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We consider the Dirichlet problem for the Beltrami equation in an arbi-
trary bounded simply connected domain in the complex plane C. Namely, we
study the class of all regular solutions of such a problem with a normaliza-
tion condition and set-theoretic constraints on their complex characteristics.
We have proved the compactness of this class in terms of prime ends for an
arbitrary continuous function in the Dirichlet condition.
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1. Introduction

Relatively recently, some authors have obtained the theorems on the com-
pactness of the classes of solutions of the Beltrami equations with different types
of restrictions on their complex characteristics, see, for example, [3, 4, 12–14]. In
particular, the results of [12, 13] were used in the variational method (see [14]).
As for this paper, it deals with the compactness of the classes of solutions of the
Dirichlet problem for the Beltrami equation. We consider here the case of the
Dirichlet problem in an arbitrary simply connected domain D in C, which does
not imply the presence of a “good” boundary. In addition, we consider the so-
called set-theoretic constraints, i.e., when the complex characteristics of solutions
belong to a fixed family of sets. Notice that some results close in context were
obtained by us in [2, 23].

In what follows, a mapping f : D → C is assumed to be sense-preserving,
moreover, we assume that f has partial derivatives almost everywhere. Put fz =
(fx + ify) /2 and fz = (fx − ify) /2. The complex dilatation of f at z ∈ D is
defined as follows: µ(z) = µf (z) = fz/fz for fz 6= 0 and µ(z) = 0 otherwise. The
maximal dilatation of f at z is the following function:

Kµ(z) = Kµf (z) =
1 + |µ(z)|
1− |µ(z)|

. (1.1)

Notice that the Jacobian of f at z ∈ D is calculated by the formula

J(z, f) = |fz|2 − |fz|2.
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It is easy to see that Kµf (z) = |fz |+|fz |
|fz |−|fz | whenever partial derivatives of f exist at

z ∈ D and, in addition, J(z, f) 6= 0.
We will call the Beltrami equation the differential equation of the form

fz = µ(z)fz, (1.2)

where µ = µ(z) is a given function with |µ(z)| < 1 a.e. The regular solution of
(1.2) in D ⊂ C is a homeomorphism f : D → C of the class W 1,1

loc (D) such that
J(z, f) 6= 0 for almost all z ∈ D.

In the extended Euclidean space Rn = Rn∪{∞}, we use the so-called chordal
metric h defined by the equalities

h(x, y) =
|x− y|√

1 + |x|2
√

1 + |y|2
, x 6=∞, y 6=∞, h(x,∞) =

1√
1 + |x|2

, (1.3)

see, e.g., [27, Definition 12.1]. For a given set E ⊂ Rn, we put

h(E) := sup
x,y∈E

h(x, y). (1.4)

The quantity h(E) in (1.4) is called the chordal diameter of the set E. As usual,
the family F of mappings f : D → C is called normal if from each sequence fn ∈
F, n = 1, 2, . . . , one can choose a subsequence fnk

, k = 1, 2, . . . , converging to
some mapping f : D → C locally uniformly with respect to the metric h. If, in
addition, f ∈ F, the family F is called compact.

Let D be a domain in Rn, n > 2. Recall some definitions (see, for example,
[7,8,10,11]). Let ω be an open set in Rk, k = 1, . . . , n−1. A continuous mapping
σ : ω → Rn is called a k-dimensional surface in Rn. A surface is an arbitrary (n−
1)-dimensional surface σ in Rn. The surface σ is called a Jordan surface if σ(x) 6=
σ(y) for x 6= y. In the following, we will use σ instead of σ(ω) ⊂ Rn, σ instead of
σ(ω) and ∂σ instead of σ(ω) \ σ(ω). A Jordan surface σ : ω → D is called a cut
of D if σ separates D, that is, D \ σ has more than one component, ∂σ ∩D = ∅
and ∂σ ∩ ∂D 6= ∅.

A sequence of cuts σ1, σ2, . . . , σm, . . . in D is called a chain if:
(i) the set σm+1 is contained in exactly one component dm of the set D \ σm,

wherein σm−1 ⊂ D \ (σm ∪ dm);
(ii)

⋂∞
m=1 dm = ∅.

