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In 2010, Bezuglyi, Kwiatkowski, Medynets, and Solomyak [10] found a
complete description of the set of probability ergodic tail invariant measures
on the path space of a standard (classical) stationary reducible Bratteli
diagram. It was shown that every distinguished eigenvalue for the incidence
matrix determines a probability ergodic invariant measure. In this paper,
we show that this result does not hold for stationary reducible generalized
Bratteli diagrams. We consider classes of stationary and non-stationary
reducible generalized Bratteli diagrams with infinitely many simple standard
subdiagrams, in particular, with infinitely many odometers as subdiagrams.
We characterize the sets of all probability ergodic invariant measures for such
diagrams and study partial orders under which the diagrams can support a
Vershik homeomorphism.
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1. Introduction

Bratteli diagrams provide an important tool for the study of dynamical sys-
tems in measurable, Cantor, and Borel dynamics. A generalized Bratteli diagram
is a natural extension of the notion of a classical (standard) Bratteli diagram,
where each level has a countably infinite set of vertices. While standard Brat-
teli diagrams are particularly useful in Cantor dynamics to describe the simplex
of probability tail invariant measures and study other properties of dynamical
systems (see, e.g. surveys [6,7,13,17]), generalized Bratteli diagrams are used
to model non-compact Borel dynamical systems [2]. Recent papers developed
the study of dynamical systems on generalized Bratteli diagrams [3-5]. It was
shown that generalized Bratteli diagrams have many interesting phenomena in
comparison with the standard case. For example, one can find stationary gener-
alized Bratteli diagrams with either a unique probability invariant measure, or
uncountable many probability invariant measures, or without such measures at
all.
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This paper continues the study of generalized Bratteli diagrams and focuses
mostly on a class of stationary reducible generalized Bratteli diagrams. We con-
sider tail invariant measures and the existence of a Vershik map on such diagrams.
The case of irreducible generalized Bratteli diagrams was considered in [3,4].

The importance of the case of stationary Bratteli diagrams is based on the
following facts. Stationary standard Bratteli diagrams provide models of sub-
stitution dynamical systems (minimal and non-minimal ones), see [9,12]. The
case of stationary generalized Bratteli diagrams is more challenging to study.
Right now, it is known that a class of substitution dynamical systems on an in-
finite alphabet (considered first by [14]) can be realized as a generalized Bratteli
diagram [5].

Having such a duality between the diagrams and substitution dynamical sys-
tems, one can answer the principal question about an explicit description of the
set of ergodic probability measures. In [10], the authors found a transparent al-
gorithm for the construction of ergodic probability measures. For this, one needs
to find all distinguished Perron eigenvalues of the incidence matrix. Then using
the corresponding eigenvector, the values of the invariant measure on the cylinder
sets are determined by a simple formula (see Theorem 2.11 for details).

It seems rather surprising, but the mentioned theorem does not hold for sta-
tionary generalized Bratteli diagrams even in the case when all simple subdi-
agrams are standard odometers. Instead, we state a new result that provides
a required characterization of probability tail invariant measures. For this, we
use the method developed in [1, 8], where ergodic invariant measures on stan-
dard Bratteli diagrams were obtained by using a procedure of an extension from
a subdiagram. In this paper, we show that the same method can be used for
generalized Bratteli diagrams. Moreover, for the class of the so-called reducible
Bratteli diagrams with infinitely many odometers, this method gives all proba-
bility ergodic invariant measures on the diagram.

The outline of the paper is as follows. Section 2 provides main facts con-
cerning standard and generalized Bratteli diagrams, the procedure of measure
extension, and the description of all probability ergodic invariant measures for
reducible stationary standard Bratteli diagrams. In Section 3, we briefly discuss
the procedure of measure extension from a vertex subdiagram for generalized
Bratteli diagrams. In Section 4, we introduce the notion of reducible general-
ized Bratteli diagrams with infinitely many odometers and focus on the study
of tail invariant measures and their extensions. We give a complete classifica-
tion of probability ergodic invariant measures on such diagrams. In Section 5,
we present various classes of stationary and non-stationary reducible generalized
Bratteli diagrams with infinitely many odometers and characterize their sets of
probability ergodic invariant measures. Section 6 is devoted to different orders
on reducible generalized Bratteli diagrams with infinitely many odometers. For
different classes of orders on such diagrams, we study whether the correspond-
ing Vershik map can be extended to a homeomorphism. Our main results are
presented in Theorems 3.1, 4.3, 5.5, 5.8, 6.2.
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2. Preliminaries

In this section, we recall the main definitions and facts concerning invariant
measures on standard and generalized stationary Bratteli diagrams. For more
details see [3,4,6,10].

Throughout the paper, we will use the standard notation N, Z,R, Ng = NU
{0} for the sets of numbers, and | - | for the cardinality of a set.

2.1. Basic definitions on Bratteli diagrams

Definition 2.1. A (standard) Bratteli diagram is an infinite graph B =
(V, E) such that the vertex set V = | |;5, Vi and the edge set E = | |,5 E; are
partitioned into disjoint subsets V; and FE;, where

(i) Vo ={wo} is a single point;
(ii) V; and E; are finite sets for all i;

(iii) there exists a range map r: E — V and a source map s: £ — V such that
r(E;) = Vit and s(E;) =V, for all ¢ > 1.

Definition 2.2. A generalized Bratteli diagram is a graded graph B = (V, E)
such that the vertex set V' and the edge set E can be partitioned V' = | |72, V;
and E = | |77, E; so that the following properties hold:

(i) For every i € Ny, the number of vertices at each level V; is countably infinite,
and the set Ej; of all edges between V; and V;;1 is countable.

(ii) For every edge e € FE, we define the range and source maps r and s such
that r(F;) = Viy1 and s(E;) =V for i € Np.

