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In 2010, Bezuglyi, Kwiatkowski, Medynets, and Solomyak [10] found a
complete description of the set of probability ergodic tail invariant measures
on the path space of a standard (classical) stationary reducible Bratteli
diagram. It was shown that every distinguished eigenvalue for the incidence
matrix determines a probability ergodic invariant measure. In this paper,
we show that this result does not hold for stationary reducible generalized
Bratteli diagrams. We consider classes of stationary and non-stationary
reducible generalized Bratteli diagrams with infinitely many simple standard
subdiagrams, in particular, with infinitely many odometers as subdiagrams.
We characterize the sets of all probability ergodic invariant measures for such
diagrams and study partial orders under which the diagrams can support a
Vershik homeomorphism.
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1. Introduction

Bratteli diagrams provide an important tool for the study of dynamical sys-
tems in measurable, Cantor, and Borel dynamics. A generalized Bratteli diagram
is a natural extension of the notion of a classical (standard) Bratteli diagram,
where each level has a countably infinite set of vertices. While standard Brat-
teli diagrams are particularly useful in Cantor dynamics to describe the simplex
of probability tail invariant measures and study other properties of dynamical
systems (see, e.g. surveys [6, 7, 13, 17]), generalized Bratteli diagrams are used
to model non-compact Borel dynamical systems [2]. Recent papers developed
the study of dynamical systems on generalized Bratteli diagrams [3–5]. It was
shown that generalized Bratteli diagrams have many interesting phenomena in
comparison with the standard case. For example, one can find stationary gener-
alized Bratteli diagrams with either a unique probability invariant measure, or
uncountable many probability invariant measures, or without such measures at
all.
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This paper continues the study of generalized Bratteli diagrams and focuses
mostly on a class of stationary reducible generalized Bratteli diagrams. We con-
sider tail invariant measures and the existence of a Vershik map on such diagrams.
The case of irreducible generalized Bratteli diagrams was considered in [3, 4].

The importance of the case of stationary Bratteli diagrams is based on the
following facts. Stationary standard Bratteli diagrams provide models of sub-
stitution dynamical systems (minimal and non-minimal ones), see [9, 12]. The
case of stationary generalized Bratteli diagrams is more challenging to study.
Right now, it is known that a class of substitution dynamical systems on an in-
finite alphabet (considered first by [14]) can be realized as a generalized Bratteli
diagram [5].

Having such a duality between the diagrams and substitution dynamical sys-
tems, one can answer the principal question about an explicit description of the
set of ergodic probability measures. In [10], the authors found a transparent al-
gorithm for the construction of ergodic probability measures. For this, one needs
to find all distinguished Perron eigenvalues of the incidence matrix. Then using
the corresponding eigenvector, the values of the invariant measure on the cylinder
sets are determined by a simple formula (see Theorem 2.11 for details).

It seems rather surprising, but the mentioned theorem does not hold for sta-
tionary generalized Bratteli diagrams even in the case when all simple subdi-
agrams are standard odometers. Instead, we state a new result that provides
a required characterization of probability tail invariant measures. For this, we
use the method developed in [1, 8], where ergodic invariant measures on stan-
dard Bratteli diagrams were obtained by using a procedure of an extension from
a subdiagram. In this paper, we show that the same method can be used for
generalized Bratteli diagrams. Moreover, for the class of the so-called reducible
Bratteli diagrams with infinitely many odometers, this method gives all proba-
bility ergodic invariant measures on the diagram.

The outline of the paper is as follows. Section 2 provides main facts con-
cerning standard and generalized Bratteli diagrams, the procedure of measure
extension, and the description of all probability ergodic invariant measures for
reducible stationary standard Bratteli diagrams. In Section 3, we briefly discuss
the procedure of measure extension from a vertex subdiagram for generalized
Bratteli diagrams. In Section 4, we introduce the notion of reducible general-
ized Bratteli diagrams with infinitely many odometers and focus on the study
of tail invariant measures and their extensions. We give a complete classifica-
tion of probability ergodic invariant measures on such diagrams. In Section 5,
we present various classes of stationary and non-stationary reducible generalized
Bratteli diagrams with infinitely many odometers and characterize their sets of
probability ergodic invariant measures. Section 6 is devoted to different orders
on reducible generalized Bratteli diagrams with infinitely many odometers. For
different classes of orders on such diagrams, we study whether the correspond-
ing Vershik map can be extended to a homeomorphism. Our main results are
presented in Theorems 3.1, 4.3, 5.5, 5.8, 6.2.
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2. Preliminaries

In this section, we recall the main definitions and facts concerning invariant
measures on standard and generalized stationary Bratteli diagrams. For more
details see [3, 4, 6, 10].

Throughout the paper, we will use the standard notation N,Z,R, N0 = N ∪
{0} for the sets of numbers, and | · | for the cardinality of a set.

2.1. Basic definitions on Bratteli diagrams

Definition 2.1. A (standard) Bratteli diagram is an infinite graph B =
(V,E) such that the vertex set V =

⊔
i≥0 Vi and the edge set E =

⊔
i≥0Ei are

partitioned into disjoint subsets Vi and Ei, where

(i) V0 = {v0} is a single point;

(ii) Vi and Ei are finite sets for all i;

(iii) there exists a range map r : E → V and a source map s : E → V such that
r(Ei) = Vi+1 and s(Ei) = Vi for all i ≥ 1.

Definition 2.2. A generalized Bratteli diagram is a graded graph B = (V,E)
such that the vertex set V and the edge set E can be partitioned V =

⊔∞
i=0 Vi

and E =
⊔∞
i=0Ei so that the following properties hold:

(i) For every i ∈ N0, the number of vertices at each level Vi is countably infinite,
and the set Ei of all edges between Vi and Vi+1 is countable.

(ii) For every edge e ∈ E, we define the range and source maps r and s such
that r(Ei) = Vi+1 and s(Ei) = Vi for i ∈ N0.

(iii) For every vertex v ∈ V \ V0, we have |r−1(v)| <∞.

Let B = (V,E) be a standard or generalized Bratteli diagram. We will call
the set Vi the ith level of the diagram B. For generalized Bratteli diagrams,
we will identify each Vi with N. Consider a finite or infinite sequence of edges
(ei : ei ∈ Ei) such that s(ei) = r(ei−1) which is called a finite or infinite path,
respectively. We denote the set of infinite paths starting at V0 by XB and call it
the path space. For a finite path e = (e0, ..., en), we denote s(e) = s(e0), r(e) =
r(en). The set

[e] := {x = (xi) ∈ XB : x0 = e0, . . . , xn = en},

is called the cylinder set associated with e. The topology on the path space XB

is generated by cylinder sets. The path space XB is a zero-dimensional Polish
space.