Two chains of cuts {σm} and {σ′k} are called equivalent if for each m = 1, 2, . . .
the domain dm contains all the domains d′k, except for a finite number, and for
each k = 1, 2, . . . the domain d′k also contains all domains dm, except for a finite
number.

The end of the domain D is the class of equivalent chains of cuts in D. Let
K be the end of D in Rn, then the set I(K) =

⋂∞
m=1 dm is called the impression

of the end K. Throughout the paper, Γ(E,F,D) denotes the family of all paths
γ : [a, b] → Rn such that γ(a) ∈ E, γ(b) ∈ F and γ(t) ∈ D for every t ∈ [a, b].
In what follows, M denotes the modulus of a family of paths, and the element
dm(x) corresponds to the Lebesgue measure in Rn, n > 2, see [27]. Following [18],
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we say that the end K is a prime end if K contains a chain of cuts {σm} such
that limm→∞M(Γ(C, σm, D)) = 0 for some continuum C in D. Further, the
following notations are used: the set of prime ends, corresponding to the domain
D, is denoted by ED, and the completion of the domain D by its prime ends is
denoted by DP .

Consider the definition which goes back to Näkki [18], see also [10,11]. We say
that the boundary of the domain D in Rn is locally quasiconformal if each point
x0 ∈ ∂D has a neighborhood U in Rn, which can be mapped by a quasiconformal
mapping ϕ onto the unit ball Bn ⊂ Rn such that ϕ(∂D ∩ U) is the intersection
of Bn with the coordinate hyperplane.

For the sets A,B ⊂ Rn, we set, as usual,

diamA = sup
x,y∈A

|x− y|, dist(A,B) = inf
x∈A,y∈B

|x− y|.

Sometimes we also write d(A) instead of diamA and d(A,B) instead of dist(A,B)
if no misunderstanding is possible. The sequence of cuts σm, m = 1, 2, . . . , is
called regular if σm ∩ σm+1 = ∅ for m ∈ N and, in addition, d(σm)→ 0 as m→
∞. If the end K contains at least one regular chain, then K will be called regular.
We say that a bounded domain D in Rn is regular if D can be quasiconformally
mapped to a domain with a locally quasiconformal boundary whose closure is a
compact in Rn, and, besides that, every prime end in D is regular. Notice that a
space DP = D∪ED is metric, which can be demonstrated as follows. If g : D0 →
D is a quasiconformal mapping of a domain D0 with a locally quasiconformal
boundary onto some domain D, then for x, y ∈ DP we put

ρ(x, y) := |g−1(x)− g−1(y)|, (1.5)

where the element g−1(x), x ∈ ED, is to be understood as some (single) boundary
point of the domain D0. The specified boundary point is unique and well-defined
by [8, Theorem 2.1, Remark 2.1], cf. [18, Theorem 4.1]. It is easy to verify that
ρ in (1.5) is a metric on DP , and that the topology on DP , defined by such a
method, does not depend on the choice of the map g with the indicated property.

We say that a sequence xm ∈ D, m = 1, 2, . . . , converges to a prime end of
P ∈ ED as m→∞, write xm → P as m→∞, if for any k ∈ N all elements xm
belong to dk except for a finite number. Here dk denotes a sequence of nested
domains corresponding to the definition of the prime end P. It should be noticed
that for a homeomorphism of a domain D onto D′, the end of the domain D
uniquely corresponds to some sequence of nested domains in the image under the
mapping.

Consider the following Dirichlet problem:

fz = µ(z)fz, (1.6)

lim
ζ→P

Re f(ζ) = ϕ(P ), P ∈ ED, (1.7)

where ϕ : ED → R is a prescribed continuous function. In what follows, we
assume that D is a simply connected domain in C. The solution of the problem
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(1.6), (1.7) is called regular if one of two conditions is fulfilled: either f(z) =
const in D, or f is an open discrete W 1,1

loc (D)-mapping such that J(z, f) 6= 0 for
almost any z ∈ D.

