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Quasiconformal Extensions and Inner Radius
of Univalence by pre-Schwarzian Derivatives
of Analytic and Harmonic Mappings
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In this paper, we study the criterion for univalence, quasiconformal ex-
tensions and inner radius of univalence for locally univalent analytic and
harmonic mappings in the complex plane. For locally univalent analytic
functions in the unit disk, we give a sufficient condition for univalence and
quasiconformal extensions by pre-Schwarzian derivatives, which generalizes
Becker’s result. For strongly spirallike domains, we consider the quasiconfor-
mal extension and obtain the lower bounds of the inner radius of univalence
by pre-Schwarzian derivatives and Schwarzian derivatives. Furthermore, for
harmonic mappings in a simply connected domain €2, we prove that € is a
quasidisk if and only if the inner radius of univalence of the domain £ by
pre-Schwarzian derivatives of harmonic mappings is positive, and we obtain
a general sufficient condition for univalence and quasiconformal extensions.
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1. Introduction

1.1. Quasiconformal extensions and inner radius of univalence by
pre-Schwarzian derivatives of locally univalent analytic functions. Let
D be the unit disk in the complex plane C and C = C U {oo} be the extended
complex plane. We denote by R the real axis. Let ¢ be a locally univalent
analytic function. The Schwarzian derivative of ¢ is defined as

1
2
where P, = ¢ /¢’ denotes the pre-Schwarzian derivatives of ¢. We call a complex
plane domain with more than one boundary point a hyperbolic domain. Let €2 be
a hyperbolic domain, the hyperbolic metric po(z) is induced by pa(p(2))|¢'(2)] =
pp(z) = 1/(1 — |2|?), where ¢ : D — Q is a covering mapping. The norms of
Schwarzian derivatives and pre-Schwarzian derivatives of ¢ in ) are defined as

Sy = (Py) — Pg,

1Sslle = sup 1S5(2)|pa>(2) and  ||Pyllg = sup |Py(2)|pg (2)-
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A homeomorphism F on D is K-quasiconformal if F has locally L?-derivatives
and satisfies
|0F/0z| < k|OF/0z| a.e. z € D,

where K = (1 +k)/(1 — k) > 1. The Jordan curve is a quasicircle if it is an
image of the unit circle under a quasiconformal self-mapping of C. The domain
bounded by a quasicircle is called a quasidisk (see [18]). Let C' be a Jordan curve
bounding the domains A; and As. A sense-reversing quasiconfromal mapping f
of the plane which maps A; onto As is a quasiconformal reflection in C' if f keeps
every point of C' fixed (see [17]). It is well known that quasiconformal mappings
have the continuous extension of mappings to the boundary of the domain. Apart
from quasiconformal mappings, there are many studies related to the continuous
extension of mappings to the boundary of the domain (see [10,22-24, 26]).
Becker [3] proved that if

[1Psllp <k <1, (1.1)

then ¢ is not only univalent in D, but also has a continuous extension gg to the
closed unit disk D. Using the Lowner chain, Becker [3] proved that ¢ has a qua-
siconformal extension to C if (1.1) holds. Constructing different Léwner chains,
one can establish different criteria of univalence and quasiconformal extension for
analytic functions (see [11,12]).

For locally univalent analytic functions in the unit disk, we give a sufficient
condition for univalence and quasiconformal extensions by the pre-Schwarzian
derivatives, which generalizes the criterion (1.1) as follows.

Theorem 1.1. Let ¢y and ¢2 be locally univalent analytic in D, and o be a

constant with o € [0,1]. If the principal branch of (223)0‘ is intended,

a|Py, (2) = Py, (2)lpp (2) + |1 = ¢ (2) 7 ¢h(2)*| < k < 1,z € D, (1.2)

and ¢ (2)17%¢h(2)® is analytic in D, then ¢1 is univalent in D and has a quasi-
conformal extension to C.

Remark 1.2. When a = 1 and ¢y = z, the criterion (1.2) corresponds to the
criterion (1.1).

For some subclasses of univalent analytic functions in D, the quasiconformal
extensions of them have been studied, such as strongly starlike functions of order
a,a € (0,1) ([8,25,29,30]). We denote by S the class of all analytic and univalent
functions f in D with f(0) = f/(0) — 1 =0. We say that f € S; (0 <k < 1) if
f €5 and f has a k-quasiconformal extension in C. Let S* (o) denote the class
of functions consisting of strongly starlike functions of order @ in D, that is, of
functions f which satisfy f € S and




Quasiconformal Extensions and Inner Radius of Univalence 783

Fait, Krzyz and Zygmunt [8] showed that if f € S*(«), then f € S with k <
sin(am/2). Sugawa [30] proposed an open question whether S*(a) C S, holds.
By constructing examples, Shen [25] gave a negative answer to this question.