For vertices v ∈ Vm and w ∈ Vn, we will denote by E(v, w) the set of all finite

paths between v and w. Set f
(i)
v,w = |E(v, w)| for every w ∈ Vi and v ∈ Vi+1.

In such a way, we associate with the Bratteli diagram B = (V,E) a sequence of
non-negative matrices (Fi), i ∈ N0 (called the incidence matrices) given by

Fi =
(
f (i)v,w : v ∈ Vi+1, w ∈ Vi

)
, f (i)v,w ∈ N0. (2.1)
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In the case of a generalized Bratteli diagram, incidence matrices are countably
infinite.

For w ∈ Vn and n ∈ N0, denote

X(n)
w = {x = (xi) ∈ XB : s(xn) = w}.

The collection
(
X

(n)
w

)
w

of all such sets forms a partition ζn of XB into Kakutani–
Rokhlin towers corresponding to the vertices from Vn. For w ∈ Vn and v0 ∈ V0,
we set

h(n)v0,w = |E(v0, w)|

and define

H(n)
w =

∑
v0∈V0

h(n)v0,w, n ∈ N.

Set H
(0)
w = 1 for all w ∈ V0. This gives us the vector H(n) = (H

(n)
w : w ∈ Vn)

associated with every level n ∈ N0. Since H
(n)
w = |E(V0, w)|, we call H

(n)
w the

height of the tower X
(n)
w corresponding to the vertex w ∈ Vn.

Definition 2.3. Given a standard or generalized Bratteli diagram B = (V,E)
and a monotone increasing sequence (nk : k ∈ N0) with n0 = 0, we define a new
Bratteli diagram B′ = (V ′, E′) as follows: the vertex sets are determined by V ′k =
Vnk

, and the edge sets E′k = Enk
◦· · ·◦Enk+1−1 are formed by finite paths between

the levels V ′k and V ′k+1. The diagram B′ = (V ′, E′) is called a telescoping of the
original diagram B = (V,E).

Remark 2.4. Notice that each telescoping of a generalized Bratteli diagram
is again a generalized Bratteli diagram.

Definition 2.5.

(1) Let B = B(Fn), where (Fn)n are the incidence matrices of B, be a standard
or generalized Bratteli diagram. If Fn = F for every n ∈ N (for standard
diagrams) or every n ∈ N0 (for generalized diagrams), then the diagram
B is called stationary. We will write B = B(F ) in this case. Unless stated
otherwise, we will assume that every standard Bratteli diagram has a “simple
hat”, which means that there is a single edge from the vertex v0 to every
vertex v ∈ V1.

(2) A standard Bratteli diagram is called simple if there exists a telescoping B′

of B such that all entries of the incidence matrices of B′ are positive. Since
every vertex of a generalized Bratteli diagram can have only finitely many
incoming edges, the notion of a simple Bratteli diagram cannot be applied
to generalized diagrams.

(3) A generalized Bratteli diagram B = (V,E) is called irreducible if for any
vertices i, j ∈ V0 and any level Vn there exist m > n and a finite path
connecting i ∈ Vn and j ∈ Vm. In other words, the (j, i)-entry of the matrix
Fm−1 · · ·Fn is non-zero. Otherwise, the diagram is called reducible.
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We will consider tail-invariant measures on the path space XB of a standard or
generalized Bratteli diagram B. By term measure we always mean a non-atomic
positive Borel measure.

Definition 2.6. Let B be a standard or generalized Bratteli diagram. Two
paths x = (xi) and y = (yi) in XB are called tail equivalent if there exists n ∈ N0

such that xi = yi for all i ≥ n. This notion defines a countable Borel equivalence
relation R on the path space XB (every equivalence class is countable and R
is a Borel subset of XB × XB) which is called the tail equivalence relation. A
measure µ on XB is called tail-invariant if, for any cylinder sets [e] and [e′] such
that r(e) = r(e′), we have µ([e]) = µ([e′]).

Theorem 2.7. Let B = (V,E) be a Bratteli diagram (generalized or stan-
dard) with the sequence of incidence matrices (Fn). Then:

1. Let µ be a tail-invariant measure on B which takes finite values on cylinder

sets. For every n ∈ N0, define the vector p
(n)

=
〈
p
(n)
w : w ∈ Vn

〉
, where

p(n)w = µ([e(w)]), w ∈ Vn. (2.2)

where [e(w)] is a cylinder set which ends in the vertex w. Then the vectors
p(n) satisfy the relation

F Tn p
(n+1) = p(n), n ≥ 0. (2.3)

2. Conversely, suppose that
{
p
(n)

=
(
p
(n)
w

)}
n∈N0

is a sequence of non-negative

vectors such that F Tn p
(n+1) = p(n) for all n ∈ N0. Then there exists a uniquely

determined tail invariant measure µ such that µ([e(w)]) = p
(n)
w for w ∈ Vn and

n ∈ N0.

The proof of Theorem 2.7 is straightforward and can be found in [10] (for
classical Bratteli diagrams) and [3] (for generalized Bratteli diagrams).

To define a dynamical system on the path space of a generalized Bratteli
diagram, we need to take a linear order > on each (finite) set r−1(v), v ∈ V \V0.
This order defines a partial order > on the sets of edges Ei, i = 0, 1, . . ., where
edges e, e′ are comparable if and only if r(e) = r(e′).

Definition 2.8. A generalized Bratteli diagram B = (V,E) together with
a partial order > on E is called an ordered generalized Bratteli diagram B =
(V,E,>).

We call a (finite or infinite) path e = (ei) maximal (respectively minimal) if
every ei is maximal (respectively minimal) among all elements from r−1(r(ei)).
Denote by Xmax (Xmin) the sets of all infinite maximal (minimal) paths in XB.

