditions for the existence, uniqueness and bounded-
ness of global solutions, as well as ultimate boundedness of solutions, and con-
ditions for the blow-up of solutions of nonregular semilinear DAEs are obtained.
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These conditions are presented both in the general form (Sections 3-7) and in
certain particular cases (Section 8) which are convenient for practical application.

DAEs arise from the modelling of various systems and processes in control
problems, gas industry, mechanics, radio engineering, chemical kinetics, eco-
nomics and other fields (see, e.g., [2,5,17,18,25]). The use of DAEs in electrical
circuit modelling is described in detail in [18] (see also [7,8, 10,11, 17,22-25]).
Besides electrical networks, DAEs are also used in modelling other objects whose
structure is described by directed graphs, e.g., gas and neural networks. In [8,11]
nonlinear electrical circuits described by singular (nonregular) semilinear DAEs
have been considered. The present paper is focused on the DAEs describing
the dynamics of gas networks in the isothermal case. The theorems obtained in
this paper allow one to carry out the qualitative analysis of the dynamics of gas
networks described by DAEs of the form (1.1). The description of gas network
models, including the construction of models in the form of DAEs, is presented
in [1,2,5,14-16]. Generally, the dynamics of a gas flow in a pipeline (for a single
pipe) is modelled by PDEs, namely, by the isothermal Euler equations in the
case considered in Section 9.1, and by the equation of state for gases, which is an
algebraic equation. We apply the spatial discretization (described, e.g., in [2,15])
for the isothermal Euler equations, which leads to a semilinear DAE. A similar
discretization is used to obtain a DAE which describes the dynamics of flows in
gas networks (Section 9.2). This DAE arises from a system of differential and
algebraic equations which has been presented in [16].

Most of the works on DAEs are related to the study of regular DAEs: their
structure, index, local solvability, the Lyapunov stability of their equilibrium
positions and the development of numerical methods for solving them. Much
fewer works deal with nonregular DAEs in general and with the global solvability
of DAEs in particular. Nonregular DAEs have been studied by using the concept
of the “strangeness index” of a pair of matrices (or matrix functions) and a DAE
n [17]. We use the (different) concept of an index only for a regular block of the
characteristic pencil of the DAE (1.1) (see Section 2). To solve a singular linear
time-invariant DAE, one usually uses the Weierstrass-Kronecker canonical form
(see [13]) of a singular matrix pencil associated with the DAE. The solvability
of nonregular time-varying linear DAEs with the use of a generalized canonical
form and the application of the least squares method for their numerical solution
have been studied in [3]. In [4], the conditions for the solvability of the Cauchy
problem for a nonregular time-varying linear DAE with the use of a generalized
Green operator have been found. The conditions for the Lagrange stability and
instability of nonregular semilinear DAEs, which are a particular case of the
conditions obtained in this paper, have been presented in [8]. The local solvability
of nonregular semilinear DAEs in Banach spaces has been studied in [23]. Also,
in [23] the decomposition of a singular pencil into regular and purely singular
components, which was called the RS-splitting of the pencil, has been presented.

In this paper, we use the special block form of a singular operator pencil [9,11],
which consists of the singular and regular blocks where zero and invertible blocks
are separated out (see Section 2.2). The results from [13], related to singular
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matrix pencils, were used when constructing this block form. The presented
block form is used to reduce the DAE with the singular characteristic pencil to a
system of ODEs and algebraic equations (see Section 2.3). We also use differential
inequalities for the Lyapunov type functions, the spectral projectors introduced
in [22] and Yoshizawa’s method [26]. The main differential inequalities used in
the work are described in Section 2.1. An example demonstrating the application
of the obtained results is given in Section 10.

The notations and definitions given below will be used in the present paper.

The following notations will be used: Ix is the identity operator in the space
X: A is the semi-inverse operator of an operator A (A~ is the inverse opera-
tor of A); Ker(A) is the kernel of an operator A; R(A) is the range of an operator
A; D¢ is the complement of a set D; D is the closure of a set D; L(X,Y) is
the space of continuous linear operators from X to Y; L(X,X) = L(X), and
similarly, C((a,b), (a,b)) = C(a,b); L1+Ls is the direct sum of the linear spaces
Ly and Ly; ¢;; is the Kronecker delta; X' is the conjugate space of X (it is also
called an adjoint or dual space); AT is the transposed operator (i.e., the adjoint
operator acting in real linear spaces to which the transposed matrix correspond)
or the transposed matrix; || - || denotes some norm in a finite-dimensional space
(it will be clear from the context in which one), unless it is explicitly stated which
norm is considered; both A C B and A C mean that A is a subset of B, i.e., A
can be a proper subset of B (A # B) or be equal to B; if A is a proper subset of
B, we write A ; B; 0, := 0/0x denotes the partial derivative with respect to z.
Often, a function f is denoted by the same symbol f(x) as its value at the point
x in order to explicitly indicate its argument (or arguments), but it will be clear
from the context what exactly is meant.

In what follows, a convex set containing a point xg € X that is contained in
a ball {x € X | ||z — zo|| < I} (where 6 > 0) or coincides with it will be called
a neighborhood of the point xy and will be denoted by Njs(xg) (in particular,
it is possible that Ns(xo) = {xo} and in this case the neighborhood is degener-
ate). A neighborhood of some point that is an open (respectively, closed) set will
be called an open (respectively, closed) neighborhood. By Us(x) and Ns(zo)
we denote the open neighborhood and closed neighborhood, respectively. Note
that Us(xo) denotes the closure of the open neighborhood Us(zg) (accordingly,
d > 0). Sometimes we will denote a neighborhood (respectively, open neighbor-
hood, closed neighborhood) of the point ¢ simply by N (x¢) (respectively, U(x),
N(z)), without indicating the radius of the ball which contains it.

In addition, if the variable ¢ belongs to the interval [a,b] C R, a # b, then by
an open neighborhood Us(a) of the point a we mean a semi-open interval [a,a +
5), 0 < § < b— a, and, similarly, by an open neighborhood Us(b) we mean a
semi-open interval (b — §,b], 0 <4 <b— a.

Let f: J — Y where J is an interval in R and Y is a normed linear space. If
J =1a,b),b < 400 (J = (a,b], a > —o0), then the derivative of the function f at
the point a (at the point b) is understood as the derivative on the right (on the
left) at this point (see, e.g., [20]). If the function f: [a,b) — Y is continuously
differentiable on (a,b) and in addition the derivative of f on the right exists at a
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and is continuous from the right at a, then f is said to belong C*([a,b),Y).

2. Problem statement, definitions and preliminary construc-
tions

Consider an implicit differential equation

%[A:c] + Bx = f(t,z), (2.1)
where A, B € L(R",R™) and f € C([t4,00) x R*",R™), t; > 0. In the case
when m # n or m = n and the operator A is noninvertible (degenerate), the
equation (2.1) is called a differential-algebraic equation (DAE) or degenerate
differential equation. In the DAE terminology, equations of the form (2.1) are
called semilinear. For the considered equation, the initial condition (Cauchy
condition) is given in the form

x(to) = X0 (to 2 t+). (2.2)

d
A DAE that contains a linear part a[Ax] + Bz such that the pencil AA + B

is singular (see Definition 2.1) is called singular or nonregular (or irregular [8]).
The pencil AA + B corresponding to this linear part is called characteristic.

If rank(AA + B) = m < n, then the DAE (2.1) corresponds to an underde-
termined system of equations (that is, the number of equations is less than the
number of unknowns).

If rank(AA + B) = n < m, then the DAE (2.1) corresponds to an overdeter-
mined system of equations (that is, the number of equations is greater than the
number of unknowns).

The function z(t) is called a solution of the equation (2.1) on [tg,t1), t1 < 00,
if z € C([to,t1),R"), (Ax) € C'([to, t1), R™) and z(t) satisfies (2.1) on [to,t1). If
the function z(t) additionally satisfies the initial condition (2.2), then it is called
a solution of the initial value problem (IVP) or the Cauchy problem (2.1), (2.2).

A solution z(t) (of an equation or inequality) is called global if it exists on
the whole interval [tg, 00) (where to is an initial value).

A solution xz(t) is called Lagrange stable if it is global and bounded, i.e., z(t)
exists on [tp, 00) and supyepy, o) l2(f)[| < oo

A solution z(t) has a finite escape time (or is blow-up in finite time) and
is called Lagrange unstable if it exists on some finite interval [tp,7) and is un-
bounded, i.e., there exists 7 >ty (7 < 0o0) such that lim;_,,_¢ ||z(t)]] = oco.

The equation (2.1) is called Lagrange stable (respectively, unstable) for the
initial point (tp, o) if the solution of the IVP (2.1), (2.2) is Lagrange stable
(respectively, unstable) for this initial point.

The equation (2.1) is called Lagrange stable (respectively, unstable) if each
solution of the IVP (2.1), (2.2) is Lagrange stable (respectively, unstable) (i.e.,
the equation is Lagrange stable (unstable) for each consistent initial point).

Solutions of an equation are called ultimately bounded if there exists a con-
stant C' > 0 (not depending on the choice of initial values) and for each solution
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x(t) with initial values tg, 2o there exists a number 7 = 7(to, z9) > to such that
|lz(t)|| < C for all t € [tg + 7,00). If at the same time the number 7 does not de-
pend on the choice of ¢ty (i.e., 7 = 7(x0)), then the solutions are called uniformly
ultimately bounded.

The equation (2.1) is called ultimately bounded or dissipative (respectively,
uniformly ultimately bounded or uniformly dissipative) if for any consistent initial
point (o, xo) there exists a global solution of the IVP (2.1), (2.2) and all solutions
are ultimately bounded (respectively, uniformly ultimately bounded).

2.1. Remarks on differential inequalities. Here we give brief informa-
tion about the existence of positive solutions (of different types) for differential
inequalities which will be used below. Consider two differential inequalities:

dv

— < v(t 2.
o = x(t,v), (2.3)
dv

— > 2.4
— > x(t,v), (2.4)

where x € C([ty,0) % (0,00),R). A scalar function v € C([tg, c0), R) which is
positive and satisfies the differential inequality (2.3) (or (2.4)) on [tg, 00) (to > t4)
is called a positive solution of this inequality on [tg,00). Let

x(t,v) =k(t)U(v), (2.5)

where k € C([t4+,00),R) and U € C(0,00) (that is, U € C((0,00),R) is a positive
function), then the inequalities (2.3) and (2.4) take the form

ST, (2:6)
= HOU) 2.1

respectively, and the following statements hold (see, e.g., [19]):

o if [7°U~(v)dv =00 (¢c>0is some constant), then the inequality (2.6) does
not have positive solutions with finite escape time;

o if [U(v)dv =00 and j;zo k(t)dt < oo (tg > t4 is some number), then the
inequality (2.6) does not have unbounded positive solutions for ¢t € [t, c0);

o if [U ' (v)dv < oo and [ k(t)dt = oo, then the inequality (2.7) does not
have global (i.e., defined on [t4,00)) positive solutions.

2.2. Block form of a singular pencil, the corresponding direct de-
compositions of spaces and projectors. The results from [11], [9] which will
be used hereinafter are given below. The detailed description of these results can
be found in [9] (where results from [11] have been generalized).

Let A, B be linear operators mapping R” into R™ or C" into C™; by A, B
we also denote m x n-matrices corresponding to the operators A, B (with respect
to some bases in R™, R™ or C", C™ respectively). Consider the operator pencil
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M+ B, where A is a complex parameter. The rank of an operator pencil A\A+ B
is the dimension of its range. The rank of a matrix pencil AA + B is the largest
among the orders of the pencil minors that do not vanish identically [13]. It
equals the maximum number of columns (or rows) of the pencil that are linearly
independent set of vectors for some A = \g. Clearly, the ranks of the operator
pencil and the corresponding matrix pencil coincide.

Definition 2.1 ([8,11]). A pencil of operators (or matrices) AA + B is called
regular if n = m = rank(AA + B); otherwise, i.e., if n # m or n = m and
rank(AA + B) < n, the pencil is called singular or nonregular (irregular).

For m x n matrices A, B, this definition is equivalent to that given in [13],
namely, the pencil AA + B is called regular if n = m and det(AA + B) # 0,
and singular otherwise (n # m or n = m and det(AA + B) = 0). Definition 2.1
is also equivalent to the following (cf. [9]). An operator pencil AA + B: C" —
C™ is called regular if the set of its regular points p(A,B) = {A € C | (A\A +
B)~! € L(C™,C™)} is not empty, and singular if p(A, B) = @. A pencil A\ +
B of the real operators A, B: R™ — R™ is called regular if the set of regular
points p(A, B) of its complex extension AA + B € L(C",C™) (A, B: C" — C™
are the complex extensions of A, B respectively) is not empty, and s1ngular if

p(A,B) = @. Then the regular points A of the complex extension A + B are
called regular points of the pencil AA + B (since for these points the resolvent
(M + B)~! exists). Recall that the ranks of the pencil AA + B and its complex
extension AA + B coincide.

In what follows, we will consider linear operators A, B: R™ — R™. Instead
of the real operators we can consider the complex operators A, B: C" — C™,
for which Proposition 2.2 (see below) remains true, but when constructing di-
rect decompositions of the form (2.8) for the complex spaces C", C™ and the
corresponding projectors, it is necessary to replace transposition by Hermitian
conjugation everywhere.

Let A: X — Y be a linear operator and Xy, Yy be some subspaces in X, Y
respectively. The pair of subspaces {Xo, Yy} is said to be invariant under the
operator A if A: Xo — Yp, i.e., AXo C Yy (cf. [23]; in the case when X =Y and
Xo = Yp, this is the classical definition of invariance [13]).

Recall the following definition: A linear space L is decomposed into the direct
sum L = Li+Ls of the subspaces L1 C L and Ly C L if L1 N Ly = {0} and
Li+ Ly ={x1 +x2 | 21 € L1,x9 € Lo} = L, or, equivalently, if every z € L
can be uniquely represented in the form x = x1 + xo where x; € L;, i = 1,2
(see, e.g., [6, p. 309]). The representation L = Li+Ls is also called a direct
decomposition of the space L.

Since the direct (Cartesian) product Ly x Lo is the direct sum of the spaces
L; x {0} and {0} x Lo, where O from Ly and L; respectively, then it can be
identified with the direct sum Li+ Ly by identifying Ly x {0} with L; and {0} x
Lo with Ly. Thus, below, when indicating the block structures of operators,
we identify direct sums and the corresponding direct products of subspaces for
convenience of notation.



Qualitative Analysis of Nonregular DAEs and Gas Networks 725

Proposition 2.2 (see [9,11]). For operators A, B: R™ — R™, which form a
singular pencil AA+ B, there exist the decompositions of the spaces R™, R™ into
the direct sums of subspaces (which can always be constructed)

R" = Xs+ X, = X5, +Xo, + X, R™ =YY, =V, Y, +Y5, (2.8)

with respect to which A, B have the block structures

A= <“és j) B— (]'3 g) XA X, = VobY, (Xox X, = YoxY,), (2.9)
where As = Al Xy =Yy and A, = Al B, =Bl : X, = Y,
i.e., the pair of “singular” subspaces {X,,Ys} and the pair of “regular sub-
spaces {X,,Y,} are invariant under the operators A, B (i.e., A,B: X — Y,
A,B: X, —Y,), and the blocks As, Bs, which are called singular, have the block
structure

A 0 B Bund . .
As = ( Sen 0> , Bs= (ngj 1(1)11 > P X+ X, = Vs, Y,

(Xsy X Xgy = Vi X Vs,), (2.10)
where the operator Agen: Xs, — Ys, has the inverse Ayl € L(Yy, Xs,) (if

gen

Xs, #1{0}), Bgen: X5, — Ysl, Bund. Xs, = Yy, and Boy: X, — Y. If
rank(AA + B) = m < n, then the structure of the singular blocks takes the form

A= (Agen 0), B = (Bgen Bund): X5, +Xs, = Vs (X5, x X, = Ys) (2.11)

and Yy, = Y5, Y, = {0} in (2.8), and if rank(AA + B) = n < m, then the struc-
ture of the singular blocks takes the form

As = <A8en>, Bs - <B;goe;> : Xs — 5{914_}{52 (XS — }/:91 X }/192) (212)

and Xg, = Xs, Xs, = {0} in (2.8). The direct decompositions of spaces (2.8)
generate the pair S, P, the pair F', Q, the pair S1, So and the pair Fy, F» of the
mutually complementary projectors (i.e., S+ P = Ign, S> =S, P> = P, SP =
PS=0;F+Q=1Ipm, F?=F, Q? = Q,FQ QF =0; 81+ 5 =385, S;S; =
0ijSi; F1 + Fy = F, F;F; = 0;;F;)
S:R" — X, P:R" — X,, F:R™ =Y, Q:R™ =Y, (2.13)
Sit R" — X, Fi: R™ = Y., i=1,2, (2.14)
where Fy = F, F, = 0 if rank(AMA + B) = m < n, and S1 = S, S2 = 0 if
rank(AA + B) = n < m, which have the properties
FA=AS, FB=BS, QA= AP, @B = BP, (2.15)
ASy; =0, A =0, F>,BS; = 0. (2.16)
The converse assertion that there exist the pairs of mutually complementary

projectors (2.13), (2.14) satisfying (2.15), (2.16) which generate the direct decom-
positions of spaces (2.8) is also true.
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The method for constructing the subspaces from the decompositions (2.8)
and the corresponding projectors (2.13), (2.14) is described in [8, Section 3] and
in detail in [9, Section 3]. First we construct the singular subspaces X, Ys, X,
Y,,, © = 1,2, and the corresponding projectors, then we construct the regular
subspaces X,, Y, and the corresponding projectors. For the construction of the
singular spaces certain collections of linearly independent solutions of the equa-
tions (AA + B)z = 0 and (AAT + BT)y = 0 are used. Further, if the regular
block AA, + B, from (2.17) is a regular pencil of index not higher than 1 (see the
definition below), we construct the regular subspaces X;, Y;, i = 1,2, from the
decompositions (2.28) and the projectors (2.30), which are described below.