Let D be a domain in Rn, n > 2. We say that a function ψ : D → R has a
finite mean oscillation at a point x0 ∈ D, write ψ ∈ FMO(x0), if

lim sup
ε→0

1

Ωnεn

∫
B(x0,ε)

|ψ(x)− ψε| dm(x) <∞, (1.8)

where

ψε =
1

Ωnεn

∫
B(x0,ε)

ψ(x) dm(x),

and the number Ωn denotes the volume of a unit ball Bn in Rn, see [6]. Observe
that, as known, Ωnε

n = m(B(x0, ε)), and that the situation ψε → ∞ as ε → 0
under the condition (1.8) is possible. We also say that a function ψ : D → R has
a finite mean oscillation in D, write ψ ∈ FMO(D), or simply ψ ∈ FMO, if ψ
has a finite mean oscillation at any point x0 ∈ D.

Let M(z) ⊂ D, z ∈ C be a system of sets (that is, for each z0 ∈ C the symbol
M(z0) denotes some set in D). Denote by MM the set of all complex measurable
functions µ : C→ D such that µ(z) ∈M(z) for almost all z ∈ C.

Set D = {z ∈ C : |z| < 1}. A set A ⊂ D is called invariantly convex if the
set g(A) is convex for any fractional-linear automorphism g of the unit disk, see,
e.g., [21].

We fix a point z0 ∈ D and a function ϕ : ED → R. Let M(z) ⊂ D, z ∈ D, be
some system of sets. Let Fϕ,M,z0(D) be the class of all regular solutions f : D →
C of the Dirichlet problem (1.6), (1.7), which satisfy the condition Im f(z0) = 0
with µ ∈MM . We define a function QM (z) by the relation

QM (z) =
1 + qM (z)

1− qM (z)
, qM (z) = sup

ν∈M(z)
|ν|, (1.9)

and we consider thatQM (z) ≡ 1 for z ∈ C\D. The following statement generalizes
[3, Theorem 2] for the case of arbitrary simply connected Jordan domains.

Theorem 1.1. Let D be a simply connected domain in C, and let ϕ : ED →
R be a continuous function in (1.7). Let M(z), z ∈ D, be a family of invariantly
convex compact sets, and let QM be integrable in D and satisfies at least one of
the following conditions: either QM ∈ FMO(D), or∫ δ0

0

dt

tqMx0
(t)

=∞ (1.10)

for any x0 ∈ D and some δ0 = δ(x0) > 0, where

qMx0
(t) =

1

2π

∫ 2π

0
QM (x0 + teiθ) dθ.

Then the family Fϕ,M,z0(D) is compact.
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2. Preliminaries

Everywhere below, unless otherwise stated, the boundary and the closure of
a set are understood in the sense of an extended Euclidean space Rn. Let x0 ∈
D, x0 6=∞,

S(x0, r) = {x ∈ Rn : |x− x0| = r}, Si = S(x0, ri), i = 1, 2,

A = A(x0, r1, r2) = {x ∈ Rn : r1 < |x− x0| < r2}. (2.1)

Let Q : Rn → Rn be a Lebesgue measurable function satisfying the condition
Q(x) ≡ 0 for x ∈ Rn \D, and let p > 1. By following [16, Chap. 7.6], a mapping
f : D → Rn is called a ring Q-mapping at the point x0 ∈ D\{∞} if the condition

M(f(Γ(S1, S2, D))) 6
∫
A∩D

Q(x) ηn(|x− x0|) dm(x) (2.2)

holds for all 0 < r1 < r2 < d0 := supx∈D |x − x0| and all Lebesgue measurable
functions η : (r1, r2)→ [0,∞] such that∫ r2

r1

η(r) dr > 1. (2.3)

The mapping f : D → Rn is called a ring Q-mapping in D \ {∞} if (2.2)
holds for any x0 ∈ D \ {∞}. This definition can also be applied to the point
x0 = ∞ by inversion: ϕ(x) = x

|x|2 , ∞ 7→ 0. In what follows, h denotes the

so-called chordal metric defined by (1.3). The next important lemma follows
from [20, Theorems 4.1 and 4.2].