Definition 2.9. For an ordered generalized Bratteli diagram B = (V,E,>),
we define a Borel transformation ϕB : XB \Xmax → XB \Xmin as follows. Given
x = (x0, x1, . . .) ∈ XB \ Xmax, let m be the smallest number such that xm is
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not maximal. Let gm be the successor of xm in the finite set r−1(r(xm)). Then
we set ϕB(x) = (g0, g1, . . . , gm−1, gm, xm+1, . . .) where (g0, g1, . . . , gm−1) is the
minimal path in E(V0, s(gm)). The map ϕB is a Borel bijection. Moreover, ϕB is
a homeomorphism from XB \Xmax onto XB \Xmin. If ϕB admits a bijective Borel
extension to the entire path space XB, then we call the Borel transformation ϕB :
XB → XB a Vershik map, and the Borel dynamical system (XB, ϕB) is called a
generalized Bratteli–Vershik system.

Remark 2.10. If the cardinalities of Xmax and Xmin are the same then there
always exists a Borel extension of ϕB to the whole path space XB.

In general, every measure µ that is invariant with respect to a Vershik map is
also tail-invariant. If the sets of Xmin and Xmax have zero measure, then we can
identify tail-invariant measures with measures invariant with respect to a Vershik
map.

2.2. Subdiagrams and measure extension In this subsection, we give
the basic definitions and results on subdiagrams of standard and generalized
Bratteli diagrams. We also describe the notion of measure extension. We use the
approach developed first in [1, 8].

Let B = (V,E) be a standard or generalized Bratteli diagram. Consider
nonempty subsets V ⊂ V and E ⊂ E that can be written as V =

⋃
n V n and

E =
⋃
nEn, where V n ⊂ Vn and En ⊂ En. Then we say that the pair B =

(V ,E) defines a subdiagram of B if V = s(E) and s(E) = r(E) ∪ V 0.

To define a vertex subdiagram of B, we begin with a sequence W = {Wn}n>0

of proper nonempty subsets Wn of Vn, and set W ′n = Vn \Wn 6= ∅ for all n. The
vertex subdiagram B = (W,E) is formed by the vertices from Wn and by the set
of edges En whose source and range are in Wn and Wn+1, respectively. Thus,
the incidence matrix Fn of B has the size |Wn+1| × |Wn|, and it is represented
by a block of Fn corresponding to the vertices from Wn and Wn+1.

The path space XB of a vertex subdiagram B is a closed subset of XB. On
the other hand, there are closed subsets of XB which are not obtained as the path
space of a Bratteli subdiagram. It was proved in [15] that a closed subset Z ⊂
XB is the path space of a subdiagram if and only if R|Z×Z is an etalé equivalence
relation (see [15] for details).

Below we explain the procedure of measure extension from a subdiagram.
This procedure was considered earlier in [1, 8] for standard Bratteli diagrams,
but it works also for generalized diagrams. The diagram B below can be either
a standard or generalized Bratteli diagram. Let X̂B := R

(
XB

)
be the subset of

all paths in XB that are tail equivalent to paths from XB. In other words, X̂B

is the smallest R-invariant subset of XB containing XB. Let µ be an ergodic
tail invariant probability measure on XB. Then µ can be canonically extended

to the ergodic measure µ̂ on the space X̂B by tail invariance, see [1, 11]. More
specifically, let the measure µ be defined by a sequence of positive vectors

{
p(n) :

n ∈ N0

}
satisfying Theorem 2.7, that is F

T
n (p(n+1)) = p(n), n ∈ N0, where Fn is
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the incidence matrix for the subdiagram B. Then, for every cylinder set [e] ⊂
XB with r(e) = v ∈ V n, we set µ̂([e]) = p

(n)
v . Then µ̂ is defined on all clopen sets

and it can be finally extended to a Borel measure on of XB.

Let B be a vertex subdiagram of a generalized Bratteli diagram B defined by

a sequence of subsets (Wi). Denote by X̂
(n)

B
the set of all paths x = (xi)

∞
i=0 from

XB such that the finite path (x0, . . . , xn) ends at a vertex v of B, and the tail
(xn+1, xn+2, . . .) belongs to B, i.e.,

X̂
(n)

B
=
{
x = (xi) ∈ X̂B : ∀i ≥ n r(xi) ∈Wi

}
. (2.4)

It is obvious that X̂
(n)

B
⊂ X̂(n+1)

B
, X̂B =

⋃
n X̂

(n)

B
, and

µ̂
(
X̂B

)
= lim

n→∞
µ̂
(
X̂

(n)

B

)
= lim

n→∞

∑
w∈Wn

H(n)
w p(n)w . (2.5)

This limit can be finite or infinite. If it is finite, then we say that µ admits a

finite measure extension µ̂
(
X̂B

)
< ∞. To obtain an ergodic invariant measure

on the whole path space XB, we set µ̂
(
XB \ X̂B

)
= 0.

2.3. Invariant measures on stationary standard Bratteli diagrams
In this subsection, we recall the explicit description of all probability ergodic
invariant measures on stationary standard Bratteli diagrams, the exposition is
based on [10].

Let B be a stationary standard Bratteli diagram with N vertices on each level
n ≥ 1. We identify every set of vertices Vn for n ≥ 1 with the set {1, . . . , N}.
Denote by F the corresponding incidence matrix and let A = F T .

One can associate to A a directed graph G(A) with the vertices {1, . . . , N}
such that there is an arrow from i to j if and only if aij > 0. We will say that
vertices i and j are equivalent if either i = j or there are paths in G(A) from i to j
and from j to i. Denote by Ei, i = 1, . . . ,m the corresponding equivalence classes.
Then each class Ei defines a submatrix Ai of A obtained by restricting A to the
set of vertices from Ei. Identify the family of sets {Ei}mi=1 with the set {1, . . . ,m},
and define the partial order on {1, . . . ,m} as follows: for α, β ∈ {1, . . . ,m}, we
have β � α if either α = β or there is a path in G(A) from a vertex in Eβ to a
vertex in Eα. In this case, we say that class β has access to class α. If β � α
and β 6= α, we write β � α. The partial order � defines the reduced directed
graph R(A) of G(A) as follows: the set of vertices of R(A) is {1, . . . ,m}, there is
an edge from a vertex β to a vertex α if and only if β � α. One can enumerate
the vertices of B and classes in {1, . . . ,m} in such a way that A assumes a block
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triangular form and β � α if α > β (with the usual ordering on integers):

A =



A1 0 . . . 0 Y1,s+1 . . . Y1,m
0 A2 . . . 0 Y2,s+1 . . . Y2,m
...

...
. . .

...
...

. . .
...

