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On the Relative Decay of Unbounded

Semigroups on the Domain of the Generator
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We study the asymptotics of C0-semigroups on the domain of the gen-
erator. In particular, we analyze the behavior of ‖T (t)(A− λI)−1‖ as time
goes to infinity. Our results extend some existing results to the case when
the intersection of the spectrum of the generator with the imaginary axis
is non-empty. We also give a constructive example of a class of unbounded
C0-semigroups with pure imaginary point spectrum for which our theorem
is applicable.
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1. Introduction and background

Consider the abstract Cauchy problem (ACP) given in a Banach space X:{
ẋ(t) = Ax(t),

x(0) = x0.
(1.1)

Before formulating our results, we recall some basic concepts concerning (1.1).
A is a linear operator on the space X with domain D(A) and solutions of such
equations are closely related to the concept of strongly continuous semigroups,
also called C0-semigroups.

Definition 1.1 ([1, I, Definition 1.1.1]). A family T = {T (t)}t≥0 of bounded
linear operators acting on a Banach space X is called a C0-semigroup if the
following three properties are satisfied:

• T (0) = I, the identity operator on X;

• T (t)T (s) = T (t+ s) for all t, s ≥ 0;

• lim
t↓0
‖T (t)x− x‖ = 0 for all x ∈ X.

Clearly, the maps t→ T (t)x are continuous for t ≥ 0 for all x ∈ X. The generator
of T is the linear operator A with domain D(A) defined by

D(A) =

{
x ∈ X : lim

t↓0

1

t
(T (t)x− x) exists

}
,
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Ax = lim
t↓0

1

t
(T (t)x− x), x ∈ D(A).

One can easily see that for x ∈ D(A), one has

d

dt
T (t)x = AT (t)x = T (t)Ax, x ∈ D(A),

which means that t → T (t)x is a classical solution of the (1.1) with the initial
condition x ∈ D(A). An interesting and key for applications property of dynam-
ical systems is their asymptotic behavior. In this paper, we will deal with the
asymptotic behavior of families of semigroups {T (t)}t≥0 in the sense of the be-
havior of the norm ‖T (t)‖ as t→∞. A semigroup {T (t)}t≥0 is called uniformly
stable if ‖T (t)‖ → 0 as t→∞, and strongly stable if ‖T (t)x‖ → 0 as t→∞ for
all x in the Banach space X. A critical quantity for asymptotic behavior which
characterizes the semigroup is its growth bound ω0(T ), which gives a restraint on
how much the norm of the semigroup T = {T (t)}t≥0 grows or decays with time.

Definition 1.2 ([2, IV, Definition 2.1]). For a strongly continuous semigroup
T = {T (t)}t≥0, we call

ω0(T ) := inf{ω ∈ R : ∃Mω ≥ 1 ∀t ≥ 0 ‖T (t)‖ ≤Mωe
ωt}

its growth bound.

It is well-known that eω0t ≤ ‖T (t)‖. Now we will state a crucial theorem
concerning strong stability of C0-semigroups. It was first proved for the case of a
bounded generator by the first author and Shirman in 1982 [3] and later extended
to the unbounded case independently in [4, 5].

Theorem 1.3. Let A be the generator of a bounded C0-semigroup {T (t)}t≥0

on a Banach space X and let

σ(A) ∩ (iR) be at most countable,

then the semigroup {T (t)}t≥0 is strongly asymptotically stable, i.e.,

lim
t→+∞

‖T (t)x‖ = 0 for all x ∈ X,

if and only if the adjoint operator A∗ has no purely imaginary eigenvalues.

The asymptotic behavior of semigroups and their orbits has been a subject of
an intense study for the last few decades, see, e.g. [6–10]. It follows from Theorem
1.3 that, for a bounded semigroup, if σ(A) (the spectrum of the generator) is
contained in the open left-half plane {z ∈ C : <(z) < 0}, the semigroup is
strongly stable. As a consequence of the the uniform boundedness principle, if
the growth bound ω0(T ) = 0, this stability cannot be uniform. However, due to
the works [11,12], we have the following theorem:



96 Grigory M. Sklyar, Piotr Polak, and Bartosz Wasilewski

Theorem 1.4. Let T = {T (t)}t≥0 be a bounded C0-semigroup acting on a
Banach space X, and let A be its generator. Then ‖T (t)A−1‖ → 0 as t→ +∞ if
and only if the intersection of the spectrum of the generator A with the imaginary
axis is empty.

