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Principal SO(2n,C)-Bundle Fixed Points over

a Compact Riemann Surface

Álvaro Antón-Sancho

Let X be a compact connected Riemann surface of genus g ≥ 2 equipped
with a holomorphic involution σX , and let G be a semisimple complex Lie
group which admits an outer involution σ. A principal (G, σX , σ)-bundle
over X is a pair (E, ρ), where E is a principal G-bundle over X and ρ :
E → σ∗

X(σ(E)) is an isomorphism such that (σ∗
Xρ) ◦ ρ : E → E is an

automorphism of E which acts as the product by an element of the center
of G. In this paper, principal (G, σX , σ)-bundles over X are introduced and
the study is particularized to the case of G = SO(2n,C). It is shown that
the stability and polystability conditions for a principal (SO(2n,C), σX , σ)-
bundle coincide with those of the corresponding principal SO(2n,C)-bundle.
Finally, the explicit form that a principal (SO(2n,C), σX , σ)-bundle takes is
provided, and the stability of these principal (SO(2n,C), σX , σ)-bundles is
discussed.
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1. Introduction

Given a compact connected Riemann surface X of genus g ≥ 2 and a semisim-
ple complex Lie group G. A principal G-bundle over X is a holomorphic manifold
E which admits a holomorphic projection over X and a fiber-preserving right ac-
tion of G on it such that for each point x ∈ X. The restriction of E to U is
G-equivariantly isomorphic to U × G for some open connected subset U of X
with x ∈ U . The group G is called a structure group of E. From certain suitable
notions of stability and polystability, it follows that the set of isomorphism classes
of polystable principal G-bundles over X admits a structure of complex algebraic
variety, called the moduli space of principal G-bundles over X, which is denoted
by M(G). These notions were first introduced by Ramanathan [17], who also
constructed the moduli space M(G) of principal G-bundles over a compact Rie-
mann surface [18, 19]. In [8], Behrend extended these notions to group schemes
in a way that his notions coincide with those of Ramanathan [17] for principal
G-bundles over X, provided one is working over the complex numbers. Notice
that if z is an element of the center of G and E is a principal G-bundle over X,
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then the map e 7→ ez defines an automorphism of E. A principal G-bundle is
said to be simple if the only automorphisms that E admits are those induced by
elements of the center of G. The concept of a simple principal bundle is relevant
in the study of the geometry of the moduli spaces of principal G-bundles over
X since the subvariety of stable and simple G-bundles over X is a dense open
subset formed by smooth points of M(G).

The notion of the principal G-bundle over X is essential for the definition of
geometric objects. For example, a G-Higgs bundle is a pair (E,ϕ), where E is a
principal G-bundle over X and ϕ is a holomorphic global section of E(g) ⊗ K,
where E(g) is the vector bundle defined by E through the adjoint representation
of G, whose typical fiber is the Lie algebra g of G and K is the canonical line
bundle over X. Higgs bundles were first introduced by Hitchin [13] in the context
of the study of Yang-Mills equations for G = SL(2,C). The concept was later
extended by Simpson [20], who introduced G-Higgs bundles for a general G and
constructed the corresponding moduli space for these objects. When the adjoint
representation is replaced by another complex representation ofG in the definition
of G-Higgs bundles, then G-Higgs pairs arise. His study contributes to the study
of the geometry of Higgs bundles because they define subvarieties of the moduli
space of G-Higgs bundles over X [6].

The specialized literature includes several lines of research on the geometry
and topology of moduli spaces of principal G-bundles over a compact Riemann
surface. Among them, there is the definition and analysis of geometric objects
linked to the principal G-bundles over X. This is the case, for example, of real
and pseudo-real bundles over curves introduced by Biswas and Hurtubise in [9].
Given is a real form σ of G, that is, an anti-holomorphic involution of G. It defines
a C∞-bundle σ(E) by changing the right action of G on E through σ. If an anti-
holomorphic involution σX of the base curve X is also given, then a principal
G-bundle E over X defines a pseudo-real principal bundle if it is isomorphic
to σ∗X(σ(E)), where σ∗X denotes the pullback, through an isomorphism ρ which
satisfies that (σ∗Xρ)◦ρ : E → E is the automorphism of E induced by an element
of the center of G. The pseudo-real structure is called real if this central element
is the identity element. Notice that, although σ(E) is not holomorphic, σ∗X(σ(E))
is, since σX and σ are both anti-holomorphic. These objects are interesting as
they allow the study of principal bundles which reduce its structure group to a
real form of G and which admit an automorphism that lifts the anti-holomorphic
involution of X.