0 0 . . . As Ys,s+1 . . . Ys,m
0 0 . . . 0 As+1 . . . Ys+1,m
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . Am


,

where s ≥ 1, the square matrices {Ai}si=1 on the main diagonal are non-zero
irreducible matrices, each square matrix {Ai}mi=s+1 is either irreducible or a 1×
1 zero matrix. For any j = s + 1, . . . ,m, at least one of the matrices {Yk,j}j−1k=1

is non-zero. Moreover, the matrix Yk,j is non-zero if and only if there is an edge
in R(A) from k to j. Further, we telescope B so that each non-zero matrix Ai
on the main diagonal is strictly positive. For more details see for instance §4.4
in [16], where R(F ) is called the graph of communicating classes.

Let ρα be a spectral radius (a Perron eigenvalue) of Aα. A vertex (class)
α ∈ {1, . . . ,m} is called distinguished if ρα > ρβ whenever β � α. In par-
ticular, vertices {1, . . . , s} are distinguished vertices in R(A) and Aα 6= 0 for a
distinguished class α. Let Bα be a simple stationary subdiagram of B gener-
ated by vertices that belong to Eα. We call a real number λ a distinguished
eigenvalue for A if there exists a non-negative eigenvector x with Ax = λx. A
real number λ is a distinguished eigenvalue if and only if there is a distinguished
class α in R(A) such that ρα = λ. The corresponding non-negative eigenvector
(ξα(1), . . . , ξα(N))T is unique (up to scaling) and ξα(i) > 0 if and only if i has ac-
cess to α (see [18–20]). The vector (ξα(1), . . . , ξα(N))T it is called a distinguished
eigenvector corresponding to a distinguished eigenvalue λα.

We sum up the results from [10] in the following theorem:

Theorem 2.11 ([10]). Let B be a stationary standard Bratteli diagram and
let A be an N ×N matrix which is the transpose of the incidence matrix. Then
every probability ergodic invariant measure on XB corresponds to a distinguished
class of vertices in R(A), a distinguished right eigenvector for A, and a corre-
sponding distinguished eigenvalue for A. Conversely, every distinguished class
of vertices in R(A), distinguished right eigenvector and a corresponding distin-
guished eigenvalue for A generate a probability ergodic invariant measure on B in
the following way: if µα is a probability ergodic invariant measure corresponding
to a distinguished class of vertices α in R(A) then µα is (up to constant multiple)
the extension of a unique invariant measure µα from Bα. If (ξα(1), . . . , ξα(N))T

and λα are the corresponding distinguished eigenvector and eigenvalue then

µα([e(v0, w)]) =
ξα(w)

λn−1α
,

where [e(v0, w)] is a cylinder set corresponding to a finite path e(v0, w) which ends
in a vertex w on level n ≥ 1.
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2.4. Invariant measures on stationary irreducible generalized Brat-
teli diagrams In [3,4], the authors used the Perron–Frobenius theory for infinite
matrices to describe tail invariant measures on the path space of a class of ir-
reducible stationary generalized Bratteli diagrams. In particular, it was shown
that

Theorem 2.12 ([4]). Let B(F ) = B(V,E,>) be an ordered stationary gen-
eralized Bratteli diagram such that the matrix A = F T is infinite, irreducible,
aperiodic, and positive recurrent. Let ξ = (ξv) be a Perron-Frobenius right eigen-
vector for A such that

∑
u∈V0 ξu = 1. Then the measure µ given by the formula

µ([e(w, v)]) =
ξv
λn
,

where [e(w, v)] is the cylinder set which corresponds to a finite path e(w, v) that
begins at w ∈ V0 and ends at v ∈ Vn, n ∈ N, is the unique probability ϕB-invariant
measure that takes positive values on cylinder sets.

3. Measure extension for generalized Bratteli diagrams

In this section, we consider the procedure of a measure extension from a vertex
subdiagram for generalized Bratteli diagrams. The proof is essentially the same
as in [1].

Theorem 3.1. Let B be a generalized Bratteli diagram B = (V,E) with
incidence matrices (Fn). Let B be a (standard or generalized) vertex subdiagram
of B determined by a sequence (Wn) of proper subsets Wn ⊂ Vn for each n ∈ N.
Let µ be a probability measure on the path space XB of B. Then

µ̂
(
X̂B

)
= 1 +

∞∑
n=0

∑
v∈Wn+1

∑
w∈W ′n

f (n)vw H
(n)
w p(n+1)

v , (3.1)

where W
′
n = Vn \Wn, n = 0, 1, 2, . . ..

In particular, the following statements are equivalent:

(i) µ̂
(
X̂B

)
<∞,

(ii)

∞∑
n=0

∑
v∈Wn+1

∑
w∈W ′n

f (n)vw H
(n)
w p(n+1)

v <∞.

Proof. To prove the theorem, fix n and begin with equality (2.5). We have

µ̂
(
X̂

(n+1)

B

)
=

∑
v∈Wn+1

p(n+1)
v H(n+1)

v =
∑

v∈Wn+1

p(n+1)
v

∑
w∈Vn

f (n)vw H
(n)
w

=
∑

v∈Wn+1

p(n+1)
v

∑
w∈Wn

f (n)vw H
(n)
w +

∑
v∈Wn+1

p(n+1)
v

∑
w∈W ′n

f (n)vw H
(n)
w

=
∑
w∈Wn

H(n)
w

∑
v∈Wn+1

f
(n)
vw p

(n+1)
v +

∑
v∈Wn+1

∑
w∈W ′n

f (n)vw p
(n+1)
v H(n)

w
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=
∑
w∈Wn

H(n)
w p(n)w +

∑
v∈Wn+1

∑
w∈W ′n

f (n)vw p
(n+1)
v H(n)

w

= µ̂
(
X̂

(n)

B

)
+

∑
v∈Wn+1

∑
w∈W ′n

f (n)vw p
(n+1)
v H(n)

w .

Since

µ̂
(
X̂B

)
= 1 +

∑
n≥0

(
µ̂
(
X̂

(n+1)

B

)
− µ̂

(
X̂

(n)

B

))
,

we get the result.

Remark 3.2. Note that we can also compute the measure µ̂ of any cylinder
set [e] by carefully examining which cylinder subsets that end in the vertices of
B are contained in [e]. The sum of measures of these subsets will give us the
measure of [e]. In Section 5, we present such computations for concrete examples
of Bratteli diagrams.