With respect to the decompositions R" = X;+X,, R™ = Y+Y, (see (2.8))
the singular pencil AA 4+ B of the operators A, B: R — R™ takes the block form

M, + B, 0

“”B:( 0 A, +B,

), As,Bs: Xs = Ys, Ay, By X, — Y, (2.17)

where the regular block AA, + B, is a regular pencil and the singular block
AA; 4+ By is a purely singular pencil, i.e., it is impossible to separate out a regular
block in this pencil. If X, = {0}, ¥, = {0}, then the regular block AA, + B, is
absent and AA + B = AA, + B, is a purely singular pencil.

In [9], extensions of the operators from the block representations (2.9), (2.10),
(2.11), (2.12) to R™ and the corresponding semi-inverse operators have been in-
troduced. These operators are described below and used in subsequent sections.

Extensions of the operators A, A,, Bs, B, from (2.9) to R™ are introduced
as follows:

As=FA, A.=QA, B,=FB, B,=Q@B. (2.18)

Then the operators As, Bg, A, B, € L(R",R™) act so that As, Bs: R™ — Y5,
Ary, Br i R" - Y, (Ag,Bs: Xs = Yy, AnyBr: X — Y,) and X, C Ker(Ajy),
X, C Ker(By), X C Ker(A,), Xs C Ker(B,) and

Asly. = As Arly =A4r, Bs|y =Bs, B, =B, (2.19)

In the general case, when rank(AA+ B) < n and rank(AA+B) < m, the spaces
R™, R™ have the decompositions (2.8) and, accordingly, the singular subspaces
are decomposed into the direct sums X; = X, +X,, Ys = Vi, +Y;, with respect
to which the operators (singular blocks) As, Bs have the structure (2.10), and
extensions of the operators (blocks) from (2.10) to R™ are introduced as follows:

Agen = F1A,  Bgen = F1BS1, Buna = F1BS2, Boy = F2BS (2.20)

(notice that 1A = AS; = FA). Then Agen, Bgens Bund, Bov €
L(R",R™) act so that AgenR" = AgenXs, = Vi (X5 +X, = Ker(Agen)),
Byen: R? = Vi, Xoy+ X, C Ker(Byen), Bund: R" = Ys,, X, +X, C Ker(Bund),
and Boy: R" — Yy, Xs,+X, C Ker(Boy), and

Agen‘XSI = Agenv Bgen‘Xs1 = Bgena Bund}XS2 = Bund, BOv’XSl = Boy. (221)
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In the case when rank(\A + B) = m < n, the singular subspace X is decom-
posed into the direct sum Xy = X, +X,, with respect to which the operators
(singular blocks) A, Bs have the structure (2.11), and extensions of the operators
(blocks) from (2.11) to R™ are introduced as follows:

Agen = AS),  Byen = BS1, Byna = BSs. (2.22)

Then Agen, Bgen; Bund € LIR™,R™) act so that AgenR" = AgenXs, =Y
(X52'—|—XT = Ker(Agen)), Bgen: R" = Y, X, +X, C Ker('Bgen), Bunda: R* — Y5,
Xs,+X,r C Ker(Bynd), and

-Agen‘X51 = Agem Bgen‘X51 = Bgena fBund‘XS2 = Bund- (223)

In the case when rank(AA + B) = n < m, the singular subspace Y; is de-
composed into the direct sum Y = Yy, +Y;, with respect to which the operators
(singular blocks) A, Bs have the structure (2.12), and extensions of the operators
(blocks) from (2.12) to R™ are introduced as follows:

Agen = F1A,  Bgen = 1B, By, = 5. (2.24)

Then Agen, Bgen, Bov € L(R™,R™) act so that AgenR" = AgenXs = Yy, (X =
Ker(Agen)); Bgen: R" = Yy, X, C Ker(Bgen), Bov: R" = Y, X, C Ker(Boy),

Agen‘Xs = Ageny Bgen|Xs = Bgenv BOV‘XS = Bov- (2-25)
Remark 2.3 ( [9]). The extension Aégnl ) € L(R™,R") of the operator Az, to

R™ that satisfies the properties
AGDAgen = S1,  Agen AlGY = Fr, ALY = 5,400 (2.26)

gen gen gen gen

where F; = F if rank(AMA + B) =m < n and S; = S if rank(AMA+ B) =n < m,
is the semi-inverse operator of Agey, i.e., Aé;})Rm = Aé;})Ysl = X (}’524—Y =

Ker(Aber))) and A-L = AG)

gen the definition of a semi-inverse operator can

)

Iv,,
be found in [6]). Thus, the semi-inverse operator Aégnl ) of Agen is defined by the
relations (2.26). Also, they enable one to find the form of Aégnl ) (or AzL), using

gen
the form of the projectors. Note that Aé;})Fl = Slflégnl) = Aégnl) (where F} =
F if rank(AM + B) = m < n and 51 = S if rank(AM + B) =n < m).

Consider a regular pencil AA, + B, of operators A,, B,: X, — Y, acting in
finite-dimensional spaces (dim X, = dimY;). We assume that either A = oo is a
removable singular point of the resolvent (AA, + B,.)~!, or A, is invertible. Thus,
we assume that there exist constants C7,Cy > 0 such that

|(AAr + B,) 7t < C1, A = Co (2.27)

If A, is noninvertible and (2.27) holds (hence, = 0 is a simple pole of the
resolvent (A, + uB,)~1), then AA, + B, is a regular pencil of index 1. Note that
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if A, = 0 and there exists B, 1 then MA, + B, = B, can be considered as a
regular pencil of index 1. If A, is invertible (hence, p = 0 is a regular point of
A, + uB,), then AA, + B, is a regular pencil of index 0. Thus, if AA, + B, is
a regular pencil and (2.27) holds, then AA, + B, is a regular pencil of index not
higher than 1 (cf. [8,9]).

Remark 2.4. If the regular block AA, + B, from (2.17) is a regular pen-
cil of index not higher than 1 (i.e., satisfies (2.27)), then there exists the pair
]5]-: X, — Xj, j = 1,2, and the pair Qj: Y, =Y}, j = 1,2, of mutually comple-
mentary projectors which generate the direct decompositions

X, = X14X,, Y, =Y1Y, (2.28)

such that the pairs of subspaces {(1, Y7 and ~X2,~ Y, are invgriant under A,, B,

(Ar, Br: X; = Y;,5=1,2),1e., QjA, = AP}, Q;jB, = B, Pj, and the restricted

operators A; = AT"X-: X; =Y, Bj = BT"X-: X; —Y;, j =1,2, are such that
J J

Ay =0 (Q24, = 0) and there exist A7 € L(Y1,X;) (if X1 # {0}) and By €
L(Y3, X2) (if X3 # {0}). For a regular pencil of operators, the pairs of projectors
with the specified properties were introduced in [22]. With respect to the direct
decompositions (2.28) the operators A,, B, have the block structure

A, = A 0 , B, = By 0 X1+ Xy =5 Yi+Ys (X1 x Xo = Y] xY3),
0 0 0 B»
(2.29)

where A; and By are invertible (if X; # {0} and Xy # {0} respectively).

Thus, if AA, + B, is a regular pencil of index not higher than 1, then there
exist the direct decompositions of the regular spaces (2.28) with respect to which
A, and B, have the block structure (2.29).

The projectors lf’j and Qj can be calculated by using contour integration [22,
p. 2005] or defined by the formulas (28) from [9]. In addition, for a regular pencil
of index 1 one can obtain projectors onto the subspaces from the decompositions
(2.28) without using the formulas from [22] or the formulas [9, (28)] as described
in [9, Remark 3, p. 44-45].

Introduce the extensions P;, (); of the projectors ]5].’ Qj to R™, R™, respec-
tively, so that X; = P;R", Y; = Q;R™, j = 1,2 (where X, Y; from (2.28)) [9].
Then the extended projectors

PjiRn—>Xj, Qj:Rm%}/j, j=12, (230)

have the properties of the original ones, i.e., P;, P> and @1, Q2 are two pairs of
mutually complementary projectors (P;P; = 0;;F;, Pi + P, = P, Q;Q; = 6;;Qs,
Q1+ Q2 =Q) and Q;A = AP;, Q;B = BPj, Q2A = 0. The properties of the
operators A; = A‘Xj: X; — Yj and B; = B|Xj: X; =Y, j =12, are also
retained, and extensions of the operators A;, B; to R" are introduced as follows:

A;j=Q;A, B;=Q;B, j=12. (2.31)
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Then the operators Aj, B; € L(R™,R™) act so that A1R" = A1 X7 = Y1
(Xo+Xs = Ker(Ay)), Az = 0, B1: R* — Yj, Xo+X, C Ker(B1), and BoR" =
BQX2 = ng (X1—|—XS = KGT(BQ)), and

Ailx, =45 Bily, =By, =12 (2.32)

Remark 2.5 ([9]). The extension Ag_l) € L(R™,R") of the operator A7 to
R™ that satisfies the properties

Aa =p, A AT =@y, AT = pal™, (2.33)
is the semi-inverse operator of A, i.e., Agfl)Rm = Agf )Yl = X1 (Yot+Y, =
Ker(flgfl))) and A7! = Al }Yl. The semi-inverse operator Bgfl) € L(R™,R")
of By, i.e., B VR™ = BSVY, = Xy (Yi4Y, = Ker(BS)) and By ' =
is defined in a similar way as

13(‘1)32:132, ByBL Y = Qy, BUY = pBUY. (2.34)

lvar

Note that A{"VQ, = PLAITY = A§‘1> and BSVQy = PBYY = B0V The
relations (2.33) and (2.34) enable one to find the form of Ag_l) and Bé_l) (or
Afl, B;l), using the form of the projectors.

The decompositions (2.8) and (2.28) together give the decomposition of R"™
into the direct sum of subspaces

R = X,+X, = X, + X, + X1+ X (2.35)

with respect to which any element x € R™ can be uniquely represented (the
uniqueness of the representation follows from the definition of a direct sum of
subspaces) in the form

T =0T+ Ty =Tg, + Toy + Tp, +Tpy, (Ts =Ts, + Ty, Tp =Tp, + Tpy), (2.36)

where s = Sv € X, x, = Pr € X, x5, = Siw € X, xp, = Pix € X, i =1,2.

In what follows, it is assumed that the specified correspondence between the
subscript of an element from the subspace present in the decomposition (2.35)
(or a component from the representation (2.36)) and the subspace to which this
element belongs is always fulfilled, i.e., the element x5, (i = 1,2) belongs to Xj,
because it has the subscript s; (i = 1,2), the element z,, belongs to X; (j =
1,2), and so on. Thus, we will not always explicitly indicate belonging to one of
the subspaces introduced in (2.35), when the element has one of the subscripts
given in (2.36), can be any element from the corresponding subspace, and it is
clear from the context what exactly is meant.

Similarly, the decompositions (2.8) and (2.28) together also give the decom-
position of R™ into the direct sum of subspaces

R"™ = Y,+Y, = Y, +Y,,+Y1+Y5, (2.37)

with respect to which any element y € R™ can be uniquely represented as
Y=YstYr =Ys; + Ysy + Yps + Yp, (ys =Ys; t Ysyy Yr =Yp, T+ yp2)7 (2~38)
where ys = Fy € Vs, yr = Qy €Yy, ys, = Fiy €Y, and yp, = Qiy € Y;, i =1,2.
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2.3. Reduction of a DAE with the singular characteristic pencil to a
system of ordinary differential and algebraic equations. The information
given in Section 2.2 is used below.

Consider the DAE (2.1) with the singular characteristic pencil AA + B that
has the regular block A, + B, (see (2.17)) of index not higher than 1.

Applying the projectors Fi, Q1, Q2, Fa from (2.14), (2.30) to the equation
(2.1) and using their properties, we obtain the equivalent system

%(F1A51$) + F1BSz = Flf(t,ﬂ?), (239)
%(QlAPp’U) + Q1 BPix = Q1 f(t, ), (2.40)
Q2BPyr = ng(t, 33‘), (2.41)

F»,BSix = Fgf(t,l’). (2.42)

Using the representation (2.36), the operators (2.20), (2.31) and the semi-inverse

operators Aé;r} ), flg_l) and Bg_l) (the method of their calculation is indicated in
Section 2.2), we obtain the following system equivalent to (2.39)—(2.42):

d

e Aégnl) (F1f(t, ) — BgenTs, — BundTs, ), (2.43)

d _

T = AT (@Quf(t2) = Buay,), (2.44)
0=B5 VQuf(t,2) — zp,. (2.45)
0= F2f(tv J}) - ‘Bovmsly (2.46)

where x5, = Sz € X, zp, = P;x € X;, i = 1,2, and the representation of x in
the form = = x5, + x4, + zp, + xp, (see (2.36)) is unique.

Thus, the singular semilinear DAE (2.1) has been reduced to the equiva-
lent system (2.43)—(2.46) of ordinary differential equations (ODEs) and algebraic
equations (AEs). Instead of the system (2.43)-(2.46) one can also obtain the
equivalent system with the restricted operators.

By ‘/(’2_43)’(2_44) we denote the derivative of a function V' € C([ty, 00) x Dy, x
D,,,R), where Dy, x D, C X, x X; is some open set, along the trajectories of
the system (2.43), (2.44), which has the form

oV 19)%
/
: S19 = 5, (U Lsy, a7 N\ sy T 9
V(2.45),(2.44)(ta$ 1 xpl) ot (t Lsy xm) + 8(3351,$p1)(t Lsy xpl) (t x)
ov 19)% _
= E(tvaj&@u‘r}?l) + 87(t7x517$p1) |:-Aéenl) (Flf(ta (E) - fBgenxsl - Bundxsg)}
S1
oV _
+ W(t’ xsuxpl) [‘Ag b (Qlf(t7x) - 'lem)} ) (2-47)
P1

) = Aé;ll) (F1f<t7 .’L’) - Bgenxsl - Bundxsg)
Y(t,x) = ( A§‘1)(Q1f(t,x) Byy,) (2.48)
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(Y(t, z) consists of the right-hand sides of the equations (2.43), (2.44)). As usual,

0 B 0 0
O(xs,, xp,) ~ \ Oz, 0xp, )’

When proving theorems, we will use the representation of an element x € R"”
in the form (2.36) (with respect to the direct sum of subspaces (2.35)) and its
corresponding representation in the form x = (zg,,xs,, Tp,, Tp,) (With respect
to the corresponding direct product of subspaces). The correspondence between
these representations is established below and, in general, is obvious.