Suppose that 3 € (—7a/2,7a/2) and a € (0,1). Let S%(a) denote the class
of functions consisting of strongly S-spirallike functions of order « in D, that is,
of functions f which satisfy f € S and

S G

When 8 = 0, S8(a) = S*(a). Sugawa [28] showed that if f € S5(«), then f €
Sk with k& <sin(an/2). Since S*(a) C S, is not true for all & > 0, it is natural
to consider whether there is a similar conclusion for S%(a) like S*(«). In fact, by
an example, we show that S%(a) C S, cos(8/a) 18 not true for all a > 0.

—B'SWS, zeD,a e (0,1).

Theorem 1.3. Let f € (—ma/2,7a/2) and o € (0,1). Then there ex-
ists a strongly [B-spirallike function of order a that can not be extended to a
k-quasiconformal mapping with k < ozcosg of C.

Remark 1.4. When 8 = 0, Theorem 1.3 further gives a negative answer to
the question by Sugawa [30] whether S*(a) C S, holds.

The inner radii of domains €2 by the pre-Schwarzian and Schwarzian deriva-
tives play an important role in the characterization of quasidisks (see [2,9,20]).
Recall that the inner radii of domains €2 by the pre-Schwarzian and Schwarzian
derivatives are defined by

01(2) =sup{c > 0: ||Py|lo < ¢ = ¢ is univalent in Q},
o(2) =sup{c > 0: ||Sp|la < ¢ = ¢ is univalent in Q}.

Martio—Sarvas [20] and Astala—Gehring [2] proved the following result.
Theorem A ([2,20]). A domail Q is a quasidisk iff 01(2) > 0.

Astala and Gehring [2] also showed a criterion of quasiconformal extension
for locally univalent analytic functions.

Theorem B ([2]). Let Q be a quasidisk in C. If a locally univalent analytic
function ¢ in Q satisfies |Pyllo < b < 01(2), then ¢ admits a quasiconformal
extension to C.

Using the inner radii of domains €2 by the Schwarzian derivatives, Ahlfors [1]
and Gehring [9] gave similar results to Theorem A and Theorem B. In [1], Ahlfors
gave a lower bound of ¢(£2) under 092 that admits a continuously differentable
quasiconformal reflection. Sugawa [29] improved Ahlfors’ result by removing the
assumption of the continuously differentable quasiconformal reflection. Cheng [5]
considered the inner radius of univalence by the pre-Schwarzian derivatives.
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Theorem C ([5,29]). Let Q be a quasidisk and 92 admit a continuously
differentable quasiconformal refiection A. Then

o [Az(2)] = [A(2)]
o(2) > 2ess ;ggf) AG) — 22 ()

o A(2)] = (AL (7))
o1() > ess ;gsf) () = Zlpale) (1.4)

(1.3)

The inequalities (1.3) and (1.4) are due to Sugawa [27] and Cheng [5], respec-
tively.

Applying (1.3) and (1.4), one can get the explicit lower bounds for o(£2) and
01(2) of special domains such as a unit disk, an upper half plane and an angular
domain [5,17]. Sugawa [27] and Cheng [5] considered the inner radius of univa-
lence of strongly starlike domains of order « (a domain €2 is a strongly starlike
domain of order « if f : D — Q satisfies f(0) = 0 and |arg(zf'(2)/f(2))] <
ma/2,z € D).

Theorem D ([5,27]). A strongly starlike domain 2 of order o satisfies
2 cos(mar/2)

o) = M(a)?1+sin(ra/2)’ (1.5)
1 cos(ma/2)
1) = M(a) 1+ sin(ra/2)’ (16)

where

M(a) = exp [/01{<13)a_1}ﬂ :iexp{—m—v},

I' is the Euler gamma function and v = 0.5772... is the Euler constant.

The inequalities (1.5) and (1.6) are due to Sugawa [27] and Cheng [5], respec-
tively.

We say that the domain €2 is a strongly B-spirallike domain of order « if
f: D — Q satisfies f(0) = 0 and |arg((zf'(2)/f(2)) — 8)| < ma/2,z € D. For
strongly spirallike domains of order «, we consider and obtain the lower bounds of
the inner radius of univalence by the pre-Schwarzian derivatives and Schwarzian
derivatives.