Lemma 2.1. Let D be a domain in Rn, n > 2, and let Q : D → [1,∞] be a
Lebesgue measurable function. In addition, let fk, k = 1, 2, . . . be a sequence of
homeomorphisms of D into Rn, which satisfy conditions (2.2), (2.3) at any point
x0 ∈ D that converges to some mapping f : D → Rn locally uniformly in D with
respect to the chordal metric h. Assume that the function Q satisfies at least one
of two following conditions: either Q ∈ FMO(D), or∫ δ0

0

dt

tq
1

n−1
x0 (t)

=∞ (2.4)

for any x0 ∈ D and some δ0 = δ(x0) > 0, where

qx0(t) =
1

ωn−1tn−1

∫
S(x0,t)

Q(x) dHn−1,

Hn−1 denotes the (n− 1)-dimensional Hausdorff measure, and ωn−1 denotes the
area of the unit sphere in Rn. Then the mapping f is either a homeomorphism
f : D → Rn, or a constant c ∈ Rn.
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Let I be a fixed set of indices and let Di, i ∈ I, be some sequence of domains.
Following [19, Sect. 2.4], we say that a family of domains {Di}i∈I is equi-uniform
if for any r > 0 there exists a number δ > 0 such that the inequality

M(Γ(F ∗, F,Di)) > δ (2.5)

holds for any i ∈ I and any continua F, F ∗ ⊂ D such that h(F ) > r and h(F ∗) >
r. If D is a domain satisfying condition (2.5), then it is called uniform.

Given numbers δ > 0, a domain D ⊂ Rn, n > 2, a point a ∈ D and a
Lebesgue measurable function Q : Rn → Rn, Q(x) ≡ 0 for x ∈ Rn \D, denote by
FQ,a,δ(D) the family of all homeomorphisms f : D → Rn satisfying (2.2), (2.3)
in D such that h(f(a), ∂f(D)) > δ, h(Rn \ f(D)) > δ. The following statement
holds (see [24, Theorem 2]).

Lemma 2.2. Let D be regular, and let D′f = f(D) be bounded domains with
locally quasiconformal boundary which are equi-uniform over all f ∈ FQ,a,δ(D). If
Q ∈ FMO(D), or condition (2.4) holds, then any f ∈ FQ,a,δ(D) has a continuous
extension f : DP → Rn and, in addition, the family f ∈ FQ,a,δ(D) of all extended
mappings f : DP → Rn is equicontinuous in DP .

We also need to formulate a similar statement for homeomorphisms inverse
to (2.2). For this purpose, consider the following definition.

For domains D ⊂ Rn and D′ ⊂ Rn, n > 2, points a ∈ D, b ∈ D′ and a
Lebesgue measurable function Q : Rn → [0,∞] such that Q(x) ≡ 0 for x 6∈ D, we
denote by Sa,b,Q(D,D′) the family of all homeomorphisms g of D′ onto D such
that the mapping f = g−1 satisfies condition (2.2) in D, while f(a) = b.

The boundary of a domain D is called weakly flat at a point x0 if for every
number P > 0 and every neighborhood U of this point there is a neighborhood V
of the point x0 such that M(Γ(E,F,D)) > P for any continua E and F, satisfying
conditions F ∩ ∂U 6= ∅ 6= F ∩ ∂V. The boundary of a domain D is called weakly
flat if it is weakly flat at each of its points. The following statement holds (see,
e.g., [25, Theorem 7.1]).

Lemma 2.3. Assume that D is a regular domain and that D′ has a weakly
flat boundary, none of the components of which degenerates into a point. Then
any g ∈ Sa,b,Q(D,D′) has a continuous extension g : D′ → DP , while g(D′) =
DP and, in addition, the family Sa,b,Q(D,D′) of all extended mappings g : D′ →
DP is equicontinuous in D′.

3. Proof of Theorem 1.1

In general, we will use the scheme of proving Theorem 1.2 in [23].