(iii) For every vertex v € V' \ Vo, we have |r~1(v)| < oo.

Let B = (V, E) be a standard or generalized Bratteli diagram. We will call
the set V; the ith level of the diagram B. For generalized Bratteli diagrams,
we will identify each V; with N. Consider a finite or infinite sequence of edges
(e; : e; € E;) such that s(e;) = r(e;—1) which is called a finite or infinite path,
respectively. We denote the set of infinite paths starting at Vy by Xp and call it
the path space. For a finite path € = (e, ..., ,,), we denote s(€) = s(ep), r(€) =
r(en). The set

€] ={x=(z;) e Xp:axop=-ep,...,2n =en},

is called the cylinder set associated with e. The topology on the path space Xp
is generated by cylinder sets. The path space Xp is a zero-dimensional Polish
space.

For vertices v € V,;, and w € V,,, we will denote by E(v,w) the set of all finite
paths between v and w. Set félz)u = |E(v,w)| for every w € V; and v € Viy;.
In such a way, we associate with the Bratteli diagram B = (V| E) a sequence of
non-negative matrices (F;), i € Ny (called the incidence matrices) given by

Fi= (£, :veViq,weV), fi, €N (2.1)
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In the case of a generalized Bratteli diagram, incidence matrices are countably
infinite.
For w € V,, and n € Ny, denote

XM = {z=(2;) € Xp : s(z) = w}.

The collection (Xz(un))w of all such sets forms a partition (,, of X into Kakutani—
Rokhlin towers corresponding to the vertices from V,,. For w € V,, and vy € Vj,
we set

highy = |E(vo, w)|

V0, W

and define
HY = S 0, mel.

vo €V

Set H&O) = 1 for all w € V. This gives us the vector H® = (H&n) cw € Vy)
associated with every level n € Ny. Since qi = |E(Vo,w)|, we call HY the
height of the tower Xq(un) corresponding to the vertex w € V,,.

Definition 2.3. Given a standard or generalized Bratteli diagram B = (V, E)
and a monotone increasing sequence (ny : k € Ng) with ng = 0, we define a new
Bratteli diagram B’ = (V’, E') as follows: the vertex sets are determined by V} =
Vi, and the edge sets E,’C = Ep,0---0FEy,, 1 are formed by finite paths between

the levels V} and V}/, ;. The diagram B’ = (V', E') is called a telescoping of the
original diagram B = (V, F).

Remark 2.4. Notice that each telescoping of a generalized Bratteli diagram
is again a generalized Bratteli diagram.

Definition 2.5.

(1) Let B = B(F,), where (F},),, are the incidence matrices of B, be a standard
or generalized Bratteli diagram. If F,, = F for every n € N (for standard
diagrams) or every n € Ny (for generalized diagrams), then the diagram
B is called stationary. We will write B = B(F’) in this case. Unless stated
otherwise, we will assume that every standard Bratteli diagram has a “simple
hat”, which means that there is a single edge from the vertex vg to every
vertex v € V.

(2) A standard Bratteli diagram is called simple if there exists a telescoping B’
of B such that all entries of the incidence matrices of B’ are positive. Since
every vertex of a generalized Bratteli diagram can have only finitely many
incoming edges, the notion of a simple Bratteli diagram cannot be applied
to generalized diagrams.

(3) A generalized Bratteli diagram B = (V| E) is called irreducible if for any
vertices 7,7 € Vp and any level V,, there exist m > n and a finite path
connecting i € V,, and j € V;,,. In other words, the (j,7)-entry of the matrix
F—1- - F, is non-zero. Otherwise, the diagram is called reducible.



Invariant Measures for Reducible Generalized Bratteli Diagrams 7

We will consider tail-invariant measures on the path space X p of a standard or
generalized Bratteli diagram B. By term measure we always mean a non-atomic
positive Borel measure.

Definition 2.6. Let B be a standard or generalized Bratteli diagram. Two
paths z = (z;) and y = (y;) in Xp are called tail equivalent if there exists n € Ny
such that x; = y; for all ¢ > n. This notion defines a countable Borel equivalence
relation R on the path space Xp (every equivalence class is countable and R
is a Borel subset of Xp x Xp) which is called the tail equivalence relation. A
measure p on Xp is called tail-invariant if, for any cylinder sets [€] and [€'] such
that r(e) = r(€'), we have u([e]) = u([e]).

Theorem 2.7. Let B = (V, E) be a Bratteli diagram (generalized or stan-
dard) with the sequence of incidence matrices (F,). Then:

1. Let pu be a tail-invariant measure on B which takes finite values on cylinder
sets. For every n € Ny, define the vector ﬁ(n) = <p£¢?) Tw € Vn>, where

P = p(e(w)]), we V. (2.2)

where [e(w)] is a cylinder set which ends in the vertex w. Then the vectors
" satisfy the relation

FIpntt) =5 >0, (2.3)

(n)

2. Conwversely, suppose that {Ty(n) = (pw )}nENo s a sequence of non-negative
vectors such that Fgﬁ("“) =p™ for alln € No. Then there exists a uniquely

determined tail invariant measure p such that p(fe(w)]) = pg,?) forw eV, and
n € Np.

The proof of Theorem 2.7 is straightforward and can be found in [10] (for
classical Bratteli diagrams) and [3] (for generalized Bratteli diagrams).

To define a dynamical system on the path space of a generalized Bratteli
diagram, we need to take a linear order > on each (finite) set 7—1(v), v € V'\ 1%.
This order defines a partial order > on the sets of edges E;, i = 0,1, ..., where
edges e, ¢’ are comparable if and only if 7(e) = r(¢’).

Definition 2.8. A generalized Bratteli diagram B = (V, E) together with
a partial order > on F is called an ordered generalized Bratteli diagram B =
(V,E,>).