Theorem 1.5. Let § € (—mwa /2,7 /2) and o € (0,1). A strongly B-spirallike
domain Q0 of order a satisfies

2 cos(ma/2)
o(Q2) > L2(B,a) 1 + sin(ra/2)’

1 cos(mar/2)
o1(2) > L(B,a) 1+ sin(ma/2)’

where

11— ()
L — 3y
(5. 0) = S0 T e (O
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Ug.a() =C exp [ / C { (1?_?) - 1} ‘f] . (1.7)
L(0,0) = M(a) = exp [/01 {Gfi)a _ 1} ﬂ .

Remark 1.6. When = 0, we refer to [27, Lemma 2] and obtain L(0,«) =
M (), where M («) is defined in Theorem D. It follows that Theorem 1.5 corre-
sponds to Theorem D when 5 = 0.

In particular,

1.2. Quasiconformal extensions and inner radius of univalence by
the pre-Schwarzian derivatives of harmonic mappings. It is well known
that complex-valued harmonic mappings are generalizations of analytic functions
and have been researched widely (see [6]). Recall that a C? complex-valued
function f in a simply connected domain €2 is harmonic if Af = 4f,z = 0. Such
f has a canonical representation f = h+ g in 2, where h and g are analytic in
Q. Lewy [19] proved that a harmonic mapping f is locally univalent if and only
if its Jacobian J¢ # 0. If Jy > 0, then f is sense-preserving. Let w = ¢’/h’ be the
second complex dilatation of f = h + g. Herndndez and Martin [15] proposed a
definition of the pre-Schwarzian derivatives P f for all sense-preserving harmonic
mappings as
ww'’

1 —Jwl?’
For details about the pre-Schwarzian derivatives of harmonic mappings, we refer
to [4,13-16].

Let f = h+ g be a sense-preserving harmonic mapping in a simply connected
domain 2 with the second complex diliatation w. Similarly to the definition of
the inner radius of univalence of the simply connected domain €2 by the pre-
Schwarzian derivatives, we define the inner radius of univalence of the simply
connected domain €2 by the pre-Schwarzian derivatives of harmonic mappings as

0
Pf=—logJ; =P, —
f 8zng h

o (Q) =sup{c>0:||Pf|lo < c= f is univalent in 2},

where

1Prle =suw{ (171 550 ) i}

Noting that every locally univalent analytic function is harmonic, we have
o (Q) < 01(2). However, it is worth considering whether o (Q) = 01(2) holds.
We will give an affirmative answer to this question in Theorem 1.7.

Using the pre-Schwarzian derivatives of harmonic mappings, Herndndez and
Martin [14] obtained a harmonic mapping version of the criterion (1.1).

Theorem E ([14]). Let f = h+ g be a sense-preserving harmonic mapping
in D with [|w|lee < 1. If [[Pfllp <k <1, then f has a quasiconformal extension
to C.
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In light of Theorems A, B, and E, it makes sense to ask whether there might
be the corresponding version of harmonic mappings in a quasidisk. Motivated
by this, for harmonic mappings in a simply connected domain €2, we prove that
Q) is a quasidisk if and only if the inner radius of univalence of the domain §2 by
the pre-Schwarzian derivatives of harmonic mappings is positive, and we obtain
a general sufficient condition for univalence and quasiconformal extensions. Now
we state our results as follows.

Theorem 1.7. A domain Q is a quasidisk iff o () = o1(Q2) > 0.

Theorem 1.8. Let f = h + g be a sense-preserving harmonic mapping in a
quasidisk Q with ||w]|e < 1. If

[Pflle <b<ou(f), (1.8)

then f is univalent in Q and admits a quasiconformal extension to C.

Remark 1.9. When g = 0, Theorem 1.7 and Theorem 1.8 correspond to
Theorem A and Theorem B, respectively. When 2 = D, Theorem 1.8 corresponds
to Theorem E.

In general, the norm of the pre-Schwarzian derivatives of harmonic mappings
is defined as

IPfllo =sup|Pflpg" (2).
2€Q

However, instead of ||Pf||q by ||Pf|lq, we do not know whether Theorem E,
Theorem 1.7 and Theorem 1.8 hold.

Efraimidis [7] got similar results to Theorem 1.7 and Theorem 1.8 by us-
ing harmonic mapping Schwarzian radius of injectivity of the simply connected
domain.

2. A criterion for univalence and quasiconformal extensions for
locally univalent analytic functions

In this section, we prove our results. By some lemmas, we prove Theorem 1.1.
Let

fi(2) = f(z,t) = €'z + Zan(t)z” on D x [0, 00).
n=2

The function f(z,t) is said to be a Lowner chain if f(z,t) is univalent analytic in D
for any fixed ¢t € [0,00) and fs(D) C f;(D) for 0 < s <t < co. Pommerenke [21]
proved the following result.