I. Let fm ∈ Fϕ,M,z0(D), m = 1, 2, . . .. By Stoilow’s factorization theorem
(see, e.g., [26, 5(III).V]), a mapping fm has a representation

fm = ϕm ◦ gm, (3.1)
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where gm is a homeomorphism, and ϕm is an analytic function. By Lemma 1
in [22], the mapping gm belongs to the Sobolev class W 1,1

loc (D) and has a finite
distortion. Moreover, by [1, (1), Chap. I],

fmz = ϕmz(gm(z))gmz, fmz = ϕmz(gm(z))gmz (3.2)

for almost all z ∈ D. Therefore, by the relation (3.2), J(z, gm) 6= 0 for almost all
z ∈ D, in addition, Kµfm

(z) = Kµgm (z).

II. We prove that ∂gm(D) contains at least two points. Suppose the con-
trary. Then either gm(D) = C, or gm(D) = C \ {a}, where a ∈ C. Consider
first the case gm(D) = C. By Picard’s theorem, ϕm(gm(D)) is the whole plane,
except, perhaps, one point ω0 ∈ C. On the other hand, for every m = 1, 2, . . . the
function um(z) := Re fm(z) = Re(ϕm(gm(z))) is continuous on the compact set
D under condition (1.7) by the continuity of ϕ : ED → R. Therefore, there exists
Cm > 0 such that |Re fm(z)| 6 Cm for any z ∈ D, but this contradicts the fact
that ϕm(gm(D)) contains all points of the complex plane except, perhaps, one
point. The situation gm(D) = C\{a}, a ∈ C, is also impossible since the domain
gm(D) must be simply connected in C as a homeomorphic image of the simply
connected domain D.

Therefore, the boundary of the domain gm(D) contains at least two points.
Then, according to Riemann’s mapping theorem, we can transform the domain
gm(D) onto the unit disk D using the conformal mapping ψm. Let z0 ∈ D be
a point from the condition of the theorem. By using an auxiliary conformal
mapping

ψ̃m(z) =
z − (ψm ◦ gm)(z0)

1− z(ψm ◦ gm)(z0)

of the unit disk onto itself, we may consider that (ψm ◦ gm)(z0) = 0. Now, by
(3.1), we obtain that

fm = ϕm ◦ gm = ϕm ◦ ψ−1m ◦ ψm ◦ gm = Fm ◦Gm, m = 1, 2, . . . ,

where Fm := ϕm ◦ ψ−1m , Fm : D → C, and Gm = ψm ◦ gm. Obviously, a function
Fm is analytic, and Gm is a regular Sobolev homeomorphism in D. In particular,
ImFm(0) = 0 for any m ∈ N.

III. Observe that∫
D
KµGm

(z) dm(z) 6
∫
D
QM (z) dm(z) <∞, (3.3)

because the condition µ(z) ∈ M(z) implies that KµGm
(z) 6 QM (z) holds for

almost any z ∈ D, where QM (z) does not depend on m = 1, 2, . . . and is integrable
by the assumption.

IV. We prove that each mapGm, m = 1, 2, . . . , has a continuous extension to
ED, in addition, the family of extended maps Gm, m = 1, 2, . . . , is equicontinuous
in DP . Indeed, as proved in item III, KµGm

∈ L1(D). By [9, Theorem 3] (see
also [15, Theorem 3.1]), each Gm, m = 1, 2, . . . , is a ring Q-homeomorphism
in D for Q = KµGm

(z), where µ is defined in (1.6), and Kµ can be calculated
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by the formula (1.1). Notice that the unit disk D is a uniform domain as a
finitely connected flat domain at its boundary with a finite number of boundary
components (see, for example, [17, Theorem 6.2 and Corollary 6.8]). Then the
desirable conclusion is a statement of Lemma 2.2.

V. Observe that the inverse homeomorphisms G−1m , m = 1, 2, . . . , have a

continuous extension G
−1
m to ∂D as mappings from D into DP and {G−1m }∞m=1

is equicontinuous in D. Indeed, by the item IV, mappings Gm, m = 1, 2, . . . ,
are ring KµGm

(z)-homeomorphisms in D such that G−1m (0) = z0 for any m =
1, 2, . . . . In this case, the possibility of a continuous extension of G−1m to ∂D,
and the equicontinuity of {G−1m }

∞
m=1 as mappings G−1m : D → DP follows from

Lemma 2.3.