Taking into account that the sum of subspaces in (2.35) is direct and, accord-
ingly, any element = € R™ can be uniquely represented as (2.36), one can identify
an ordered collection (xs,, Zs,, Tp,, Tp,) € X X X, x X1 X X (which is assumed
to be a column vector) with the corresponding element z = x4, + g, +Tp, +Tp, €
R" = X, +X,,+X1+X2. A norm in the space X, x X, X X1 x X3 is defined so
that the norms of any element of the form x = x,, and the corresponding element
(ordered collection) z = (zs,,0,0,0) from X, x X, x X1 x X9 coincide and, sim-
ilarly, the norms of the elements z = z,,, * = xp,, * = ), and the corresponding
ordered collections z = (0, z,,,0,0), z = (0,0,2,,,0), and = = (0,0,0,xp,) co-
incide. In addition, norms in XSI—FXSQ%'—XH—XQ and X, x X;, x X; x Xy are
defined so that they coincide for any element z. Obviously, dim(X, x X, x X7 X
X5) = n and the space R" = X, +X,,4+X;+X> is isomorphic to the space X, x
X5, X X1 x Xo. Thus, the representations z = (zs,, Ts,, Tp,, Tp,) and & = x5, +
Tsy + Tp, + Tp,, Where x5, € X, xp, € X, @ = 1,2, define the same element z
which we will write in the form of the ordered collection (column vector) or sum
of the components zg,, zs,, Tpys Tpy-

In a similar way, an ordered collection (column vector) y = (Ys, s Ysos Upr» Yps) €
Y, x Y, x Y] x Yy can be identified with the corresponding element y = ys, +
Yso + Ypy T Ypy € R™ = V5, Y5, +Y14Ya.

Consider one more representation of a vector x € R"™, which allows one to
reduce the DAE (2.1) to an equivalent system of ODEs and AEs with the op-
erators restricted to the subspaces from (2.35) (cf. [8]). Denote the dimensions
of the subspaces from the decomposition (2.35) as dim X5, = b, dim X,, = [,
dmX; =aand dimXy =d (b+1l+a+d=n,dimX; =b+1[, dmX, =a+
d). Further, we choose some bases {sj}?zl, {5b+j}§':1> {pj}?zl and {paﬂ-}?:l
of the subspaces Xs,, Xs,, X1 and Xo, respectively. The union of these bases
is a basis of the space R” = R? x R! x R% x R%, and with respect to this ba-
sis each vector x € R" (z = x,, + 5, + xp, + Tp,) can be written in the form
of the column vector z = (w”, &7, 27, uT)T, where w € R, ¢ € R!, 2 € R®
and u € R? are column vectors consisting of the coordinates of the vector x
with respect to the chosen bases in the subspaces X;,, X;,, X; and X, respec-
tively. The specified one-to-one correspondence between X, , X,, X1, X2 and
R, R, R, RY (between each zg,, =s,, Zp,, Tp, and each w, £, z, u), respec-
tively, defines the linear operators Sy: R” — X,,, S;: Rl — X,,, P,: R® — X7,
P;: R? — X, establishing an isomorphism between the spaces, which have the in-
verse S, ' X, — RY S X, - R P Xy — R%and Pyt: Xo — RY. Then
we restrict the operators in the equations (2.39)—(2.42) to the subspaces Xg,, Xs,,
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X1, Xo, make the change of variables
'1:51 :Sbwa $52 :Slé-a xpl :PaZ7 xpz :Pdu7

and transform the system (2.39)—(2.42) into the following system (equivalent to
the DAE (2.1) and similar to the one in [8]):

d . ~

%w = Sb lAgeil (Flf(t, w,§, 2, ’LL) - Bgensb w — BunaS 5) ) (249)

%ZZPQ_IAII (Qlf(t7w7£7zau) _BIPCL Z) ) (250)
0=P;' By Qaf (t,w, &, 2,u) —u, (2.51)
0= Fpf(t,w, &,z u) — BoySpw, (2.52)

where Agen, A1, By are defined in Section 2.2, f(t, w, & z,u) = f(t,Spw+ S+
P, z+ Pyu) and the projectors F;, Q; (i = 1,2) on the subspaces Yj;, Y; are con-
sidered as the operators from R™ into Yj,, Y, respectively (i.e., F; € L(R™,Ys,),
Q; € L(R™,Y;)), that have the same projection properties as the projectors F; €
L(R™), @Q; € L(R™) defined in Section 2.2, ie., Fy = Fiys, = ys; € Y5, and
Qiy = Qiyp, = Yp, € Y; (i =1,2) for any y € R™ (see the representation (2.38)).
For convenience, we keep the previous notation for these operators.

In what follows, when considering an equation with the restricted (induced)
operators, where the restricted operators are understood as Agen, Bgen, Bunds
Boy, A;, B, i = 1,2, Ag_eln, Al_l and B;l, the projectors F;, Q; (i = 1,2) are
considered as the operators F; € L(R™,Y;,), Q; € L(R™,Y;) having the same
projection properties as the projectors F;, Q; defined in Section 2.2 (see, e.g., the
comments to the system (2.49)—(2.52) for details). In general, the projectors Fj,
Qi by definition belong to L(R™) (see Section 2.2), and Y;,, Y; are their ranges,
respectively (Ker F; = (R™\ Y;,) U {0}, Ker@; = (R™\ Y;) U {0}). Since,
in fact, the described differences are formal and become significant only in the
transition from the operators to the corresponding matrices, then we keep the
same notations for F;, Q; (i = 1,2) in all cases.

For clarity, note that if we choose some basis {ej};-n:_ld of Ys+Y1 and some
basis {qj};lzl of Y (notice that dim Y2 = dim Xy = d), and we take the basis of
R™ as the union of these bases, i.e., in the form {e1,...,€mn_4,q1,...,q4}, then
the matrix corresponding to the mentioned operator Q2 € L(R™,Y5) with respect
to the chosen bases in R and Y, will have the form Q)9 = (0 Iy2), where 0 is
the null d x m — d matrix and Iy, is the identity d x d matrix corresponding to
the identity operator [y, with respect to the chosen basis of Y5.

3. Global solvability of singular (nonregular) semilinear DAEs

Remark 3.1. We introduce the manifold

Ly, = {(tvx) S [t*, OO) x R" | (FQ + QQ)[B‘T - f(tax)] = 0}7 (31)
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where ¢, > t;. The manifold (3.1) is defined by the equations (2.41) (or Q2[Bzx —
f(t,z)] =0) and (2.42) (or Fy[Bxz — f(t,x)] = 0) and can be represented as

Ly, ={(t,z) € [ts,00) x R"™ | (t,x) satisfies the equations (2.41), (2.42) }.

The initial values ty, x¢ satisfying the consistency condition (to,zo) € Ly,
(Lt has the form (3.1) where t, = t) are called consistent initial values, and,
accordingly, the initial point (tg,x) € L, is called a consistent initial point.

It is clear that the graph of a solution of the IVP (2.1), (2.2) as well as the
initial point (tp,xo) must lie in the manifold Ly,.

Theorem 3.2. Let f € C([t4,00) x R",R™) and NA+ B be a singular pencil
of operators such that its reqular block NA, + B, from (2.17) has the index not
higher than 1. Let the following conditions be fulfilled:

1. For any fired t € [t4,0), x5, € Xs,, Ts, € Ds,, where Dg, C X, is some set,
and zp, € X1, there exists a unique xp, € Xo such that (t,xs, + s, + xp, +
xp2) € Lt+'

2. There exists the partial derivative %f € C([t+,00) x R", L(R™,R™)). For any
fized ty, vi = x5, + 3, + 25, + 23, such that (tv,24) € Ly, and %, € Ds,, the
operator @y, .. defined by

0Qaf

Pro. 1= ox

(t*,:c*)—B P23X2—>Y2 (32)

is tnvertible.

3. There exists a number R > 0, a function V € C1([t4,00) x Ds, X Dp,,R) pos-
itive on [ty,00) X Dg, X Dy, , where Dy, x Dy, = {(xs,,2p,) € Xg, X X1 |
|(zs,,zp,)|| > R}, and a function x € C([t+,00) x (0,00),R) such that:

(a) V(t, x5, xp,) = 00 as |[(xs;,zp,)|| = 00 uniformly in t on each finite in-
terval [a,b) C [t4,00);

(b) for each (t,xs, + x5, + Tp, + xp,) € Ly, for which x5, € Ds, and
|(zs,,2p,)|| > R, the inequality

‘/(/2.4:3),(2.44) (tv Ls1s xp1) < X(t’ V(tv Ls1s Lpy ))7 (33)
where V(’2.43) (2.44) (t,zs,,2p,) has the form (2.47), is satisfied;

(c) the differential inequality (2.3), i.e., dv/dt < x(t,v) (t € [t4+,00)), does
not have positive solutions with finite escape time.

Then for each initial point (to,xo0) € L., where Saxg € Ds,, the initial
value problem (2.1), (2.2) has a unique global (i.e., on [tg,00)) solution x(t)
for which the choice of the function ¢s, € C([to,00),Ds,) with the initial
value ¢s,(to) = Saxo uniquely defines the component Sex(t) = ¢s,(t) when
rank(AA + B) < n; when rank(AA 4+ B) = n, the component Sax is absent.

Remark 3.3. The operator defined (for fixed ¢4, z.) by the formula from (3.2),
i.e.,
Q2 f

Pro. 1= ox

(t*, l‘*> — B PQ, (34)
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belongs to L(R™,R™) and acts so that @t*@*: R" — Yy, X1+X, C Ker(i\)t*,m*).
. Ix, defined by (3.2). Since
the operator (3.2) is invertible, then @, , R" = &, , Xo = Yo (X;+X; =
Ker(:f)t*,m*)) and the extension <I>( Ve L(Rm R™) of @1 to R™ that satisfies

Ts,Tx t:v

the equalities @Exl Dy, ., =D, (I’t*,x* t* x* =Qy, @ t* m =P 3V s the semi-

ta , T
inverse operator of Cft*,m* (i.e. <I>§ ?Rm = <I>§*73161Y2 =Xy, &1 = — oY

[ T, T

Its restriction to Xo is the operator ®;, ,, = @t*,x*

v,):

The proof of Theorem 3.2. As shown above, the DAE (2.1) is equivalent to
the system (2.43)—(2.46), where the representation x = x, + s, + p, + p, (see
(2.36)), x5, = Siz € X, xp, = Pix € X;, i = 1,2, is uniquely determined for
each z € R™. Notice that the correspondence between X, +Xs,+X1+Xo and
X5, x X, x X7 x X3 (i.e., between the representations = g, + s, + p, + Tp,
and © = (zs,, Tsy, Tp,, Tp,) Where x5, € X, xp, € X;, @ = 1,2) is established in
Section 2.3.

Since 13 _1)Q R™ = B0y, = X, = By, = By {(QoR™) (recall that
By 1= B }Y ) and Qaf(t,z) € Ya for any (t,z), then the equation (2.45) is
equlvalent to the equation

By 'Qaf(t,2) — xp, = 0, (3.5)

where the projector Q2 on Y5 is considered as the operator belonging to L(R™, Y3),
while its projection properties are retained, i.e., Q2y = Q2¥p, = Yp, € Yo for any
y € R™, and, for convenience, its previous notation ()2 does not change. Denote

f(t, Ty, Ty Tpyy Tpy) = f(t, Tsy + Toy + Tp, + xpy) = f(L,2)
and consider the mapping
U(t, sy, Tsyy Tpy, Tpy) 1= B;ngf(t,xsl,acSQ, Ty Tpy) — Tpys (3.6)
where W: [t1,00) X X, X X, X X7 X Xog — Xo. Then (3.5) can be written as
U(t, sy, Tsys Tpy, Tpy) =0, (3.7)

and this equation is equivalent to the equation (2.45), as shown above. Obviously,
U e C([ty,0) x Xs, x Xg, X X7 X Xo, X2) has continuous partial derivatives
with respect to xs,, Zs,, xpl, Tp,, and its partial derivative with respect to x,, at
the point (t.,z% ,x% %  x¥ ) has the form

81777827 p].7 p2
ov * * *
Wt*,x* = 817132 (t*a 317 327xp1?xp2)
_ 0 _
= B7'Qs | P2 1 0) — B|Pily, = By B € L(Xa), (39)

where z,. = x5 + x5, + 7, + x5, and @, ., € L(Xz,Y>) is the operator defined

by (3.2). Slnce for any fixed element (t, x5, + x5y + xp, + Tp,) € Ly, such that
zs, € Dy, the operator ®;, (where x = x4, + x4, + xp, + p,) has the inverse
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@;; € L(Y3, X3), then the operator W; , also has the inverse Wtz = <I> Bg €
L(Xy) for the indicated (¢, x).

Note that a point (¢,z) € [t;,00) x R™ belongs to the manifold L;, if and
only if it satisfies the equations (2.41), (2.42) or the equivalent equations, e.g.,
(2.45), (2.46) or (2.45), (3.7), where x5, + x4, + Tp, + Tp, = .

Take any fixed t, € [t;,00), 2}, € X, x;‘Q € Ds,, z;,, € Xi. Then,
by virtue of condition 1, there exists a unique zj, € Xy such that (t., z.) €
Ly, , where x, = z3, + z3, + 7 + xj,. Fix this point (t,z.) and note that
the operator (3.8) has the inverse Wt*,z* € L(X3) for it, as shown above. In
addition, the function W(¢,xs,, xs,, Tp,, Tp,) has the continuous partial deriva-
tive with respect to (zs,,Zs,,Zp,,Tp,) at every point from [ty,00) x X X
X5, x X1 x Xo. Using the implicit function theorems and fixed point theo-
rems [20], we obtain that there exist open neighborhoods Us, (t4) (if t« = ¢4, then
Us,(t+) = [t4,t4 +61)), Usy(2%,), Us,(,), Us(w},), a neighborhood Ng,(z3,)
(see the definitions in Section 1) and a unlque function xp, = p(t, xs,, Ts,, Tp,) €
C(Ns(ts, 75, 25,, 7y, ), Ue(25,)), where Ni(ts, 25, 25,, 5, ) = Us, () X Us, (75, ) X
Ns, (x3,) % U54( xy ), which is continuously differentiable in zs,, x,, and such
that p(t., x5, 25, 75,) = x;‘) and V(t,xs,, Tsy, Tpy, (b, ), Ty, Tp,)) = 0 for all
(t, sy, Tsy, Tp, ) € No(tu, x5, 25,75, ), 1e., the function u(t, zs,, sy, Tp, ) is a so-
lution of the equation (3.7) with respect to xp,. Moreover, if the neighborhood
Ns,(x 2) is open, then the function p is continuously differentiable in x4, on
Ns(ts, x5, 7%,, 75, ) as well. Since the implicit function theorems [20] assume that
the set of variables is open, then to prove the existence of an implicitly defined
function with the above properties when t, = ¢4 (i.e., Us, (t4) = [t+,t4 + 1))
and when the set Dy, is not open (accordingly, Ns,(z%,) can be not open), the
fixed point theorems [20, Theorems 46, 465] as well as the proofs of the implicit
function theorems [20, Theorems 25, 28] are used.

Thus, it is proved that in some neighborhood N,.(t«, 75, z5,, 7y, ) = Ur, (t) X
Uy (25,) X Npg(23,) x Up, () of each (fixed) point (t«, 2%, 2%,, 75, ) € [ty,00) X
X, ><D32 x X1 there exists a unique solution Tp, = fit, oz 2z, a3 (6 Tsys Tsy, Tp, ) OF
the equation (3.7) and, hence, the equivalent equation (2.45), and this solution is
continuous in (¢, xs, , Ts,, Tp, ), continuously differentiable in (s, , z,, ) and satisfies
the equality fit. oz @ty (te, 5y, 25, T, ) = 5, € Dp,, where the set Dy, C Xo
is such that for each z,, € D,, there exists (t,zs,,%s,,Zp,) € [t4,00) X Xg, X
D,, x X such that (t,zs, + 3:32 + xp, —|— Tp,) € Ly, . Recall that zj, is uniquely
determined for each such (t.,z¥ ,x%  x¥ ) by virtue of condition 1 Introduce a

Lo Ty
function

817

n: [t4,00) X X, X Dg, x X1 = D,,

and define it by n(t,xs,, sy, Tp,) = Mt o, @k, (t, xsl,xSQ,xpl) at the point

P1

_ * * * *
(6, s Ty, Tp,) = (te,wh,, 2%, 25,) for each (t.,z3,7%,,25) € [t4,00) X
X5, X D, x Xq. Then the function x,, = n(t,xs,,xs,, Tp,) is continuous in

(t,2s,, Zsy, Tp, ), continuously differentiable in (z,, z,, ) and satisfies the equation
(2.45) as well as the equation (3.7), i.e., U(t, x5, , Tsy, Tp,, N(t, Tsy, Tsy, Tp,)) = 0,
for (t,zs,, sy, xp,) € [t4,00) X X, x Dy, x X1. Let us prove the uniqueness of
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the function 7. Assume that there exists another function z,, = ((t, zs,, Ts,, Tp,)
defined in the same way as the function 7 and, accordingly, having the same
properties, but differing from 7 at some point (t., x5, z3,, 7, ) € [t+,00) X X, X

cpe * * * _ * * * _
D, x X1. Then, due to condition 1, n(ts, 3,75, ) = ((ts, 28, 25, 25,) =
*

Ty, (since (t.,ry, + x5, + =, +x,,) € L, ), which contradicts the assumption.