The above means that for a bounded semigroup T for which

σ(A) ⊂ {z ∈ C : <(z) < 0}, (1.2)

the orbits starting in the domain of the generator are dominated uniformly up to
the multiplication by a constant by a decaying function f(t) = ‖T (t)A−1‖, i.e.
‖T (t)x‖ ≤ f(t)Cx for all x ∈ D(A), where Cx = ‖Ax‖. This can be easily seen
by writing ‖T (t)x‖ = ‖T (t)A−1Ax‖. With this being the case, following [12],
we call the semigroup semi-uniformly stable. The semi-uniform stability may
occur even for unbounded semigroups (see [13] for example). For the case of
unbounded semigroups, it was shown in [14] that the condition (1.2) remains
necessary for ‖T (t)A−1‖ → 0. We note here that the sufficiency for C0-semigroups
of contractions has been proved independently in [15]. The mentioned results for
bounded semigroups were later extended, keeping ω0(T ) = 0, to the unbounded
case in [16] to obtain

lim
t→+∞

1

f(t)
‖T (t)A−1‖ = 0 (1.3)

for a class of so-called weight functions (f(s + t) ≤ f(s)f(t)) dominating the
semigroup norm and satisfying some additional assumptions. The proof of (1.3)
is based on results from [17] which required that Fourier transforms of functions
converging to e−λt, λ /∈ σ(A), vanish on open neighborhoods of σ(A)∩ (iR), thus
requiring σ(A) ∩ (iR) = ∅.

In this paper, we extend the result of [16] to the case σ(A) ∩ (iR) 6= ∅. Our
main result is given in Section 2 (Theorem 2.1). In this theorem, we show that
the property (1.3) (with A−1 replaced by the resolvent Rµ, µ /∈ σ(A)) holds for
some class of operators with not necessarily empty set of pure imaginary points
of spectrum. We require that the dominating function f satisfies the property

lim sup
s→+∞

f(t+ s)

f(s)
= 1, t ≥ 0. (1.4)

In the proof, we use different tools, which are based on some development of
ideas given in [14]. It is worth noting that in [14] the author constructed a
weight function dominating the norm of the semigroup and satisfying (1.4) for
an arbitrary semigroup. The constructed function is monotonic and is similar to
‖T (t)‖ in sense that f(tn) = ‖T (tn)‖ holds for some unbounded sequence tn ∈
R+. Moreover, for sufficiently regular semigroups, we show (see Corollary 2.2)
that the assertion (1.3) takes the following form

lim
t→+∞

‖T (t)Rµ‖
‖T (t)‖

= 0 for any µ /∈ σ(A), (1.5)
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where by Rµ we mean the resolvent of the semigroup generator at the point µ /∈
σ(A).

The rest of the paper is organized as follows: Section 3 is devoted to the
example of a family of semigroups with polynomial growth constructed in [23,24].
This operator has pure imaginary countable unbounded spectrum and satisfies
condition (1.5), so the Theorem 2.1 is applicable. In the appendix (Section 4) we

give calculations of exact asymptotics of
‖T (t)Rµ‖
‖T (t)‖ for the simplest case described

in Section 3.

2. Main result

Now we will state the following theorem which is the main result of this work:

Theorem 2.1. Let T = {T (t)}t≥0 be a semigroup on a Banach space X,
not necessarily bounded, with the growth bound ω0(T ) = 0 and the generator A.
Suppose f(t) : R+ → R+ is a positive function such that

lim sup
s→+∞

f(t+ s)

f(s)
= 1, t ≥ 0, (2.1)

‖T (t)‖ ≤ f(t), t ≥ 0. (2.2)

Assume further that

(a) for any λ ∈ σ(A) ∩ (iR), there exists a regular bounded curve Γλ enclosing
λ, such that Γλ ∩ σ(A) = ∅;

(b) for any λ ∈ σ(A) ∩ (iR),

lim
t→+∞

‖T (t)PΓλ‖
f(t)

= 0, (2.3)

where PΓλ is the Riesz projection associated with the curve PΓλ.

Then

lim
t→+∞

‖T (t)Rµ‖
f(t)

= 0, (2.4)

for any fixed µ 6∈ σ(A).

Preliminary Remarks. The Theorem can be proved for an arbitrary ω0 >
−∞ by considering the shifted semigroup {e−ω0tT (t)}t≥0. For this more general
case, one has simply to change 1 to eω0t in (2.1) and consider the set σ(A) ∩
(ω0 + iR) instead of σ(A) ∩ (iR) in assumptions (a) and (b). For the bounded
semigroups with ω0 = 0, the condition σ(A)∩(iR) = ∅ is sufficient and necessary
(cf. Theorem 1.4) for (1.5) to hold. In the more general case of not necessarily
bounded semigroups, this condition is no longer necessary as shown in Example
2.3, it is however sufficient since the conditions (a) and (b) are satisfied in a
trivial way for any function satisfying (2.1) and (2.2). The best candidate for
f would be the norm of the semigroup ‖T (t)‖, but it may fail to satisfy (2.1).
However, in the work [14], the author has constructed a function satisfying (2.1)
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and (2.2) which is similar to ‖T (t)‖ in the sense that f(tk) = ‖T (tk)‖ for some
unbounded sequence tk ∈ R+. This construction can be applied to any semigroup
with ω0(T ) = 0 and the constructed function is the minimal of all functions with
concave downwards logarithm.