Lemma 2.1 ([21]). Let 0 <19 <1 and Dy, = {z : |2| < ro}. The function
f(zt) =e'z2+ 30 5 a,(t)z" defined on D x [0,00) is a Lowner chain if and only
if the following two conditions hold:

(i)  f(z,t) is analytic in z € Dy, for each t € [0,00), absolutely continuous in
t for each z € Dy, and satisfies |f(z,t)] < Kpe! (z € Dy, t € [0,00)) for
some positive constant K.
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(ii) There exists a function p(z,t) analytic in z € D and measurable int € [0, c0)
satisfying Rep(z,t) > 0 such that

MED 000ty (eDyy actelooo)  (21)

The following result is due to Becker [3].

Lemma 2.2 ([3]). Suppose that f(z,t) is a Léwner chain and

p(Z,t) —1
Az, t) = —F——"— D, t>
(Z7 ) p(2’7 t) + 1’ z E ) i 07

where p(z,t) is given in Lemma 2.1. If |A(2,t)] <k <1 for all z € D and t > 0,
then f(z,t) admits a continuous extension to D for any t > 0 and the function
F(z,z), defined by the formula

I F(CL A <1,
T e/ log D), 12l > 1,

is a quasiconformal extension of f(z,0) to C.
Proof of Theorem 1.1. Without loss of generality, we suppose that
b1(2) =z +agz® + -+ and  ¢o(2) =2+ be2® + - .
Now we construct a function ¢1(z,t): D x [0, +00) — C by

e = e ¢ - (Y

Calculations yield
lat) = e tol(e )+ (- ()
~et-e: (FET) (G

%g:’” = —ze ' (e7'2) + (& +e )z <Z£Ee%§>a
+a(l—e )2 <¢:1(e_tz)>a ( 2(e72) _ :1/(6_2)> L (23)

a(e7'2)
¢1(0) _

We first prove that ¢1(z,t) satisfies the conditions (i) in Lemma 2.1. Since o =
2

1, there exists a disk D,,, 0 < r; <1, in which iégg::; = 0 for all t > 0. Then we

(e t2)\@ - .
o analytic in D,,. We fix the principal

h(e~tz)

can choose a uniform branch of (
branch, it follows that
Phle'2)

¢maw=¢u5%wua—e%v(%@4@>a:gz+u-
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Hence the function ¢;(z,t) is analytic in D,,. By

e—t¢1(z,t) = €_t¢1(€_tz) + (1 N 6—275) <2/1§ ;) =z+4-,

we obtain
lim e ‘¢y(z,t) = 2,

t—4o00

locally uniformly in z-variable, which implies that {e !¢y (2,t)}+>0 is a normal

family in D,, by Montel’s theorem. Therefore there exists a positive constant K

such that |¢1(z,t)] < Koe! for all z € D, and t € [0, +00). From the analyticity

Of 8¢1(9(Z7t)
¢

such that

for all fixed numbers T" > 0 and 7y, 0 < r9 < r1, and a constant K;

8¢1(Z, t)
ot

it follows that ¢1(z,t) is locally absolutely continuous in ¢ € [0, +00), locally
uniform with respect to D,,.

Now we show that Lemma 2.1 (ii) holds. To prove that there exists a mea-
surable p(z,t) with respect to t such that Rep(z,t) > 0 and equation (2.1) holds,
we suppose that

' <Ki, ze€eD,, tel0,T]

8¢1 p1(zt) ¢/ ( )
B gy (ert)

By (2.2)—(2.4), a short calculation yields that

Az, 1) = e 2(1— @) (et2) 2 dh(e12)?)
1— e ($(e ) Plletz)
TR <¢g<etz>‘¢a<etz>)'

Notice that |e7z|> < e7% for z € D. Using 2 to represent e 'z, by (1.2), we have

Az, )] < 1= ¢ (e"2) (e 2)°

ale”’z)  ¢i(e™'z)
Po(etz)  ¢i(et2)
$5(2) _ ¢1(2)
P(z)  ¢1(2)

Az, t) = (2.4)

+ Jaze (1 — e

<k<1l. (2.5)

< 1= @1 (2) ()| + a(l — |2

Combining (2.5) and

Qo= 1y \(z,1)

_ ot
P = o T 1A D)

we obtain Rep(z,t) > 0. Moreover, p(z,t) is analytic in D for ¢ € [0, +00) since
IA(2,t)] < 1and ¢/ (2)1=%¢4(2)* is analytic in D. Hence, ¢1(2,t) is a Lowner chain
from above analysis. Thus, for each ¢ > 0, the functions ¢(z,t) are univalent in
D, it follows that ¢1(2) is univalent in D. Furthermore, by Lemma 2.2, we yield
that ¢1(z) admits a quasiconformal extension onto C. O
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3. On quasiconformal extensions and inner radius of univalence
of strongly spirallike domains

For a univalent analytic function

o0

fz) =2+ Zanz” in D,

n=2

its Grunsky coefficients au,, are determined from the expression

Define the Grunsky functional g(f) of f € Sy as

g( = Sup ’ Z VIMNOmnTmIn

[lz]l=1

m,n=1

(see [25]). Let k(f) = min{k : f € Si}. To prove Theorem 1.3, we need the
following result.