4. Reducible Bratteli diagrams with infinitely many odometers

Consider the following class of non-stationary reducible generalized Bratteli
diagrams. In this section, we will focus on the study of their tail invariant mea-
sures. Every diagram in this class contains infinitely many odometers as subdia-
grams, which are connected by single edges.

Let the Bratteli diagram B = BIO be defined by the sequence of incidence
matrices

Fn =


a
(1)
n 1 0 0 . . . . . . . . . . . .

0 a
(2)
n 1 0 0 . . . . . . . . .

0 0 a
(3)
n 1 0 0 . . . . . .

0 0 0 a
(4)
n 1 0 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . .

 , n ∈ N0, (4.1)

where the natural numbers a
(i)
n ≥ 2 for all n ∈ N0 and i ∈ N. The index n points

out at the n-th level of the diagram B, and i corresponds to the number of a
vertex inside Vn.

The diagram BIO has a natural set of elementary vertex subdiagrams Bi

consisting of vertical odometers where i runs over the set N. There are exactly

a
(i)
n edges connecting the vertices i ∈ Vn and i ∈ Vn+1. We call B the “diagram

of infinite odometers (DIO)”.

Analyzing the paths space of (DIO) it is not hard to prove the following
proposition:

Proposition 4.1. The sets X̂Bi
, i = 1, 2, . . ., are pairwise disjoint and XB =⊔∞

i=1 X̂Bi
, where XB is the set of all infinite paths of (DIO).
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The subdiagram Bi of B admits a unique tail invariant probability measure
µi on the path space XBi

such that for a cylinder set [e] = [e0, . . . , en], s(ej) =
r(ej) = i, we have

µi([e]) =
1

a
(i)
0 · · · a(i)n

.

The measure extension procedure applied to Bi gives us the measure µ̂i on the
tail invariant set X̂Bi

. It follows from Theorem 3.1 that

µ̂i

(
X̂Bi

)
<∞ ⇐⇒

∞∑
n=0

H
(n)
i+1

a
(i)
0 · · · a(i)n

<∞.

Thus, it follows from the construction of BIO that there are infinitely many
ergodic measures µ̂i on the path space XB. Some of them may be finite, while
others are infinite. We will give exact examples below. Moreover, the measures
µ̂i and µ̂j are mutually singular (i 6= j) because they are supported by non-

intersecting tail invariant sets X̂Bi
and X̂Bj

(see also Proposition 4.1).
Our goal is to show that there are no other ergodic measures.

Remark 4.2. Let θ be a finite tail invariant measure on X̂Bi
. Then there is a

constant C > 0 such that θ = Cµ̂i.
Indeed, let C = θ

(
XBi

)
, then θ := θ|XBi

= Cµi by uniqueness of µi on XBi
.

By tail invariance, for every n ∈ N0 and every cylinder set [e0, . . . , en] such that
r(en) = i ∈ Vn+1 we have

θ([e0, . . . , en]) =
C

a
(i)
0 · · · a(i)n

= Cµ̂i([e0, . . . , en]).

Theorem 4.3. Let M be the family of measures obtained by normalization

of measures µ̂i such that µ̂i

(
X̂Bi

)
< ∞. Then M coincides with the set of all

ergodic probability tail invariant measures on the path space XB of the diagram
B.

Proof. We first note that XB can be partitioned into the union of tail invari-
ant sets X̂Bi

. Every X̂Bi
is an Fσ-set, hence it is Borel. Let θ be a finite tail

invariant measure on XB. The support of θ is the union of some sets X̂Bi
. Then

θ
(
X̂Bi

)
< ∞ for all such i’s. Let θi be the measure θ restricted to the set X̂Bi

.

By Remark 4.2, every θi is proportional to µ̂i, i.e., θi = Ciµ̂i. We observe that∑
iCi = θ(XB). This means that θ is a linear combination of ergodic measures

µ̂i.

Remark 4.4. The same approach works in the case when the vertical odome-
ters are replaced with simple stationary standard Bratteli diagrams Bi. As for
odometers, we will have a unique ergodic probability measure µi on the path
space XBi

defined in Theorem 2.11. Assuming that the extension µ̂i(X̂Bi
) is

finite, we get that this measure is unique (up to a constant). The same reasoning
as in the proof of Theorem 4.3 can be repeated.
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5. Some classes of generalized Bratteli diagrams with infinitely
many odometers

In this section, we present some classes of stationary and non-stationary re-
ducible generalized Bratteli diagrams with infinitely many odometers and find
their sets of probability ergodic invariant measures. We give examples of dia-
grams that: (i) have a unique probability ergodic invariant measure, (ii) have
countably many probability ergodic invariant measures, (iii) have no probability
invariant measure, but possess an infinite σ-finite invariant measure that takes
finite values on all cylinder sets, and (iv) have no invariant measure that takes
finite values on all cylinder sets.

5.1. Stationary generalized Bratteli diagrams with infinitely many
odometers. In this subsection, we describe all probability ergodic invariant
measures for a class of stationary generalized Bratteli diagrams. We apply two
methods: the construction of measure extension and the procedure of obtaining
a measure from a positive eigenvector and eigenvalue. We show that these two
approaches lead to the same ergodic invariant measures. These procedures also
allow us to obtain infinite σ-finite ergodic invariant measures.

Theorems 5.1, 5.3, and 5.5 show that for stationary reducible generalized
Bratteli diagrams, unlike the case of standard diagrams, if a class of vertices is
distinguished it doesn’t necessarily mean that the corresponding ergodic invariant
measure is finite. We will use the notation introduced in Section 4.

Theorem 5.1. Let B be a stationary generalized Bratteli diagram with inci-
dence matrix

F =


a 1 0 0 0 . . .
0 a− k 1 0 0 . . .
0 0 a− k 1 0 . . .
0 0 0 a− k 1 . . .
...

...
...

...
...

. . .

 ,

where a, k ∈ N and a−k > 1. Then there is a unique probability ergodic invariant
measure µ on B if and only if k > 1. If k = 1 then there are no probability
invariant measures on B.

To prove the theorem we will need the following lemma:

Lemma 5.2. For every n ∈ N0, we have

H
(n)
i = (a− (k − 1))n for i > 1. (5.1)

Proof. First notice that H
(n)
i = H

(n)
2 for all n ∈ N0 and i > 1. We prove the

formula (5.1) by induction. For all i > 1 we have

H
(0)
i = 1 and H

(1)
i = (a− k) + 1.