VI. Since, as proved above, the family {Gm}∞m=1 is equicontinuous in D, by
the Arzela–Ascoli criterion, there exists an increasing subsequence of numbersmk,
k = 1, 2, . . . such that Gmk

converges locally uniformly in D to some continuous
mapping G : D → C as k → ∞ (see, e.g., [27, Theorem 20.4]). By Lemma 2.1,
either G is a homeomorphism with values in Rn, or a constant in Rn. Let us prove
that the second case is impossible. We apply the approach used in the proof of
the second part of Theorem 21.9 in [27]. Suppose the contrary: let Gmk

(x) →
c = const as k →∞. Since Gmk

(z0) = 0 for all k = 1, 2, . . . , we have that c = 0.
By the item V, the family of mappings G−1m , m = 1, 2, . . . , is equicontinuous in
D. Then

h(z,G−1mk
(0)) = h(G−1mk

(Gmk
(z)), G−1mk

(0))→ 0

as k →∞, which is impossible because z is an arbitrary point of the domain D.
The obtained contradiction refutes the assumption made above. Thus, G : D →
C is a homeomorphism.

VII. According to V, the family of mappings {G−1m }∞m=1 is equicontinuous in
D. By the Arzela-Ascoli criterion (see, e.g., [27, Theorem 20.4]), we may consider

that G
−1
mk

(y), k = 1, 2, . . . , converges to some mapping F̃ : D → D as k → ∞
uniformly in D. Let us prove that F̃ = G

−1
. For this purpose, we show that

G(D) = D. Fix y ∈ D. Since Gmk
(D) = D for every k = 1, 2, . . . , we obtain that

Gmk
(xk) = y for some xk ∈ D. Since D is regular, the metric space (DP , ρ) is

compact. Thus, we may assume that ρ(xk, x0) → 0 as k → ∞, where x0 ∈ DP .
By the triangle inequality and the equicontinuity of {Gm}

∞
m=1 onto DP , see IV,

we obtain that

|G(x0)−y| = |G(x0)−Gmk
(xk)| 6 |G(x0)−Gmk

(x0)|+ |Gmk
(x0)−Gmk

(xk)| → 0

as k → ∞. Hence, G(x0) = y. Observe that x0 ∈ D because G is a homeomor-
phism. Since y ∈ D is arbitrary, the equality G(D) = D is proved. In this case,
G−1mk

→ G−1 locally uniformly in D as k →∞ (see, e.g., [20, Lemma 3.1]). Thus,

F̃ (y) = G−1(y) for every y ∈ D.
Finally, since F̃ (y) = G−1(y) for any y ∈ D and, in addition, F̃ has a contin-

uous extension on ∂D, due to the uniqueness of the limit at the boundary points,

we obtain that F̃ (y) = G
−1

(y) for y ∈ D. Therefore, we have proved that G
−1
mk
→
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G
−1

uniformly in D as k →∞ with respect to the metrics ρ in DP .

VIII. By VII, for y = eiθ ∈ ∂D,

ReFmk
(eiθ) = ϕ

(
G
−1
mk

(eiθ)
)
→ ϕ

(
G
−1

(eiθ)
)

(3.4)

as k → ∞ uniformly on θ ∈ [0, 2π). Since, by the construction, ImFmk
(0) = 0

for any k = 1, 2, . . . , by the Schwartz formula (see, e.g., [5, Section 8.III.3]), the
analytic function Fmk

is uniquely restored by its real part, namely,

Fmk
(y) =

1

2πi

∫
S(0,1)

ϕ
(
G
−1
mk

(t)
) t+ y

t− y
dt

t
. (3.5)

Set

F (y) :=
1

2πi

∫
S(0,1)

ϕ
(
G
−1

(t)
) t+ y

t− y
dt

t
. (3.6)

Let K ⊂ D be an arbitrary compact set, and let y ∈ K. By (3.5) and (3.6), we
obtain that

|Fmk
(y)− F (y)| 6 1

2π

∫
S(0,1)

∣∣ϕ(G
−1
mk

(t))− ϕ(G
−1

(t))
∣∣ ∣∣∣∣ t+ y

t− y

∣∣∣∣ |dt|. (3.7)

Since K is compact, there is 0 < R0 = R0(K) <∞ such that K ⊂ B(0, R0). By
the triangle inequality, |t+ y| 6 1 +R0 and |t− y| > |t| − |y| > 1−R0 for y ∈ K
and any t ∈ S1. Thus, ∣∣∣∣ t+ y

t− y

∣∣∣∣ 6 1 +R0

1−R0
:= M = M(K).