Lemma 3.1 ([25]). Let g(f) denote the Grunsky functional for f € Sy. For
any function f € Sy one has |Sy(0)| < 6g(f) and the equality holds if and only if
the Schwarzian derivative of f is of the form

51(0)

Sy(z) = (3.1)
(1+57(0)22/6)"
and in this case, k(f) = g(f) = |Sf(0)] /6.
Proof of Theorem 1.3. For § € (—ma/2,ma/2) and o € (0,1), let
1+ 2120/ dt
fa,8(2) —zexplo {( T2 -1 - |
It is easy to calculate that
2f (2 2,2if/a’\ @
asl?) _ (14 2% . (3.2)
fa,ﬁ(z) 1—22

It follows that f, g is a strongly S-spirallike function of order a.. By [28, Theorem
1], we know that f, g € Sy, where k <sin 5*. By (3.2), we obtain

log z 4 log f;, 5(2) —10g fa,s(2) = @ [log (1 + zQeQiﬂ/o‘) —log (1 — zQ)} )
After differentiation of the above identity, we get

1 fapgz)  fop®)  20(1 4+ ePl);
z i (;5(2) - fa,8(2) N (1+ zQeQiB/a)(l _ 22)‘ (3.3)
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From (3.2) and (3.3), we obtain

gﬁ(z) 1 1+ 22e2i8/c “ 2a(1 + eB/)z
— o)+ : :
np(2) 2 1—22 (1 + 22e2iB/a)(1 — 22)

Calculations lead to

g ~ 2a(1+ 2B/ o) (26%5/‘)‘,24 — a1 4 e¥B/)z2 4 2)
fa,B(Z) o (14 22621'6/01)2(1 — 22)2

1 [ (14 s2emma)
S Y (el Mo ~1
222 1—22

Then we get Sy, ,(0) = 3a(1 + e8/®). Notice that Sy, 5(2) is not of the form
(3.1). Hence, using Lemma 3.1, we have

ooy > 15200 8

This means that the proof is completed. O

Let f € (—ma/2,ma/2) and a € (0,1). In [28], Sugawa constructed the
quasiconformal reflection in the boundary of a strongly S-spirallike domain. Let
Q be a strongly §-spirallike domain of order o with respect to the origin and let
Rp(0) = sup{r > 0: [0, Pg(r,8)]s C 2} be its radius function, where § € R and
Ps(r,0) = re’@*tanflogr) ¢ O Then a quasiconformal reflection A in 99 is given
by

2
Rs(0)2 i(tanBlo R0 40
APyt 0)) = B0 (mston 2500)

r

2
((1+i tan ) log Rﬂie) +i9)
=€

, 0eR, re(0,00). (3.4)
To prove Theorem 1.5, we need the following results obtained by Sugawa [28].

Lemma 3.2 ([28]). Let 8 and « be real numbers with |f| < ma/2 < 7/2. For
a domain  in C with 0 € Q, the following are equivalent:

(1) There exists a strongly (-spirallike function f of order a such that Q =
#(D).

(2) The radius function Rg(6) of Q with respect to B-spirals is bounded, abso-
lutely continuous on [0,27] and satisfies

Rﬁi@—l—sinﬁcosﬁ

0 < cos? Btan(ra/2) (3.5)

for almost every 6.
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(3) wUgo C Q whenever w € 002; wUg o C Q whenever w € S, where

Uga = {exp((l +itan B)t +i6) : 0 € [0,27),
t < max{— cos® B(tan(wa/2) + tan 8)6,
— cos? B(tan(ra/2) — tan 8) (2 — 9)}} U {0}

Lemma 3.3 ([28]). The function defined by (1.7) maps D conformally onto
Up.o in such a way that ug o(0) = ug (1) —1=0.

We also need the following result.

Lemma 3.4. Let § € (—n/2,7/2) and o € (0,1). The function p(zx) :=

V22 + cos* B — x is decreasing and

o(x) > p(cos® ftan(ra/2))
cos(ma/2)
1+ sin(ra/2)’

Proof. Let p(x) = \/x? + cos* f — z. It is easy to see that

= cos? 3 z € [0, cos? f tan(ra/2)]. (3.6)

T

¢ (1) = ————1<0, xc][0,cosBtan(ma/2)].
Vx? 4 cost 3
It follows that (3.6) holds. The proof is completed. O

Proof of Theorem 1.5. According to Theorem C, our proof consists of four
steps.