This holds for each point (t., 2%, z%,, 7y, ) € [t4,00) X X, x Dg, x X1, and hence
N(t, sy, Tsy, Tpy ) = (L, Tsy, Tsy, Tpy ).

Choose any initial point (to,x0) € L, , where Soxg € D,,, and any function
¢s, € C([to,0), Ds,) satisfying the condition ¢g,(tg) = Saxo. Substitute the
chosen function into 7 and denote q(t,zs,,xp,) = 1(t, Ts;, ¢s,(t), Tp,). Further,
we substitute the functions x,, = q(t, zs,,2p,) and z,, = ¢s,(t) in (2.43), (2.44)

and write the obtained system in the form

d _
pricde T (t,w), (3.9)

T
where w = ( sl),
Lp

’Y‘(t w) — (‘Aé}gnl) [FIJE(? msl? ?52 (t)a xplaQ(t7 1'51,.7};)1)) - Bgenxsl - Bund¢52 (t)]>
‘Ag_ ) [Qlf(t) Lsq, d)SQ (t)a xm ) Q(ta Tsy, xpl)) - lepl]
= T(tv Ts) + ¢52 (t) + xp, + Q(ty xsuxpl))

(Y(t,z) is defined in (2.48)).

Due to the properties of f, ¢ and ¢s,, the function :f(t,w) is continuous in
(t,w) and continuously differentiable in w on [ty,00) x X, x X;. Consequently,
there exists a unique solution w = w(t) of (3.9) on some interval [ty, ) which
satisfies the initial condition

w(t()) = Wwo, wo = (33;[‘170,1'51’0)T, l‘sl,O = 511‘0, l'pl,O = Pll‘o. (3.10)

This solution can be extended over a maximal interval of existence [tg, ) C
[to, o0) (i-e., the solution exists on [ty, 5) and does not exist on a larger interval),
and the extended solution w(t) is a unique solution of the IVP (3.9), (3.10) on
the whole interval [to, 8) (see, e.g., [21]).

Let us introduce the function V(t,w) = V(t,zs,,2p,), where V (¢, xs,, zp,)
follows the theorem condition 3. It follows from condition 3 that the derivative
of V along the trajectories of the equation (3.9) satisfies the inequality

v (t,w) + g—‘;(t,w)T(t,w) < x(t,V(t,w)) (3.11)
for all ¢ > tg, ||w|| > R. Due to condition (c), the differential inequality (2.3),
t > tg, does not have positive solutions with finite escape time. Hence, by [19,
Chapter IV, Theorem XIII] every solution of (3.9) exists on [tg, 00) (or is defined
in the future [19]), and, consequently, the solution w(t) = (ws, ()T, wp, (¢)T)T is
global (i.e., the maximal interval of existence is [tg, 00)).

Voo (tw) =
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Thus, the functions ws, € C1([tg, ), Xs,), wp, € C1([ty, ), X1) (the compo-
nents of the solution w(t)) and q(t,ws, (t), wp, (1)) = n(t, ws, (t), Ps, (1), wp, (t)) are
a unique solution of the system (2.43), (2.44) and (2.45) on [tg, 00), and the equa-
tion (2.46) is an identity since (t,ws, (t) + ¢s, (t) + wp, (t) + q(t, ws, (), wp, (1)) €
Ly, for all t € [tg, 00). Therefore, the function

2(t) = ws, (1) + @5, (1) +wpy (1) + q(t, ws, (), wpy (1))

is a unique solution of the IVP (2.1), (2.2) on [tg, 00). The chosen function ¢, €
C([to, 00), Ds,) with the initial value ¢s,(to) = S2xo, which can be regarded as
a functional parameter, uniquely defines the component Soz(t) = ¢s,(t) of the
solution z(t). If rank(AA + B) = n < m, then X, = {0}, S2 = 0 and the
component Sz is absent. Since the initial point (¢o,z¢) was chosen arbitrarily,
then it is proved that the IVP (2.1), (2.2) has a unique global solution z(¢) with
the fixed component Sez(t) = ¢, (t) (where ¢s, is an arbitrary function belonging
to C([to, 00), Ds,) with the initial value ¢g,(tg) = Sazo) for each initial point
(to,l‘o) € Lt+ where Syxq € D32~ ]

A mapping f(t,z) of a set J x D, where J is an interval in R, D C X and
X is a linear space, into a linear space Y is said to satisfy locally a Lipschitz
condition (or to be locally Lipschitz continuous) with respect to x on J x D if for
cach (fixed) (ty,x,)€J x D there exist open neighborhoods U(t,), U(zy) of the
points t., z. and a constant L > 0 such that || f(t,z1) — f(t,72)[| < L||z1 — 22|
for any t € U(ty), z1,22 € U(zy).

Theorem 3.4. Let f € C([t4,00) x R", R™) and NA+ B be a singular pencil
of operators such that its reqular block NA, + B, from (2.17) has the index not
higher than 1. Assume that conditions 1 and 3 of Theorem 3.2 hold and that
condition 2 of Theorem 3.2 is replaced by the following:

2. A function f(t,z) satisfies locally a Lipschitz condition with respect to = on
[t4,00)xR™. For any fived t., v« = x5 +x%, +xp +x;, such that (t., ) € Ly,
and x5, € Ds,, there exists a neighborhood Nj(t., s ,%,, p1) Us, (ts) x
Us, (z 51) X Nsy(75,) % Us,(wy,), an open neighborhood Ue(x},) (the numbers
d,e > 0 depend on the choice of t., x.) and an invertible opemtor Dy, », €
L(Xg,Yg) such that for each (t,xs,,%sy, Tp,) € Ni(tse, 25, 7%,, 7, ) and each

, € Uc(zy,), i = 1,2, the mapping

U(t, s, Ty Tpy, Tpy) = Qaf (L, s, + sy + Tp, + Tp,)

= By, Ty [t4,00) X Xy X Xy x X1 x Xo = Vo (3.12)

satisfies the inequality

H\P(t?xSmxwapux;loz) \I’(t Ls1sLsyy Tpys pz) (btﬂmx*[ xZQ:IH

< 0(5,»5)||:13p2 (3.13)

_‘T]QJQHa

where ¢(3,€) is such that lims . o c(6,¢) < [|®; %, ||~}

ts,Tx
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Then for each initial point (to,x0) € L, , where Soxg € Ds,, the initial value
problem (2.1), (2.2) has a wunique global solution x(t) for which the choice
of the function ¢s, € C([to,0),Ds,) with the initial value ¢s,(to) = Sazo
uniquely defines the component Sox(t) = ¢s,(t) when rank(AA + B) < n; when
rank(AA + B) = n, the component Sax is absent.

Remark 3.5. If a function f(¢,z) has the partial derivative E%f € C([t4,00) x
R™ L(R™,R™)), then the function (3.12) has the continuous partial derivatives
with respect to zs,, Zs,, Tp,, Tp, o0 [t4,00) X X5 X X x X7 X X9 and
o
0z p,
Ty = le + 33:2 + $;1 + x;;z‘

(te, s, xh, x5 a5 ) = $y, 4., where the operator @, ., is defined by (3.2),

S§17 %7827 °P1? Y p2

Corollary 3.6. If the conditions of Theorem 3.2 are fulfilled, then the con-
ditions of Theorem 3.4 are also fulfilled.

Proof. Obviously, it follows from the existence of 82 f e C([ty,00) x
x

R™ L(R™,R™)) that f(t,z) satisfies locally a Lipschitz condition with respect
to x on [t4,00) x R™. Take @, ,, defined by (3.2) as the operator ®;, ., ap-

ov

pearing in condition 2 of Theorem 3.4. Then &4, ,, = T(t*’ T, Ty Ty s Ty )
Lps

where x, = z3, + x5, + 2, + x,,, and there exists @;w* € L(Ys, X5) by virtue

of condition 2 of Theorem 3.2. It is readily verified that condition 2 of Theo-
rem 3.4, where ®;, .. is the operator (3.2), is satisfied. The rest of the conditions
of Theorems 3.2 and Theorem 3.4 coincide. [

The proof of Theorem 3.4. We define the norm | - || in X, +X5,+X1+Xo
as 2] = s, ||+ [2sgll + | + [0pell, where we denote by [l | = |z, lIx.,
@l = Nsgll ey I | = 7yl a0 [zl = 2]l x, the norms of the com-
ponents Ty, , Ts,, Tp, and x,, in the subspaces X,,, Xs,, X1 and Xy, respectively.
Taking into account the correspondence between X, + X, +X1+Xo and X, x
X, X X7 x Xy which is established in Section 2.3, the norm ||z| of z € X, x
X5, x X1 X Xy is defined in the same way and coincides with the above-defined
norm of the corresponding element z € X sl—i—X so +X1+X5. Since for any norm
|l in R™ the inequality [2llgn < |0 i + [aglen + [Zpy len + s len holds
(due to (2.36)), then the chosen norm is “maximal”. Similarly, in R x R™ we use
the norm ||(t, )] = [t + 2, | + [sgll + Nzipu | + 12551

Consider the equation (3.7), that is, U(t, xs,, Zsy, Tp,, Tp,) = 0 where U is
defined by (3.6). Recall that this equation is equivalent to the equation (2.45)
and that B‘XQ = BQ|X2 = By. The mapping (3.12) can be represented as

U(t, sy, Tsyy Tpyy Tpy) = Q2 f (8, Xy, Ty, Tpy s Tpy) — Baxp,

- BQ\II(ta LsqsLsg, ‘Tpl ) po)a
and we can rewrite the equation (3.7) in the form

Lps :N(tvxﬂaxswxplvxpz)v (3.14)
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where N (£, g, , Ty, Tpys Tpy) 1= Ty — P71 WL, xsl,a:sZ,:Upl,xm). Recall that if

20
(ts; x4) € Ly, then (ti, x4) satisfies (3.7), i.e., ¥(ts, x5, 25,, ), , Tp,) = 0 where
:E:l + x:2 + x;l + {L‘;2 = L.
Lemma 3.7. For any fized elements t. € [ty,00), x}, € X, x}, €
Ds,, x, € X1, z,, € Xo for which (t«,r3, + x5, +x, +x5,) € Ly, there
exists a neighborhood N (te, w5y, 5, 2p,) = Up(t *) X Ur2( :1) X Npy(z3,) X

Ur,(y,) (where Ny (x%,) # {x3,} if the nezghborhood Ns,(x3,) defined in con-
527 7"6' N§3( ) # {"'BSQ})

dition 2 does mot degenerate mto the point x:

open neighborhood U,(z;,) and a unique function x,, = u(t :Usl,xSQ,xm) €
C(Ny(ts, 75, 75,, ), ), Up(wy,)) which satisfies the equality ju(ts, x5, , 5, ) ) =

wy, and a Lipschitz condition with respect to (ws,,xp,) (with respect to

(Tsy, Tsy, Tpy ) if Neg(wy,) # {x5,}) on Np(te, x5, w5, 2p,) and is a solution of
the equation (3.7) with respect to xp,, i.e., Y(t, Ts,, Tsy, Tpy, 1(E, Tsy, Tsgy Tpy)) =
0, for all (t,zs,,%sy, Tp,) € Nyp(ts, 75, T5,, Ty, ) (the numbers r,p > 0 depend on

8177820
* * *
the choice of t, x3,, x5, Ty, , Ty, )

Proof. Tt follows from condition 2 that for any fixed point (t.,x} -+
vy, +x, +x5,) € L, for which z3, € Ds,, there exists a closed neigh-

bothood N (t*, oty wh,, 1) = Uy () x Ug,(a3,) x Ng(ah,) x Ug,(25,) €
Ng(t*, Ty, TS, p1) Us, (t«) x Us,(x5,) X Nesg(w3,) x Us,(x},), where 0 < §; <

i, i = 1,2,4, 03 = 83 = 0 if Ng,(af,) = {2} and 0 < &5 < 43 (ie.,
{=%,} 7é Ni&(a:;)) G Ns,(x%,)) otherwise, and a closed neighborhood Uz(z},) C
U.(x},) such that A is a contractive mapping with respect to zp, (uniformly in

p2
(tam817$82?xp1))onN(t*7 ) XU( )7i'e-v

81’ 52’ pl

HN(t7x817$8271‘P17x11>2) _N(t7 x517x827xp17:1:}272)|| < l”lem - x}%g”’

1<1 (3.15)

(I is a constant), for every (t,xs,, &5y, p,) € Nj(tu, xh, ak,, xk ), xb, € Us(x},),
i = 1,2. Indeed, due to (3.13), there exist numbers 6 € (0,9) (accordingly,
numbers §; € (0,6;), i = 1,2,4, and J3 € (0,d3] such that d3 = 03 = 0 if
Ns,(x3,) = {x%,} and 0 < 03 < (53 otherwise) and £ € (0,¢) such that for every
a = (b5, sy, Lp,) € N 5(te 7%, 28, 7p,) = Uy (t) x Uy, (25,) x Ny, (a%,) %

81
€ Us(x},) the following holds:

(
Us, (zp,) and every x}

p2? p2

N (e, 2p,) = N2, = ey, — a5, — &0 [Vl 2,) — W(a, a3, )|

@, pz ? P2 7 P2 7 P2
< |@;%. le(do, €0) |, —

$P2 ”’

where ][@;jh]]c(éo,ag) <1 < 1 for every & € (0,6], eo € (0,é]. This implies
(3.15).

Choose a point (t., z«) = (ts, 25, + @5, + 5, + z;,) such that x5, € D, and
(t, :c*) € Lt+, and fix it. As above, denote o = (¢, z4,, Zs,, Tp, ), and denote o, =
(te 25,5 5,5 @y, ), then N, sy, Ty Tpy s Tpy) = N (v, ).

52’ pl
Since W is continuous on [t;,00) X X, x Xy, X X1 X Xo, then ¥(a, r5,) =
\Il(a*,x;;Q) = 0 as a — ax, and therefore there exists a closed neighborhood
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N () = Usy () x Uy (a3,) x Nog (w3,) x Us; (2,) € Ny(aw), where 6. e (0,4],
57 € (0, (5], = 1,2,4, 65 € [0,03] and & # 0 if Nj,(x* ,) # {z%,}, such that
||<I>t*’m* 10 (a, zy, )|l < (1—1)& (where [ is the constant from (3.15)) for every o €
Ns, (ax). Hence, for each (fixed) o € Ns, () and every Tpy € Ug(x3,) we have
N (@) — il < N (@ ) — Ny )+ 1972 18 (@, )| < 16+ (1 —

)¢ = &. Thus, N(a p,) maps Uz(z},) into itself for each a € Ns, (a).

From the foregoing it follows that, by the fixed point theorems (see, e.g., [20,
Theorems 46, 462]), the mapping N (a,a:p2) as a function of z,,, depending on
the parameter o = (¢, s, s,, %p, ), has a unique fixed point pu, = p(a) (ie.,
N(a,p(a)) = p(a)) in Us(zy,) for each o € Ns, (ax) = N, (b, 5, 25,, 25, ),
which satisfies the equality u(a*) = £Up2, and p(a) depends continuously on a.
The continuity of the function pu: Nj, (o) — Uz(w
as in [20, Theorem 46s).

Let us prove that p(a) = u(t, xs,, xs,, p, ) satisfies a Lipschitz condition with
respect to (xs,, Zp, ) (wWith respect to (z, , xSQ,xpl) if Ns,(x5,) does not degenerate
into the point x3,) on Ny(aw) = Nyp(ts, 25,75, Tp, ), Where the neighborhood
Ny (o) is spemﬁed below (a. = (ts, 75, 75,,2;,)). Recall that here we use the
notation f(t, s, Ty, Tpy, Tpy) = f(t, ) introduced in the proof of Theorem 3.2.
Since the function f(¢,x) satisfies locally a Lipschitz condition with respect to x

on [t4,00) xR™, then there exists an open neighborhood U (¢, % ,x% x5 x5 ) =

xy,) is proved in the same way

51’ 8§27 P17 U P2
Ulty) x U(z? Ty, Tsys Tpy s Tp,) and a constant L > 0 such that
(s, 52796,1)1,36,1)2) f(tad, 2%, an x|
< LH( 317 szﬂle)wx;l)z) - (‘7}31,1’?2,%2201, 22)H
= L(lg, — 22, | + |z, — a2, || + 2y, — a3, | + 2y, — 2, ]1)  (3.16)
for any (t, xSl,xiwa:;,l,x;Q) € Ults, 75, 75,,7),,7p,), © = 1,2, Choose num-
bers r € (0,04], r; € (0,0]], i =1,2,4, a number rz € [0,05] such that r3 # 0

if N53( ,) F {:L‘SQ} and a number p € (0, 5] so that N,(ay) = Uy (ts) X
Ury (25 )><Nr3( ,) < Up,(25,) € N, (aw), Up(; )CU(pg) Nr(aw) x Up(y,) €
Ulty,xk ak b ak) and w maps Ny (o) mto Up(x},). Then, carrying out cer-

517 527 p1? p2
tain transformations and using (3.15), (3.16), we obtam that

H:u’( slaxigvxgln)_lu(t?xgl“xSQ’ pl)H <LH< 517 3271’.;1)_(1’.3171'?27'%21)”

= L(llzs, — 22, | + llzs, — 22, + llzp, — z,11),

where
L=L|a; % Qall/(1 —1) >0,

for any (t,a% 2%, 2% ) € Np(ty, 2k, %, @5), i = 1,2, where z}, = x2, = z},
if Ns,(z3,) = {zi,}. Hence, u(t,zs,,xs,,rp ) satisfies a Lipschitz condition
with respect to (s, 2p,) (with respect to (zs,, sy, zp,) if Nsy(23,) # {23,})
on Ny(t, 5, 75,, Tp, ).