We call a (finite or infinite) path e = (e;) maximal (respectively minimal) if
every e; is maximal (respectively minimal) among all elements from r~1(r(e;)).
Denote by Xmax (Xmin) the sets of all infinite maximal (minimal) paths in Xp.

Definition 2.9. For an ordered generalized Bratteli diagram B = (V, E, >),
we define a Borel transformation ¢p : Xp\ Xinax — Xp \ Xmin as follows. Given
x = (x0,21,...) € XB \ Xmax, let m be the smallest number such that x,, is



8 Sergey Bezuglyi, Olena Karpel, and Jan Kwiatkowski

not maximal. Let g,, be the successor of z,, in the finite set r~!(r(z,,)). Then
we set op(z) = (90,915- -+ Im—1, Gms Tm+1, - -.) where (go,g1,...,gm—1) is the
minimal path in E(Vp, s(g,,)). The map ¢p is a Borel bijection. Moreover, ¢p is
a homeomorphism from Xp\ X,ax onto X\ Xmin. If ¢ admits a bijective Borel
extension to the entire path space Xp, then we call the Borel transformation ¢p :
Xp — Xp a Vershik map, and the Borel dynamical system (Xp, ¢p) is called a
generalized Bratteli—Vershik system.

Remark 2.10. If the cardinalities of X ,.x and X, are the same then there
always exists a Borel extension of pp to the whole path space Xp.

In general, every measure p that is invariant with respect to a Vershik map is
also tail-invariant. If the sets of Xnin and X« have zero measure, then we can
identify tail-invariant measures with measures invariant with respect to a Vershik
map.

2.2. Subdiagrams and measure extension In this subsection, we give
the basic definitions and results on subdiagrams of standard and generalized
Bratteli diagrams. We also describe the notion of measure extension. We use the
approach developed first in [1,8].

Let B = (V,E) be a standard or generalized Bratteli diagram. Consider
nonempty subsets V. C V and E C E that can be written as V = U, V, and
E = U, E,, where V,, C V,, and E,, C E,. Then we say that the pair B =
(V,E) defines a subdiagram of B if V = s(E) and s(E) = r(E) U V.

To define a vertex subdiagram of B, we begin with a sequence W = {W,,},,~0
of proper nonempty subsets W,, of V,,, and set W} = V,, \ W,, # & for all n. The
vertex subdiagram B = (W, E) is formed by the vertices from W,, and by the set
of edges E,, whose source and range are in W,, and W, 1, respectively. Thus,
the incidence matrix F,, of B has the size |W, 1| x |[W,]|, and it is represented
by a block of F,, corresponding to the vertices from W,, and W, ;.

The path space X5 of a vertex subdiagram B is a closed subset of X5. On
the other hand, there are closed subsets of Xp which are not obtained as the path
space of a Bratteli subdiagram. It was proved in [15] that a closed subset Z C
Xp is the path space of a subdiagram if and only if R|zxz is an etalé equivalence
relation (see [15] for details).

Below we explain the procedure of measure extension from a subdiagram.
This procedure was considered earlier in [1, 8] for standard Bratteli diagrams,
but it works also for generalized diagrams. The diagram B below can be either
a standard or generalized Bratteli diagram. Let )?g = R(XE) be the subset of
all paths in Xp that are tail equivalent to paths from Xz. In other words, XE
is the smallest R-invariant subset of Xp containing X5. Let z be an ergodic
tail invariant probability measure on Xz. Then i can be canonically extended
to the ergodic measure ﬁ on the space XE by tail invariance, see [1,11]. More
specifically, let the measure & be defined by a sequence of positive vectors {ﬁ(”) :

n e No} satisfying Theorem 2.7, that is Ff(ﬁ"“)) =", n e Ny, where F,, is



Invariant Measures for Reducible Generalized Bratteli Diagrams 9

the incidence matrix for the subdiagram B. Then, for every cylinder set [€] C
Xp with 7(€) = v € V,,, we set 7i([e]) = 50", Then 71 is defined on all clopen sets
and it can be finally extended to a Borel measure on of Xp.

Let B be a vertex subdiagram of a generalized Bratteli diagram B defined by
a sequence of subsets (W;). Denote by )?% ) the set of all paths x = (z;)52, from

Xp such that the finite path (zo,...,7,) ends at a vertex v of B, and the tail
(Tn+1, Tnt2,-..) belongs to B, i.e.,

X0 = {3; —(w) €Xg:Vi>n r(z)e W,} . (2.4)

: : > Sntl) 3 2
It is obvious that ng) C X%l ), 5=U, XQ)? and

B
#(%) = i 5(557) = Jim, 30 25)

This limit can be finite or infinite. If it is finite, then we say that @ admits a

~

finite measure extension ﬁ<X§> < 0o. To obtain an ergodic invariant measure

on the whole path space Xp, we set ﬁ(XB \XE) =0.

2.3. Invariant measures on stationary standard Bratteli diagrams
In this subsection, we recall the explicit description of all probability ergodic
invariant measures on stationary standard Bratteli diagrams, the exposition is
based on [10].

Let B be a stationary standard Bratteli diagram with N vertices on each level
n > 1. We identify every set of vertices V,, for n > 1 with the set {1,...,N}.
Denote by F the corresponding incidence matrix and let A = F7T.