Put ε > 0. By (3.4), for a number ε′ := ε
M there is N = N(ε,K) ∈ N such that∣∣ϕ(G−1mk

(t)
)
− ϕ

(
G
−1

(t)
)∣∣ < ε′ for any k > N(ε) and t ∈ S1. Now, by (3.7),

|Fmk
(y)− F (y)| < ε, k > N. (3.8)

It follows from (3.8) that the sequence Fmk
converges to F as k →∞ in the unit

disk locally uniformly. In particular, we obtain that ImF (0) = 0. Notice that F
is an analytic function in D (see the remarks made at the end of item 8.III in [5]),
and

ReF (reiψ) =
1

2π

∫ 2π

0
ϕ
(
G
−1

(eiθ)
) 1− r2

1− 2r cos(θ − ψ) + r2
dθ

for z = reiψ. By [5, Theorem 2.10.III.3],

lim
ζ→z

ReF (ζ) = ϕ(G
−1

(z)), z ∈ ∂D. (3.9)

Observe that F is either constant or open and discrete (see, e.g., [26, Chap. V,
I.6 and II.5]). Thus, fmk

= Fmk
◦Gmk

converges to f = F ◦G locally uniformly
as k →∞, where f = F ◦G either is a constant or open and discrete. Moreover,
by (3.9),

lim
ζ→P

Re f(ζ) = lim
ζ→P

ReF (G(ζ)) = ϕ(G−1(G(P ))) = ϕ(P ).
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IX. Since, by VI, G is a homeomorphism, by [13, Lemma 1 and Theorem 1],
G is a regular solution of equation (1.6) for some function µ : C → D. Since the
set of points of the function F, where its Jacobian is zero, consist only of isolated
points (see [26, Ch. V, 5.II and 6.II]), f is a regular solution of the Dirichlet
problem (1.6), (1.7) whenever F 6≡ const. It remains to show that µ ∈ MM . If
f(z) = c = const in D, due to the condition (1.7), we obtain that fn(z) = c in
D, and µn(z) = 0 ∈M(z) for almost any z ∈ D. In this case, µ(z) = 0 for almost
any z ∈ D, in particular, µ ∈MM .

Let f(z) 6= const. As proved above, f is regular. Since fn(z) converge to f(z)
locally uniformly in D, in addition, the Jacobian of f does not vanish almost
everywhere, by [13, Lemma 1], µ(z) ∈ inv coM0(z) for almost any z ∈ D, where
inv coA denotes the invariant-convex hull of the set A ⊂ C (see, e.g., [21]), and
M0(z) is a cluster set of µn(z), n = 1, 2, . . . . Obviously, there is a set D0 ⊂
D such that µn(z) ∈ M(z) and µ(z) ∈ inv coM0(z) for all z ∈ D0 and any
n ∈ N, where m(D \ D0) = 0. Fix z0 ∈ D0. Let w0 ∈ M0(z0). Then there is a
subsequence of numbers nk, k = 1, 2, . . . , for which µnk

(z0) converge as k → ∞
and limk→∞ µnk

(z0) = w0. Since, by the assumption, µnk
(z0) ∈ M(z0) for any

k = 1, 2, . . . , in addition, M(z0) is closed, we obtain that w0 ∈M(z0). Thus,

M0(z0) ⊂M(z0). (3.10)

It follows from (3.10) that

inv coM0(z0) ⊂M(z0) (3.11)

because M(z0) is invariant-convex. Thus,

µ(z0) ∈ inv coM0(z0) ⊂M(z0)

for almost any z0 ∈ D, that is a desired conclusion. �

References

[1] L.V. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, Toronto, 1966.

