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Periodic Gibbs Measures for Three-State
Hard-Core Models in the Case Wand
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We consider fertile three-state Hard-Core (HC) models with the activity
parameter A > 0 on a Cayley tree. It is known that there exist four types of
such models: wrench, wand, hinge, and pipe. These models arise as simple
examples of loss networks with nearest-neighbor exclusion. In the case wand
on a Cayley tree of order k > 2, exact critical values A > 0 are found for
which two-periodic Gibbs measures are not unique. Moreover, we study the
extremality of the existing two-periodic Gibbs measures on a Cayley tree of
order two.
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1. Introduction

Description of all limit Gibbs measures for a given Hamiltonian is one of the
main problems of the theory of Gibbs measures. It is known that each Gibbs
measure is associated with one phase of the physical system. Therefore, in the
theory of Gibbs measures, one of the important problems is the existence of
a phase transition, i.e., when the physical system changes its state when the
temperature changes. This occurs when the Gibbs measure is not unique. In
this case, the temperature at which the state of the physical system changes is
usually called the critical temperature. Moreover, it is known that for continuous
Hamiltonians (see [5]) the Gibbs measures form a non-empty convex compact set
in the space of all probability measures endowed with the weak topology (see,
e.g., [8, Chapter 7]). The set of the Gibbs measures on Z¢ is the convex hull of
the set of all limit Gibbs measures (see [4]).

In this connection, it is particularly interesting to describe all the extreme
points of this convex set, i.e., the extreme Gibbs measures.

The definition of the Gibbs measure and other concepts related to Gibbs
measure theory can be found, for example, in [8,20,21,25]. Although there are
many works devoted to studying Gibbs measures, a complete description of all
limit Gibbs measures has not yet been obtained for any of the models on Cayley
trees.
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Hard constraints arise in fields as diverse as combinatorics, statistical me-
chanics, and telecommunications. In particular, the hard-core model arises in
the study of random independent sets of a graph [2,6], the study of gas molecules
on a lattice [1], and in the analysis of multi-casting in telecommunication net-
works [9, 19].

Mazel and Suhov introduced and studied the HC model on the d-dimensional
lattice Z¢ [18]. In [3], fertile HC models were identified as those that correspond
to graphs of the hinge, pipe, wand and wrench types. The Gibbs measures for
HC models with three states on the Cayley tree of order £ > 1 were studied in
[3,13,16,22,24,26]. In particular, in [13,24], in the “wand” case, a full description
of translation-invariant Gibbs measures (TIGM) is given on the Cayley tree of
orders two and three, respectively. Also in this case, the existence of at least three
TIMGs on a Cayley tree of arbitrary order is proved in [22]. Moreover, in [22], the
areas of the (non) extremality of TIMG on the Cayley tree of order k = 2 were
found. Work [12] is devoted to the study of translation-invariant and periodic
Gibbs measures for three-state HC models with an external field. Translation-
invariant and periodic Gibbs measures in “hinge”, “pipe”, and “wrench” cases
were studied in [13,16,22,24]. In the “wand” case, periodic measures have not
yet been studied. See Chap. 7 in [21] for other HC model properties and their
generalizations on a Cayley tree.

In this paper, we study periodic Gibbs measures for a fertile three-state HC
model in the case of a “wand” on a homogeneous Cayley tree. In this case, on a
Cayley tree of arbitrary order under certain conditions, the translation invariance
of the G,(f)—periodic Gibbs measures is proved. In addition, on the Cayley tree of
orders two and three under certain conditions an exact critical value A, is found

such that, for A > A, there exists exactly one G,(f)—periodic Gibbs measure,
(2)

which is translation-invariant, and for 0 < A < A, there are exactly three G-
periodic Gibbs measures, one of which is translation-invariant and the other two
are G,(f)—periodic (non translation-invariant). Also, under certain conditions, we
find explicit value A.-(k) such that for 0 < A < A, there exist no less than
two G,(f)—periodic (non translation-invariant) Gibbs measures on a Cayley tree of
order k > 2. Moreover, we check extremality of the G,(f)—periodic Gibbs measures
existing on the Cayley tree of order two.