Step 1. We estimate A\, and A\;. Let w = A(z), where A(z) is defined by
(3.4). We use the logarithmic coordinates Z = X +iY = log z, z = re/(0+tanflogr)
W =U + iV =logw. Using (3.4) and the relation § =Y — X tan 3, we have

W = 2log Rs(0)(Y — X tan ) — X +i[(Y — X tan §)
+ (2log Rp(#)(Y — X tan 3) — X)) tan 3].

Short computations lead to the following:

Rj(0)
Wx = —=2(1+itanp) tan 5 — (1 4 2i tan f3),
Rg(0)
Wor — 9014 it Ry(0)
y =2(1+14 an/B)RB 0)4-1,
C Wx —iWy  R(0) 2
WZ—#——Z (M(1+tan ,3)+tanﬁ y
; [ RL(6
Ws = Wx ZZWY ie2h (RB% + sin f cos 8 + i cos® B) (1+ tan? B).
B
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Then combining (3.5) and Lemma 3.4, we get that

1 1
el = al = (W] — WA = ’WZM' _ ‘WZTA’

2

R3(0) Rj;(0)
_ B 2 B : 4
= 1 AN
3 (1 + tan” 3) Rﬁ(e)—i—smﬁcosﬂ + cos* 3
Rj(6)
8 .
— | == +sin B cos S
Rg(0) ‘
R3(6) (r0/2)
:8 2 2 COS(TT¢x
> _P 7 i St S
Z =3 (1 + tan” 3) cos B1+sin(7ra/2)
_ R%(G) cos(ma/2) 3.7)
7?2 1+4sin(ra/2) '
Step 2. We calculate
R2(0) . R2(0) .
|)\(Z) _ Z‘ — 5( )eztanﬁlog ’BT _T,eztanﬁlogr
T
1 i2tan flo LEIO)
= 74(1»2—}3;(9)@% flog = >‘ (3.8)
for all z = reil0+tanflogr) ¢ O
Step 3. We estimate po(z). For fixed z = reil@ttanflogr) and 5, =

Ry (0)e!0+tanBlog Bs(0) - By Lemma 3.2, we have N = zUs, C Q. Due to
the monotonicity of the Poincaré metric, we get pa(z) < py(z). Then py(z) =
PUs..(2/20)/]20], which implies that

r itan Blog 5——
< = —_— B30} /R5(6). 3.9
po(2) < v = s (75 )i 69
Since ug o (¢) defined by (1.7): D — Ug is conformal by Lemma 3.3, we have

1
PUs.o (Ua(C)) = (1— ’q?)]u’ﬂ?a(Cﬂ

,¢€D. (3.10)

It is easy to see that ug,(¢) maps ¢ to %ez anflog maay

maps (0,1) onto (0, 1).
Step 4. We calculate the lower bounds for o(£2) and ¢1(€2). By (3.7)—(3.10),
we have

However, ug,q(C)

L As(2)] = AL (2)]
o() = 2ess Il o) 2R3 (o)

cos(ma/2)
2 1+sin(ra/2)
2

itan Blog 5—L—~ 2 itan B log =+
‘1_< e st(e)) o7, ( e R5(9)>
N

Rg(0)
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S 2 cos(mar/2)

~ L2%2(B,a) 1 +sin(ra/2)’

|Az(2)] — A2 (2)] > 1 cos(mar/2)

~ L(B,a) 1 +sin(ra/2)’

o1(9) > ess inf
1) = 5 1o NG) — loae)

where

1 a2, ()
L — )
(8,0) = 590 T ), .0

and ug o (¢) is defined by (1.7). In particular, if ug(¢) maps (0,1) onto (0,1),

TR (2 BT

by [27, Lemma 2]|. The proof is completed.

O

When 8 = 0, we denote Ug, by Upo. Sugawa [27] proved that o(Upq) <
2(1 — )? for o € (0,1). It is natural to consider the upper bound for o1 (Upa)-
In fact, we obtain the following result.

Theorem 3.5. 01(Upq) < 2(1 — ) for a € (0,1).