[2] O.P. Dovhopiatyi and E.A. Sevost’yanov, On the compactness of classes of the
solutions of the Dirichlet problem, J. Math. Sci. 259 (2021), No. 1, 23–36.

[3] Yu.P. Dybov, Compactness of classes of solutions of the Dirichlet problem for the
Beltrami equations, Proc. Inst. Appl. Math. and Mech. of NAS of Ukraine 19 (2009),
81–89 (Russian).

[4] V. Gutlyanskii, V. Ryazanov, U. Srebro, and E. Yakubov, The Beltrami Equation:
A Geometric Approach. Developments in Mathematics, 26, Springer, New York,
2012.

[5] A. Hurwitz and R. Courant, The Function Theory, Nauka, Moscow, 1968 (Russian).

[6] A.A. Ignat’ev and V.I. Ryazanov, Finite mean oscillation in mapping theory, Ukr.
Mat. Visn. 2 (2005), No. 3, 395–417, 443 (Russian); Engl. transl.: Ukr. Math. Bull. 2
(2005), No. 3, 403–424.



92 Evgeny Sevost’yanov and Oleksandr Dovhopiatyi

[7] N.S. Ilkevych and E.A. Sevost’yanov, S.A. Skvortsov, On the global behavior of
inverse mappings in terms of prime ends, Ann. Acad. Sci. Fenn. Math. 46 (2021),
No. 2, 371–388.

[8] D.P. Ilyutko and E.A. Sevost’yanov, On prime ends on Riemannian manifolds, J.
Math. Sci. 241 (2019), No. 1, 47–63.

[9] D.A. Kovtonyuk, I.V. Petkov, V.I. Ryazanov, and R.R. Salimov, The boundary
behavior and the Dirichlet problem for the Beltrami equations, St. Petersburg Math.
J. 25 (2014), No. 4, 587–603.

[10] D.A. Kovtonyuk and V.I. Ryazanov, On the theory of prime ends for space map-
pings, Ukrainian Math. J. 67 (2015), No. 4, 528–541.

[11] D.A. Kovtonyuk and V.I. Ryazanov, Prime ends and Orlicz–Sobolev classes, St.
Petersburg Math. J. 27 (2016), No. 5, 765–788.

[12] T. Lomako, On the theory of convergence and compactness for Beltrami equations,
Ukrain. Math. J. 63 (2011), No. 3, 393–402.

[13] T. Lomako, On the theory of convergence and compactness for Beltrami equations
with constraints of set-theoretic type, Ukrain. Math. J. 63 (2012), No. 9, 1400–1414.

[14] T. Lomako, V. Gutlyanskii, and V. Ryazanov, To the theory of variational method
for Beltrami equations, J. Math. Sci. 182 (2012), No. 1, 37–54.

[15] T. Lomako, R. Salimov, and E. Sevost’yanov, On equicontinuity of solutions to
the Beltrami equations, Ann. Univ. Bucharest (Math. Series) LIX (2010), No. 2,
261–271.

[16] O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in modern mapping
theory, Springer Science + Business Media, LLC, New York, 2009.
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[18] R. Näkki, Prime ends and quasiconformal mappings, J. Anal. Math. 35 (1979),
13–40.
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Про компактнiсть одного класу розв’язкiв задачi
Дiрiхле

Evgeny Sevost’yanov and Oleksandr Dovhopiatyi

Ми розглядаємо задачу Дiрiхле для рiвняння Бельтрамi у довiльнiй
обмеженiй однозв’язнiй областi комплексної площини C. Само, вивчає-
ться клас усiх регулярних розв’язкiв цiєї задачi з умовами нормування i
теоретико-множинними обмеженнями на їх комплексну характеристику.
Доведена компактнiсть цього класу в термiнах простих кiнцiв за наяв-
ностi довiльної неперервної функцiї в умовi Дiрiхле.

Ключовi слова: рiвняння Бельтрамi, простi кiнцi, плоскi вiдображе-
ння зi скiнченним та обмеженим спотворенням
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