2. Preliminaries

The Cayley tree I* of order k > 1 is an infinite tree, i.e., a connected graph
without cycles such that exactly k£ + 1 edges originate from each vertex. Let
Q% = (V,L,i), where V is the set of vertices S*, L is the set of edges and i
is the incidence function setting each edge | € L into correspondence with its
endpoints z,y € V. If i(l) = {z,y}, then the vertices z and y are called the
nearest neighbors, denoted by [ = (z,y).
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For a fixed point 20 € V,
W,={zeV|dza")=n}, V,= U Wi, Lp={{z,y) €L |x,yeV,},
m=0

where d(z,y) is the distance between the vertices x and y on a Cayley tree, i.e.,
the number of edges of the shortest path connecting x and .

Write z < y if the path from z° to y goes through z. Call the vertex y a
direct successor of x if y = x and z,y are the nearest neighbors. Notice that in
Q* any vertex z # 20 has k direct successors and z° has k + 1 direct successors.
Denote by S(z) the set of direct successors of z, i.e., if z € W,,, then

S(x):{ylewn+1 |d(x7y2):1> Z:17277k}

HC model. Let ® = {0,1,2} and ¢ € Q = ®" be a configuration on V, i.e.,
o ={o(x) € ®: 2 € V} In this model, to each vertex x, one of the values
o(x) € ® ={0,1,2} is assigned. The values o(z) = 1,2 mean that the vertex x
is ‘occupied’, and o(z) = 0 means that z is ‘vacant’. We let Q denote the set of
all configurations on V. Configurations in V,, and W, can be defined in a similar
way, with the set of all configurations in V,, and W,, denoted by Qy; and Qyy,, .

We consider the set ® as the set of vertices of a graph G. We use the graph
G to define a G-admissible configuration as follows. A configuration o is called a
G-admissible configuration on the Cayley tree (in V;, or in W,,) if {o(z),o(y)} is
the edge of the graph G for any pair of nearest neighbors z,y in V' (in V},). We
let Q¢ (Q‘Cjn) denote the set of G-admissible configurations.

The activity set [3] for a graph G is a function A : G — R, from the set G
to the set of positive real numbers. The value \; of the function A at the vertex
i € {0,1,2} is called the vertex activity.

For given G and A, we define the Hamiltonian of the G—HC model as

D log g if o€ QC
H)(0) = { zev
+ o0 if o ¢ Q.

The union of configurations o,_; € ®"»1 and w, € ®"» is determined by
the following formula:

on-1Vwy = {{on-1(2),2 € Vo1}, {wn(y),y € Wn}}.

Let B be the o-algebra generated by cylindric subsets of Q€. For any arbitrary
n we let By, = {0 € QY | o]y, = 0,}, where oy, is the restriction of ¢ to V,
and oy, : © € V,, = o, () is an admissible configuration in V,,, denote subalgebra
of B.

Definition 2.1. For A > 0, the HC model Gibbs measure is a probability
measure g on (2%, B) such that for any n and o, € Q‘G/n, we have

plo €09 oy, =auh = [ ulde)Palon |,



Gibbs Measures for Three-State Hard-Core Models 69

where

e_Hé(a'ﬂ)

Zn (X wlw, )
Here, Z,(\;w|w,_,) is the normalization multiplier with the boundary condition
w|Wn+1 :

G )

L(on Vwlw,,, € Qv

Pn(O'n | an+1) =

_HA T ~
Zn()\;w|Wn+1) = Z e Mle ")1(0'n \/W|Wn+l € Q‘anﬂ)'

an EQVn

Definition 2.2 ([3]). A graph is said to be fertile if there is a set of activities
A such that the corresponding Hamiltonian has at least two translation-invariant
Gibbs measures.

In this paper, we consider the case A\g = 1, Ay = A2 = A and study periodic
Gibbs measures in the case of fertile graph G = wand:

wand:  {0,1}{0,2}{1,1}{2,2}.

For o, € Q‘G,n, we let

H#Hop = Z 1(0'71(37) 2 1)

IGVn

denote the number of occupied vertices in V.