One can associate to A a directed graph G(A) with the vertices {1,..., N}
such that there is an arrow from ¢ to j if and only if a;; > 0. We will say that
vertices i and j are equivalent if either ¢ = j or there are paths in G(A) from ¢ to j
and from j to 7. Denote by &;, 7 = 1,...,m the corresponding equivalence classes.
Then each class &; defines a submatrix A; of A obtained by restricting A to the
set of vertices from &;. Identify the family of sets {&;}7*, with the set {1,...,m},
and define the partial order on {1,...,m} as follows: for o, € {1,...,m}, we
have 8 > «a if either e = /3 or there is a path in G(A) from a vertex in £ to a
vertex in &,. In this case, we say that class § has access to class a. If 8 = «
and 8 # «, we write § > «. The partial order > defines the reduced directed
graph R(A) of G(A) as follows: the set of vertices of R(A) is {1,...,m}, there is
an edge from a vertex  to a vertex « if and only if 5 > «. One can enumerate
the vertices of B and classes in {1,...,m} in such a way that A assumes a block
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triangular form and 8 = « if @ > 8 (with the usual ordering on integers):

0 Ay ... O Y27S+1 ce Yé’m
A=]0 0 ... A Y1 ... Yim |,

0 0 ce 0 A5+1 ce Yerl,m

0O 0 ... 0 0 e Ap

where s > 1, the square matrices {A4;}{_; on the main diagonal are non-zero
irreducible matrices, each square matrix {A4;}j~,, ; is either irreducible or a 1 x
1 zero matrix. For any j = s+ 1,...,m, at least one of the matrices {Yk]}i;ll
is non-zero. Moreover, the matrix Y}, ; is non-zero if and only if there is an edge
in R(A) from k to j. Further, we telescope B so that each non-zero matrix A;
on the main diagonal is strictly positive. For more details see for instance §4.4
n [16], where R(F) is called the graph of communicating classes.

Let p, be a spectral radius (a Perron eigenvalue) of A,. A vertex (class)
a € {1,...,m} is called distinguished if p, > ps whenever f > a. In par-
ticular, vertices {1,...,s} are distinguished vertices in R(A) and A, # 0 for a
distinguished class a. Let B, be a simple stationary subdiagram of B gener-
ated by vertices that belong to £,. We call a real number A\ a distinguished
eigenvalue for A if there exists a non-negative eigenvector x with Ax = Ax. A
real number ) is a distinguished eigenvalue if and only if there is a distinguished
class a in R(A) such that p, = A\. The corresponding non-negative eigenvector
(€a(1),...,&x(N))T is unique (up to scaling) and &, (i) > 0 if and only if i has ac-
cess to a (see [18-20]). The vector (£4(1), ..., & (N))T it is called a distinguished
eigenvector corresponding to a distinguished eigenvalue \,.

We sum up the results from [10] in the following theorem:

Theorem 2.11 ([10]). Let B be a stationary standard Bratteli diagram and
let A be an N x N matriz which is the transpose of the incidence matrix. Then
every probability ergodic invariant measure on Xp corresponds to a distinguished
class of vertices in R(A), a distinguished right eigenvector for A, and a corre-
sponding distinguished eigenvalue for A. Conversely, every distinguished class
of vertices in R(A), distinguished right eigenvector and a corresponding distin-
guished eigenvalue for A generate a probability ergodic invariant measure on B in
the following way: if pa s a probability ergodic invariant measure corresponding
to a distinguished class of vertices o in R(A) then piq is (up to constant multiple)

the estension of a unique invariant measure fi,, from Bo. If (£4(1), ..., &a(N))T
and Ay are the corresponding distinguished eigenvector and eigenvalue then
_ §a(w)
Ma([e(vmw)]) = ;n—l )
o

where [€(vy, w)] is a cylinder set corresponding to a finite path e(vy, w) which ends
mn a vertex w on level n > 1.
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2.4. Invariant measures on stationary irreducible generalized Brat-
teli diagrams In [3,4], the authors used the Perron—Frobenius theory for infinite
matrices to describe tail invariant measures on the path space of a class of ir-
reducible stationary generalized Bratteli diagrams. In particular, it was shown
that

Theorem 2.12 ([4]). Let B(F) = B(V, E,>) be an ordered stationary gen-
eralized Bratteli diagram such that the matriv A = FT is infinite, irreducible,
aperiodic, and positive recurrent. Let & = (&,) be a Perron-Frobenius right eigen-
vector for A such that Zue\/o & = 1. Then the measure p given by the formula

&

plle(w, v)) = 5.

where [e(w,v)] is the cylinder set which corresponds to a finite path €(w,v) that
begins at w € Vy and ends atv € V,,, n € N, s the unique probability p g-invariant
measure that takes positive values on cylinder sets.

3. Measure extension for generalized Bratteli diagrams

In this section, we consider the procedure of a measure extension from a vertex
subdiagram for generalized Bratteli diagrams. The proof is essentially the same
as in [1].

Theorem 3.1. Let B be a generalized Bratteli diagram B = (V,E) with
incidence matrices (Fy,). Let B be a (standard or generalized) vertex subdiagram
of B determined by a sequence (W,,) of proper subsets W,, C V,, for each n € N.
Let [t be a probability measure on the path space X5 of B. Then

ﬁ(ffBFHi SO Epp, (3.1)

n=0veEW,+1 weW},
where W, =V, \ Wy, n=0,1,2,....
In particular, the following statements are equivalent:
(i) Q()@) < o0,
WYY Y A <o
n=0veW, 11 weW/,

Proof. To prove the theorem, fix n and begin with equality (2.5). We have

ﬁ(f{gﬂ)): Z pn+1 n+1) Z n+1 vawH&")

vGWnJrl UEWn+1 weV,
= > A Y RE 0 A S s E
vEW+1 weWn, vEW 41 weW/,

=S 5P S TR ST ST pmple g

weWn, vEW 41 vEWR 41 weW),
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weWnp UEWn+1 wGW’

(%, >+z R

vEWR 41 weW),

Since

A(55) -1 5 (%) ~7(5).

n>0

we get the result. O

Remark 3.2. Note that we can also compute the measure ﬁ of any cylinder
set [e] by carefully examining which cylinder subsets that end in the vertices of
B are contained in [e]. The sum of measures of these subsets will give us the
measure of [€]. In Section 5, we present such computations for concrete examples
of Bratteli diagrams.