Another fruitful line of the study of principal bundles is through the automor-
phisms of the moduli space M(G) of principal G-bundles over X. Fringuelli [10]
proved that for g ≥ 4, every automorphism of M(G) is one of the following or a
composition of some of them:

1. If σ is an outer automorphism of G (that is, an element of the quotient of
the group of automorphisms of G by the normal subgroup of inner auto-
morphisms of G), and E is a polystable principal G-bundle over X, then a
polystable principal G-bundle σ(E) over X is defined by taking the same
total space as that of E but changing the action of G through a represen-
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tative s of σ in the group of automorphisms of G [3, 5]. Then σ induces an
automorphism of M(G).

2. Given a holomorphic automorphism σX of the base curve X and a polystable
principal G-bundle E, then σ∗XE is defined by taking the pullback which
induces an action of σX on the moduli of polystable G-bundles.

3. If Z is the center of G, then H1(X,Z) (which is identified with the set of
isomorphism classes of principal Z-bundles over X) also acts on M(G) [5,7].
Given a polystable principal G-bundle E and an element L ∈ H1(X,Z),
then the variety E ×X L of pairs, whose elements are over the same point
of X, is naturally a (G × Z)-bundle over X. Then the G-bundle E ⊗ L is
defined to be the quotient of E×X L, where (e1, z1) is identified with (e2, z2)
if there exists λ ∈ Z such that (e2, z2) = (e1λ, z1λ

−1).

The results of Fringuelli [10] generalize analogous results for vector bundles [15]
and for the groups E6 and F4 [5], and allow the study of the geometry of the
moduli spaces of principal G-bundles over X through the study of the subvarieties
of fixed points of their automorphisms in the spirit of [2, 4, 7].

Given a holomorphic involution σX of X and an outer automorphism σ of G,
the notion of principal (G, σX , σ)-bundles over X is introduced in Definition 2.1.

Definition. Let G be a complex semisimple Lie group, σ be a nontrivial
outer automorphism of G of order 2, and σX be a holomorphic involution of X.
A principal (G, σ, σX)-bundle over X is a pair (E, ρ), where E is a holomorphic
principal G-bundle over X and ρ : E → σ∗X(σ(E)) is an isomorphism of holo-
morphic principal G-bundles over X such that the composition (σ∗Xρ) ◦ ρ : E →
σ2Xσ

2(E) = E is an automorphism of E induced by an element of the center of
G fixed by an involution of G which represents σ.

Notice that thus defined, the underlying principal bundle of a principal
(G, σ, σX)-bundle over X is fixed by the automorphism of M(G) defined by the
composition of the automorphisms induced by the actions of σ and σX on it.
Proper notions of stability and polystability for this kind of pairs are introduced
in Definitions 3.1 and 3.2.

In this work, the moduli space of principal G-bundles over X are considered
when G = SO(2n,C) for n > 2. A principal SO(2n,C)-bundle can be understood
as a holomorphic rank 2n vector bundle over X with a trivial determinant bundle
and equipped with a globally-defined nondegenerate holomorphic quadratic form.
Ramanan [16] proved that a principal SO(2n,C)-bundle is stable when the vector
bundle can be written as an orthogonal direct sum of mutually nonisomorphic
orthogonal bundles which are stable as vector bundles. This is also true even in
the odd rank case. The group of outer automorphisms of SO(2n,C) is isomorphic
to Z2 since it is isomorphic to the group of graph automorphisms of the corre-
sponding Dynkin diagram [11, Proposition D. 40]. Therefore, there is a unique
nontrivial outer automorphism σ of SO(2n,C) of order 2. This is clear when
n 6= 4 since, in this case, the group of symmetries of the corresponding Dynkin
diagram is isomorphic to Z2. When n = 4, in the case when G = SO(8,C),
the Dynkin diagram admits two symmetries of order 3 that are mutually inverse
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and induce an outer automorphism of order 3 of the universal cover Spin(8,C)
of SO(8,C) called a triality automorphism. This triality automorphism comes
from a (not unique) order 3 automorphism of Spin(8,C) which induces an order
3 permutation of the elements of order 2 of the center of Spin(8,C) (which is
isomorphic to Z2 × Z2). Therefore, this order 3 automorphism cannot induce an
automorphism of SO(8,C), so no outer automorphism of order 3 of SO(8,C) can
exist [2]. Given a holomorphic involution σX of X, in Proposition 3.9, it is proved
that a principal (SO(2n,C), σX , σ)-bundle (E, ρ) over X is stable or polystable
if and only if the principal SO(2n,C)-bundle is stable or polystable.

Proposition. Let σX be a holomorphic involution of X and σ be the non-
trivial outer automorphism of order 2 of SO(2n,C) for n > 2. Let (E, ρ) be a
principal (SO(2n,C), σX , σ)-bundle over X. Then (E, ρ) is stable (respectively,
semistable, polystable) if and only if the principal SO(2n,C)-bundle E over X is
stable (respectively, semistable, polystable).