Assume that H
(n)
i = (a− (k − 1))n for all i > 1. Then

H
(n+1)
i = (a− k)H

(n)
i +H

(n)
i+1 = (a− k+ 1)(a− (k− 1))n = (a− (k− 1))n+1.
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Proof of Theorem 5.1. By Theorem 3.1 and Lemma 5.2, we have

µ̂1(X̂B1
) = 1 +

∞∑
n=0

H
(n)
2

an+1
= 1 +

∞∑
n=0

(a− (k − 1))n

an+1
= 1 +

1

a

∞∑
n=0

(
1− k − 1

a

)n
.

Let q = 1− k−1
a ≤ 1. Assume that k > 1, so q < 1. Then

µ̂1(X̂B1
) = 1 +

1

a

∞∑
n=0

qn = 1 +
1

a(1− q)
= 1 +

a

a(k − 1)
= 1 +

1

k − 1
.

If k = 1, then µ̂1

(
X̂B1

)
=∞.

For any k ≥ 1 and i > 1 we also have

µ̂i(X̂Bi
) = 1 +

∞∑
n=0

H
(n)
i+1

(a− k)n+1
= 1 +

∞∑
n=0

(a− k + 1)n

(a− k)n+1
=∞.

Thus, by Theorem 4.3, for k = 1, there are no probability invariant measures on
B, and for each k > 1, there is a unique probability ergodic invariant measure
µ on B which is an extension of the unique invariant measure from the first
odometer.

Theorem 5.3. For k > 1, the unique (up to constant multiple) ergodic in-
variant measure µ on B from Theorem 5.1 can be obtained by using the eigenvalue
λ = a, the corresponding eigenvector

ξ = (ξi) =

(
1,

1

k
,

1

k2
, . . . ,

1

ki−1
, . . .

)T
(5.2)

and the formula

µ([e(w, v)]) =
ξv
λn
, (5.3)

where e(w, v) is a finite path that begins at w ∈ V0 and ends at v ∈ Vn (recall that
we identify the vertices v ∈ Vn with natural numbers i ∈ N).

For k = 1, there is an ergodic infinite σ-finite invariant measure µ which
takes finite positive values on all cylinder sets. This measure can be obtained
as the extension of the unique invariant measure from the first odometer as in
Theorem 5.1 or using the eigenvalue λ = a, the corresponding eigenvector

ξ = (ξi) = (1, 1, 1, . . .)T ,

and formula (5.3).

Proof. First we prove that, for k ≥ 1, the vector ξ = (ξi) given by the
formula (5.2) is a right eigenvector for A = F T associated with the eigenvalue
λ = a. Indeed, for any eigenvector η = (ηi) and eigenvalue λ, we have aη1 = λη1.
If we take η1 = 1, then λ = a. From the equality η1 + (a− k)η2 = λη2 we obtain
1 + (a− k)η2 = aη2 and η2 = 1

k . It is easy to prove by induction that, for every
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i ∈ N, we have ηi = 1
ki−1 = ξi. Note that for k = 1 we obtain eigenvector ξ =

(1, 1, 1, . . .)T . By Theorem 2.7, the measure µ defined on each cylinder set by
formula (5.3) determines a tail-invariant measure on B which takes finite values
on cylinder sets. We show that this measure coincides with µ̂1 on all cylinder
sets. First we prove that µ([e(m)(2)]) = µ̂([e(m)(2)]) for all m ∈ N, where [e(m)(2)]
is any cylinder set of length m which ends in vertex 2.

We have µ([e(m)(1)]) = µ̂1([e
(m)(1)]) = 1

am for all m ∈ N0. Then we can check
that

µ̂1([e
(0)(2)]) =

∞∑
n=0

(a− k)n

an+1
=

1

a

1

1− a−k
a

=
1

k
= µ([e(0)(2)]).

Similarly, since the diagram is stationary, we obtain

µ̂1([e
(1)(2)]) =

∞∑
n=0

(a− k)n

an+2
=

1

a2
1

1− a−k
a

=
1

ak
= µ([e(1)(2)]).

In general, for every m ∈ N0,

µ̂1([e
(m)(2)]) =

∞∑
n=0

(a− k)n

an+m+1
=

1

am+1

1

1− a−k
a

=
1

amk
= µ([e(m)(2)]).

Now we can use the knowledge about the measures of cylinder sets that end in
the second vertex and similarly show that

µ̂1([e
(0)(3)]) =

∞∑
n=0

(a− k)n

kan+1
=

1

ak

1

1− a−k
a

=
1

k2
= µ([e(0)(3)]).

In general, we can prove by induction on i that for every i ∈ N and m ∈ N0 we
have

µ̂1([e
(m)(i+ 1)]) =

∞∑
n=0

(a− k)n

ki−1an+m+1
=

1

am+1ki−1
1

1− a−k
a

=
1

kiam
= µ([e(m)(i+ 1)]).

Remark 5.4. For i > 1 and k ∈ N, the measure µ̂i does not attain finite values
on all cylinder sets. In particular, for every i > 1 we have

µ̂i([e
(0)(i+ 1)]) =∞.

Indeed, we obtain

µ̂i([e
(0)(i+ 1)]) =

∞∑
n=0

(a− k)n

(a− k)n+1
=

∞∑
n=0

1

a− k
=∞.

More generally, the following theorem holds:
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Theorem 5.5. Let B be a stationary generalized Bratteli diagram with the
incidence matrix

F =


a1 1 0 0 . . .
0 a2 1 0 . . .
0 0 a3 1 . . .
0 0 0 a4 . . .
...

...
...

...
. . .

 ,

where a1 > ak for all k ≥ 2. Then there is an invariant measure µ on B generated
by the right eigenvector x of A = F T associated to the eigenvalue λ = a1, where

xT =

(
1,

1

a1 − a2
,

1

(a1 − a2)(a1 − a3)
, . . . ,

1

(a1 − a2)(a1 − a3) · · · (a1 − an)
, . . .

)
.

This measure can be also obtained as an extension of the probability measure
from the odometer that passes through the diagram’s first vertex. The measure µ
is finite if and only if

∞∑
n=2

n∏
k=2

1

a1 − ak
<∞.

Proof. It is straightforward to check that xTF = a1x
T . We show that the

measure µ generated by a1 and x can be obtained as an extension of the unique
invariant probability measure µ1 from the first odometer.