4. Reducible Bratteli diagrams with infinitely many odometers

Consider the following class of non-stationary reducible generalized Bratteli
diagrams. In this section, we will focus on the study of their tail invariant mea-
sures. Every diagram in this class contains infinitely many odometers as subdia-
grams, which are connected by single edges.

Let the Bratteli diagram B = Bjo be defined by the sequence of incidence
matrices

Fo,=10 o o 1 0 o ... .. |, neN, (4.1)
o o0 0 o 1 0

where the natural numbers aﬁf ) > 2 for all n € Ny and 7 € N. The index n points
out at the n-th level of the diagram B, and ¢ corresponds to the number of a
vertex inside V,,.

The diagram Bio has a natural set of elementary vertex subdiagrams B;
consisting of vertical odometers where ¢ runs over the set N. There are exactly
ag) edges connecting the vertices ¢ € V,, and ¢ € V,,4.1. We call B the “diagram
of infinite odometers (DIO)”.

Analyzing the paths space of (DIO) it is not hard to prove the following

proposition:

Proposition 4.1. The sets XE’ 1=1,2,..., are pairwise disjoint and Xp =
L2, XE’ where Xp is the set of all infinite paths of (DIO).
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The subdiagram B; of B admits a unique tail invariant probability measure
f; on the path space Xz such that for a cylinder set [e] = [eo, ..., en], s(e;) =
r(e;) = 14, we have
o 1
m;([e]) = W

The measure extension procedure applied to B; gives us the measure ﬁl on the
tail invariant set XE' It follows from Theorem 3.1 that

(n)
ﬁi(X )<OO — Z%<oo.
n=0 Qg T Qn
Thus, it follows from the construction of Byo that there are infinitely many
ergodic measures ﬁl on the path space Xp. Some of them may be finite, while
others are infinite. We will give exact examples below. Moreover, the measures
ul and ,uj are mutually smgular (i # j) because they are supported by non-

intersecting tail invariant sets X5 B, and X (see also Proposition 4.1).
Our goal is to show that there are no Other ergodic measures.

Remark 4.2. Let 0 be a finite tail invariant measure on XE' Then there is a
constant C' > 0 such that § = CT;.

Indeed, let C' = G(XE), then 0 := 0| Xp, = CT; by uniqueness of 7z; on Xz .
By tail invariance, for every n € Ny and every cylinder set [eg, ..., e, such that
r(en) =1 € V41 we have

C

6([60, .. .,en]) = ﬁ = Ci([eo, e ,en]).
ao DY an

Theorem 4.3. Let M be the family of measures obtained by normalization

of measures ﬁz such that ﬁz <)?§i> < 00. Then M coincides with the set of all

ergodic probability tail invariant measures on the path space Xp of the diagram

B.

Proof. We first note that Xpg can be partitioned into the union of tail invari-
ant sets Xz . Every Xg is an Fy-set, hence it is Borel. Let 8 be a finite tail

invariant measure on Xpg. The support of 8 is the union of some sets )?Ei. Then
9(‘)?3-) < oo for all such i’s. Let 6; be the measure 0 restricted to the set )?E_

By Remark 4.2, every 0; is proportional to ﬁi, ie., 0; = Clﬁl We observe that
>.;Ci = 0(Xp). This means that 6 is a linear combination of ergodic measures

i O

Remark 4.4. The same approach works in the case when the vertical odome-
ters are replaced with simple stationary standard Bratteli diagrams B;. As for
odometers, we will have a unique ergodic probability measure i; on the path
space Xz defined in Theorem 2.11. Assuming that the extension ﬁi()A(E) is
finite, we get that this measure is unique (up to a constant). The same reasohing
as in the proof of Theorem 4.3 can be repeated.
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5. Some classes of generalized Bratteli diagrams with infinitely
many odometers

In this section, we present some classes of stationary and non-stationary re-
ducible generalized Bratteli diagrams with infinitely many odometers and find
their sets of probability ergodic invariant measures. We give examples of dia-
grams that: (i) have a unique probability ergodic invariant measure, (ii) have
countably many probability ergodic invariant measures, (iii) have no probability
invariant measure, but possess an infinite o-finite invariant measure that takes
finite values on all cylinder sets, and (iv) have no invariant measure that takes
finite values on all cylinder sets.

5.1. Stationary generalized Bratteli diagrams with infinitely many
odometers. In this subsection, we describe all probability ergodic invariant
measures for a class of stationary generalized Bratteli diagrams. We apply two
methods: the construction of measure extension and the procedure of obtaining
a measure from a positive eigenvector and eigenvalue. We show that these two
approaches lead to the same ergodic invariant measures. These procedures also
allow us to obtain infinite o-finite ergodic invariant measures.

Theorems 5.1, 5.3, and 5.5 show that for stationary reducible generalized
Bratteli diagrams, unlike the case of standard diagrams, if a class of vertices is
distinguished it doesn’t necessarily mean that the corresponding ergodic invariant
measure is finite. We will use the notation introduced in Section 4.

Theorem 5.1. Let B be a stationary generalized Bratteli diagram with inci-

dence matriz
1 0

a 0

0 a—k 1 0
F=]0 0 a—-Fk 1
0

— o O O

0 0 a—k

where a, k € N and a—k > 1. Then there is a unique probability ergodic invariant
measure @ on B if and only if k > 1. If k = 1 then there are no probability
invariant measures on B.

