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On the Compactness of One Class of
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We consider the Dirichlet problem for the Beltrami equation in an arbi-
trary bounded simply connected domain in the complex plane C. Namely, we
study the class of all regular solutions of such a problem with a normaliza-
tion condition and set-theoretic constraints on their complex characteristics.
We have proved the compactness of this class in terms of prime ends for an
arbitrary continuous function in the Dirichlet condition.
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1. Introduction

Relatively recently, some authors have obtained the theorems on the com-
pactness of the classes of solutions of the Beltrami equations with different types
of restrictions on their complex characteristics, see, for example, [3,4,12-14]. In
particular, the results of [12, 13] were used in the variational method (see [14]).
As for this paper, it deals with the compactness of the classes of solutions of the
Dirichlet problem for the Beltrami equation. We consider here the case of the
Dirichlet problem in an arbitrary simply connected domain D in C, which does
not imply the presence of a “good” boundary. In addition, we consider the so-
called set-theoretic constraints, i.e., when the complex characteristics of solutions
belong to a fixed family of sets. Notice that some results close in context were
obtained by us in [2,23].

In what follows, a mapping f : D — C is assumed to be sense-preserving,
moreover, we assume that f has partial derivatives almost everywhere. Put fz =
(fe+ify) /2 and f. = (fy —ify) /2. The complex dilatation of f at z € D is
defined as follows: u(z) = puyr(2) = fz/f. for f. # 0 and pu(z) = 0 otherwise. The
maximal dilatation of f at z is the following function:

1+ [u(2)]
1= |p(2)]

Notice that the Jacobian of f at z € D is calculated by the formula
J(z, f) = |- = £

© Evgeny Sevost’yanov and Oleksandr Dovhopiatyi, 2024

Ku(2) = Ky (2) = (1.1)
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It is easy to see that K, (2) = % whenever partial derivatives of f exist at
z € D and, in addition, J(z, f) # 0.

We will call the Beltrami equation the differential equation of the form

fz = pn(2)fz (1.2)

where p = p(z) is a given function with |u(z)| < 1 a.e. The regular solution of
(1.2) in D C C is a homeomorphism f : D — C of the class VV&)C1 (D) such that
J(z, f) # 0 for almost all z € D.

In the extended Euclidean space R” = R"U{oo}, we use the so-called chordal
metric h defined by the equalities

|z — | 1

h(xay) = ;, L 7é 00, Yy 75 0, h(ﬂ?,OO) = T (13)
V14221 + Iyl 1+ Jaf?
see, e.g., [27, Definition 12.1]. For a given set £ C R", we put
h(E) := sup h(z,y). (1.4)

z,yeE

The quantity h(E) in (1.4) is called the chordal diameter of the set E. As usual,
the family § of mappings f : D — C is called normal if from each sequence f, €
§, n=1,2,..., one can choose a subsequence f,,, k = 1,2,..., converging to
some mapping f : D — C locally uniformly with respect to the metric h. If, in
addition, f € §, the family § is called compact.

Let D be a domain in R™, n > 2. Recall some definitions (see, for example,
[7,8,10,11]). Let w be an open set in R*, k = 1,...,n—1. A continuous mapping
o: w — R™ is called a k-dimensional surface in R™. A surface is an arbitrary (n —
1)-dimensional surface o in R™. The surface o is called a Jordan surface if o(x) #
o(y) for z # y. In the following, we will use o instead of o(w) C R™, 7 instead of
o(w) and 9o instead of o(w) \ o(w). A Jordan surface o: w — D is called a cut
of D if o separates D, that is, D \ ¢ has more than one component, do N D = &
and do N 0D # @.

A sequence of cuts o1,09,...,0m,...in D is called a chain if:

(i) the set 0,41 is contained in exactly one component d,, of the set D \ o,
wherein o,,—1 C D\ (o Udp);

(il) N2y d = 2.

Two chains of cuts {0, } and {0} } are called equivalent if for each m = 1,2, ...
the domain d,, contains all the domains d} , except for a finite number, and for
each k =1,2,... the domain dj also contains all domains d,,, except for a finite
number.