Proof of Theorem 2.1. We use here the construction of the special operator-
valued semigroup introduced in [14]. We note here that a similar idea has already
been used in [15, 16]. Let X̃ ⊂ L(X) (the space of bounded linear operators on
X) be defined as

X̃ = {DRµ, D ∈ L(X)}, µ /∈ σ(A),

for arbitrary µ /∈ σ(A), where Q denotes the closure of the linear set Q (with
respect to the operator norm). Since X̃ is a closed subspace of a Banach space
L(X), it also is a Banach space. It is clear that X̃ does not depend on the
choice of µ. For the given semigroup {T (t)}t≥0 on the space X, let us introduce

a semigroup on the space X̃ by:

T̃ (t)B̃ = B̃T (t), B̃ ∈ X̃, t ≥ 0. (2.5)

Important properties of this semigroup were shown in [14], namely that {T̃ (t)}t≥0

forms a C0-semigroup on X̃, and that

(a) for A and Ã being the generators of {T (t)}t≥0 and {T̃ (t)}t≥0, respectively,
it holds that

σ(Ã) ⊂ σ(A); (2.6)

(b) for any B̃ ∈ X̃ and any µ /∈ σ(A), it holds that

(Ã− µI)−1B̃ = B̃(A− µI)−1. (2.7)

We note here that the proof of Theorem 2.1 is based on the idea of analyzing
the behavior of the semigroup truncated to the images of the Riesz projections
from [20]. Now, assume that (2.4) does not hold, which means that

0 6= lim sup
t→+∞

‖T (t)Rµ‖
f(t)

= lim sup
t→+∞

‖RµT (t)‖
f(t)

= lim sup
t→+∞

‖T̃ (t)Rµ‖
f(t)

. (2.8)

Let us define a following seminorm on X̃:

l(B̃) = lim sup
t→+∞

‖T̃ (t)B̃‖
f(t)

, B̃ ∈ X̃,

which is well-defined due to (2.2). The technique of constructing a seminorm and
using the quotient space defined by it appeared first in [3] and has been further
developed in many papers, such as [4, 9, 15, 16,20]. It follows from (2.8) that the
quotient space X̃/ ker l = {B̂ = B̃ + ker l : B̃ ∈ X̃} is non-zero. This space can
be equipped with a norm different from the natural one (‖B̂‖N := inf{‖B̃‖ : B̃ ∈
B̂}) of the following form

‖B̂‖′ := l(B̃), B̃ ∈ X̃.
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The space (X̃/ ker l, ‖ · ‖′) may be incomplete. Its completion with respect to the
norm ‖ · ‖′ is denoted by X̂. Let us define the family of operators T̂ (t), t ≥ 0, by
the formula

T̂ (t)B̂ = T̃ (t)B̃ + ker l, B̂ ∈ X̃/ ker l ⊂ X̂.

By applying the property (2.1) for ω0 = 0, we get

‖T̂ (t)B̂‖′ = lim sup
s→+∞

‖T̃ (t+ s)B̃‖
f(t+ s)

f(t+ s)

f(s)
= ‖B̂‖′ for B̂ ∈ X̃/ ker l.

Thus, {T̂ (t)}t≥0 is a family of isometries on X̃/ ker l with respect to the norm

‖ · ‖′. It is easy to check that for each t ≥ 0, T̂ (t) extends to an isometry on
X̂ and the family {T̂ (t)}t≥0 is a C0-semigroup of isometries. Moreover, one can
check that

ÂB̂ = ÃB̃ + ker l, and (2.9)

R(Â, µ)B̂ = R(Ã, µ)B̃ + ker l

for B̂ ∈ X̃, where Ã and Â are generators of {T̃ (t)}t≥0 and {T̂ (t)}t≥0, respectively,

and R(Ã, µ) and R(Â, µ) are the respective resolvent operators at the point µ.
Now, due to condition (a) of the Theorem, there are points on the imaginary axis
not contained in σ(A). Thus we get

(iR) 6⊂ σ(A).

This, taking into account (2.6), gives

(iR) 6⊂ σ(Ã). (2.10)

Further, it can be shown analogously as in [21,22] that

∂(σ(Â)) ∩ (iR) ⊂ σ(Ã) ∩ (iR),

where ∂ denotes the boundary of a set. This along with (2.10) and the fact that
Â is a generator of a semigroup of isometries implies that

∂σ(Â) = σ(Â) ⊂ σ(Ã) ∩ (iR) 6= (iR) (2.11)

and that {T̂ (t)}t≥0 extends to a C0-group of isometries (see, e.g. IV, Lemma 2.19

from [2]). Now, since Â is a generator of a C0-group of isometries, its spectrum
has to be non-empty (see, e.g. V, Theorem 5.1.2 from [1])

σ(Â) 6= ∅.