To prove the theorem we will need the following lemma:

Lemma 5.2. For every n € Ny, we have

H™ = (a— (k—1)" fori> 1. (5.1)

)

Proof. First notice that Hi(n) = Hén) for all n € Ny and 7 > 1. We prove the
formula (5.1) by induction. For all ¢ > 1 we have

Hi(o) =1 and Hi(l) =(a—k)+1.
Assume that Hi(n) = (a—(k—1))" for all i > 1. Then
H™ = (a—k)H™ + HY = (a—k+1)(a— (k—=1))" = (a— (k—1))"". O

)
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Proof of Theorem 5.1. By Theorem 3.1 and Lemma 5.2, we have

n

o0 oo
& (%)= Z L 1+Z (a—( —1 1+iz<1_k;1>n.

n=0

Let gq=1-— % < 1. Assume that £ > 1, so ¢ < 1. Then

1 a 1
) =1 S S R
m(Xp 3 Zq -9 Tar-n " TE=1

If £ =1, then ﬁl <)?§1) = 00.
For any £ > 1 and ¢ > 1 we also have

=~ o _|_1 o CL—kJ-f—
X5 1+Z _an-i-l 1+Z (1— n+1

Thus, by Theorem 4.3, for k = 1, there are no probability invariant measures on
B, and for each k£ > 1, there is a unique probability ergodic invariant measure
@ on B which is an extension of the unique invariant measure from the first
odometer. O

Theorem 5.3. For k > 1, the unique (up to constant multiple) ergodic in-
variant measure p on B from Theorem 5.1 can be obtained by using the eigenvalue
A = a, the corresponding eigenvector

T
and the formula
p(fe(w, o)) = 52, (59

where e(w,v) is a finite path that begins at w € Vy and ends at v € V,, (recall that
we identify the vertices v € V,, with natural numbers i € N).

For k = 1, there is an ergodic infinite o-finite invariant measure u which
takes finite positive values on all cylinder sets. This measure can be obtained
as the extension of the unique invariant measure from the first odometer as in
Theorem 5.1 or using the eigenvalue A = a, the corresponding eigenvector

52 (61) = (1?1717"')T7
and formula (5.3).

Proof. First we prove that, for k& > 1, the vector { = (§;) given by the
formula (5.2) is a right eigenvector for A = FT associated with the eigenvalue
A = a. Indeed, for any eigenvector n = (n;) and eigenvalue A\, we have an = An;.
If we take n; = 1, then A = a. From the equality 71 + (@ — k)12 = An2 we obtain
1+ (a—k)na = ang and 12 = % It is easy to prove by induction that, for every
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i € N, we have n; = kz—l,l = &;. Note that for £ = 1 we obtain eigenvector & =
(1,1,1,...)7. By Theorem 2.7, the measure p defined on each cylinder set by
formula (5.3) determines a tail-invariant measure on B which takes finite values
on cylinder sets. We show that this measure coincides with ﬁl on all cylinder
sets. First we prove that u([e™(2)]) = Z([e"™(2)]) for all m € N, where [e(™)(2)]
is any cylinder set of length m which ends in vertex 2.

We have p([e (1)]) = 72, ([ (1)]) = - for all m € Ng. Then we can check

a
that

REO@) =Y L e ),
n=0 a

Similarly, since the diagram is stationary, we obtain

RN =Y D = = =),
n=0 a

In general, for every m € Ny,

e =Y e = = ().

n=0 a

Now we can use the knowledge about the measures of cylinder sets that end in
the second vertex and similarly show that

[e.e]

AEOE) =Y G = L = L = u(EOE).
n=0 a

In general, we can prove by induction on ¢ that for every ¢ € N and m € Ny we
have

= i (m)y- (a_k)n 1 1
([ + 1)) = . Ki—lgntm+l — gmtlpi-1 1 _ a—k
1
— = u(fel™(;
o = ([ i+ 1)), O

Remark 5.4. For ¢ > 1 and k € N, the measure ﬁl does not attain finite values
on all cylinder sets. In particular, for every i > 1 we have

([0 + 1)) = .

Indeed, we obtain

o o0

RO+ 0) =Y (=Y =

n=0

More generally, the following theorem holds:
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Theorem 5.5. Let B be a stationary generalized Bratteli diagram with the
incidence matriz

aa 1 0 O
0 ao 1 O
F = 0 0 as 1 ,

0 0 0 aa

where a1 > ay for allk > 2. Then there is an invariant measure p on B generated
by the right eigenvector x of A = FT associated to the eigenvalue \ = a1, where

- < 1 1
x" =1, , s ey
a; —az’ (a1 —az)(a1r — as)

1
(al_a2)(al_a3)"'(a1_an)’ >

This measure can be also obtained as an extension of the probability measure
from the odometer that passes through the diagram’s first vertex. The measure p

is finite if and only if
o0 n
1
> 11 < 0.
a1 — ag

n=2 k=2

Proof. Tt is straightforward to check that x”F = a;x’. We show that the
measure p generated by a; and x can be obtained as an extension of the unique
invariant probability measure fi; from the first odometer.

We have )
p([E™ 1)) = 1y (" (1)]) = -
1
for all m € Ny. Then for every m € Ny,
R P = S RS T 1 _ L (fm)
e 2)|) = = = = e 2
(@) =3 i = o o Sy~ ()
and
~ > a®
m(E™ D) =
7;) a1+ i Hj:l(al — aj)
B 1 1
al" M ooy (e —ay) 1= 52
1
= u([e™ (i + 1))). O

15 (a1 — aj)ay

Remark 5.6. Notice that in the case when there is m € N such that a,, > ay
for all k > m then there is an eigenvector

- 1 1
< =(0,...,0, 1, ———— ...,
Gm — Am+1 (am_am+1)"'(am_am+n)
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corresponding to the eigenvalue A = a,,. These eigenvalue and eigenvector gen-
erate an invariant measure which is the extension of a probability measure from
the odometer that passes through the vertex m of the diagram.