Since the equations (3.7) and (3.14) are equivalent, the lemma is proved. [



Qualitative Analysis of Nonregular DAEs and Gas Networks 741

Due to condition 1 of Theorem 3.2, for any fixed (t.,z3,, ¥5,, ), ) € [t+,00) X

X5, X Ds, x Xy there exists a unique z;, € Xa such that (t., 25, + %, + 2, +

:L‘;2) € Ly, . Further, it follows from Lemma 3.7 that in some neighborhood
Ni(te, @5y, Ty 2y ) = Upy (85) X Upy (25, ) X N (25,) X U, (55, ) of each (fixed) point
(te, 5, T5,, Ty, ) € [t4,00) X Xg; X Ds, x X7 there exists a unique solution x,, =
fit. oz, @z ap (6 sy, Tsy, Tpy ) Of the equation (3.7), and this solution is continuous
in (t,zs,,%s,,xp, ), satisfies a Lipschitz condition with respect to (zs,,zp,) and
the equality i, oz wr ws (b, 25,75, ) = @3, € Dp,, where the set Dy, C X
is such that for each xp,, € Dy, there exists (¢, zs,, Ts,, Tp,) € [t4,00) X X, X Dy, X
X1 such that (t,zs, + s, +2p, + 2p,) € Ly, . As in the proof of Theorem 3.2,
we introduce a function 7n: [t4,00) x X, x D, x X1 — Dp, and define it by
Nt sy Tsy, Tpy) = Pz az,wp, (b Tsys Tsys Tpy) ab the point (E, 2, Tsy, Tp, ) =
(t, 25, 75,, 7y, ) for each (L., %, 7%, 7, ) € [t4,00) x X, X Dg, x X1. Then the
function xp,, = n(t, xs,, Ts,, Tp, ) is continuous in (¢, zs,, Zs,, Tp, ), satisfies locally
a Lipschitz condition with respect to (xs,, xp,) on [t4,00) X X, X Dy, x X1 and is
a unique solution of the equation (3.7) (i.e., U(t, xs,, Ty, Tp,, N(t, Ty, Ty, Tp,)) =
0) as well as the equation (2.45) with respect to x;,. The uniqueness of 7 is proved
in the same way as the uniqueness of the function 7 in the proof of Theorem 3.2.

Choose any initial point (to,zo) € L; , where Syxg € D,,, and any func-
tion ¢s, € C([to,0), Ds,) satisfying the condition ¢s,(t9) = Saxg. We substi-
tute the function x,, = ¢s,(t) into 1, denote q(t, zs,, zp,) = N(t, Ts,, Pss (L), Tp, ),
and then we substitute the functions x5, = ¢g,(t) and z,, = ¢(t,zs,,2p,) in
(2.43), (2.44). We write the obtained system in the form (3.9). Due to the prop-
erties of f(t,xs,, Ty, Tpy, Tpy), N(t, Tsy, Tsy, Tp,) (and, accordingly, q(t, zs,, p,))
and ¢, (t), the function T(¢,w) is continuous in (¢, w) and satisfies locally a Lip-
schitz condition with respect to w on [tg,00) x X4, x X;. Consequently, there
exists a unique solution w = w(t) of (3.9) on some interval [to, ) which satisfies
the initial condition (3.10) (this follows from, e.g., [21, Theorem 1]).

The subsequent proof coincides with the proof of Theorem 3.2 (see the part

of the proof after (3.10)). O

4. Lagrange stability of singular semilinear DAEs

Theorem 4.1. Let f € C([t4,00) x R" R™) and NA+ B be a singular pencil
of operators such that its reqular block NA, + B, from (2.17) has the index not
higher than 1. Assume that condition 1 of Theorem 3.2 holds and condition 2 of
Theorem 3.2 or condition 2 of Theorem 3.4 holds. Let the following condition be
satisfied:

3. There exists a number R > 0, a function V € C*([ts,00) x Ds, x D, R)
positive on [t4,00) X Dg, x Dy, where Dg, X Dy, = {(xs,,2p,) € X5, X X7 |
|(zs,,2p,)|| > R}, and a function x € C([t4,00) x (0,00),R) such that:

(a) V(t,zs,,xp,) = 00 as ||(zs,,2p,)|| = 00 uniformly in t on [t4,00);
(b) for each (t,xs, + x5, + Tp, + xp,) € Ly, for which x5, € Ds, and
|(zs,,2p,)|| > R, the inequality (3.3) is satisfied;
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d
(c) the differential inequality (2.3), i.e., di; < x(t,v) (t € [t4,00)), does not
have unbounded positive solutions fort € [ty,00).

Then for each initial point (to,x0) € Ly, , where Soxg € Ds,, the initial value
problem (2.1), (2.2) has a unique global solution x(t) for which the choice of
the function ¢s, € C([tg,00), Ds,) with the initial value ¢s,(to) = Saxo uniquely
defines the component Sax(t) = ¢s,(t) when rank(AA + B) < n.

Let, in addition to the above conditions, the following conditions also hold:

4. For all (t,xs, + x5y + Tp, + xp,) € Ly, for which xg, € Dy, and ||xs, + x5, +
Zp, || < M < oo (M is an arbitrary constant), the inequality

[2p, || < Kar < o0
or the inequality
1Qaf (t, s, + Ty + Tpy + Tpy)|| < Kpr < 00,

where Ky = K (M) is a constant, holds.
5. |Faf(t,x)|| < oo for all (t,x) € Ly, such that Sex € D, and ||z| < C < oo
(C is an arbitrary constant).

Then, for the initial points (to,x0) € L where Soxg € Ds, and any
function ¢s, € C([to, ), Ds,) satisfying the relations ¢s,(tg) = Saxo and
SUPtefty,00) P52 (D[] < 00, the equation (2.1), where Sox = ¢5,(t), is Lagrange
stable; when rank(AA + B) = n < m, the component Sax is absent.

Remark 4.2. If condition 3 of Theorem 4.1 holds, then condition 3 of Theo-
rem 3.2 holds. This is easily verified since conditions (a) and (c) of Theorem 4.1
imply conditions (a) and (c) of Theorem 3.2, respectively, and conditions (b) of
Theorem 4.1 and (b) of Theorem 3.2 coincide. Note that condition 3 of Theo-
rem 3.2 must also hold for Theorem 3.4.

The proof of Theorem 4.1. We will carry out the proof, assuming that condi-
tion 2 of Theorem 3.2 holds. If we replace it by condition 2 of Theorem 3.4, then
in the proof of the present theorem it will be necessary to replace “Theorem 3.2”
by “Theorem 3.4”.

Considering Remark 4.2, we conclude that all conditions of Theorem 3.2 hold.
Consequently, for an arbitrary initial point (to,z0) € L;, , where Soxg € Ds,,
there exists a unique solution x(t) of the IVP (2.1), (2.2) on [tp,00), such that
Sox(t) = ¢s,(t) where ¢s, € C([tg,00), Ds,) is some chosen function with the
initial value ¢s, (o) = Sazp. Thus, the existence of a global solution of the IVP
(2.1), (2.2) is proved.

Let us prove the Lagrange stability. As shown in the proof of Theorem
3.2, the solution of the IVP (2.1), (2.2) can be represented in the form z(t) =
Wey (1) + ¢sy () + wp, () + q(t,ws, (t),wp, (t)). It is assumed that the function
¢s,(t) defining the component Sex(t) of the solution x(t) was chosen so that
SUPye(tg,00) [|Ps2 (1)]| < 00. This is fulfilled due to the requirements of the present
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theorem and, obviously, does not affect the proof of Theorem 3.2. It follows from
condition 3 that the derivative of the function V' along the trajectories of the
equation (3.9) satisfies the inequality (3.11) for all ¢ > tg, |lw| > R, and the
differential inequality (2.3) does not have unbounded positive solutions for ¢t €
[t4,00). Then by [19, Chapter IV, Theorem XV] the equation (3.9) is Lagrange
stable. Consequently, sup;¢ (s, o) [|w(?)|| < co. Hence there exists a constant M >
0 such that

lws; (£) + @5, () +wp, (D] < M, T € [to, 00). (4.1)

Recall that the function ¢(t,ws, (t),wp, (t)) = n(t,ws, (£), s, (1), wp, (1)) is a
solution of the equation (2.45), as well as (3.7), with respect to the variable z,,.
Denote u(t) := q(t, ws, (t),wp, (t)). Therefore,

u(t) = BEVQa f (1, ws, (£) + B (1) + wp, (8) + u(t)). (4.2)

Then from (4.1), condition 4 and the boundedness of the norm of the operator
Bé_l) € L(R™,R™) it follows that there exists a constant Ky = K (M) (depend-
ing on the constant M, in general) such that ||u(t)|| < Ky for all ¢ € [tg, 00).

It follows from the above that ||z(t)|| < M + Kj; < oo for all ¢ € [tg, 00),
i.e., the solution z(t) is bounded on [tp,c0) and, therefore, is Lagrange stable.
Condition 5 ensures the correctness of the equality (2.46), which is equivalent to
the equality FyBx(t) = Faf(t,x(t)). Thus, the theorem is proved. O

5. Lagrange instability of singular semilinear DAEs (the blow-
up of solutions in finite time)

Theorem 5.1. Let f € C([t4+,00) x R",R™) and NA+ B be a singular pencil
of operators such that its reqular block NA, + B, from (2.17) has the index not
higher than 1. Assume that condition 1 of Theorem 3.2 holds and condition 2 of
Theorem 3.2 or condition 2 of Theorem 3.4 holds. Let the following conditions
hold:

3. There exists a region 1 C X, X X1 such that the vector (Six(t), Pix(t))
consisting of the components S1x(t), Pix(t) of any solution x(t) with the initial
point (to, o) € Ly, , where (S1xo, Pixg) € Q1 and Saxg € Ds,, remains all the
time in Qq (i.e., remains in Qy for allt from the maximal interval of existence
of the solution).

4. There exists a function V € C1([t1,00) x Q1,R) positive on [ty ,00) x 1 and
a function x € C([t4+,00) x (0,00),R) such that:

(a) for each (t, x5, +xsy+xp, +xp,) € Ly, , for which x,, € Ds, and (xs,,2p,) €

Qq, the inequality

‘/(/2.43),(2.44) (tv Ls1s xp1) > X(t7 V(tv Ls1s Tpy ))7 (51)

where 1/(’2.43)7(2.44) (t,zs,,2p,) has the form (2.47), is satisfied;

(b) the differential inequality (2.4), i.e., dv/dt > x(t,v) (t € [t4+,00)), does
not have global positive solutions.
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Then for each initial point (to,xo) € L, , where Soxg € D, and (S1x0, Pixo) €
Oy, the initial value problem (2.1), (2.2) has a unique solution x(t) for which
the choice of the function ¢s, € C([to,00), Ds,) with the initial value ¢s,(to) =
Saoxo uniquely defines the component Sox(t) = ¢s,(t) when rank(AA + B) <n
(when rank(AA + B) = n < m, the component Sox is absent), and this solution
is Lagrange unstable (has a finite escape time).

Proof. 1t is proved in the same way as in Theorem 3.2 (or 3.4) that there
exists the unique solution w(t) of the IVP (3.10), (3.9) on the interval [to, 3).
In addition, it follows from the proof of Theorem 3.2 (or 3.4) that there exists a
unique solution x(t) = ws, (t)+@s, (t) +wp, (£)+q(t, ws, (), wp, (t)) of the IVP (2.1),
(2.2) on the maximal interval of existence [to, 3). Further, it is assumed that the
initial point (to,zo) for the solution mentioned above has been chosen so that
condition 3 is satisfied. Then the initial value wg = (xrsrho’ mghO)T from condition
(3.10) belongs to the region €y, which is defined in condition 3. Therefore, the
solution w(t) of (3.9) remains all the time in ;. By virtue of condition 4,
V(/3.9) (t,w) > X(t, V(t,w)) for all t > tg, w € Q1, and the inequality (2.4), t > to,
does not have global positive solutions. Hence, using the theorem [19, Chapter IV,
Theorem XIV], we obtain that the solution w(t) has a finite escape time, i.e., it is

defined on some finite interval [tg, T') and lim;,7_¢ ||w(¢)|| = +o00. Consequently,
[to, B) = [to,T) and the solution z(t) has a finite escape time. Accordingly, it is
Lagrange unstable. O

The statement of Theorem 5.1 means that (2.1) is Lagrange unstable for the
initial points (t9, o) € Ly, for which Syxg € Dy, and (S1xo, Pixo) € 1.

6. Dissipativity (ultimate boundedness) of singular semilinear
DAEs

Below, we will use the notation (z,w)y := (H(t)z,w) for a scalar product
with the weight H(t).

An operator function H:J — L(X), where X is a finite-dimensional linear or
Hilbert space and J C R is an interval, is called self-adjoint if the operator H (t) is
self-adjoint (for each t€J). A self-adjoint operator H(t) € L(X) (t€J) is called
positive definite if there exists a constant ¢ > 0 such that (H(¢)x,z) > c||z||? for
all t, z. A self-adjoint operator function H:J — L(X) is called positive definite
if the operator H(t) is positive definite (see, e.g., [12, Definition 2.2]).

Theorem 6.1. Let f € C([t4,00) x R",R™) and NA+ B be a singular pencil
of operators such that its regular block A, + B, from (2.17) has the index not
higher than 1. Assume that condition 1 of Theorem 3.2 holds and condition 2 of
Theorem 3.2 or condition 2 of Theorem 3.4 holds. Let the following conditions
be satisfied:

3. There exists a number R > 0, a function V € C1([t;,00) x Ds, X Dp,,R) pos-
itive on [ty,00) X Dg, X Dp,, where Dy, x Dy, = {(zs,,2p,) € X5, X X1 |
|(zs,, zp,)|| > R}, and functions U; € C([0,00)), j = 0,1,2, such that Uy(r)
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is non-decreasing and Uy(r) — +o00 asr — +oo, Ui(r) is increasing, Us(r) > 0
forr >0, and for all (t,xs, + x5, +xp, +p,) € Ly, for which xs, € Dy, and
|(zs,, zp,) |l > R, the inequality

UO(H(xSUx;Dl)H) < V(taxsuxm) < Ul(H(:Esl’xpl)H)

and one of the following inequalities (where V(’2_43) (2_44)(15,3751,951,1) has the
form (2.47)) hold:

(a) ‘/(,2.43),(2_44)(t7x817xp1) < _UQ(H(xsl’xpl)H);

(b) V(,2.43),(2_44) (tvxswxpl) < _UQ((($517$IJ1)7 (mspl‘m))H)f where H €
C([ty,00),L(Xs, x X7)) is a positive definite self-adjoint operator function
such that H(t)|, : X5, — Xg x {0} and H(t)|, : X1 — {0} x X3 for

51

any fized t, and Sup;cr, o0 |H(t)]| < oo;

),

(c) ‘/(’2.43) (2.44) (t,xs,,xp,) < —aV(t, zs,,2p, ), where a > 0 is some constant.

4. There exist constants 3 > 0, T > t such that [|Q2f(t, x5, +Tsy +Tp, +Tp,)|| <
Bl[(xs,, zp,)|| for all (t, x5, + xs, + xp, + xp,) € L7 where x5, € D, .

5. [[Faf(t,x)|| < oo for all (t,x) € Ly, such that Sox € Dy, and |jz|| < C < oo
(C is an arbitrary constant).

Then, for the initial points (to,x0) € L where Soxg € Ds, and any
function ¢s, € C([tg,0),Ds,) satisfying the relations ¢s,(tg) = Saxo and
SUPtefty,00) P52 (D[] < 00 the equation (2.1), where Sox = ¢, (t), is uniformly
dissipative (uniformly ultimately bounded); when rank(AA + B) = n < m, the
component Sox is absent.