By combining the above with (2.11) and (2.6), we obtain:

∅ 6= σ(Â) ⊂ σ(Ã) ∩ (iR) ⊂ σ(A) ∩ (iR). (2.12)
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Note that for the case σ(A) ∩ (iR) = ∅, we obtain here a contradiction. This
means that

lim
t→+∞

‖T (t)Rµ‖
f(t)

= 0.

Now assume σ(A) ∩ (iR) 6= ∅. Let us fix λ such that

λ ∈ σ(Â) ⊂ σ(A) ∩ (iR).

It follows from the condition (a) of the theorem that there exists a bounded curve
Γλ enclosing λ such that

Γλ ∩ σ(Â) = Γλ ∩ σ(Ã) = Γλ ∩ σ(A) = ∅.

Let P̃Γλ and P̂Γλ be the Riesz projections in X̃ and X̂, respectively, corresponding

to the curve Γλ. One can see from (2.9) that for B̂ ∈ X̃/ ker l, we have

P̂ΓλB̂ = P̃ΓλB̃ + ker l. (2.13)

Furthermore, the projections P̃Γλ and P̂Γλ split the spaces X̃ and X̂ into direct

sums Z̃1 + Z̃2 and Ẑ1 + Ẑ2, respectively, so that

Z̃1 := P̃ΓλX̃,

Z̃2 := (I − P̃Γλ)X̃,

Ẑ1 := P̂ΓλX̂,

Ẑ2 := (I − P̂Γλ)X̂.

Clearly, the spectra of the restricted operators Ã|
Z̃1

and Ã|
Z̃2

are intersections of

σ(Ã) with regions inside and outside Γλ, respectively, with an analogous property
for σ(Â). Now, since the set σ(Â) is a boundary set, it consists only of approx-
imate eigenvalues (see, e.g. IV, Proposition 1.10, [2]). This means that for the
chosen λ there exists a sequence {B̂k : ‖B̂k‖′ = 1} such that

‖ÂB̂k − λB̂k‖′ → 0 as k →∞. (2.14)

Now, {B̂k} can be split into a sequence

B̂k = B̂
(1)
k + B̂

(2)
k ,

where
B̂

(1)
k ∈ Ẑ1, B̂

(2)
k ∈ Ẑ2.

Then it follows from (2.14) that∥∥∥ÂB̂(1)
k − λB̂

(1)
k

∥∥∥′ → 0,∥∥∥ÂB̂(2)
k − λB̂

(2)
k

∥∥∥′ → 0
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as k →∞. Subsequently, ∥∥∥B̂(2)
k

∥∥∥→ 0

since otherwise λ would belong to σ
(
Â|

Ẑ2

)
giving a contradiction. In conse-

quence, ∥∥∥B̂(1)
k

∥∥∥′ ≥ 1

2

for k large enough. Furthermore, by the density of X̃/ ker l in X̂ and by the

boundedness of Â|Z1 , B̂
(1)
k can be chosen from P̂Γλ(X̃/ ker l) ⊂ Ẑ1. Subsequently,

from (2.13), we get

B̂
(1)
k = P̂ΓλB̂k = P̃ΓλB̃k + ker l

for some sequence B̃k ∈ X̃. Then the following estimate holds:

1

2
≤
∥∥∥B̂(1)

k

∥∥∥′ = ∥∥P̂ΓλB̂k
∥∥′ = ∥∥P̃ΓλB̃k + ker l

∥∥′ = l(P̃ΓλB̃k)

= lim sup
t→+∞

∥∥T̃ (t)P̃ΓλB̃k
∥∥

f(t)
(2.15)

for k large enough. By integrating the equation (2.7), we obtain

P̃ΓλB̃k =

∫
Γλ

(Ã− µI)−1B̃k dµ =

∫
Γλ

B̃k(A− µI)−1 dµ = B̃kPΓλ , (2.16)

where we have used the analyticity of the resolvent operator function and the
boundedness of B̃k as an operator from L(X) to L(X) (treated as a multiplication
operator). Using (2.16) and the definition of T̃ (t)B̃ = B̃T (t) in (2.15), we get

1

2
≤ lim sup

t→+∞

∥∥T̃ (t)P̃ΓλB̃k
∥∥

f(t)
= lim sup

t→+∞

∥∥B̃kPΓλT (t)
∥∥

f(t)

≤ lim sup
t→+∞

∥∥B̃k∥∥∥∥PΓλT (t)
∥∥

f(t)
= 0,

where to evaluate the limit we have used (2.3). This yields a contradiction, thus

lim
t→+∞

∥∥T̃ (t)Rµ
∥∥

f(t)
= lim

t→+∞

∥∥T (t)Rµ
∥∥

f(t)
= 0.