We have

µ([e(m)(1)]) = µ̂1([e
(m)(1)]) =

1

am1

for all m ∈ N0. Then for every m ∈ N0,

µ̂1([e
(m)(2)]) =

∞∑
n=0

an2
an+m+1
1

=
1

am+1
1

1

1− a2
a1

=
1

(a1 − a2)am1
= µ([e(m)(2)])

and

µ̂1([e
(m)(i+ 1)]) =

∞∑
n=0

ani+1

an+m+1
1

∏i
j=1(a1 − aj)

=
1

am+1
1

∏i
j=1(a1 − aj)

1

1− ai+1

a1

=
1∏i+1

j=1(a1 − aj)am1
= µ([e(m)(i+ 1)]).

Remark 5.6. Notice that in the case when there is m ∈ N such that am > ak
for all k > m then there is an eigenvector

xT =

(
0, . . . , 0, 1,

1

am − am+1
, . . . ,

1

(am − am+1) · · · (am − am+n)
, . . .

)
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corresponding to the eigenvalue λ = am. These eigenvalue and eigenvector gen-
erate an invariant measure which is the extension of a probability measure from
the odometer that passes through the vertex m of the diagram.

The following example was considered in [4] and presents a stationary gener-
alized Bratteli diagram with infinitely many odometers such that there does not
exist any tail-invariant measure on XB that assigns finite values to all cylinder
sets. Indeed, it is straightforward to check that the measure extension from every
odometer is infinite, moreover, for every i ∈ N, we have

µ̂i([e
(0)(i+ 1)]) =∞.

Example 5.7. Let B = B(F ) be a generalized stationary Bratteli diagram as
shown in Figure 5.1 and given by N× N incidence matrix

F =


2 1 0 0 . . .
0 3 1 0 . . .
0 0 4 1 . . .
0 0 0 5 . . .
...

...
...

...
. . .

 . (5.4)

Then there does not exist any tail-invariant measure on XB that assigns finite
values to all cylinder sets.

. . .

. . .

. . .

⋮ ⋮ ⋮

Fig. 5.1: A stationary generalized Bratteli diagram with no invariant measure
that takes finite values on all cylinder sets (illustration to Example 5.7).

5.2. Non-stationary generalized Bratteli diagrams with infinitely
many odometers. Now, we modify the diagram given in Example 5.7 and
consider a non-stationary generalized Bratteli diagram B defined by a sequence
of natural numbers {ai : i ∈ N0}. Without loss of generality, we can assume
that an ≥ 2 for all n. The diagram B consists of an infinite sequence of non-
stationary odometers connected with the neighboring odometer by single edges.
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More precisely, let Vn = N and for any n ∈ N0, the incidence matrix Fn has the
form

Fn =


an 1 0 0 . . . . . . . . . . . .
0 an 1 0 0 . . . . . . . . .
0 0 an 1 0 0 . . . . . .
0 0 0 an 1 0 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . .

 . (5.5)

Fix i ≥ 1, set Wn = {i}, n = 1, 2, . . . and define the subdiagram Bi =
(W,E) as above with the only difference that the set En is formed now by an
edges connecting the vertices i ∈ Vn and i ∈ Vn+1. The unique tail invariant
probability measure µ = µi on Bi = (W,E) is given by the formula µ([e]) =

1

a0 · · · an
, where r(e) = i ∈ Vn+1.

By definition of the diagram, H(n) = H
(n)
i for all n and i (as usual, we set

H
(0)
i = 1). Then H(n+1) = H

(n+1)
i = (an + 1)H(n) which implies that

H(n+1) = (a0 + 1) · · · (an + 1), n ∈ N0.

Theorem 5.8. For every i, the extension µ̂i of µi is finite if and only if∑
n≥0

1

an
<∞.

If the extensions µ̂i for i ∈ N are finite, then the set of all ergodic finite tail

invariant measures on the path space of the diagram B coincides with
{
µ̂i : i ∈

N
}

.

Proof. Using Theorem 3.1, we compute µ̂i

(
X̂Bi

)
as follows:

µ̂i

(
X̂Bi

)
= 1 +

∑
n≥0

∑
w∈W ′n

f
(n)
iw H(n)

w

1

a0 · · · an
= 1 +

∑
n≥1

(a0 + 1) · · · (an−1 + 1)

a0 · · · an

= 1 +
∑
n≥0

1

an

n−1∏
j=0

(
1 +

1

aj

) ≤ 1 +
∞∏
j=0

(
1 +

1

aj

) ∞∑
n=0

1

an
.

Thus, the extensions µ̂i are finite if and only if
∑

n≥0
1
an
<∞. By Theorem 4.3,

if the extensions µ̂i are finite then the measures {µ̂i : i ∈ N} form the set of all
probability ergodic invariant measures on B.

6. Vershik maps on generalized Bratteli diagrams with in-
finitely many odometers

In this section, we consider different orders on reducible generalized Bratteli
diagrams with infinitely many odometers (see Section 4). We present different
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classes of orders on such diagrams and study whether the corresponding Vershik
map can be extended to a homeomorphism.

Recall that each vertex v of (DIO) is determined by the pair (n, i), where
n ≥ 0 is the level such that v ∈ Vn and i = 1, 2, . . . is the vertex number of v
inside Vn. We will write v = (n, i). For v = (n, i) ∈ V \ V0, we have r−1(v) =
{e1, e2, . . . , ea(i)n

, f}, where e1, e2, . . . , ea(i)n
are edges between v and w = (n−1, i),

whereas f is the edge between v and w = (n− 1, i+ 1).
Let ω = {ωv, v ∈ V \ V0} be an order of (DIO), i.e., for every v ∈ V \ V0,

ωv is a linear order on the set r−1(v). Let ev and êv be the minimal and the
maximal edges in r−1(v) respectively. We will say that the order ωv is left if ev =
f , is right if êv = f and is middle if ev and êv are different from f . According
to Proposition 4.1, every maximal (minimal) infinite path e = {e′1, e′2, . . .} is
contained in a unique X̂Bi

, i ≥ 1. We will say that the odometer Bi is finite-
right (finite-left) if there exists a number ni such that the orders ωv are not right
(not left) for n ≥ ni, v = (n, i).