Remark 6.2. If condition 3 of Theorem 6.1 holds, then condition 3 of Theo-
rem 3.2 holds.

The proof of theorem 6.1. It follows from the conditions of the present the-
orem and Remark 6.2 that the conditions of Theorem 3.2 (or Theorem 3.4) are
satisfied. Hence, there exists a unique global solution z(t) of the IVP (2.1),
(2.2) for each consistent initial point (tg,z¢) with Sazg € Ds, and some chosen
function ¢s, € C([to, 00), Ds,) with the initial value Saz¢ which defines the com-
ponent Sex(t) = ¢s,(t). As shown in the proof of Theorem 3.2, the solution can
be represented as x(t) = wg, (t) + ¢s, () + wp, (1) + q(t, ws, (t),wp, (t)). By virtue
of the conditions of the present theorem, it is assumed that supcp, o) 95, (V)| =
v < oo. In a similar way as in the proof of the theorem [12, Theorem 4.3|, using
condition 3 and the proof of the theorem [26, Theorem 10.4] and its corollary, we
obtain that solutions of (3.9) are uniformly dissipative, i.e., there exists a num-
ber M > 0 and, for each solution w(t) = (ws, (£)T, zp, (£)T)T satisfying the initial
condition (3.10), there exists a number 7 = 71 (xg) > to such that ||w(t)] < M
for each t > to + 71. Recall that the function u(t) = q(t,ws, (t),wp, (t)) satisfies
the equality (4.2). Therefore, according to condition 4, there exists a constant
Bo > 0 and a number 75 = T (x0) > to such that |u(t)|| < Bo |w(?)|| < Bo M for
all t > 7. Hence, for each solution with the initial values ¢y, ¢ there exists a
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number 7 = 7(xg) > to such that [|z(¢)| < (24 fo)M + v = k for all ¢t € [tp +
7,00), where the constant & > 0 does not depend on ¢y, xg. Consequently, the
DAE (2.1) is uniformly dissipative, and condition 5 ensures the correctness of the
equality (2.46). O

7. Replacement of some conditions of the theorems by weaker
ones

This section shows how we can weaken some requirements of Theorems 3.2,
3.4 and, as a consequence, some requirements of the other theorems as well.

Let Z and W be n-dimensional linear spaces. A system of n pairwise disjoint
projectors {©;}1; (©;0; = §;; ©;; the projectors are one-dimensional), where
©; € L(Z), such that their sum is the identity operator I; = Y ", ©; in Z
is called an additive resolution (or decomposition) of the identity in Z (cf. [8,
24]). Notice that an additive resolution of the identity in Z generates the direct
decomposition Z = Z;+---+Z, where Z; = ©;Z, i = 1,...,n. An operator
function ®: D — L(W, Z), where D C W, is called basis invertible on an interval
J C D (or on a convex hull J = Conv{wi,wz} of wi, wy € D) if for some
additive resolution (decomposition) of the identity {©;}!; in Z and for each
set of elements {w*}?_, C J the operator A = Y  ©;®(w’) € L(W, Z) has
the inverse A=1 € L(Z,W) (cf. [8,24]). This definition in terms of matrices
is given in [10, p. 176]. Note that the property of basis invertibility does not
depend on the choice of an additive resolution of the identity in Z. Obviously,
it follows from the basis invertibility of the mapping ® on an interval J that for
each w* € J the operator ®(w*) € L(W, Z) is invertible. The converse statement
does not hold true, except for the case when W, Z are one-dimensional spaces
(see [8, Example 1]).

Theorem 7.1. Theorem 3.2 remains valid if conditions 1 and 2 are replaced
by the following:

1. For any fizedt € [t4+,00), x5, € Xs,, Ts, € Ds,, where Dy, C X, is a some set,
and x,, € X1, there exists x,, € Xo such that (t,xs, + Ts, + Tp, + Tp,) € Ly .

2. There exists the partial derivative %f € C([t4,00) x R L(R™,R™)). For any
fized ty, xf, = o3, + x5, + x5, + 2, such that (t«,x}) € Ly, and x}, € Ds,, the
operator function <I>t*@§1,x;27x;1 (xp,) defined by

q)t*7$:1 ’z:2’$21 ZXQ — L(XQ, YQ),

8Q2f *
Dy, 0z 0z, 0p, (Tpa) = W(t’ Ty, + T, +Tp + Tpy) — B| P, (7.1)

1 2]'

is basis invertible on [z, x;,

Remark 7.2. Note that (I)t*796§17$§2,x;‘71 (x;Q) = @4, o,, Where z, = 27, + x5, +
xy +x,, and @, ;. is the operator defined by (3.2), for any fixed x;, € Xs. In
addition, if the space X5 is one-dimensional, then condition 2 of Theorem 7.1 is

equivalent to condition 2 of Theorem 3.2.
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The proof of Theorem 7.1. The partial derivative of the mapping (3.6) with

respect to xp, at the point (¢, z%,,z5,,7, ,7,,) has the form (3.8) and can
: ov 1
be written as Wt*7g:* = a p2 (t*7 317$:2)xp17xp2) - B (Pt*7 TsqpsT 327 (‘T;?) €

L(X2), where @z, = a5, + x, + @, + ], and @y, or o 2 € C(XQ,L(XQ,YQ))
is the operator functlon deﬁned by (7.1). Define the operator function
Wt*,x;‘l T Xy — L(Xy),

o .

. * _ np—1
Wt*,lew’b‘zz,?ﬁ;l (xpz) . (t*’ Lgis syxpl’Im) - B2 ¢t*7x:17x§27x;1 ('xpz)v

O0zp,

where t., x%, x%, and xj are arbitrary fixed elements of [t;,00), X;,, X,
and X7, respectively. Recall that the basis invertibility of the operator function

toas wt, @ X2 — L(X2,Y2) on some interval J imply the invertibility of the
operator ®t*’wz1’m;2’x;1 (z;,) for each (fixed) z;, € J. Thus, it follows from condi-
tion 2 of the present theorem that for any fixed element (., x5, +x%, + 7, +,,) €

Ly, such that z3, € Ds, the operator Wy, o, = Wy, 4 &k, @y @, (37;;2) (where z, =

Ty, + X, +xy,, + a:pz, and Wi, ,, was defined in (3.8)) has the inverse Wtzlx* =
(q)t*,xzpmgym;l (l'pQ)) BQ S L(XQ)

Let us prove that condition 1 of Theorem 3.2 holds. Due to condition 1 of
the present theorem, for each (fixed) t € [t4,00), x5, € X5, @5, € Ds,, Tp, €
X1 there exists xp, € Xo such that (t,zs, + s, + Tp, + p,) € Ly, , and it is
necessary to prove the uniqueness of such a x,, in order to show that condition 1
of Theorem 3.2 is satisfied.

Take an arbitrary fixed ¢, € [ty,00), x5, € Xg, 5, € Ds,, z; €
Xy and z, € Xy, i =1,2, such that (te, 75, + @5, +x, +1,,) € Ly, , then
(te, T3y, T5,, Ty 5 Ty, ) must satisfy (3.7), ie., U(t,, x5, 25,, ;;1, p2) =0,i=1,2.
Note that the projector P restricted to X is the identity operator in Xo. It fol-
lows from the basis invertibility of the operator function ®, g2 o2 2 on [xll,Q, xfn]
that for some additive resolution of the identity {©;}%_; in X (Where d = dim Xo;

S0 =1Ix, = Py| ) the operator

d d
A= Z @thwl‘;l 7$;2,$;1 ({I:pg,i) = B2_1 Z @iq)t*7131’x§2’$p1 <mp27 ) (72)

i=1
is invertible for each set of the elements {z, x}¢_, C [:1711)2,1‘12)2] Hence, the
operator function Wi, ;= at, @y 18 basis invertible on [a:},Q, pQ] Using the additive

resolution of the 1dent1ty {©;}4_,, we define the functions
\I/i = @Z\If [t_,_,oo) X Xsl X X82 X X1 X X2 — Xgﬂ' = @iXQ, 1= 1,. . .,d.

Note that X»;, i =1,...,d, are one-dimensional spaces isomorphic to R, and
Xy = Xo1+---+Xo4. By the finite increment formula, there exist zp,; €

[37;1)273312,2], i1 =1,...,d, such that

i(te, o at a2 ) — Ut at  xf 2t xl)

817 82’ P17 p2 817 82’ P17 p2
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ov;
— * * * . 2 _ 1
= ox (t*’x815z327xp17xp2,1)(:1"p2 xpz)
P2
_o. (2 1 .
= 9@Wt*,xg1,x;2,x;;l (fﬂp2,z)($p2 - ﬂvm), 1=1,...,d.
Since W(t«, vy, 25,, T, Tp,) = 0, 1 = 1,2, then, summing the obtained expres-

p2 p2 P2 p2
2 1

0, where A is defined in (7.2). Since the operator A~! exists, then T, = T,
This holds for each point (t«,z3, + 23, + 7y +,,) € Ly, , i = 1,2, where 27, €
Dy, , since these points were chosen arbitrarily. Thus, the proof of condition 1 of
Theorem 3.2 is complete.

As in the proof of Theorem 3.2, take arbitrary fixed ¢, € [ty,00), z}, € Xy,
zy, € Dsy, z,, € X1. As proved above, there exists a unique zj, € X7 such that
(te, T4) € Ly, , where z, = 23, + 2%, + zy +zp,, and for this (ty, x«) the operator
Wiz = Wiz at, a (27,) has the inverse Wt;lw* € L(Xy).

The further proof coincides with the proof of Theorem 3.2. Generally, we
proved above that conditions 1, 2 of Theorem 3.2 are satisfied, and the rest of

the conditions of Theorem 3.2 are the same as in the present theorem. ]

sions over 7, we obtain Zle @th*’le’x§2’x;1 (xm’i)(x? — gl ) = A(xQ — gl ) —

Corollary 7.3. Theorems 4.1, 5.1, and 6.1 (which contain conditions 1, 2 of
Theorem 3.2) remain valid if one requires that conditions 1 and 2 of Theorem 7.1
hold instead of condition 1 of Theorem 3.2 and instead of condition 2 of Theorem
3.2 or condition 2 of Theorem 3.4.

Below we show how condition 3 of Theorem 3.2 can be weakened.
First, we consider an ODE

dz

e F(t,x), (7.3)
where t € [ty,00), t+ >0, x € W and W is an n-dimensional Euclidean space,
and the function F € C([t4,00) x W, W) satisfies locally a Lipschitz condition
with respect to = on [t4,00) x W, i.e., for each (t.,zs) € [t4,00) X W there
exist open neighborhoods U (%), U(z,) of the points t,, 2, and a constant L > 0
such that ||F(t,z1) — F(t,z2)|| < L||z1 — 22| for any ¢ € U(ty), 1,22 € Ulzy).
According to [19], a solution z(t) of the ODE (7.3), which satisfies some initial
condition x(ty) = xo, is called defined in the future, if it can be extended for all
t > to, i.e., to the whole interval [¢p, 00), and hence this solution is global by the
definition given in this paper. Thus, these definitions are equivalent. Consider
the ODE (the ODE (7.3) with a truncation)

dzx
i Fr(t,x), (7.4)

where T' is a parameter,

F(t ty <t<T
FT(t,IIZ‘) ::{ (,:E), + =t = )

F(T,z), t>T
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The function Fr (¢, x) is called the truncation of the function F'(¢,z) over ¢, and it
has the same properties as F'(t,z), i.e., Fir(t, x) is continuous and locally satisfies
a Lipschitz condition with respect to = on [t4,00) x W.

Below is the lemma proved in [7], which generalizes Theorem [19, Chapter IV,
Theorem XIII] and will be used in the sequel.

Lemma 7.4 (cf. [7, Lemma 3.1]). Let there exist a function V € C([t, 00) x
D¢ R) positive on [ty,00) x D¢, where D is the complement of some bounded
set D C W containing 0 (the origin). Let for each number T > 0 there exist a
set Dy D D and a function xr € C([t4,00) x (0,00),R) such that:

1. V(t,z) — oo as ||z|| — oo uniformly in t on each finite interval [a,b) C
[t+,00);

2. 1/(’7'4)(t,x) = %—‘t/(t,m) + g—‘;(t,aj)FT(t,x) < xr(t,V(t,x)) for all t € [t4,0),
x € DS (V(/7.4) is the derivative of V' along the trajectories of (7.4));

3. the differential inequality dv/dt < x(t,v) (t € [t4,00)) does not have positive
solutions with finite escape time.

Then every solution of the ODE (7.3) is global (defined in the future).

Proof. The proof is carried out in the same way as the proof of the lemma [7,
Lemma 3.1]. O

We return to the consideration of the DAE (2.1). Recall that it is equivalent to
the system (2.43)—(2.46). Introduce the truncation of the function f(¢,x) over t:

, 1T >ty is a parameter.

), te<t<T
Jult) = {f(T, D), t>T

Then the truncation of the function Y(¢,z) (see (2.48)) over ¢ has the form

TT(t x) = Aégnl)(FlflT(t"x) - ‘Bgenxﬁ - Bundl'geg)
AT (Qufe(t,2) — Bray,)

T(t t.<t<T
— (,l‘), + =V = ) (75)
Y(T,z), t>T

It consists of the right-hand sides of the equations (2.43), (2.44) with a truncation:

dx _

dtl = ‘Aé;er})[plfT(u x) - Bgenx& - Bundx82]7 (76)
dx _

= ATVIQur () — Bray) (77)

The derivative of a function V € C!([t1,00) X Ds, X Dp,,R) (Ds, X Dy, C X, X
X1 is an open set) along the trajectories of the system (7.6), (7.7) has the form

ov ov

Vizoy (b Zous 2p) = g (b Zor 2p) + 5o

875 (tax81a$p1)TT(t7$)
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ov
= a(tv Ts1s xm)
oV _
+ %(tv xsuxpl) |:‘Aéenl) (FlfT(tv l‘) - Bgenﬂgsn - Bundl‘SQ)}
81
oV _
+ 87@7 xsyxm) [‘Ag 1)(Q1fT(t,$) - lem)] : (7'8)
P1

Theorem 7.5. Theorems 3.2 and 3.4 remain valid if condition 3 of Theo-
rem 3.2 (which must also hold for Theorem 3.4) is replaced by the following:

3. There exists a function V € C1([t4,00) x Dg, x Dp,,R) positive on [t4,00) x

Ds, % Dpu where Ds, % Dp1 = {(xslvxpl)EXﬁ x Xq ’ ||(9351>xp1)|| > R} and

R > 0 is some number, and for each number T > 0 there exists a number

Ry > R and a function xr € C([t4+,00) x (0,00),R) such that:

(a) V(t, x5, xp,) = 00 as |[(xs;,zp, )| = 00 uniformly in t on each finite in-
terval [a,b) C [t4+,00);

(b) for all (t,xs, + x5, + xp, + xp,) € Ly, for which xzs, € D, and
|(ar. )| > Re, the incquality

V(/7‘6),(7.7) (t, sy, Tp,) < X (t7 V(t73751737p1))7 (7.9)

where V(’m)’(”) (t,xs,,2p,) has the form (7.8), holds;

(c) the differential inequality dv/dt < xr(t,v) (t € [t4+,00)) does not have
positive solutions with finite escape time.

Proof. The proof coincides with the proof of Theorem 3.2 (or 3.4), except for

the part where the existence of a global solution of (3.9), i.e., *_ T(t,w), is

proved. Let us prove this part using the conditions of the present theorem.

As shown in the proof of Theorem 3.2 (as well as Theorem 3.4), there exists
the unique solution w = w(t) of the IVP (3.9), (3.10) on the maximal interval
of existence [tg, 3). Recall that (to,z0) € Ly, , where Soxg € Ds,, is an arbitrar-
ily chosen initial point and that ¢s, € C([tg,0), Ds,) is an arbitrarily chosen
function with the initial value ¢, (t9) = Sazo.