The end of the domain D is the class of equivalent chains of cuts in D. Let

K be the end of D in R™, then the set I(K) = (> _, dy, is called the impression
of the end K. Throughout the paper, I'(E, F, D) denotes the family of all paths
7v: [a,b] — R™ such that v(a) € E, v(b) € F and v(t) € D for every t € [a,b)].
In what follows, M denotes the modulus of a family of paths, and the element

dm(x) corresponds to the Lebesgue measure in R™, n > 2, see [27]. Following [18],
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we say that the end K is a prime end if K contains a chain of cuts {o,,} such
that limy, oo M(I'(C, 04, D)) = 0 for some continuum C in D. Further, the
following notations are used: the set of prime ends, corresponding to the domain
D, is denoted by Ep, and the completion of the domain D by its prime ends is
denoted by Dp.

Consider the definition which goes back to Nakki [18], see also [10,11]. We say
that the boundary of the domain D in R" is locally quasiconformal if each point
xo € 0D has a neighborhood U in R", which can be mapped by a quasiconformal
mapping ¢ onto the unit ball B™ C R™ such that (0D N U) is the intersection
of B" with the coordinate hyperplane.

For the sets A, B C R™, we set, as usual,

diam A = xs,;lepA |lx —y|, dist(A,B) = xe}élr,lgeB |z —y).

Sometimes we also write d(A) instead of diam A and d(A, B) instead of dist(A, B)
if no misunderstanding is possible. The sequence of cuts o,,, m = 1,2,..., is
called regular if 3, N G,,571 = @ for m € N and, in addition, d(o,,) — 0 as m —
oo. If the end K contains at least one regular chain, then K will be called regular.
We say that a bounded domain D in R" is regular if D can be quasiconformally
mapped to a domain with a locally quasiconformal boundary whose closure is a
compact in R, and, besides that, every prime end in D is regular. Notice that a
space Dp = DU Ep is metric, which can be demonstrated as follows. If g : Dy —
D is a quasiconformal mapping of a domain Dy with a locally quasiconformal
boundary onto some domain D, then for z,y € Dp we put

pla,y) =g (x) — g7 W), (1.5)

where the element g~!(z), 2 € Ep, is to be understood as some (single) boundary
point of the domain Dy. The specified boundary point is unique and well-defined
by [8, Theorem 2.1, Remark 2.1], cf. [18, Theorem 4.1]. It is easy to verify that
p in (1.5) is a metric on Dp, and that the topology on Dp, defined by such a
method, does not depend on the choice of the map g with the indicated property.

We say that a sequence z,, € D, m = 1,2,..., converges to a prime end of
P € Ep as m — oo, write x,,, = P as m — oo, if for any k£ € N all elements z,,
belong to dj except for a finite number. Here dj denotes a sequence of nested
domains corresponding to the definition of the prime end P. It should be noticed
that for a homeomorphism of a domain D onto D', the end of the domain D
uniquely corresponds to some sequence of nested domains in the image under the

mapping.
Consider the following Dirichlet problem:
ff = M(Z)fm .
lim Re f(¢) = ¢(P), P € Ep, (1.7)
(—P

where ¢ : Ep — R is a prescribed continuous function. In what follows, we
assume that D is a simply connected domain in C. The solution of the problem
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(1.6), (1.7) is called regular if one of two conditions is fulfilled: either f(z) =
const in D, or f is an open discrete Wli’cl(D)—mapping such that J(z, f) # 0 for
almost any z € D.

Let D be a domain in R", n > 2. We say that a function ¥ : D — R has a
finite mean oscillation at a point z¢ € D, write ¢ € FMO(xy), if

lim sup n/ () — B dm(z) < oo, (1.8)
e—0 n€ B(Iﬂyf)
where 1
), = / Y(x)dm(x),
ORETE) B (z) dm(z)

and the number €, denotes the volume of a unit ball B” in R", see [6]. Observe
that, as known, Q,e" = m(B(xo,¢)), and that the situation 1). — oo as ¢ — 0
under the condition (1.8) is possible. We also say that a function ¢ : D — R has
a finite mean oscillation in D, write ¢» € FMO(D), or simply ¥ € FMO, if 9
has a finite mean oscillation at any point xg € D.

Let M(z) C D, z € C be a system of sets (that is, for each zy € C the symbol
M (zo) denotes some set in D). Denote by iy, the set of all complex measurable
functions p : C — D such that u(z) € M(z) for almost all z € C.

Set D = {z € C:|z2|] < 1}. A set A C D is called invariantly convex if the
set g(A) is convex for any fractional-linear automorphism g of the unit disk, see,
e.g., [21].