Let z: o+ 2z = (202, 21,25 22,2) € Ri be a vector-valued function on V. For
n=1,2,... and A > 0, we consider the probability measure ,u(”) on Q‘Cfn defined
as

n 1 o
:U'( )(Un) = 7A# " H Ro(x),o (21)
n IEWn

where Z,, is a normalization factor,

Ly = Z ATTn H 25 (z),2

EneQ‘G,n xeWn

The probabilistic measure p(™ is said to be consistent if for all n > 1 and any
On—1 € Q‘C/;n_li

> 1" (ono1 Vwn)L(on-1 Vw, € QF) = n" D (07, 1). (2.2)
wnEQWn

In this case, there is a unique measure p on (QG, B) such that
n({olv, = on}) = M(n)(an)
for all n and any o, € Q‘an

Definition 2.3. A measure p defined by formula (2.1) with consistency con-
dition (2.2) is called a splitting hard core Gibbs measure with activity A > 0,
corresponding to the function z : z € V' \ {2} — z,.
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It is known (see Chapter 12, [8]) that any extreme Gibbs measure is split-
ting Gibbs measure; therefore, for each given Hamiltonian on Cayley tree, the
description of the set of all Gibbs measures is equivalent to the full description
of the set of all extreme splitting Gibbs measures.

Let L(G) be the set of edges of a graph G. We let A = A% = ((JJZ']-)Z.J.:O’L2
denote the adjacency matrix of the graph G, i.e.,

a..:aqz{l if {i,j} € L(G),
YT 00 {i ) ¢ LG).

The following theorem presents a condition on z, ensuring that the measure
1™ is consistent.

Theorem 2.4 ([24]). The probability measures (™, n = 1,2, ..., defined by
formula (2.1) are consistent if and only if the following relations hold for any x €

V:

/ /
, aig + a112y + a122y
Z.=x]] e e (2.3)
/ /
a0 + a2121, + G222
/ _ Y Y
=X ][] (2.4)

/ / )
aogo + ap1z; ., + apgaz
yeS(x) 00 0121 4 0222 4

where zg’x = Nzip/202, 1 =1,2.

In (2.3), (2.4), we assume that 20, =1 and 2;, = 2/, > 0 for i = 1,2. Then,
by Theorem 2.4, there exists a unique G-HC Gibbs measure p if and only if for
any functions z : x € V. —— 2z, = (21,4, 22,») the equality holds:

a0 + 43121,y + 4222 .
zia=X2 [ = - : ’y+ PV =12 (2.5)
a aplr apnaz
yeS(x) 00 01<1,y 02+<2y

It is known that we have one-to-one correspondence between the set V of
vertices of a Cayley tree of order k£ > 1 and the group G}, that is the free prod-
uct of k 4+ 1 cyclic groups of second order with the corresponding generators
ai,az, ..., ag+1 (see [7]). R

Let G /Gy = {Hy, ..., H,} be the quotient group, where Gy, is a normal sub-
group of index r > 1.

Definition 2.5. The set of vectors z = {2,z € Gy} is said to be ék— periodic
if 2y, = 2z, for all Vo € Gj,y € Gj. Gy-periodic sets are said to be translation-
invariant.

I)eﬁnition 2.6. A measure p is said to be @k—periodic if it corresponds to
the G-periodic set of vectors z.

For TIGM in the case G = wand, the following facts are known:
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e Inthecase k=2 (k=3) for A <1 ()\ < 2%), there is a unique TIGM vg and
for A > 1 (A > 5=) there are exactly three TIGMs vg, vy, v (see [13,24]).

e In the case k > 3 for A < A, there is a unique TIGM and for A > A there
are at least three TIGMs, where Ae, = 125 - (%)k (see [22]).

e In the case k = 2, the measure vy for 0 < A < A9 and the measures v, 15 for
1 < A < A\ are extreme and the measure vy for A > )¢ is not extreme, where

Ao & 2.287572, A ~ 1.303094 (see [22]).

3. Periodic splitting Gibbs measures in the case G = wand

In the case G = wand, we write (2.5) in the following form:

1+ ehy
hie=lA+ > In Ty o
y€S(x)
1+ eh2y
h27$ —hlx\-i- Z lnm, (31)
y€S(z)

where h; , =Inz;,, i =1,2. We study periodic solutions of system (3.1).
Let the function F'(-) : h = (h1, he) — F(h) = (F1(h), F2(h)) be given by

1+em 1+ el2

Fi(h) =1In ek Fy(h) =1

Heh 4 eha
Proposition 3.1. The function F is injective.

Proof. Necessity. Let F(h) = F(l). Then Fi(h) = Fi(l), Fa(h) = Fx(1),
where h = (hy,h2), | = (I1,l2). From these equalities we obtain the following
system of equations:

(1 — 22)(2:1 — tl) + (1 + 21)(22 — tg) =0,
= 0.