Consider the ODE (3.9) with a truncation, that is,

d _
Y= Tr(t,w), (7.10)

where T is a parameter,

~ Y(t to<t<T
w = <$s1> ’ TT(t,w) — ~( ,CU), 0>t > ’
Tpy Y(T,w), t>T
Note that
T (t,w) = T(t,w) =T(t, x5, + ¢s, (t) + Tpy, + q(t, 51,7, ), to<t<T
TN w) = (T wsy + 6, (1) + @y + (T sy, 2p,)), >T
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We choose a number R > 0 (R < oo) and a function V(t,zs,,xp,) such
that condition 3 of the theorem holds, and introduce the function V(¢,w) :=
V(t,zs,,2p,). Due to condition 3, for each 7' > 0 there exists a number Ry > R
and a function x, € C([t4+,00) x (0,00),R) such that the derivative of V' along
the trajectories of the equation (7.10) satisfies the inequality

ov ov ~
V(’7,10)(t’w) = E(t,w) + a—w(t,w)TT(t,w) < xr (8, V(t,w)) (7.11)
for all t > to and |lw|| > Ry. Since, by virtue of condition (c), the differential
inequality dlt) < xr(t,v) (t € [to,00)) does not have positive solutions with finite

escape time, then by Lemma 7.4 the solution w(t) = (ws, (6)T, wp, (£)T)T is global,
i.e., exists on [tg,00). Thus, what was needed has been proved. O

8. On the choice of the functions y and V when checking the
conditions of proved theorems

The proved theorems contain conditions in a general form, and the main
difficulty in applying the theorems lies in choosing suitable functions x and V.

Choose the function x € C([t+,00) x (0,00), R), which is present in Theorems
3.2, 3.4, 4.1, 5.1, and 7.1, in the form (2.5), that is,

x(t,v) = k() U(v),
where k € C([t4+,00),R) and U € C(0,00), then the conditions of the theorems
take the following form:

e In Theorems 3.2, 3.4 and 7.1 on the global solvability all conditions remain
unchanged, except for condition 3 which takes the form:

3. There exists a number R > 0, a function V € C([t,,00) x Ds, x D,,,R)
positive on [t4,00) X Dg, X D, , where Dy, x Dy, = {(xs,,zp,) € X5, x X7 |
|(zs,,zp,)|| > R}, and functions k € C([t4,00),R), U € C(0,00) such that
condition (a) of Theorem 3.2 holds,

J 7=

(vo > 0 is some number) and

V(é.43),(2.44) (t, sy, Tp,) < k(1) U(V(t, 175175171)1)) (8.1)

for all (¢, s, + x5, +Tp, +xp,) € Ly, for which x, € D,, |[(zs;,2p,)|| > R.

e In Theorem 4.1 on the Lagrange stability all conditions remain unchanged,
except for condition 3 which takes the form:

3. There exists a number R > 0, a function V € C*([t;,00) x Ds, x D, R)
positive on [t1,00) x Dy, x Dy, , where Dy, x Dp, ={(zs,,2p,) € X5, X X7 |
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|(zs,,zp,)|| > R}, and functions k € C([t4,00),R), U € C(0,00) such that
condition (a) of Theorem 4.1 holds,

= 00, k(t)dt < oo
/vo U(v) ,

(to > t4, vg > 0 are some numbers) and the inequality (8.1) holds for all
(t, @5y + Tsy + Tp, + Tp,) € Ly, for which xs, € Dy, [|(@s), xp, )| > R

e In Theorem 5.1 on the Lagrange instability all conditions remain unchanged,
except for condition 4 which takes the form:

4. There exists a function V € C([t1,00) x Q1,R) positive on [ty,00) x 4
and functions k € C([t4+,0),R), U € C(0,00) such that

< 00, k(t)dt = oo
/vo U(0) ,

(to > t4, vg > 0 are some numbers) and

V(/2.43),(2.44) (tv x517mp1) 2 k(t) U(V<t7 x517xp1))
for all (¢,xs, + s, + Tp, + Tp,) € Ly, for which z,, € Ds,, (vs,,2p,) € Q1.

Recall that V(’2 43),(2.44) has the form (2.47). The validity of the theorems
with the above changes in the conditions follows directly from the remarks on
differential inequalities given in Section 2.1.

Now, consider the scalar function V' which is present in all theorems proved
above and will be called a Lyapunov type function. Choose it in the form

V(t7 ‘75517371)1) = ((xswxm)a (xspxpl))[{ = (H(t)(‘ra’xm)a (xspxpl))? (8’2)

where H € C([t4,00),L(Xs, x X1)) is a positive definite self-adjoint operator

function such that H(t)|, : X, — X x {0} and H(t)|X1: X1 — {0} x X
51

for any fixed ¢t and (z,,2p,) is a column vector. Due to the properties of the

operator function H, the function (8.2) satisfies the conditions of Theorems 3.2,

3.4, 7.1, 4.1, 5.1 on the global solvability, Lagrange stability and instability, and

if in addition supye, o0y [[H ()] < 0o, then the function (8.2) also satisfies the

conditions of Theorem 6.1 on the uniform dissipativity, however, of course, the

conditions on the derivative ‘/(’2.43)’(2.44) (t,xs,,xp,) in these theorems need to be

checked.

The conditions H(t)| : X5, — X x {0} and H(#)[ : X1 — {0} x X3

51

(t > t4 is fixed) mean that the pair of subspaces { X, , X5, X {0}} and the pair of

subspaces {X1,{0} x X;} are invariant under the operator H(t) € L(X,, x X1)

(for each t) and it has the block structure

H(t) = <H56(t) Hlo(t)> :XSl x X1 —>X31 x X1, (83)

where Hy, € C([t4+,00),L(Xs,)) and Hy € C([t+,00),L(X1)) are positive definite
self-adjoint operator functions. Note that if we identify X, x {0} with X,
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and {0} x X; with Xj, i.e., identify X, x X; = X, x {0}+{0} x X; with
X, +X; as in Section 2.2, then H(t) (t fixed) can be considered as the operator
H(t): Xsl‘i’Xl — Xsl"i'Xl-

If H(t) = H € L(Xs, x X1) is a time-invariant operator, then for all theorems
it suffices to require it to be self-adjoint and positive and the pairs of subspaces
{ X4, X5, x {0}} and {X7,{0} x X1} to be invariant under H. Then the func-
tion (8.2) takes the form V (¢, s, 2p,) = V(2s,, 2p,) = (H(xs;, 3p,), (@5, Tp, )
and satisfies the conditions of all theorems, except for the conditions on

V(’2'43)’(2'44) (t,xs,,xp,) which need to be checked.

For a function V' of the form (8.2) the derivative (2.47) takes the form

d
V(/2.43)»(2.44) (t, @5y, Tp, ) = (dtH(t) (@s1, Tpy ), (Ts1, Tpy ))

+2(H () (0, 7p,), T(t,2))

_ (%H(t)(xsl,xpl), (xsl,xm))

i 2<H51 (t)zs, . [Aégnl) (F1f(t, ) — BgenTs, — Bundxsz)})
42 <H1 ()2p, [Aﬁ_l) (Quf(t,x) — ‘lem)} )

where Hg, (t), Hi(t) are operators defined in (8.3), and Y (¢, z) has the form (2.48).

9. Isothermal models of gas networks in the form of DAEs

9.1. A model of a gas flow for a single pipe (in the isothermal case).
The mathematical model of the dynamics of a gas flow in a pipe in the case when
the gas temperature is constant consists of the isothermal Euler equations, which
we write in the form (see, e.g., [5, (ISO1), p. 38])

Op + 0z (pv) =0, (9.1)
Bi(pv) + Bz(p + pv*) = —3 pv[v| — g Siope,

where x € [0, L], L < oo is the length of the pipe, and t € Z C [0, 00), Z is the time
interval, and the equation of state for real gases for the constant temperature:

p = RsTopz(p). (9.3)

Here p = p(t,z) denotes the density, v = v(¢,z) is the velocity of the gas, p =
p(t,z) is the pressure, g is the gravitational acceleration, s := 0.5\ frD*1 where
Mg is the pipe friction coefficient and D is the pipe diameter, Tp = const is

the gas temperature, R, is the specific gas constant, sjope(x) = @(:17) (cf. [14])
dh

denotes the slope d—(x) of the pipe, where h = h(z) is the height profile of the
x

pipe over ground, and z = z(p) is the compressibility factor (see the description of
the model in [5]). In particular, the compressibility factor z(p) = 1+ ap, where a
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is a certain constant (see, e.g., [5, p. 5]), is a good approximation for pressures up
to 70 bar which is used by the American Gas Association. If this compressibility
factor is used, then p = RsTop/(1 — aRsTyp) that is one of the commonly used
equation of state in the isothermal case.

When modelling the dynamics of a gas flow, the assumption (pv?), = 0 (i.e.,
we assume that this term is negligibly small) can be used (see, e.g., [16]) in order
to simplify the model, then we obtain the gas dynamics equations in the form
(9.1) and

A(pv) + Oxp = —3¢ pv|v| — gp S1ope (9.4)

(see [5, (ISO2), p.12]; the similar system is used in [16]) with the same equation
of state (9.3). The equations (9.1), (9.4) are often referred to as a semilinear
model of the gas flow dynamics [5, 16].

In [5, p.26] and [16, p.2,3], ¢ denotes a mass flow and it is defined as ¢ =
Spv, where S is the cross-sectional area of a pipe. We denote by ¢ := pv a mass
flow by the cross-sectional area equal to 1, in order not to introduce additional
notation, and assume that the total mass flow is ¢ = ¢S. We can assume that
lg] = plv| (cf. [5,16]). Also, assume that sjgpe(2) = sinf where the parameter 6
denotes the angle of the pipe slope (cf. [5,16]). Then the system of the isothermal
Euler equations (9.1), (9.4) and the gas state equation (9.3) takes the form

Op + 0zq = 0, (9.5)
g+ Opp + pgsind = —seq|qlp™, :
p = RsTyopz(p). (9.7)

Suppose that a pipe was previously divided into parts of a short length
through the introduction of artificial nodes and L is the length of such a part
(subpipe). In Section 9.2 we consider the model of a gas network, where a gas flow
in each pipe is described by a system of the type (9.5)—(9.7), and show that it also
can be represented as the DAE (2.1). Thus, the pipe of the original length can
be considered as a gas network consists of pipes of a short length, and the model
obtained in Section 9.2 (generally, this model describes a gas network including
pipes, valves, regulators and compressors) can be applied for the description of
this network. We discretize the equations (9.5), (9.6) (for the pipe of the length
L) in the phase variable (in space) and obtain the spatially discretized equations

dpr @ —q
=0 9.8
a L ) (9:8)
d .
=+t Lpl+prgsin0=—%qi’fl', (9.9)
br = RSTOpTZ(pT)* (910)

where g, (t) := q(t, L), pr(t) := p(t, L), pr(t) == p(t, L) and q(t) := q(2,0), pi(t) :=
p(t,0). If we represent the pipe as a graph consisting of an edge and two vertices
(nodes), define the vertices as the left and right nodes and fix the edge orientation
from the left node to the right node, then ¢.(t), p,(t) and p,(t) are defined at
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the right end of pipe and ¢(t), p;(t) are defined at the left end of pipe. For a
gas network, the spatial discretization is performed on each pipe. Here we use a
scheme similar to the topology-adapted discretization scheme from [2,15].

Let the functions ¢, and p; be given, that is, we consider the boundary con-
ditions of the form

Q(t7L) = QT(t)v p(t,()) = pl(t)v tel. (9'11)

Then functions p,, p» and ¢ need to be found.

We introduce the variable vector * = (pr,q,pr)T (we denote it by x for
convenience and comparison with further results, since the original variable x is
already absent from the equations) and denote

_ (@)

100 0 -1 0 7
A=10 1 0|, B=|gsin0 0 1|, f(t,z)= Lg)_%\%l . (9.12)
000 0 0 1 R.To pr2(pr)

Then the system (9.8)—(9.10) can be written in the vector form

d
@[Ax] + Bz = f(t,x), tel, (9.13)
where A, B € R3*3 and f € C(Z x R3,R3). The initial condition for (9.13) can

be given as
x(ty) = xo, To = (p?,q?,pg)T. (9.14)

where p? and p? have to satisfy (9.10) for t = tq, i.e., p2 = RsToplz(pL).

In general, the DAE (9.13) is regular (since the pencil AA + B is regular),
but if any of the input parameters (i.e., ¢.(t) or p;(t)) is not specified, then the
system (9.8)—(9.10) is underdetermined and the corresponding DAE is singular
(nonregular). Also, if it is required to realize the evolution of some variable (i.e.,
Pr, OF pr, Or q;) such that it becomes equal to the prescribed function, then this
system is overdetermined and the corresponding DAE is singular.

9.2. A model of a gas network (in the isothermal case). Now, con-
sider the mathematical model of a gas network, where a gas flow in each pipe is
described by a system of the type (9.5), (9.6), (9.7). In addition to pipes, the gas
network also includes valves, regulators and compressors.

Following [5], [16], we describe a gas network as oriented connected graph G =
(V,E), where V denotes a set of nodes (vertices), £ denotes a set of edges, and each
edge joins two distinct nodes (i.e., there are no self-loops). We fix the orientation
of edge e € £, denoting its endpoints by v; and v, and assuming that the edge is
oriented from the left node v; to the right node v,.. Note that the orientation of the
edge may not coincide with the direction of a gas flow. We collect all nodes with a
fixed pressure in Vpget and refer to them as pressure nodes [2,16]. Fixed pressure
means the existence of a time-dependent function chosen in advance, which yields
the respective pressure value at each point in time. All other nodes we collect in
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Vigset- Accordingly, V = Vpset U Vgset- We denote the sets of edges corresponding
to the pipes, valves and regulating elements (regulators and compressors) by Epip,
Eval and Ereg, respectively. Thus, £ = Euip U Eval U Ereg-

First, introduce the vector p of the pressures of nodes u € Vpget, and the
vectors gpip.r, Ipip,ls Gval and greg of flows at the right ends of pipes, at the left
ends of pipes, through valves and through regulating elements, respectively.

As mentioned above, at the pressure nodes u € Vpset, the pressure func-

tion p*t(t) = (...,p>H(¢), .. .)Eevpset is given. At the nodes u € Viget=1\Vpuer
(which include junction, demand and source nodes), the function ¢'(t) =
(oo, 3881, .. ')Eevqset specifying the relationships between the flows gpip,r, @pip,is

Qvals Greg in a Kirchhoff-type flow balance equation (see (9.19) below) is given.

The mathematical model of a gas network consisting of pipes, valves, reg-
ulators and compressors after applying spatial discretization (more precisely, a
topologically adaptive discretization of the isothermal Euler equations for pipes
and pipelines [2, 15]) has the form [16, (9), p. 7]:

d
Agip,r% (p) + D (apip,r — Gpip,t) =0, (9.15)
d T T
%qpip,l + DP(Apip,T‘ + Apip,z)p = — fpip(P: pip,i5 1), (9.16)
d
Dval&Qval = _fval(p’ Gval, t)7 (917)
d
DregaQreg = freg(pa Qreg; t), (918)
Apip,lqpip,l + AvalQVal + AregQreg + Apip,r‘]pip,r = qset (t)a (919)
0= fun(p). (9:20)
0= fqb(Qpip,lv Gpip,r; Qval, Qreg)v (9'21)
where
i 7l Py— i K
Apip,l = (agp )'L‘:L---,lvqset‘,’ Apip,r T (alr");p r)izlv"'vlvqset‘v’
j:]-v"'?lgpipl j:]-v-'?lgpipl
1
Aval = (aZYa )7;:1,~--,‘Vqset|,7 Areg = (agjg)izlv"'7‘vqset|7
J=1,.[Eval J=1,...,|Ereg]

are constant incidence matrices with the entries presented in [16, Section 3.1,
p. 4],

. Y .
D, = diag{..., L—e, Y D, := diag{.. ., L—e, R
e e
Dy = diag{. .., e, .. }eee, Dieg = diag{. .., fte, . . .}eegreg

are constant diagonal matrices, where pe > 0, k. = RsTy/Se (as above, Ty =
const is the temperature and R is the specific gas constant), S, and L. are
the cross-sectional area and the length of pipe e, respectively. Here p, gpip.r,
pip,ls Qval and greg are unknown and the remaining functions and parameters are

given. The functions fpip (P, @pip,i:t); fval(P, Gval, t) and freg (P, greg, t) are specified
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in [16, (4),(5),(8), p.5,6,7); fpb(r) and fou(pip,is dpip,r» Gvals dreg) are given contin-
uous functions (see [16] for details).

Note that the elements of ¢(p) = (..., ©(pu),-- .)};quset from (9.15) are ex-
pressed as ¢(p) = p/z(p), P = Pu, ¥ € Vgset (see [16, p. 2,5]), where the function
©(p) can be also derived from the equation of state for real gases (in the isothermal
case) p = RsTopz(p) (9.3), ie., ¢(p) = RsTpp. Thus, we introduce an additional

variable o = | py , and instead of (9.15) we use the system
UE Vgset
r d
Apipr 70+ Do(@pip.r = Gpip1) = 0, (9.22)
0= ¢(p), (9.23)

which is equivalent to (9.15), taking into account that k. = RsTp/S.. Also, we
rewrite the function fyip (P, ¢pip,i;t) (this function also includes ¢(p) [16, p. 4,5]),
without changing its notation, as fpip(0, gpip,i,t). Then the equation (9.16) takes
the form

d
%qmp,l + Dp<Agip,r + Ag‘ip,l>p = _fpip(Qa dpip,l, t) (924)

Finally, we obtain the differential-algebraic system (9.22), (9.24), (9.17),
(9.18), (9.19), (9.23), (9.20) and (9.21). It is assumed that the resulting sys-
tem with the spatially discretized equations satisfies conditions sufficient for its
solution to approximate a solution of the original system sufficiently accurately.