Corollary 2.2. Let the function f satisfy the conditions of Theorem 2.1. If

cf(t) ≤ ‖T (t)‖ ≤ Cf(t), t ≥ 0, (2.17)

for some C, c > 0 (from here on, relation (2.17) will be denoted by ‖T (t)‖ ∼
f(t)), then the assertion of Theorem 2.1 takes the form of (1.5):

‖T (t)Rµ‖
‖T (t)‖

→ 0 as t→∞.
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Below we give a simple example of an unbounded C0-semigroup with ω0 = 0
for which (1.5) holds, despite the fact that σ(A) ∩ (iR) 6= ∅.

Example 2.3. Consider a separable Hilbert space H with the orthonormal
basis {en}n∈N, and put

T (t)e0 = eite0, T (t)e2k−1 = e(ik− 1
k

)te2k−1, T (t)e2k = e(ik− 1
k

)t(te2k−1 + e2k)

for k = 1, 2, . . .. The above defines a C0-semigroup T = {T (t)}t≥0 on H. It is
easy to see that on the invariant subspace

H1 = span{e0},

the operators T (t) and T (t)Rµ are uniformly bounded for t ≥ 0. It is less obvious
that on the complementary subspace

H2 = span{e1, e2, . . .},

the norm of the semigroup behaves as follows:

‖T (t)‖ ∼ t. (2.18)

In particular, (2.18) implies ω0 = 0. Also, direct computations show that

‖T (t)Rµ‖ ≤M, t ≥ 0.

This means that (1.5) holds despite

{i} ⊂ σ(A) ∩ (iR) 6= ∅.

Now we will give a simple example of the application of Theorem 2.1, for
which conditions (a) and (b) can be easily verified.

Example 2.4. Let {en}∞n=1 be the orthonormal basis of a Hilbert space H.
Define the operator A : D(A) ⊂ H → H as follows:

A|Hn := An :=

[
ni+ i

n 1
0 ni− i

n

]
,

where Hn = span{e2n−3, e2n−2}, n = 2, 3, 4 . . .. For each n ≥ 2, consider the
curve Γn enclosing the pair of eigenvalues i

(
n+ 1

n

)
, i
(
n− 1

n

)
. Then the image of

the Riesz projection corresponding to the curve is Hn. One can directly check
that

eAnt := Tn(t) = etni

[
ei

t
n n sin t

n

0 e−i
t
n

]
.

Since ‖T (t)‖ = sup
n≥2
‖Tn(t)‖, we have

‖T (t)‖ ∼ t. (2.19)
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It is easy to see that f(t) := t satisfies the desired conditions required by Theorem
2.1. Therefore (1.5) holds (cf. Corollary 2.2), i.e.

lim
t→+∞

∥∥T (t)A−1‖
‖T (t)

∥∥ = lim
t→+∞

∥∥T (t)A−1
∥∥

t
= 0. (2.20)

Moreover, for this simple case, we can calculate the decay rate of (2.20), namely

Tn(t)A−1
n =

in

1− n4
etni

[
(n2 − 1)ei

t
n (n2 − 1)n sin t

n + ine−i
t
n

0 (n2 + 1)e−i
t
n

]
,

hence ∥∥T (t)A−1
∥∥ = sup

n≥2

∥∥Tn(t)A−1
n

∥∥ ∼ 1, t ≥ 0.

Due to (2.19), it follows that∥∥T (t)A−1
∥∥

‖T (t)‖
∼ 1

t
→ 0, t→∞.

3. Application of the main results to a family of semigroups
with countable pure imaginary simple spectrum

In this section, we give an example of a family of unbounded semigroups
having a countable pure imaginary simple spectrum for which our result can be
applied. For the elements of this family the eigenvectors are linearly dense but
do not form a Riesz basis, which is due to the fact that the eigenvalues are not
uniformly separated (cf. [18, 19]). These semigroups were described in [23, 24].
We recall here the main steps of the construction. Let (H, ‖·‖) be a Hilbert space
with the orthonormal basis {en}∞n=2. For the sequence

λn = i log n, n = 2, 3, . . . ,

define the semigroup T = {T (t)}t≥0 by

T (t)en = etλnen.