The following example was considered in [4] and presents a stationary gener-
alized Bratteli diagram with infinitely many odometers such that there does not
exist any tail-invariant measure on Xp that assigns finite values to all cylinder
sets. Indeed, it is straightforward to check that the measure extension from every
odometer is infinite, moreover, for every ¢ € N, we have

f:([e” (i +1)]) = oo

Example 5.7. Let B = B(F') be a generalized stationary Bratteli diagram as
shown in Figure 5.1 and given by N x N incidence matrix

2100
0310

F=|00 41 (5.4)
0005

Then there does not exist any tail-invariant measure on Xp that assigns finite
values to all cylinder sets.

Fig. 5.1: A stationary generalized Bratteli diagram with no invariant measure
that takes finite values on all cylinder sets (illustration to Example 5.7).

5.2. Non-stationary generalized Bratteli diagrams with infinitely
many odometers. Now, we modify the diagram given in Example 5.7 and
consider a non-stationary generalized Bratteli diagram B defined by a sequence
of natural numbers {a; : i € No}. Without loss of generality, we can assume
that a,, > 2 for all n. The diagram B consists of an infinite sequence of non-
stationary odometers connected with the neighboring odometer by single edges.
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More precisely, let V,, = N and for any n € Ng, the incidence matrix F), has the
form

0o ...
0 a, 1 O 0 ... ... ...
F,=l0 0 a 1 0 0 ... ..[. (5.5)

Fix i > 1, set W,, = {i}, n = 1,2,... and define the subdiagram B; =
(W, E) as above with the only difference that the set E,, is formed now by a,
edges connecting the vertices ¢ € V,, and ¢ € V,41. The unique tail invariant
probability measure 7 = fi; on B; = (W, E) is given by the formula fi([e]) =

, where 7(€) =i € Vp41.
ag - ap’
By definition of the diagram, H™ = HZ-(") for all n and i (as usual, we set

H{” =1). Then H™ = A" = (a, + 1)H™ which implies that
H(nJrl) = (a0+1) ((In+]-), n € No.

Theorem 5.8. For every i, the extension ﬁz of ii; is finite if and only if

Zi<oo.

a
n>0 "

If the extensions ﬁl for i € N are finite, then the set of all ergodic finite tail

mvariant measures on the path space of the diagram B coincides with {ﬁl 11 €
N}.

Proof. Using Theorem 3.1, we compute ﬁl ( AR) as follows:

R S e

n>0wew,, n>1 0
ad 1 o= 1
_1+Z H< ) §1+H(1+)Z.
n>0 9n aj =0 4j/ = %n

Thus, the extensions 7i; are finite if and only if Y >0 i < 00. By Theorem 4.3,

if the extensions 7i; are finite then the measures {7; : i € N} form the set of all
probability ergodic invariant measures on B. O

6. Vershik maps on generalized Bratteli diagrams with in-
finitely many odometers

In this section, we consider different orders on reducible generalized Bratteli
diagrams with infinitely many odometers (see Section 4). We present different
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classes of orders on such diagrams and study whether the corresponding Vershik
map can be extended to a homeomorphism.
Recall that each vertex v of (DIO) is determined by the pair (n,i), where

n > 0 is the level such that v € V,, and ¢ = 1,2,... is the vertex number of v
inside V;,. We will write v = (n,4). For v = (n,i) € V \ Vg, we have r~!(v) =
{e1,e2,..., ea@),f}, where eq, es, ... ,€,() are edges between v and w = (n—1,1),

whereas f is the edge between v and w = (n — 1,7 + 1).

Let w = {wy, v € V '\ Wy} be an order of (DIO), i.e., for every v € V \ 1,
w, is a linear order on the set r~!(v). Let €, and €, be the minimal and the
maximal edges in r~!(v) respectively. We will say that the order w, is left if €, =
f, is right if e, = f and is middle if €, and €, are different from f. According
to Proposition 4.1, every maximal (minimal) infinite path @ = {€y,€'s,...} is
contained in a unique )A(EZ_, i > 1. We will say that the odometer B; is finite-
right (finite-left) if there exists a number n; such that the orders w, are not right
(not left) for n > n;, v = (n,1i).

Since each B; is an odometer, the set XE consists of all paths that eventually
pass vertically through vertex i. Since two different minimal paths cannot pass
through the same vertex, we obtain that the set XE can contain not more than

one infinite minimal path. If XE_ does contain an infinite minimal path then this
path is eventually vertical, hence the odometer B; should be finite-left. Similarly,
the set Xp, contains the unique maximal infinite path if and only if the odometer
B; is finite-right (we denote i € If,). We summarize the above remarks in the
following proposition:

Proposition 6.1. The set XE contains the unique mazimal (minimal) in-
finite path €; max (€imin) iff the odometer B; is finite-right (finite-left). For the
remaining odometers, )?Ei N Xmax = 9 <)?§i N Xmin = @).

Let ¢, (XB \ Xmax) — (X5 \ Xmin) be the Vershik map defined by the
order w. We now consider different orders w on B and examine when ¢,, can be
extended to a homeomorphism. Since B is not stationary, strictly speaking, we
cannot consider stationary orders on B. We call an order on B quasi-stationary
if for every vertex i we fix whether it is left-ordered, right-ordered, or middle,
and the type or order depends only on the vertex number but not on the level to
which vertex belongs.

Theorem 6.2. Let I, (If;) be the set of all i € N such that B is finite-right
(finite-left). Then
(i) ¢ extends to a Borel Vershik map on Xp if and only if [I,| = |1];
(i) if Iyy = Ip = @ then @, is a homeomorphism of Xp;
(iii) for any quasi-stationary order w on B, the map ¢, cannot extend to a
Vershik homeomorphism of the whole path-space Xp.