The system (9.22), (9.24), (9.17), (9.18), (9.19), (9.23), (9.20), (9.21) can be
written in the form of the singular (nonregular) DAE

d
a[Aa:] + Bz(t) = f(t, ), where (9.25)
AL .0 0 0 0 0 0
o I 0 0 0 0 — fpip(0s @pip,1, 1),
0 0 Dval 0 0 0 _fval (pa Gval, t)
0 0 0 0 Dy O Jreg(D; Qreg, 1)
A = € t - . &
o 0o 0o o o of f® 7> (t) ’
O 0 0 0 0 0 b(p)
O 0 0 0 0 0 fob(D)
0O 0 0 0 0 0 fab(@pip,is Ipip,r» Gvals Greg)
0 -D, O 0 D, 0
0 0 0 0 0 DAL+ AL ) 0
0 0 0 0 0 0 dpip,!
0 0 0 0 0 0 Gval
B = Lz =
0 Apip,l Aval Areg Apip,r 0 Qreg
I 0 0 0 0 0 dpip,r
0 0 0 0 0 0 P
0 0 0 0 0 0
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The initial condition for the DAE (9.25) has the form
z(0) = xo, (9.26)

where 7o = (¢°, qgip,l, qgal, q?eg, qgipﬂ,, p°)T is chosen so that the values t(, zq satisfy
the algebraic equations (9.19), (9.23), (9.20) and (9.21) (or satisfy the consistency
condition defined in Remark 3.1).

In [16], the vector form of the DAE corresponding to the system (9.15)—(9.21)
is slightly different from the above, but, in general, it is also a nonregular DAE in
the sense that the number of unknowns is not equal to the number of equations.
However, in [16], it is mentioned that with a proper choice of the directions of
pipe and some additional conditions to the positions of regulators and valves (as
described in, e.g., [15]), the resulting DAE system will have index 1 that means it
will be a regular as well. A gas network model in the form of a nonregular DAE
of the type (9.25) is also obtained in [1].

10. Analysis of a singular (nonregular) semilinear DAE with
the characteristic pencil of the rank rank(AA + B) < n,m

In this section, we consider a simple example which demonstrates the appli-
cation of the obtained results.

Consider the singular semilinear DAE (a DAE of the form (2.1))

d

%[A:E] + Bz = f(t,z), (10.1)
where t € [ti,00) (ty > 0), * = (z1,72,73)T € R3, a function f(t,z) =
(fi(t, ), fo(t, ), f3(t,2))T € CO([ty,00) x R3 R3) has the continuous partial
derivative 0, f on [t;,00) x R3, and A, B € L(R",R™) (here the terminology
from Section 2.2 is used), n = m = 3, are the operators to which the matrices

1 0 -1 1 -1 -1
A=10 0 0], B={(1 1 -1 (10.2)
00 O 0 2 O

correspond with respect to the standard bases in R™, n = 3, and R™, m = 3. As
usual, a basis in R¥ is standard if the ith coordinate of the basis vector e; (j =
1,...,k) is equal to 6;;. The pencil AA 4+ B of the operators (10.2) is singular
and its rank equals rank(AA + B) = 2.

Generally, in this section we consider the matrices corresponding to the op-
erators (from R? into R?®) with respect to the standard bases in R3 (as well as
we consider the coordinates of vectors with respect to the standard basis in R?),
and if the bases are different, then this will be explicitly indicated.

The singular pencil (10.2) was studied in [9, Section 4.4].

In [9], it is shown that the subspaces from the decomposition (2.35)
where n =3, ie., R? = X, +X, = X51+X52+X14—X2, and from the decompo-
sition (2.37) where m =3, ie., R3 =Y +Y, =Y, +Y,,+Y1+Ys, can be rep-
resented as X; = X, +X;, = Lin{s;}2_;, Xs, = Lin{s1}, X5, = Lin{sa}, Y; =
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Ysl—i—Ys2 = Lin{li}?zl, Yy, = Lin{l;}, Y;, = Lin{lo}, X, = Lin{p}, X; = {0},
Xo = X,, Y, =Lin{q}, Y1 = {0}, Y5 =Y, where

1 1 0 1 0 ~1/2
si= |0, sa=10],p={1], =0, =(1],¢=[ 1/2 |, (103)
0 1 0 0 0 1

and that the projection matrices corresponding to the projectors S: R? — X,
S=81+828:R = X, R =Y, F=F +F, Fi: R > Y, P: R =
X, P=P 4+ P, P:R - X;, Q:R* 5 V,, Q=Q1+Q2, Qi: R* = Y, i =
1,2, which are defined in (2.13), (2.14) and (2.30), have the form

1 0 -1 0 01 1 00
ss=(oo0 o], S=1[0o0 0], s=(o0 0 o],
00 0 0 01 0 01
1 0 1/2 00 0 10 1/2
A=(oo0o o), ®m=[o1 -12|, F=[01 -1/2],
00 O 0 0 0 0 0 0
0 0 0
p={o0o 1 0], P =0, P=P
0 00
00 —1/2
0 0 1

Note that if in R3, instead of the standard basis, we take the basis which is
the union of the bases of the summands from the decomposition (2.35) of the
space R™ where n = 3, i.e., we take the vectors si, s2, p defined in (10.3), then
the matrices corresponding to the projectors S, P, S;, P;, i = 1,2, with respect
to the basis s1, so, p in R? will have the simple form (and will be self-adjoint):

10 0 00

1 0 0
) 82: 0 0, S=10
0 0 0

Sy = 1 1 0],
0 0 0

P= : P =0, P, =P

_ o o O O O

o OO O O
o OO O O

Similarly, if in R3, instead of the standard basis, we take the basis which is the
union of the bases of the summands from the decomposition (2.37) of the space
R™ where m = 3, i.e., we take l1, lo, ¢ defined in (10.3), then the matrices
corresponding to the projectors F', Q, F;, Q;, © = 1,2, with respect to the basis
I1, l2, ¢ in R? will have a simple form (and will be self-adjoint):

0 0 00

10 100
=100 = 0], F=|(01 0],
00 0 000

o O
o O
O =
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Q= Q1 =0, Q2 = Q.

oS O O
S O O
_= O O

However, in this case, the operators A, B as the operators from R" into R™,

where n = m = 3, and in general the DAE (10.1), (10.2), must be considered

with respect to the new bases s1, so, pin R" and [y, I, ¢ in R™ (n =m = 3). In

what follows, we continue to use the standard bases in R? (R”, R™, n = m = 3).
As shown in [9], the matrices (with respect to the standard bases in R?)

0 -1 0
Ar=0, Agn=A4A, Bpa=0, B, =[0 1 0],
0 2 0
10 -1 00 0 10 1/2
Bgen =0 0 0], Boy=[10 -1], AGV=100 o0
00 0 00 0 00 0

correspond to the operators A, B, Agen, Bgen, Bund, Bov introduced in (2.18),
(2.20) and the operator Aé;}) defined in Remark 2.3. Since A, = ‘AT‘X =0 and
B, = B’”‘XT has the inverse B! € L(Y;,, X,.), then AA, + B, is a regurlar pencil
of index 1.

The DAE (10.1), (10.2), is the vector form of the system

%(1‘1 — 1’3) +x1 — X9 —x3 = fl(t,l'), (10.5)
xr1 + X9 —x3 = fQ(t,iL‘), (10.6)
2z = f3(t,£b‘). (10.7)

Note that a point (¢,z) belongs to the manifold L;, (introduced in Re-
mark 3.1) if and only if it satisfies the equations (2.41), (2.42) or the equations
equivalent to them, e.g., (2.45), (2.46). It is readily verified that the equations
(2.41) and (2.42) (as well as (2.45), (2.46)) are equivalent to the equations

2o — % Folt, ), (10.8)
x1 —x3 = fo(t,x) — 0.5f3(t, ) (10.9)

respectively, which are the “algebraic part” of the DAE (10.1), (10.2), and are
equivalent to the algebraic equations (10.6), (10.7). Also, notice that the ODE
(2.44) (or (2.40)) is not present in the system (10.5)—(10.7) since the projector
Q1 =0, and the ODE (2.43) (or (2.39)) is equivalent to

%(m —ag) = (w1 — 73) + fu(tz) + %fg(t, 2), (10.10)

that is, the equation (10.5) into which (10.7) (or (10.8)) is substituted.
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The components (projections) of a vector = (1,2, 23)T € R? represented
as (2.36) have the form

r5, = S1x = (v1 — 23,0,0)7T, T, = Sox = (23,0, 23)7,
Zp, = Pix =0, Tp, = Pox = (0,22,0)7T,
Ty = Ty + Tgy, Tp = Tp,, where S;, P;, i = 1,2, were presented in (10.4).

Obviously, x1 — x3, 3, x2 are the coordinates of the vector x = (x1, x2,x3) with
respect to the basis s, s2, pin R3, i.e., x = (z1 — 23)s1 + w382 + 22p, where 51,
s2, p are the vectors defined in (10.3). Make the change of variables

w=x1 —x3, £=ux3, U= T2, (10.11)

then z,, = w(1,0,0)T, 25, =£(1,0,1)T, xp, =« (0,1,0)T.
Taking into account the new notations (10.11), we consider the function

f(t7w>£7u) = f(t,’UJ —|—£,U,§) = f(t7$1a$27x3) = f(t,l‘) € C([t+, OO) X R3>R3)a
(10.12)
of

which, obviously, has the continuous partial derivative W(t,w,f,u) for
w, €, u
all (t,w,&,u) € [ty,00) x R x R x R. In the new notations the system of the

equations (10.10), (10.8), (10.9) takes the form

S = —wt Faltw, € u) + 0575 (tw, &, u), (10.13)
"= %ﬁ,(t,w,ﬁ,u), (10.14)
w = fot,w, & u) — 0.5f3(t,w, & ). (10.15)

Now we find the conditions under which there exists a global solution of the
DAE (10.1), (10.2), and, accordingly, the system (10.5)—(10.7). To do this, we
use Theorems 3.2 and 7.1, and in addition the remarks regarding the functions y
and V from Section 8.

It follows from the above that condition 1 of Theorem 3.2 is satisfied if:

(i) There exists a set D,, C R such that for any fixed ¢ € [t4,00), w € R and
¢ € Dy, there exists a unique u € R such that the equalities (10.14), (10.15)
are satisfied.

The matrix corresponding to the operator (ft*@* defined (for fixed t,, =) by
(3.4) has the form

19f3
(/I\) Ty — 2B k9 Lk 1 ’
t*7 * O 288fx2 (t ?$ ) O
3
0 Bez)—2 0
D5\ Tx)
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and since the equality i\)t*,z*xm = 0, xp, € Xo, yields zp,, = 0 if the relation

d ~
ﬁ(t*,x*) — 2 # 0 holds, then the operator ®;, ,, = Py, 4., (3.2) has the

81‘2

inverse ®; !

X2
€ L(Y3, X») if this relation is satisfied. Note that

ts,Tx
ofs dfs 0fs
—2 (¢ = 25 = ¢ .
8x2( 71'1,.%'2,.%'3) 8562( 7w+€7u7€) au( 7w7€7u)
Thus, condition 2 of Theorem 3.2 is satisfied if:
o - _
(ii) a—f(t*,w*,f*,u*) # 2 for any fixed t, € [t4,00), we € R, & € Dy, ux € R

satisfying the equalities (10.14), (10.15).

Also, since the space X5 is one-dimensional, then condition 2 of Theorem 7.1
is satisfied if condition (ii) holds (see Remark 7.2 for explanation). Consequently,
we can use condition 1 of Theorem 7.1 instead of more restrictive condition 1 of
Theorem 3.2 and, accordingly, replace condition (i) by the following:

i)’ There exists a set l~?s C R such that for any fixed ¢t € [t1,00), w € R and
- 2 +
¢ € Dy, there exists u € R such that the equalities (10.14), (10.15) hold.

Recall that X; = {0}, the equation (2.44) is not present in the system (10.13)—
(10.14), and the equation (2.43) is equivalent to (10.13). Thus, condition 3 of
Theorem 3.2 (as well as Theorem 7.1) is fulfilled if:

(iii) There exists a number R > 0 (R can be sufficiently large), a function Ve
C([ty,00) x Dy, ,R) positive on [t;,00) x Ds,, where Dy, = {|w| > R}, and
a function x € C([t4,00) x (0,00),R) such that:

(a) V(t,w) — oo as |w| — oo uniformly in ¢ on each finite interval [a,b) C
[t-i-a OO),
~ ov ov ~ 1~
(b) ‘/(/10_13) (tv ’U)) = E(tv w)—i_aiw(ta UJ) _w+f1 (t7 w, 57 U)+§f3(t, w, 57 u) S
X(t, V(t, w)) forallt € [ty,00),w e R, £ € 1532, u € R satisfying (10.14),
(10.15) and |w| > R.
d
(c) the differential inequality d—z < x(t,v) (t € [t+,00)) does not have posi-
tive solutions with finite escape time.
Condition (iii) is given in the most general form, and if we take the function V of
the type (8.2) and the function x of the form (2.5), then we obtain a particular
case of this condition, which is convenient for practical application. Namely,
let V(t,w) = Hw?, where H = const > 0, w € R, and x(t,v) = k(t)U(v),
wheref: € C’([t+,oo),]1~%) and U € C(0,00). Then ‘/(’10.13)(@ w) = —2Hw? +
2Hw[f1(t,w,§,u) + %fg(t, w,§,u)], and, taking into account the remarks from

Section 8, condition (iii) is converted into the following one:

(iii)" There exists a number R > 0 and functions k € C([ty,00),R), U € C(0, c0)

such that
/OO dv C
w U)
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(vp > 0 is a constant) and
- 1~
—2Hw? + 2H w | fi(t, w,&,u) + 5 fo(t,w, & u) | < k() U(Hw?),

where H > 0 is some constant, for all t € [t1,00), w € R, £ € 552, u€eR
satisfying (10.14), (10.15) and |w| > R.

Finally, the following conclusions can be drawn.

Let conditions (i) and (ii), where the function f(t,w,&,u) is defined by
(10.12), be fulfilled and let condition (iii) or (iii)" hold, then by Theorem 7.1
(as well as by Theorem 3.2 if condition (i)' is replaced by (i)) for each ini-
tial point (tg,rq) € [ty,00) x R3, where zo = (01,202, %03)T, for which the
equalities (10.8), (10.9) hold and zp3 € 552, the initial value problem (10.1),
(10.2), z(to) = o has a unique global solution x(t) with the component xs,(t) =
Sox(t) = g, (t) (1,0,1)T, where ¢, € C([to, <), Ds,) is some function with the
initial value s, (tg) = xo 3.
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AxicHmit aHaJIi3 HEeperyJIsapHUX
andepeHIiaIbHO-AJIreOpaiYyHuX PiBHAHb Ta AMHAMIiKa
ra3oBUX MepexK
Maria Filipkovska

OjlepkaHO yMOBM ICHYBaHHSI, €JIMHOCTI Ta OOMEXKEHOCTI TJ100aJib-
HUX PO3B’SI3KiB, a TaKOXK TI'PAHUYIHOI OOMEXKEHOCTi PO3B’A3KiB, Ta yMO-
BU pyWHYBaHHSI PO3B’si3KiB HEPETYJISIPHUX HAIIBJIIHINHUX TudepeHIiaIbHO-
aredpaivHuX PIBHAHB. PO3TJISTHYTO IPUKJIAI, SKU JEMOHCTPYE 3aCTOCYBa-
HHsI OJIEP2KAHUX PE3yJIbTaTiB. B SKOCTI 3acTOCYBaHb HABOIATHCS 130TEPMiTHI
MOJIEJIl Ta30BUX MEPEXK.

KirrogoBi cjoBa: HeperyJisipHe audepeHIiajibHO-aredpaldte piBHSIHHS,
BUPOKeHe audepeHItiajbHe PIBHIHHS, CHHTYJISPHUN KMYTOK, IJI00abHA
PO3B’sI3HICTH, OOMEXKEHICTh PO3B’I3KiB, pyHHYBAHHSA, IUCUTIATABHICTH
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