Note that the eigenvalues are not uniformly separated. For a given N ∈ N/{0},
we are able to choose a new norm ‖ · ‖N on H dominated by ‖ · ‖ such that:

(a) The semigroup T naturally extends to a C0-semigroup T̃ on the completion
of (H, ‖ · ‖N ), say H̃N ;

(b) there exist constants m,M > 0 such that

mtN ≤ ‖T̃ (t)‖ ≤MtN + 1, t ≥ 0. (3.1)

The norm ‖ · ‖N . is constructed as follows. Let (H, ‖ · ‖) be a Hilbert space with
the orthonormal basis {en}∞n=2. Any element x ∈ H has a unique decomposition
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∑∞
n=2 cnen for some sequence {cn} ∈ l2. This correspondence is a bijection. Since

the basis {en} is orthonormal, we have

‖x‖2 =

∞∑
n=2

|cn|2 = ‖{cn}‖l2 .

Consider the backward difference operator ∆ : l2 → l2:

∆ =


1 0 0 0 · · ·
−1 1 0 0 · · ·
0 −1 1 0 · · ·
0 0 −1 1 · · ·
...

...
...

...
. . .

 .

For any N ∈ N, we define the function ‖ · ‖N on H by

‖x‖2N =
∥∥∆N ({cn})

∥∥
l2
. (3.2)

It is easy to check that (3.2) defines a norm on H and that the space (H, ‖ · ‖N )

is not complete. The space
(
H̃N , ‖ · ‖N

)
is defined as the completion of H with

respect to the norm ‖ · ‖N .

Now, denote the generator of T̃ by Ã. It was shown in [24] that

σ(Ã) = σP (Ã) =
⋃
n≥2

{i log n}. (3.3)

Clearly, the spectrum of Ã is purely imaginary and the semigroup T̃ grows exactly
like a polynomial. We are going to check that the semigroup T̃ with f(t) :=
MtN + 1 meet the conditions of Theorem 2.1 for arbitrary N ∈ N/{0}. Indeed,
for each λn = i log n, see (3.3), one can choose Γn surrounding only one point of
σ(Ã), namely, λn. Note also that, for x ∈ H ⊂ H̃N ,

Ãx = Ax,

R̃(λ)x = R(λ)x,

P̃Γnx = PΓnx.

Hence, due to density of H in H̃N ,

T̃ (t)P̃Γn x̃ = eit lognP̃Γn x̃, x̃ ∈ H̃N .

It is easy to see that the function f(t) := MtN + 1 has the properties (2.1), (2.2),
and that the following holds:

‖T̃ (t)P̃Γn‖
f(t)

≤ ‖P̃Γn‖
f(t)

≤ ‖P̃Γn‖
MtN

→ 0 as t→∞, n > 0.
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This means that the semigroup and f(t) = MtN + 1 meet the conditions of
Theorem 2.1. Application of the presented result (see Corollary 2.2) yields

0 = lim
t→+∞

‖T̃ (t)R̃µ‖
MtN + 1

= lim
t→+∞

‖T̃ (t)R̃µ‖
tN

= lim
t→+∞

‖T̃ (t)R̃µ‖
‖T̃ (t)‖

for any µ 6∈ σ(Ã). �
If we want a more precise estimation, it is difficult even in the simplest case

of N = 1. A more accurate estimate for this case (4.1) can be found in the
appendix. For larger values of N one can only expect the calculations to be more
cumbersome. From the above considerations follows a corollary concerning the
sufficient condition for (1.5) to hold.

Corollary 3.1. Let T = {T (t)}t≥0 be a C0-semigroup with the generator A
and ω0(T ) = 0. If

σ(A) = σP (A) =
⋃
n∈N
{λn} , λn ∈ (iR),

where all eigenvalues λn are simple, and

‖T (t)‖ ∼ f(t),

for an unbounded function f(t) (see Corollary 2.2). Then the following holds

‖T (t)Rµ‖
‖T (t)‖

→ 0 as t→∞,

for any µ /∈ σ(A).

4. Appendix

Here we give detailed computations of the rate of decay of∥∥T̃ (t)R̃µ
∥∥

‖T̃ (t)‖
as t→ +∞,

where T̃ (t) is acting on the space H̃1. This is the simplest case from previous
section when N = 1. The action of the generator, resolvent at the point 0 and
product of the semigroup with the resolvent are as follows:

Ãen = i log(n)en, n ≥ 2,

Ã−1en =
1

i log(n)
en, n ≥ 2,

T̃ (t)Ã−1en =
eit log(n)

i log(n)
en, n ≥ 2,

T̃ (t)Ã−1x =
∞∑
n=2

cn
eit log(n)

i log(n)
en.
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Example 4.1. Consider T̃ : H̃1 → H̃1, then (see (3.2))

‖x̃‖1 =

( ∞∑
n=2

|cn+1 − cn|2 + |c2|2
) 1

2

, x̃ ∈ H̃1.