(1+22)(21 —tl)—i—(l—zl)(zQ —tg) (3.2)

Here, z; = el t; = €, i = 1,2. Tt is easy to see that the determinant of system

(3.2) is nonzero: A = —2(z1 + 22) # 0. Therefore, the system (3.2) has a unique
solution z; = t1, 29 = to. O

Let G,(f) be the subgroup of G}, consisting the words of even length.

Theorem 3.2. Let H be a normal subgroup of finite index in Gy. Then

or HC model each H-periodic splitting Gibbs measure is either G(Q)—pem'odz'c or
g k
translation-invariant.

Proof. The proof is similar to that of Theorem 2 from [16] using the result
of Proposition 3.1. O

Remark 3.3. The analogies of Theorem 3.2 can be proved for a wide class of
hard constraint models.
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By Theorem 3.2, there are only Gf) -periodic Gibbs measures, and for them
from (3.1) we obtain the following system of equations:

1 K 1 k
tlZA A ) tQZ)‘ T2 )
21 + 29 z1 + 22
k k
1+t 1+t
21:)\ th y 22:)\ t . (3.3)
t1 + to t1 + 12
We consider the map W : R* — R* defined as
k k
/ 1 / 1
t1:>\< —|-Zl>7 t2:)\< +Z2)
z1 + 22 z1 + 22
k k
/ 1+¢ / 14+t
t1 +to t1 4+ t2

We note that the system (3.3) is the equation z = W(z). Therefore, solving the
system (3.3) is equivalent to finding fixed points of the map 2" = W (z).

Lemma 3.4. The following sets are invariant under the map W :
I = {(t1,ta,21,20) ER 1 t) = to = 21 = 22},
I = {(t1,to, 21, 22) € R* 1 t1 = to, 21 = 20},
Iy = {(t1,ta, 21, 22) € R* 1 t; = 21, to = 2},
Iy = {(t1,t2,21,20) € R* i t; = 29, ta = 21 }.
Proof. The proof is similar to the proof of Lemma 2 from [23]. n

Remark 3.5. It is difficult to solve system (3.3) in the general case, so we
will solve it on invariant sets I;, ¢ = 1,2,3,4. Notice that there may be other
invariant sets.

Theorem 3.6. For HC model in the case G = wand the following statements
are true:

1. Fork >2,A>0 onli and Iy, each G](f)—pem'adic splitting Gibbs measure
1s translation- invariant. Moreover, this measure coincides with the unique
translation-invariant GGibbs measure vy.

2. Fork > 2, A > 0 on I3 each G](f)-pem'odz’c splitting Gibbs measure is
translation-invariant and this measure is not unique.

3. Letk =2 and Aoy = 1. Then on Is for A > A, there is exactly one G?)-
periodic splitting Gibbs measure which coincides with the unique TIGM vy,
and for 0 < A < A, there are exactly three G,(f) -periodic splitting Gibbs
measures vy, ji1, b2, where p1, o are non translation-invariant.

4. Let k = 3 and A\, = %. Then on Iy for A > A there is exactly one
G,(f) -periodic splitting Gibbs measure which is translation-invariant and for
0 < A < A there are exactly three G,(f) -periodic splitting Gibbs measures,
one of which is translation-invariant and the other two are non translation-
mvariant.
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Proof. 1. The case Iy is obvious. The case I4. In this case, the system of
equations (3.3) has the form

k k
1 1
Z1 = ( +22) s 22:A< +21> . (35)
z1 + 22 z1 + 22
It suffices to show that the system of functional equations (3.5) has only roots

of the form z; = 2z for any 21 > 0, 29 > 0, A > 0 and k > 2. Introducing the
notation {/z; = x, {/z3 =y, we rewrite the system of equations (3.5):

v 1+yF w1+t
— (=T =N ——).
’ <x’“+y’“ v= ak 4 yk

In the last system of equations, subtract the second from the first equation

(x — y)(:ck + yk + \’ﬁ(xk_l + xk_Qy 4+ ...+ yk_l)) =0.

Hence, x = vy, ie., (t1,t2,21,22) € I;. So G,(f)-periodic Gibbs measure is
translation-invariant and this measure is unique.