We fix a point zp € D and a function ¢ : Ep — R. Let M(z) C D, z € D, be
some system of sets. Let §, ar,z, (D) be the class of all regular solutions f : D —
C of the Dirichlet problem (1.6), (1.7), which satisfy the condition Im f(zp) =0
with g € My,. We define a function Qy/(z) by the relation

l—l—qM(z)
= —-7=, qum(z)= sup |v|, 1.9
T m(2) VGM(Z)\ | (1.9)

Qm(2)

and we consider that Qs(z) = 1 for z € C\D. The following statement generalizes
[3, Theorem 2] for the case of arbitrary simply connected Jordan domains.

Theorem 1.1. Let D be a simply connected domain in C, and let ¢ : Ep —
R be a continuous function in (1.7). Let M(z), z € D, be a family of invariantly
convex compact sets, and let Qur be integrable in D and satisfies at least one of
the following conditions: either Qy € FMO(D), or

do
/ o (1.10)
0

tqar,, (t)

for any xo € D and some 8o = §(x) > 0, where
I 0
an,, (t) = o Qi (o + te') db.
T Jo

Then the family Ty 11,2, (D) is compact.
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2. Preliminaries

Everywhere below, unless otherwise stated, the boundary and the closure of
a set are understood in the sense of an extended Euclidean space R™. Let zg €
Da Zo 7£ 0,

S(zo,r) ={x € R": |x — x| =71}, S;=S(xo,r;), i=1,2,
A= Axg,r1,m2) ={z € R" : r| < |x — 20| < 12} (2.1)

Let @ : R® — R™ be a Lebesgue measurable function satisfying the condition
Q(z) =0 for x € R™\ D, and let p > 1. By following [16, Chap. 7.6], a mapping
f: D — R is called a ring Q-mapping at the point o € D\ {oco} if the condition

M(f(I(51,52,D))) < (@) 0" (| = wol) dm(z) (2.2)
AND

holds for all 0 < r; < rp < dy := sup,ep |z — 20| and all Lebesgue measurable
functions 7 : (r1,72) — [0, 00] such that

/T2 n(r)dr > 1. (2.3)

T1

The mapping f : D — R7™ is called a ring Q-mapping in D \ {co} if (2.2)
holds for any g € D \ {oo}. This definition can also be applied to the point
xg = oo by inversion: ¢(x) = ﬁ, oo +— 0. In what follows, h denotes the
so-called chordal metric defined by (1.3). The next important lemma follows

from [20, Theorems 4.1 and 4.2].

Lemma 2.1. Let D be a domain in R™, n > 2, and let Q : D — [1,00] be a
Lebesgue measurable function. In addition, let fi, k = 1,2,... be a sequence of
homeomorphisms of D into R™, which satisfy conditions (2.2), (2.3) at any point
xo € D that converges to some mapping f : D — R™ locally uniformly in D with
respect to the chordal metric h. Assume that the function Q satisfies at least one
of two following conditions: either Q € FMO(D), or

% qt
O tgzy (1)
for any xy € D and some 6y = 6(xg) > 0, where
1 n—1
Se— Q(x)dH" ",
Wp—1t S(zo.t)

H" ! denotes the (n — 1)-dimensional Hausdorff measure, and w,_1 denotes the
area of the unit sphere in R™. Then the mapping f is either a homeomorphism
f:D —R" ora constant c € R™.

Qo (t) =
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Let I be a fixed set of indices and let D;, i € I, be some sequence of domains.
Following [19, Sect. 2.4], we say that a family of domains {D;};cs is equi-uniform
if for any r > 0 there exists a number é > 0 such that the inequality

M(D(F*,F,D;)) > § (2.5)

holds for any ¢ € I and any continua F, F* C D such that h(F) > r and h(F*) >
r. If D is a domain satisfying condition (2.5), then it is called uniform.

Given numbers § > 0, a domain D C R", n > 2, a point ¢« € D and a
Lebesgue measurable function @ : R™ — R", Q(z) = 0 for x € R™\ D, denote by
F0.a,6(D) the family of all homeomorphisms f : D — R” satisfying (2.2), (2.3)
in D such that h(f(a),df(D)) = 6, h(R™\ f(D)) > 4. The following statement
holds (see [24, Theorem 2]).

Lemma 2.2. Let D be regular, and let D', = f(D) be bounded domains with
locally quasiconformal boundary which are equi-uniform over all f € Fqq.5(D). If
Q € FMO(D), or condition (2.4) holds, then any f € §Q,qa,5(D) has a continuous
extension f : Dp — R™ and, in addition, the family f € §g.a.s(D) of all extended
mappings f : Dp — R is equicontinuous in Dp.