We will prove that, for this case,∥∥T̃ (t)R̃µ
∥∥

‖T̃ (t)‖
∼ 1

log(t)
. (4.1)

In further considerations, we will use the following inequality

∞∑
n=1

|cn|2

n2
≤ 4

∞∑
n=1

|cn+1 − cn|2, {cn}∞n=1 ⊂ C, (4.2)

which is a special case of Hardy’s inequality:

∞∑
n=1

(
1

n

n∑
k=1

ak

)p
≤
(

p

p− 1

)p ∞∑
n=1

apn, an ≥ 0,

for p = 2. To prove (4.1) we will estimate ‖T̃ (t)Ã−1x̃‖21. It is given by

∥∥T̃ (t)Ã−1x̃
∥∥2

1
=
∞∑
n=2

∣∣∣∣∣cn+1
eit log(n+1)

i log(n+ 1)
− cn

eit log(n)

i log(n)

∣∣∣∣∣
2

+ |c2|2

≤ 2
∞∑
n=2

∣∣∣∣∣cn+1
eit log(n+1)

i log(n+ 1)
− cn+1

eit log(n)

i log(n)

∣∣∣∣∣
2

+ 2
∞∑
n=2

∣∣∣∣∣(cn+1 − cn)
eit log(n)

i log(n)

∣∣∣∣∣
2

+ |c2|2.

The second and third elements of the right-hand side of the inequality are clearly

bounded by B
(

t
log(t)

)2
‖x̃‖21 and C

(
t

log(t)

)2
‖x̃‖21, B, C > 0 for t > e. We only

need to look at the first sum then.

∞∑
n=2

∣∣∣∣∣cn+1
eit log(n+1)

i log(n+ 1)
− cn+1

eit log(n)

i log(n)

∣∣∣∣∣
2

=
∞∑
n=2

∣∣∣∣∣cn+1

n

n(eit log(n) log(n+ 1)− eit log(n) log(n))

log(n+ 1) log(n)

+
cn+1

n

n(eit log(n) log(n)− eit log(n+1) log(n))

log(n+ 1) log(n)

∣∣∣∣∣
2

≤ 2
∞∑
n=2

∣∣∣∣∣cn+1

n

n(eit log(n) log(n+ 1)− eit log(n) log(n))

log(n+ 1) log(n)

∣∣∣∣∣
2
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+

∣∣∣∣∣cn+1

n

n(eit log(n) log(n)− eit log(n+1) log(n))

log(n+ 1) log(n)

∣∣∣∣∣
2

= 2
∞∑
n=2

∣∣∣∣∣cn+1

n

n log(1 + 1
n)

log(n+ 1) log(n)

∣∣∣∣∣
2

+ 2
∞∑
n=2

∣∣∣∣∣cn+1

n

n(1− eit log(1+ 1
n

))

log(n+ 1)

∣∣∣∣∣
2

.

The first of the above sums, due to Hardy’s inequality (see (4.2)), is bounded by

D‖x̃‖2, and thus by D
(

t
log(t)

)2
‖x̃‖2 for t > e. We estimate the remaining sum

by splitting it into two t-dependent sums.

∞∑
n=2

∣∣∣∣∣cn+1

n

n(1− eit log(1+ 1
n

))

log(n+ 1)

∣∣∣∣∣
2

=
∑

2≤n<t

∣∣∣∣∣cn+1

n

n(1− eit log(1+ 1
n

))

log(n+ 1)

∣∣∣∣∣
2

+
∑
n≥t

∣∣∣∣∣cn+1

n

n(1− eit log(1+ 1
n

))

log(n+ 1)

∣∣∣∣∣
2

≤ E
∑

2≤n<t

∣∣∣cn+1

n

∣∣∣2( t

log(t)

)2

+
∑
n≥t

∣∣∣∣∣cn+1

n

tn log(1 + 1
n)(1− eit log(1+ 1

n
))

log(n+ 1)t log(1 + 1
n)

∣∣∣∣∣
2

≤ E
∑

2≤n<t

∣∣∣cn+1

n

∣∣∣2( t

log(t)

)2

+ F
∑
n≥t

∣∣∣∣∣cn+1

n

(1− eit log(1+ 1
n

))

t log(1 + 1
n)

∣∣∣∣∣
2(

t

log(t)

)2

≤ (E +G)

∞∑
n=2

∣∣∣cn+1

n

∣∣∣2( t

log(t)

)2

.

Where we have used the boundedness of s log(1 + 1
s ) and 1−eis

s for s ∈ R+. Thus,
again due to (4.2),∥∥T̃ (t)Ã−1x̃

∥∥
1
≤ (B + C +D + 4E + 4G)

1
2

t

log(t)
‖x̃‖1.