2. The case I3. In this case, we obtain the system of equations for the TIGM
which was studied in [13,22,24].

3. The case Is and k = 2. In this case, we have z1 = 29 = z and t; =ty = t.
Then the system of equations (3.3) has the form

k k
1+1¢ 1+2
=== t=M\ ) .
() (5 5
Let & = 2. Introducing the notation \/z = z, \/t = y we rewrite the system of
equations (3.6):

1+ 1+ 22
=V =V . 3.7
z=V\ 7 Y VA3 (3.7)

The system (3.7) leads to the following equation:
M1+ 22)? = 22(1 + 22)°VA + 42" = 0.

We regard the last equation as a quadratic equation for variable v/ = a whose
solutions have the following forms:

2 23

W= T

Notice that for any value A > 0, the equation

223

has a unique solution which corresponds to the unique TIGM for the HC model
in the case G = wand (see [22] formula (3.15)).
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Now, from the expression for a; = v/A] = V', we get the quadratic equation
Vaz? — 224+ VA =0, (3.9)

Notice that equation (3.9) has solutions for 0 < A < 1, more exactly, for A = 1
it has a unique solution of the form x; = z2 = 1 which is also a solution to (3.8)
for this value of A, and for 0 < A < 1 it has two positive solutions:

1+V1I-) VA
= Ig=———.
VA Tl VI
From the second equation in (3.7), we obtain

VA C1+VI=

So, for the system of equations (3.6), we have solutions of the form (22,3?) =
(2,8) and (23, 43) = (,2), where

O Y T S (3.10)

A ’ (1+V1=X)2

Thus, the solutions (z,t) and (¢,z) of system of equations (3.6) correspond to

I

the G,(f)—periodic Gibbs measures p1 and puo which are different from translation-
invariant.

4. The case Iy and k = 3. In this case, introducing the notation /z = =,
V't =y, we rewrite the system of equations (3.6):

a1+ 93 s
=V =V . 3.11
x f2y3, y=Vi3 (3.11)

From the system of equations (3.11) we have

where

) = VR

23
It is easy to check that the equation f(z) = z has a unique positive solution for
any A > 0, which corresponds to the unique TIGM.
Moreover, roots of the equation f(x) = x are clearly roots of the equation
f(f(x)) = z. To find the roots of the equation f(f(z)) = x that differ from the
roots of f(x) = x, we must therefore consider the equation

x— f(f(z))
z— f(x)

Equation (3.13) is equivalent to the equation

— 0. (3.13)

b2 (1 + 23)? — 2bz(1 + 2%) — 42 = 0,
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where b = v/X\. We consider the last equation as a quadratic equation for b. It
has one positive solution

x4+ V1443
b= —-———— > 0.
1+ 23

We consider next equation

V1 + 423
b= X = % — (). (3.14)

It is easy to see that the function ¢(z) increases for 0 < 2 < /2 and decreases
for x > V2, i.e., Trmar = V2 and ©(Tymaz) = 47% =b= /A (see Fig. 3.1, a)).

57 57

X -1-

Fig. 3.1: a) Graph of the function ¢3(x). b) Graph of the function ¢?(z) (upper
curve) and graph of the function 13(z) (lower curve).

Thus, the equation A = ¢(x) has two solutions if 0 < A < A, = 28, one

Y
solution if A = M., and no solution if A > A, 27
Notice that if A = Ao, = 222, then solution (3.11) has the form: (V/2, V/2), i.e.,
this solution corresponds to the TIGM which exists for any A > 0, and measures
corresponding to the two existing solutions for 0 < A < A, are G,(f)—periodic

different from translation-invariant. O

Remark 3.7. In [13], TIGMs were investigated for the HC model in the case
G = wand and a similar method was applied which was used in the proof of part
4 of Theorem 3.6. For TIGMSs, equation (3.14) is given by

2(,.3 I3 2
3 2(23 — 3) + /21 (23 + 3)2 + 4z
S - — ¥(2). 3.15
VA 2x(z3 + 1) () (3.15)
The equation shows that the functions ¢3(z) and ®(z) differ and they intersect at
two points: z; ~ 0.4531316267, o ~ 1.813976199, i.e., measures corresponding
to these solutions are TIGMs (see Fig. 3.1, b)).
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The case Iy and k > 2. In this case, we rewrite the system of equations (3.6):
z=h(t), t=h(z), (3.16)

where h(x):a(l—l—l)k’a:A

x PL
The following lemma is known.

Lemma 3.8 ([10]). Let f : [0,1] — [0,1] be a continuous function with a
fized point € € (0,1). We assume that f is differentiable at & and f (€) < —1.
Then there exist points xg and x1, 0 < xg < § < x1 < 1, such that f(xg) = x;
and f(x1) = xp.