We also need to formulate a similar statement for homeomorphisms inverse
0 (2.2). For this purpose, consider the following definition.

For domains D C R™ and D’ C R"*, n > 2, points a € D, b € D’ and a
Lebesgue measurable function @ : R™ — [0, oo] such that Q(x) =0 for z ¢ D, we
denote by &,.0(D, D’) the family of all homeomorphisms g of D' onto D such
that the mapping f = ¢~ ! satisfies condition (2.2) in D, while f(a) = b.

The boundary of a domain D is called weakly flat at a point xq if for every
number P > 0 and every neighborhood U of this point there is a neighborhood V'
of the point x such that M (I'(E, F, D)) > P for any continua E and F, satisfying
conditions F'NOU # @& # F NAV. The boundary of a domain D is called weakly
flat if it is weakly flat at each of its points. The following statement holds (see,
e.g., [25, Theorem 7.1}).

Lemma 2.3. Assume that D is a reqular domain and that D' has a weakly
flat boundary, none of the components of which degenerates into a point. Then
any g € Gupo(D, D) has a continuous extension g : D' — Dp, while g(D') =
Dp and, in addition, the family &,po(D, D’) of all extended mappings G : D' —
Dp is equicontinuous in D’.

3. Proof of Theorem 1.1
In general, we will use the scheme of proving Theorem 1.2 in [23].

I.  Let fi € §p,Mm,20(D), m =1,2,.... By Stoilow’s factorization theorem
(see, e.g., [26, 5(II1).V]), a mapping f,, has a representation

Jm = ©m © gm, (3’1)
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where g, is a homeomorphism, and ¢,, is an analytic function. By Lemma 1
in [22], the mapping g¢,, belongs to the Sobolev class Wlf)cl(D) and has a finite
distortion. Moreover, by [1, (1), Chap. I],

fnz = Omz(Gm(2)9mz iz = Omz(9m(2))gmsz (3.2)

for almost all z € D. Therefore, by the relation (3.2), J(z, gm) # 0 for almost all
z € D, in addition, K, (2)= K, ().

ITI. We prove that dg¢,,(D) contains at least two points. Suppose the con-
trary. Then either g,,(D) = C, or g,(D) = C\ {a}, where a € C. Consider
first the case g, (D) = C. By Picard’s theorem, ¢,,(gm (D)) is the whole plane,
except, perhaps, one point wy € C. On the other hand, for every m = 1,2, ... the
function u,,(2) := Re fin(2) = Re(@m(gm(2z))) is continuous on the compact set
D under condition (1.7) by the continuity of ¢ : Ep — R. Therefore, there exists
Cyn > 0 such that |Re f,(2)| < Cy, for any z € D, but this contradicts the fact
that @, (gm (D)) contains all points of the complex plane except, perhaps, one
point. The situation g,,(D) = C\ {a}, a € C, is also impossible since the domain
gm(D) must be simply connected in C as a homeomorphic image of the simply
connected domain D.

Therefore, the boundary of the domain g,,(D) contains at least two points.
Then, according to Riemann’s mapping theorem, we can transform the domain
gm(D) onto the unit disk D using the conformal mapping v,,. Let z9 € D be
a point from the condition of the theorem. By using an auxiliary conformal

mapping

~ 2 — (Ym0 gm) (2

1 = 2(¥m © gm)(20)
of the unit disk onto itself, we may consider that (¢, o gm)(20) = 0. Now, by
(3.1), we obtain that

fm:@mogm:90mo¢r_nlo¢mogm:Fmonu m=12,...,

where Fy, := ¢ 0t Fry i D — C, and Gy, = ¥y, © g Obviously, a function
F,,, is analytic, and G, is a regular Sobolev homeomorphism in D. In particular,
Im F,,,(0) = 0 for any m € N.

ITII. Observe that

/ Ky (2)dm(z) < / Qui(2) dm(z) < oo, (3.3)
D D

because the condition p(z) € M(z) implies that K, (z) < Qu(z) holds for
almost any z € D, where Q7(z) does not depend on m = 1,2, ... and is integrable
by the assumption.

IV. We prove that each map G,,, m = 1, 2,..., has a continuous extension to
Ep, in addition, the family of extended maps G,,, m = 1,2, ..., is equicontinuous
in Dp. Indeed, as proved in item III, K,, € L'(D). By [9, Theorem 3] (sce
also [15, Theorem 3.1]), each G,,, m = 1,2,..., is a ring @-homeomorphism
in D for Q = K, (z), where p is defined in (1.6), and K, can be calculated
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by the formula (1.1). Notice that the unit disk D is a uniform domain as a
finitely connected flat domain at its boundary with a finite number of boundary
components (see, for example, [17, Theorem 6.2 and Corollary 6.8]). Then the

desirable conclusion is a statement of Lemma 2.2.