Thus ∥∥T̃ (t)Ã−1
∥∥ ≤M0

t

log(t)
, (4.3)

for some M0 > 0 and t > e. We will now prove the opposite inequality

m0
t

log(t)
≤
∥∥T̃ (t)Ã−1

∥∥, (4.4)

for some m0 > 0. First, we observe that due to the reverse triangle inequality, it
holds that

∥∥T̃ (t)Ã−1x̃
∥∥

1
=

 ∞∑
n=2

∣∣∣∣∣cn+1
eit log(n+1)

i log(n+ 1)
− cn

eit log(n)

i log(n)

∣∣∣∣∣
2

+ |c2|2
 1

2

≥

 ∞∑
n=2

∣∣∣∣∣cn+1
(eit log(n) log(n)− eit log(n+1) log(n))

log(n+ 1) log(n)

∣∣∣∣∣
2
 1

2
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−

 ∞∑
n=2

∣∣∣∣∣cn+1
eit log(n+1)

i log(n+ 1)
− cn+1

eit log(n)

i log(n)

∣∣∣∣∣
2
 1

2

−

 ∞∑
n=2

∣∣∣∣∣(cn+1 − cn)
eit log(n)

i log(n)

∣∣∣∣∣
2
 1

2

− |c2|.

It follows from previous considerations that

∥∥T̃ (t)Ã−1x̃
∥∥

1
≥

 ∞∑
n=2

∣∣∣∣∣cn+1
(eit log(n) log(n)− eit log(n+1) log(n))

log(n+ 1) log(n)

∣∣∣∣∣
2
 1

2

− C‖x̃‖1

for some C > 0. Thus, in order to prove (4.4), it suffices to show that

∞∑
n=2

∣∣∣cn+1
(eit log(n) − eit log(n+1))

log(n+ 1)

∣∣∣2 ≥ m2
1

( t

log(t)

)2
‖x̃‖21 (4.5)

for some m1 > 0 and t > e. To this end, we construct for each t > e an element
in H̃1 in the following way

x̃(t) = (f)
∞∑
n=1

c(t)
n en, j ∈ N,

where

c(t)
n =


n if n ≤ 2t,

4t− n if 2t < n ≤ 4t,

0 otherwise.

Observe that ∥∥x̃(t)
∥∥2

1
≤ 4t. (4.6)

Now, the following estimate holds (see (4.5)):

∞∑
n=2

∣∣∣∣∣c(t)
n+1

(eit log(n) − eit log(n+1))

log(n+ 1)

∣∣∣∣∣
2

≥
∑

t≤n≤2t

∣∣∣∣∣t1− eit log(1+ 1
n

))

log(n+ 1)

∣∣∣∣∣
2

≥
(

t

log(4t)

)2 ∑
t≤n≤2t

∣∣∣∣∣1− eit log(1+ 1
n

))

it log(1 + 1
n)

it log(1 +
1

n
)

∣∣∣∣∣
2

≥
(

t

log(4t)

)2 ∑
t≤n≤2t

∣∣∣∣∣1− eit log(1+ 1
n

))

t log(1 + 1
n)

log(1 +
1

2t
)t

∣∣∣∣∣
2

≥
(

Ct

log(4t)

)2 ∑
0≤n≤t

∣∣∣∣∣1− eit log(1+ 1
n+t

))

t log(1 + 1
n+t)

∣∣∣∣∣
2
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≥
(

Ct2

log(4t)

)2 ∑
0≤n≤t

D ≥
(

Ct

log(4t)

)2 t

2
D

for t > e and some C,D > 0 independent of t > e. Combining the above with
(4.5) and (4.6) gives

m0
t

log(t)
≤
∥∥T̃ (t)Ã−1x̃(t)

∥∥
1

‖x̃(t)‖1
for t > e. Together with (4.3) this shows that

m0
t

log(t)
≤
∥∥T̃ (t)Ã−1

∥∥ ≤M0
t

log(t)

for t > e. This implies, due to (3.1), that

m′0
1

log(t)
≤
∥∥T̃ (t)Ã−1

∥∥∥∥T̃ (t)
∥∥ ≤M ′0

1

log(t)
, (4.7)

for some m′0,M
′
0 > 0 and t > e or, equivalently,∥∥T̃ (t)R̃µ

∥∥∥∥T̃ (t)
∥∥ ∼ 1

log(t)
,

for t > e and arbitrary µ /∈ σ(Ã). �
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Про вiдносне зниження норми необмеженої пiвгрупи
в областi визначення генератора

Grigory M. Sklyar, Piotr Polak, and Bartosz Wasilewski

Дослiджується асимптотика C0-пiвгрупи в областi визначення гене-
ратора. Зокрема, ми аналiзуємо поведiнку ‖T (t)(A − λI)−1‖, коли час
прямує до нескiнченностi. Нашi результати розширюють деякi наявнi
результати на випадок, коли перетин спектра генератора з уявною вiссю
є непорожнiм. Наведено також конструктивний приклад класу необме-
жених C0-напiвгруп з чисто уявним точковим спектром, для яких наша
теорема може бути застосована.

Ключовi слова: C0-пiвгрупи, асимптотична поведiнка
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