Theorem 3.9. Let k > 2 and Ao = 2¥(k—1) (k 1) Then for HC model in

the case G = wand on Iy for 0 < X\ < A, there exist at least three G,E: )—pemodzc
splitting Gibbs measures, one of which is translation-invariant and the other two
are non translation-invariant.

Proof. Since h(z) > «a, we have z > a and ¢ > a. The function h(z) is
decreasing and hpax = h(a) = « (1 + é)k = (. Moreover, the function h(z) is
continuous and differentiable in [« 5]. It follows from the above argument that
the equation h(z) = z has a unique solution x = .

We rewrite the equality h(§) = &£ as follows,

1 k—1 52

Using the last equality, from the inequality

. k 1\*! k
Ho=-g (1+g) =-rie<t

we get £ < k — 1.
Since £ € («, B) is a fixed point of the function h, we have

=2 (15) = v

Notice that ¢/(£) > 0, i.e., the function ¢(&) is increasing. Hence, for £ < k — 1
we have ¢(&) < ¢(k —1), 1

k—1\"
Amax = Aer = Qk(k - 1) <k>

Consequently, by Lemma 3.6, if A < A, then the system (3.16) has three solu-
tions (&,€), (z0,%0) and (to, 20)- O
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4. Extremality of periodic splitting Gibbs measures in the case

G = wand

We have G](f)-periodic splitting Gibbs measures p; and ps for £ = 2. To
study their (non) extremality we use the methods from [11,14,15,17] for TIGMs.
For each translation-invariant measure we consider a tree-indexed Markov chain
with states {0, 1,2}, i.e., suppose we are given a Cayley tree with set vertices
V', a probability measure v, and a probability transition matrix P = (P;;) on
{0,1,2}. Using transition probabilities given the value of its parent, regardless
of everything else, we can construct a tree, indexed by a Markov chain X : V —
{0,1,2} by choosing X (2°) according to v and choosing X (v), for each vertex
v # a0,

Since translation-invariant measures are obtained for (t1,t2) = (z1,22), the
matrix P depends only on z;(= t;) and z2(= t2), more precisely,

0 21 2z
z1t+z2  z1t22
_ 1 21
]P) - 1421 1421 0
1 0 z2
1422 1422

But, in the case of periodic measures, the matrix P depends on t1, t2, z1 and
z9, where t1 # 21, to # z9 and (1,12, 21, 22) are the solutions of the system of
equations (3.3). We consider the measures p1 and pg corresponding to the set
of Iy : t1 = to = t, 21 = 20 = z. In addition, notice that zt = 1. Then the
transitions probabilities matrix P;;, defined by the given periodic Gibbs measure
w1 (respectively, uo) P =P, = P, (respectively P =P, = P,,,), is the product
of two transition probabilities matrices:

1 1 1 1
o2 o2\ (Y 3 2
P, =PP = e T 0 T TH 0
0 z 1 0 _t
1+z 1+2 1+t T+t
1 _t _t
1+t 2(1+t) 2(1+1)
_ z t+3 1 4.1)
(1+2)(1+t) 2(1+zf(1+t) 2(1+z) ( :
z t+3
(A+2)(1+t) 2(1+2) 2(1+2)(1+t)

Thus, the matrix P, defines a Markov chain on the Cayley tree of order k2,
which consists of the vertices of the tree T'* in even places.

So, a sufficient condition (i.e., the Kesten-Stigum condition, see [11]) for non-
extremality of a Gibbs measure p corresponding to the matrix P, is that k?s3 >
1, where s5 is the second largest (in absolute value) eigenvalue of P,,,.

It is clear that the eigenvalues of this matrix are
=1 9=83=——"—

S S S .

1 ’ z+t+2

We have solutions of the form (3.10) for k¥ = 2. By virtue of the symmetry
of the solutions, the region of non-extremality of the measure us coincides with
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the region of non-extremality of the measure p;. Therefore, it is sufficient to
check the condition of non-extremality of the measure u; for k = 2. For this, we
calculate z + ¢,
2(2 — \)

T

Then, from 45% > 1, we obtain A > 2, but the measures p; and g exist for 0 <
A < 1. Hence, this measures should be extreme, which will be checked below.