-1

V. Observe that the inverse homeomorphisms G, ",

m = 1,2,..., have a
continuous extension G, to O as mappings from D into Dp and {é;zl i
is equicontinuous in D. Indeed, by the item IV, mappings G,,, m = 1,2,...,
are ring K, (z)-homeomorphisms in D such that G,'(0) = z for any m =
1,2,.... In this case, the possibility of a continuous extension of G;! to D,
and the equicontinuity of {6;1}::1 as mappings G} : D — Dp follows from
Lemma 2.3.

VI. Since, as proved above, the family {G,},-_; is equicontinuous in D, by
the Arzela—Ascoli criterion, there exists an increasing subsequence of numbers my,
k =1,2,... such that G,,, converges locally uniformly in D to some continuous
mapping G : D — C as k — oo (see, e.g., [27, Theorem 20.4]). By Lemma 2.1,
either G is a homeomorphism with values in R™, or a constant in R”. Let us prove
that the second case is impossible. We apply the approach used in the proof of
the second part of Theorem 21.9 in [27]. Suppose the contrary: let Gy, (z) —

¢ = const as k — 0o. Since G, (20) = 0 for all k =1,2,..., we have that ¢ = 0.
By the item V, the family of mappings G}, m = 1,2,..., is equicontinuous in
D. Then

h(z, Gy (0)) = MGy, (G, (2)), Gy (0) = 0

) mp

as k — oo, which is impossible because z is an arbitrary point of the domain D.
The obtained contradiction refutes the assumption made above. Thus, G : D —
C is a homeomorphism.

VII. According to V, the family of mappings {é;nl }°°_, is equicontinuous in
D. By the Arzela-Ascoli criterion (see, e.g., [27, Theorem 20.4]), we may consider
that é;t (y), k = 1,2,..., converges to some mapping F:D—Dask —

uniformly in D. Let us prove that F = G . For this purpose, we show that
G(D) =D. Fix y € D. Since G, (D) = D for every k = 1,2,..., we obtain that
G, (z1) = y for some z € D. Since D is regular, the metric space (Dp,p) is
compact. Thus, we may assume that p(xg, o) — 0 as k — oo, where xy € Dp.
By the triangle inequality and the equicontinuity of {ém}:;:l onto Dp, see IV,
we obtain that

[G(z0) ] = [G(w0) ~ T, (24)] < [ (z0) ~ Ty (20)| + [y (0) ~ Gomy ()] = 0
as k — oo. Hence, G(z¢) = y. Observe that zg € D because G is a homeomor-
phism. Since y € D is arbitrary, the equality G(D) = D is proved. In this case,
(jfn}c — G~ locally uniformly in D as k — oo (see, e.g., [20, Lemma 3.1]). Thus,
F(y) = G (y) for every y € D. N

Finally, since F(y) = G~1(y) for any y € D and, in addition, F has a contin-
uous extension on dD, due to the uniqueness of the limit at the boundary points,
we obtain that F\(y) = G (y) for y € D. Therefore, we have proved that é;fk —
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Gt uniformly in D as k — oo with respect to the metrics p in Dp.
VIIL. By VII, for y = ¥ € 9D,
Re B (¢7) = ¢ (G (7)) = ¢ (G () (3.4)
as k — oo uniformly on 6 € [0,27). Since, by the construction, Im F,, (0) = 0

for any k = 1,2,..., by the Schwartz formula (see, e.g., [5, Section 8.I11.3]), the
analytic function F,, is uniquely restored by its real part, namely,

1 ——1 t+y dt
F,, = — —_— .
=5 [ 2 (@n®) 70 (35)
Set
P = [ o(@m) LY (3.6)
271'7; 5(071) t— Yy t

Let K C D be an arbitrary compact set, and let y € K. By (3.5) and (3.6), we
obtain that

P (4) — F(y)] < — /S . l)»so<mt<t>> — (@ (1) '”y

t—y

<5 'mw (3.7)