Proof. We consider the analytic function fy = log(l — w) on the domain
C\[1,+00). Although fy is univalent, fy(Up) has an outward pointing cusp.
This means that fo(Upe) is not a quasidisk. Thus, by Theorem B, we get
01(Uo,a) < ||Pf,llvg..- Now we will estimate || Py, ||v, - Since Upq C V = {w :
Jarg(1—w)| < (1—a)m/2}, we have py(w) < puiy., (w). Then [Py vy, < |Ppllv-

1
It should be noticed that (1 — w)T-= conformally maps V onto the right plane.
Then, by the uniformization theorem, we deduce

11— w|Ta

2(1 — a)Re[(1 — w)T=]

pv (w) =

Therefore we have || Pf,||v = sup,ev | P, |pv(w) ™! = 2(1 — ), which implies that
01(Up,a) <2(1 —a) for @ € (0,1). The proof is completed. O

4. Inner univalence for a quasidisk involving harmonic map-
pings

In this section, we prove Theorems 1.7 and 1.8.

Proof of Theorem 1.7. It is obvious that if oy (Q) = 01(Q2) > 0, by using
Theorem A, we know that € is a quasidisk. Hence, we only need to prove that if
Q is a quasidisk, then 01(Q2) = op(Q2) > 0. For a € D, we consider the functions
fo=f+af. It is easy to see that the dilatation of f, satisfies

a+w E=A

. |20
w. = 11 = .
14 aw 1—|wel? 1-—|w|?
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Furthermore, by Pf, = Pf and the triangle inequality, we can get that

|w'(2)|

|Prtag(2)| < [P f(2)| + T— W)

Therefore,

Preag@a @) < (P76 + 1220 ) g, s ea

1—|w(z
According to the definition of o1(€2) and o1(£2) > 0, we know that if

/
P @) < (1P + L) g0 <o), s e,
then we deduce that h, = h + ag is univalent in Q for all |a| < 1. By Huritz’s
theorem, for 7 € 0D, h, = h+Tg is either univalent or constant. Notice that any
sense-preserving harmonic mapping satisfies |¢'(0)| < |h’(0)|. That is to say, h,
must be univalent in 2, where 7 € dD. In conclusion, we obtain that h, = h +
ag (Ja] < 1) is univalent in . Furthermore, using the proof method from [14],
we can easily prove that f is univalent in Q. By the definition of o (), we get
that o (2) > 01(€2). Combining the fact that o (Q) < 01(£2), we have oy (Q2) =
01(92). We complete the proof. O

Proof of Theorem 1.8. Let ¢ : D —  be a Riemann map of 2 and Q, =
o({|z] <r}) for r < 1. We set v, = 99Q,. Q is a Kp-quasidisk which means that
v is a Kp-quasicircle. Considering the dilations I, = f(v,) for r < 1, we will
prove that f(v,) is K-quasiconformal and K does not depend on r. Once we
prove this, we can consider A\, and A, to be Ky and K-quaisconformal reflections
across v, and I'.. Also, we construct

rs _ f(z)a Zegiﬁ
frlz) = {Ar o foA(z), zeC\Q,

which is a quasiconformal mapping in C. Letr — 1. Using Theorem 5.3 from [18],
we will complete the proof. Our proof consists of four steps.

Step 1. Using the same method as in the proof of Theorem 1.7, we can also
prove that h(Q2) is a quasidisk. Hence, by [1], for & € 09, (i = 1,2,3,4), we get

(r&1) — h(r&s) h(rée) — h(rés)
(ré&1) — h(rés) h(rée) — h(rés)
for 0 < r < 1, where M is a positive constant.

Step 2. We will prove that h, = h+ ag is univalent in 2 for all |a| < 6 (6 >
1). In Theorem 1.7, we have proved that h, = h + ag is univalent in 2 for all

|a] < 1. Thus we only need to prove that h, = h + ag is univalent in 2 for all
1 < |a|] < §. Notice that

1Y n" aw’ o w+ta
2@ —( =P _— 4.1
f! h’+1—|—aw f+1—\w]21+aw (4.1)

(hiren). ). h(ra) )| = <M
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By (1.8), we see that

OJ/

pa(z)(1 —|wl?)
for all z € Q. According to (1.8), (4.1) and (4.2), it follows that

<b<ou(Q) (4.2)

, , '\ @+a
p 1 <|p 1 w w
| ha‘pQ (Z) = | f|pQ (Z) + pQ(Z)(l _ |w’2) 1+ aw
/ 7+CL
Pl w w
P oot o |1+ a
_ w' — Jlwlloo
< |Pflpg'(2) +
¢ pa(2)(1 = |[w*) | 1 = [lw]l]al

!/ /

ol N olloe
a1~ ff(zﬁffu_ @B | 1~ lwllsclal
R P T <1 —Jwlolal ~ 1)
bl < ou(@) = )
! ol < 5.2 210+l
b+ 01() @]’

It is easy to see that
1 S 01(Q) + b||w|co
[wlloo ™ b+ o1 (Q)|w]loo
Hence, by Theorem B, we conclude that f, = h + ag is univalent in €2 for all
o1(2) + b|lwlco 1
b+ o1(Q)wllos ~ flwlloo

> 1.