Let us first give some necessary definitions from [17]. If from a Cayley tree
I'* we remove an arbitrary edge (x°,z') = [ € L, then it is divided into two
components F’;O and F’;l, each called semi-infinite Cayley tree or Cayley subtree.

We consider the finite complete subtrees T that are the initial points of Cayley
tree F';O. The boundary 97 of the subtree 7 consists of the neighbors which are
on F];;O \ 7. We identify the subgraphs of 7" with their vertex sets and write E(A)
for the edges within a subset A and A for the boundary of A.

In [17], the key ingredients are two quantities, x and . Both are properties of
the collection of Gibbs measures {7}, where the boundary condition 7 is fixed
and 7T ranges over all initial finite complete subtrees of I‘go. For a given subtree
T of Fio and a vertex x € T, we write T, for the half-tree growing from the
root x. When z is not the root of 7, let u7- denote the (finite-volume) Gibbs
measure in which the parent of x has its spin fixed to s and the configuration on
the bottom boundary 7, (i.e., on 9T, \ {parent of x}) is specified by .

For two measures pq and pg on Q, |1 — pe||. denotes the variation distance
between the projections of 1 and us onto the spin at z, i.e.,

z+t=

2
i = ille = 5 3 (o) = 8) — pa(ole) = i)
=0

Let n™® be the configuration n with the spin at z set to s.
Following [17], define

2
1
k= K(p) = 5H;~?XZ | Py — Py,
=0

y =) = sup max ||} — @} |l
ACT*k
where the maximum is taken over all boundary conditions 7, all sites y € A, all
neighbors z € A of y, and all spins s, s’ € {0, 1,2}.
It is known that a sufficient condition for extremality of the translation-
invariant Gibbs measure p is that kk(u)y(n) < 1, but for the considered G,(f)—
periodic measures ;,i = 1,2 this condition is k2 (j;)y(us) < 1.

Using (4.1), we obtain
z

(z+1)2
By virtue of the symmetry of the solutions, the region of extremality of the
measure o coincides with the region of extremality of the measure p;. It is

R =
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known from [22] that v = k. Hence, for extremality of the measure p; (also for
an measure fi2) we obtain the inequality

9 422
k(1) y(p1) = ( <1,

Grin
which is true for any values z, in particular, for a solution of the form (3.10)
which exists for 0 < A < 1. Consequently, in the case k = 2, the condition of the
extremality measures pp and ps is satisfied for any values 0 < A < 1, i.e., in an
area of the existence of these measures.

So, we have proved the following theorem.

Theorem 4.1. Let k = 2. Then for the HC model in the case G = wand
G,(f) -periodic splitting Gibbs measures py and ps are extreme for 0 < A < 1.

Remark 4.2. Since in the case k = 3 we do not have an explicit form of
the solution of the system of equations (3.11), it is very difficult to investigate
(non) extremality of the corresponding periodic Gibbs measures. Therefore, this
question is still open.
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Ilepiognuni mipu I'i6oca aaa HC- moneseii 3 Tppoma
CTaHAMHU Yy BUMNAJKY “TIAJINYKI’’

Rustamjon Khakimov and Kamola Umirzakova

Mu posrasiaemo depruibhi (Hard-Core) HC-moneni 3 TppoMa craHa-
MU 3 mapameTpoM akTuBHOCTI A > 0 Ha jepesi Keiuri. Bigomo, mo icHyoTh
YOTUPU TUNK TAKUX MOJIEJIE: TaifkoBUil K04, majandka, nersis i tpyoa. i
MOJIeJIi BUHUKAKOTH sIK MPOCTI HTPHUKJIAAN BTPAT B3aEMOIl 3 HAWOIMKINM
cycimom. ¥ Bumanky ‘manmmyku’ Ha gepesi Keiun mopsinky k > 2 3maiizeno
TOYHI KpUTHYH] 3Ha4YeHHA A > 0, Ui gkux jBonepiogumyni mipu ['i66ca ne
€ eauanMu. KpiM TOro, MU BUBYAEMO €KCTPEMAJIbHICTh ICHYIOUYUX JIBOIIEPIO-
guaanx Mmip ['i66ca Ha mepesi Keitni apyroro mopsiixy.

Kimrouosi ciioBa: nepeso Keitni, koudirypartis, depruibia momens Hard-
core, mipa ['i66ca, KpuTuvIHa TEMIIEpaTypa, eKCTPEMAIbHICTh Mipn
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