Since K is compact, there is 0 < Ry = Ro(K) < oo such that K C B(0, Rp). By
the triangle inequality, [t +y| <1+ Rpand [t —y| > |t| —|y| > 1 — Ry fory € K
and any t € S'. Thus,

t—y - Ry’
Put € > 0. By (3.4), for a number ¢’ := £ there is N = N(e, K) € N such that
| (é;zt (t)) - (éfl(t)ﬁ < ¢ for any k > N(e) and t € S. Now, by (3.7),

t 1+ R
‘+y‘< T = M = M(K).

|Fni(y) — F(y)| <e, k=N, (3.8)

It follows from (3.8) that the sequence F,, converges to F' as k — oo in the unit
disk locally uniformly. In particular, we obtain that Im F'(0) = 0. Notice that F'
is an analytic function in D (see the remarks made at the end of item 8.III in [5]),

and ) )
; | e D 1—r
Wy 0
Re F(re') 27 /0 v (G (e )) 1 —2rcos(6 — ) +r? a0

for z = re?¥. By [5, Theorem 2.10.111.3],

limRe F(¢) = p(G

(—z

(2)), =€ aD. (3.9)

Observe that F' is either constant or open and discrete (see, e.g., [26, Chap. V,
1.6 and IL5]). Thus, f,, = Fm, © G, converges to f = F o G locally uniformly
as k — oo, where f = F o G either is a constant or open and discrete. Moreover,
by (3.9),

Jim, Re f(C) = lim, Re F/(G(C)) = p(GTHG(P))) = ¢(P).
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IX. Since, by VI, G is a homeomorphism, by [13, Lemma 1 and Theorem 1],
G is a regular solution of equation (1.6) for some function y : C — . Since the
set of points of the function F, where its Jacobian is zero, consist only of isolated
points (see [26, Ch. V, 5.II and 6.I1]), f is a regular solution of the Dirichlet
problem (1.6), (1.7) whenever F' # const. It remains to show that u € 9ty,. If
f(z) = ¢ = const in D, due to the condition (1.7), we obtain that f,(z) = ¢ in
D, and py(z) =0 € M(z) for almost any z € D. In this case, u(z) = 0 for almost
any z € D, in particular, u € 9My;.

Let f(z) # const. As proved above, f is regular. Since f,(z) converge to f(z)
locally uniformly in D, in addition, the Jacobian of f does not vanish almost
everywhere, by [13, Lemma 1], u(z) € inv co My(z) for almost any z € D, where
inv co A denotes the invariant-convex hull of the set A C C (see, e.g., [21]), and
My(z) is a cluster set of p,(z), n = 1,2,.... Obviously, there is a set Dy C
D such that p,(z) € M(z) and p(z) € invco My(z) for all z € Dy and any
n € N, where m(D \ Dy) = 0. Fix z9 € Dy. Let wg € My(zp). Then there is a
subsequence of numbers ng, k = 1,2,..., for which py, (20) converge as k — oo
and limy_,o0 fin, (20) = wo. Since, by the assumption, py, (20) € M(zp) for any
k=1,2,..., in addition, M(zp) is closed, we obtain that wg € M (zp). Thus,

My (z0) C M(zp). (3.10)
It follows from (3.10) that
inv co My(zp) C M (zp) (3.11)
because M (zp) is invariant-convex. Thus,
w(z0) € inveo My(z0) C M(zp)

for almost any zy € D, that is a desired conclusion. Il
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ITpo xoMmaKTHICTH OJHOTO KJIACy PO3B’A3KiB 3ajadvi
HipixJe
Evgeny Sevost’yanov and Oleksandr Dovhopiatyi

Mu posrismaemo 3agady Hipixmie mis piBuaunsg Bemabrpami y moBinbHiit
obMerKeHiit oano3s’a3nii obaacti komitekcHol mwiaomuau C. Camo, BuB4ae-
ThCS KJIAC yCIX PEryasipHUX PO3B’SI3KiB IT€T 3a/1a4i 3 yMOBAMHU HOPMYBAaHHS 1
TEOPETUKO-MHOKUHHAME OOMEYKEHHSIMU Ha, TX KOMILIEKCHY XapPaKTEPUCTUKY.
JloBeieHa KOMIAKTHICTD IHOT'O KJIACY B TepMiHAX MPOCTUX KiHIIB 3a HAsIB-
HOCTi OBLIBHOI HemepepBHOI (yHKIiT B ymoBi ipixire.

KirrowoBi cioa: piBusinHsa BesbTpaMi, mpocTi KiHIli, I0cKi BigoOparke-
HHsI 31 CKIHYEHHUM Ta OOMEXKEHUM CIIOTBOPEHHSIM
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