1<lal <

Step 3. We estimate the upper bound of ’79(6’ for o, € Q if we

suppose that h and g are analytic in . Notice that h is univalent in © by Step 1.
For fixing 8 € ), we define a function

o) ~9(8)
os(a) = 4 W) —h(p) 77
w(a)7 o = /87

where o € © and w represents the second complex dilatation of f. Obviously,
¢p(a) is continuous for v € Q. It follows that there exists ag € € such that
sup g les(a)| = les(ao)l-

{F o = . then supegs [ps(e)] = Igs(a0)] = fofoa)] < floe: By 8 < o
it follows that sup, g |ps(a)| = |¢s(ao)| < 3. If ag # B, here we suppose that
sup,,cq lvs(@)| > %, then there exist £ > 0 and |p| = 1 such that

glor) —g(8) _1+e
hon) —h(3) ~ o
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where oy € Q. Therefore, we deduce that h — % g is not univalent in €, which

contradicts Step 2. So, if ag # B, we have sup, g |¢s(@)| = |ps(ao)| < 3. It

follows that
g(a) —g(B)

n(@) —h(B)

Ig1
5

for all a, B € Q.
Step 4. We will prove that

w1 — W3 Wy — W4

W1 — w4 W2 — W3

|(’LU1,U]2,'LU3,?,U4)| = ‘

is uniformly bounded, where w; = f.(&§;) = h; + g; € I'y = f.(0Q) = f(0Q,) (i =
1,2,3,4). From Steps 1-3, for & € 9Q, (1 =1,2,3,4), we have

1+1/6\2
1—1/5) '

(., wp, ws, wa) §M<

Letting » — 1, and using Theorem 5.3 from [18], we complete the proof. ]
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KBazikondopMHi NpogoB>KeHHsI Ta BHYTPIINIHiil pajiyc
YHIBAJIEHTHOCTI BiJTHOCHO Mepea-IIBapIoOBUX ITOXiTHUX
AHAJITUYIHOTO i rapMOHIYHOTO BigOOpa keHHSA

Zhenyong Hu, Jinhua Fan, and Xiaoyuan Wang

Y poboTi Mu BUBYAEMO KPUTEPiil YHIBAJIEHTHOCTI KBa31KOH(MOPMHUX TPO-
JIOBXKEHb 1 BHYTpPIIIHIN pafiyc YHIBaJEHTHOCTI /I JIOKAJBbHO YyHIiBaJeH-
THUX AHAJITUYHUAX 1 TapMOHIYHUX BimoOpaxkeHb. [ljist JIOKAJIBHO yHIBaJIEH-
THUX AHATITUIHUX (DYHKIIH HA OJUHUYIHOMY JUCKY MU HAJIAEMO IOCTATHI
YMOBHU YHIBaJIEHTHOCTI i KBa3ikoH(MOPMHI MPOIOBKEHHST BiTHOCHO I€pE/I-
MBAPIIOBUX TTOXiTHUX, K1 y3araJabHIOIOTL pe3yabTaT bekkepa. s cuibHO
cripaJjenosibHux obJracTeil My PO3LIsiIaEMO KBa3iKOH(MOPMHE IIPOIOBXKEHHST
1 OZlepKyeMO HFKHI OIIHKHM BHYTPINTHIX paJiyciB yHIBAJEHTHOCTI BiJIHOCHO
[epeI-MBaPIOBUX 1 MIBapIoBUX noxigaux. Kpim Toro, mis rapMoHiIHIX Biji-
obpaxkeHb B OJIHO3B’si3Hill obstacTi 2, Mu J0BOAMMO, IO §2 € KBa3iIUCKOM B
TOMY 1 JIMITIe TOMY BUIIQJIKY, KOJIM BHYTPIITHIH pajiyc yHiBaJIeHTHOCTI 00/1a~
cri 2 BIIHOCHO TepeI-IBAPIOBUX IMOXIAHUX TapMOHIYHOIO BiIOOparkKeHHs €
JIOTATHUM Ta OJEPXKYEMO 3arajibHy JIOCTATHIO YMOBY YHIBaJIEHTHOCTI i KBa-
3iKOH(OPMHI TPOIOBIKEHHSI.

KirrowoBi cioBa: KBa3iKOH(MOPMHE ITPOJIOBXKEHHS, KBa31IUCK, BHY TPIITHIi
paJiyc yHIBaJIEHTHOCTI, CUJIBHO CIipaJjenoibna (PyHKIs, TapMOHIYHE Bijl-
OoOpazKeHHsT
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