Since each Bi is an odometer, the set X̂Bi
consists of all paths that eventually

pass vertically through vertex i. Since two different minimal paths cannot pass
through the same vertex, we obtain that the set X̂Bi

can contain not more than

one infinite minimal path. If X̂Bi
does contain an infinite minimal path then this

path is eventually vertical, hence the odometer Bi should be finite-left. Similarly,
the set X̂Bi

contains the unique maximal infinite path if and only if the odometer

Bi is finite-right (we denote i ∈ Ifr). We summarize the above remarks in the
following proposition:

Proposition 6.1. The set X̂Bi
contains the unique maximal (minimal) in-

finite path êi,max (ei,min) iff the odometer Bi is finite-right (finite-left). For the

remaining odometers, X̂Bi
∩Xmax = ∅

(
X̂Bi

∩Xmin = ∅
)

.

Let ϕω : (XB \ Xmax) → (XB \ Xmin) be the Vershik map defined by the
order ω. We now consider different orders ω on B and examine when ϕω can be
extended to a homeomorphism. Since B is not stationary, strictly speaking, we
cannot consider stationary orders on B. We call an order on B quasi-stationary
if for every vertex i we fix whether it is left-ordered, right-ordered, or middle,
and the type or order depends only on the vertex number but not on the level to
which vertex belongs.

Theorem 6.2. Let Ifr (Ifl) be the set of all i ∈ N such that Bi is finite-right
(finite-left). Then

(i) ϕω extends to a Borel Vershik map on XB if and only if |Ifr| = |Ifl|;
(ii) if Ifr = Ifl = ∅ then ϕω is a homeomorphism of XB;

(iii) for any quasi-stationary order ω on B, the map ϕω cannot extend to a
Vershik homeomorphism of the whole path-space XB.

Proof. Part (i) is obvious since equality |Ifr| = |Ifl| means that |Xmax| =
|Xmin|. Since the sets Xmax and Xmin are always closed, the condition |Xmax| =
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|Xmin| is necessary and sufficient for ϕω to be extended to a Borel bijection of
the whole space XB.

(ii) If Ifr = Ifl = ∅, then ϕω is a homeomorphism of the whole path space
XB.

(iii) Note that the case Ifr = Ifl = ∅ is not possible for a quasi-stationary
order. Indeed, if the vertex i ∈ N is right-ordered then i ∈ Ifl and there is a
vertical minimal path that passes through the vertex i on each level. Similarly,
if the vertex i is left-ordered then i ∈ Ifr and there is a vertical maximal path
passing through the vertex i. If the order ωi of the vertex i is middle then there
are both infinite maximal path and infinite minimal path passing through the
vertex i. Assume that the map ϕω can be extended to a Vershik homeomorphism
on XB. Then we have |Ifr| = |Ifl|. Moreover, since the order is quasi-stationary,
we have |Ifr| = |Ifl| = ℵ0. We will call a cylinder set maximal (minimal) if it
corresponds to a maximal (minimal) finite path.

First, assume that i ∈ Ifr and i > 1.

Suppose i − 1 ∈ Ifr ∩ Ifl. Then for every n, every maximal cylinder set of
length n which ends in i contains a non-maximal cylinder subset [g1] of length
n+ 1 which also ends in i and a non-maximal cylinder subset [g2] of length n+
1 which ends in i − 1. The image ϕw([g2]) belongs to the minimal cylinder set
of length n which passes through vertex i− 1 on each level. The image ϕw([g1])
belongs to the minimal cylinder set of length n which ends in i or i+ 1 and never
passes through vertex i − 1. Thus, we cannot extend ϕω continuously to the
maximal path which passes through vertex i.

If i− 1 ∈ Ifl \ Ifr, then the maximal edge which ends in i− 1 is not vertical.
For every n, every maximal cylinder set of length n which passes through vertex
i contains a non-maximal cylinder subset [g1] of length n+ 1 which also ends in
i and a non-maximal cylinder subset [g2] of length n + 2 which passes through
the maximal edge between vertices i on level n and i− 1 on level n+ 1, and then
through a non-maximal edge between vertex i− 1 on level n+ 1 and vertex i−
1 on level n + 2. Again, the image ϕw([g1]) belongs to the minimal cylinder set
of length n which ends in i or i+ 1, ϕw([g2]) belongs to the minimal cylinder set
of length n which passes through vertex i− 1 on each level.

Thus, if i ∈ Ifr and i − 1 ∈ Ifl then ϕω cannot be extended to a homeo-
morphism. It remains to notice that such a situation will always occur for any
quasi-stationary order. Indeed, we have |Ifr| = |Ifl| = ℵ0, hence we have in-
finitely many vertical infinite minimal paths and infinitely many vertical infinite
maximal paths. Let j ∈ N be a vertex through which passes an infinite minimal
path. Then there exists a vertex k > j through which passes an infinite maximal
path. Thus, we will necessarily find a natural number i ∈ (j, k] such that i ∈ Ifr
and i− 1 ∈ Ifl.
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Iнварiантнi мiри для приводимих узагальнених
дiаграм Браттелi

Sergey Bezuglyi, Olena Karpel, and Jan Kwiatkowski

У 2010 роцi Безуглий, Квятковський, Мединець та Соломяк [Ergodic
Theory Dynam. Systems 30 (2010), No. 4, 973–1007] знайшли повний
опис множини ймовiрнiсних ергодичних мiр на множинi шляхiв стан-
дартної (класичної) стацiонарної приводимої дiаграми Браттелi, iнварi-
антних вiдносно хвостового вiдношення еквiвалентностi. Було показано,
що кожне вiдзначене власне значення для матрицi iнцидентностi ви-
значає ймовiрнiсну ергодичну iнварiантну мiру. У поточнiй статтi ми
показуємо, що цей результат не виконується для стацiонарних приводи-
мих узагальнених дiаграм Браттелi. Розглядаються класи стацiонарних
i нестацiонарних приводимих узагальнених дiаграм Браттелi з нескiн-
ченною кiлькiстю простих стандартних пiддiаграм, зокрема, з нескiн-
ченною кiлькiстю одометрiв як пiддiаграм. Ми характеризуємо множи-
ни всiх ймовiрнiсних ергодичних iнварiантних мiр для таких дiаграм та

mailto:sergii-bezuglyi@uiowa.edu
mailto:okarpel@agh.edu.pl
mailto:jkwiat@mat.umk.pl


24 Sergey Bezuglyi, Olena Karpel, and Jan Kwiatkowski

вивчаємо частковi порядки, для яких дiаграми можуть пiдтримувати
гомеоморфiзм Вершика.

Ключовi слова: Борелiвськi динамiчнi системи, моделi Браттелi–
Вершика, iнварiантнi мiри, хвостове вiдношення еквiвалентностi
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