Proof. Part (i) is obvious since equality |If.| = |If| means that |Xjyax| =
| Ximin|- Since the sets Xpax and Xy, are always closed, the condition |Xpax| =
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| Xmin| is necessary and sufficient for ¢, to be extended to a Borel bijection of
the whole space Xp.

(ii) If Iy, = Iy = @, then ¢, is a homeomorphism of the whole path space
XB.

(ili) Note that the case Iy, = Iy = @ is not possible for a quasi-stationary
order. Indeed, if the vertex i € N is right-ordered then 7 € Iy; and there is a
vertical minimal path that passes through the vertex i on each level. Similarly,
if the vertex 4 is left-ordered then ¢ € Iy, and there is a vertical maximal path
passing through the vertex 4. If the order w; of the vertex 4 is middle then there
are both infinite maximal path and infinite minimal path passing through the
vertex i. Assume that the map ¢, can be extended to a Vershik homeomorphism
on Xp. Then we have |Iy.| = |If;|. Moreover, since the order is quasi-stationary,
we have |I4,| = |[I] = Ng. We will call a cylinder set maximal (minimal) if it
corresponds to a maximal (minimal) finite path.

First, assume that ¢ € Iy, and 7 > 1.

Suppose ¢ — 1 € Iy, N Ip. Then for every n, every maximal cylinder set of
length n which ends in ¢ contains a non-maximal cylinder subset [g;] of length
n + 1 which also ends in 7 and a non-maximal cylinder subset [g,] of length n +
1 which ends in ¢ — 1. The image ¢, ([g]) belongs to the minimal cylinder set
of length n which passes through vertex i — 1 on each level. The image ¢, ([g;])
belongs to the minimal cylinder set of length n which ends in ¢ or ¢+ 1 and never
passes through vertex ¢ — 1. Thus, we cannot extend ¢, continuously to the
maximal path which passes through vertex i.

If i —1 € I\ Iy, then the maximal edge which ends in ¢ — 1 is not vertical.
For every n, every maximal cylinder set of length n which passes through vertex
i contains a non-maximal cylinder subset [g;] of length n + 1 which also ends in
i and a non-maximal cylinder subset [g,] of length n + 2 which passes through
the maximal edge between vertices ¢ on level n and ¢ — 1 on level n+ 1, and then
through a non-maximal edge between vertex ¢ — 1 on level n + 1 and vertex 7 —
1 on level n + 2. Again, the image ¢, ([g;]) belongs to the minimal cylinder set
of length n which ends in i or i + 1, ¢, ([gs]) belongs to the minimal cylinder set
of length n which passes through vertex i — 1 on each level.

Thus, if ¢ € Iy, and ¢ — 1 € Iy then ¢, cannot be extended to a homeo-
morphism. It remains to notice that such a situation will always occur for any
quasi-stationary order. Indeed, we have [If,| = |If| = Yo, hence we have in-
finitely many vertical infinite minimal paths and infinitely many vertical infinite
maximal paths. Let 5 € N be a vertex through which passes an infinite minimal
path. Then there exists a vertex k > j through which passes an infinite maximal
path. Thus, we will necessarily find a natural number i € (j, k] such that i € Iy,
and i — 1€ Iy. ]
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IuBapiaHTHI Mipu AJi9 OPUBOJAUMUX y3araJibHEHUX
aiarpam BparTesni

Sergey Bezuglyi, Olena Karpel, and Jan Kwiatkowski

V¥ 2010 pori Besyrumii, Karkosebkuii, Menunenp a Cosomsk [Ergodic
Theory Dynam. Systems 30 (2010), No. 4, 973-1007| snafinum noBruit
OIIMC MHOXKMHU NMOBIPDHICHUX eproguvHuX Mip Ha MHOXKHUHI IHIJIFIXiB CTaH-
JapTHOI (KJIACHYHOT) CTAIlOHAPHOI IPpUBOAUMOI Jiarpamu Bparrei, inBapi-
AHTHUX BiJITHOCHO XBOCTOBOTO BIJTHOIIEHHS eKBiBajeHTHOCTI. Byso nmokasamno,
IO KOXKHE BiJI3HAYEHe BJIaCHE 3HAYEHHH JIJII MATPHUIN IHITUJIEHTHOCTI BU-
3Ha4Ya€ WMOBIPHICHY €projuvHy iHBapiaHTHY Mipy. ¥ MOTO4YHIi# cTarTi Mu
IIOKa3yeMO, IO Ieil pe3yIbTaT He BUKOHYETHCS JIJISI CTAI[IOHAPHUX IIPUBOJIU-
MUX y3araJibHeHUX jiarpaM Bparresi. Po3risiaoThes Kiiacu CTarioHapHUX
1 HecTaIliOHApHUX MPUBOJMMUX y3arajJbHEeHUX jgiarpaM bBparrteni 3 HeckiH-
YEeHHOI0 KUTBKICTIO MPOCTHX CTAHJIAPTHUX MijJjiarpaM, 30KpeMa, 3 HecKiH-
YEeHHOIO KLIBKICTIO OJOMETPIB gK mimmiarpam. Mu XapaKTepu3yeMoO MHOMKU-
HH BCiX AMOBIPHICHUX €pProJIMYHUX 1HBAPIAHTHUX Mip JJIs TAaKUX JliarpaM Ta
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BUBYAEMO YACTKOBI MOPSIIKHU, JJIsi SKUX JarpaMu MOXKYTb IiATPUMYBATH
romeomopdizm Beprmuka.

KirouoBi cioBa: BopeniBebki aunamiuni cucremu, mozeni bparremi—
Bepmuka, inBapianTHi Mip#, XBOCTOBE BiJIHOIIEHHSI €KBIBAJICHTHOCTI
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