Finally, an explicit form of the underlying vector bundle of E is provided for
any principal (SO(2n,C), σX , σ)-bundle (E, ρ) over X (Theorem 4.2). Moreover,
as a consequence of this explicit description, it is proved that the underlying vec-
tor bundle of a stable principal (SO(2n,C), σX , σ)-bundle admits a decomposition
into a direct sum of even rank vector subbundles E1 ⊕ E2 (Corollary 4.3).

Theorem. Let σX be a holomorphic involution of X and σ be the nontrivial
outer automorphism of order 2 of SO(2n,C) for n > 2. Let (E, ρ) be a principal
(SO(2n,C), σ, σX)-bundle over X. Then the underlying holomorphic vector bun-
dle of E admits a nontrivial decomposition into a direct sum of vector subbundles
over X of one of the following forms:

1. E1 ⊕ E2, where both subbundles have even rank, or

2. E1 ⊕E2 ⊕E3 ⊕E4, where the ranks of E1 and E2 are even, and E3 and E4

are isotropic subbundles with the same rank.

The subbundles of the decomposition satisfy σ∗XEi
∼= Ei for every i.

The paper is structured as follows. In Section 2, the notion of principal
(G, σX , σ)-bundle over X is introduced in the general case, where G is a semisim-
ple complex Lie group. The notions of stability and polystability for these
objects are included in Section 3, where it is also proved that polystability of
(SO(2n,C), σX , σ)-bundles coincides with that of principal SO(2n,C)-bundles.
Finally, in Section 4, the explicit form of principal (SO(2n,C), σX , σ)-bundles
over X is given.

2. Principal (G, σ, σX)-bundles over X

Let X be a compact connected Riemann surface equipped with a nontrivial
holomorphic involution σX : X → X. Let G be a semisimple complex Lie group
equipped with a fixed holomorphic involution s of G, and E be a principal G-
bundle over X. The principal G-bundle s(E) over X is defined to be

s(E) = E ×s G, (2.1)
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where ×s denotes the quotient of E×G in which the element (e1, g1) is identified
with (e2, g2) if there exists h ∈ G such that e2 = e1h and g2 = s(h)−1g1. This
is equivalent to defining that s(E) has the same total space of E and the same
projection map over X, but with the action of G defined by e · g = es(g) for e ∈
s(E) and g ∈ G [4, Definition 2.1]. Suppose also that G admits a nontrivial outer
automorphism σ. Recall that the group Inn(G) of inner automorphisms of G is
a normal subgroup of the group Aut(G) of automorphisms of G such that the
quotient Aut(G)/ Inn(G) is a group called the group of outer automorphisms of
G and denoted by Out(G). The group Out(G) acts on the moduli space M(G)
in the following way: if τ ∈ Out(G) and t ∈ Aut(G) is a representative of τ ,
then τ(E) is defined to be the principal G-bundle t(E) in the sense defined in
(2.1) [3, Section 3]. This is a good definition since clearly t(E) ∼= E if t ∈ Inn(G)
and t(E) naturally inherits a holomorphic structure from that of E and it is
polystable as a principal G-bundle if so is E [3]. Each outer automorphism of
G induces then a holomorphic automorphism of M(G), which is defined through
the choice of a representative of the outer automorphism, but it is independent of
the choice of a representative. Notice also that for a given outer automorphism
σ of G of order 2, it is always possible to take an order 2 automorphism s of G
which represents σ [12, Proposition 2.6].

In addition, the holomorphic involution σX of X also induces an automor-
phism of order 2 of the moduli space M(G) of principal G-bundles over X by
E 7→ σ∗XE since the holomorphic structure of σ∗XE comes as σX is holomorphic
and its polystability comes from that of E.

Definition 2.1. Let G be a complex semisimple Lie group, σ be a nontrivial
outer automorphism of G of order 2, and s be a holomorphic nontrivial involution
of G representing σ. Suppose that X is equipped with a holomorphic involution
σX . Then a principal (G, σ, σX)-bundle over X is a pair (E, ρ), where E is a
holomorphic principal G-bundle over X and ρ : E → σ∗Xσ(E) is an isomorphism
of holomorphic principal G-bundles over X, σ∗X denoting the pullback and σ(E)
being defined in (2.1) such that the composition (σ∗Xρ) ◦ ρ : E → σ2Xσ

2(E) = E
is an automorphism of E induced by an element of the center of G fixed by s.

Remark 2.2. Notice that every element z of the center Z of G induces an
automorphism of E in this way: e 7→ ez for e ∈ E. The last condition of
Definition 2.1 requires that (σ∗Xρ) ◦ ρ act as the automorphism of E induced by
an element z ∈ Z ∩Gs, where Gs denotes the subgroup of G of fixed elements of
s, to which, at least, 1 belongs.

Remark 2.3. Thus defined, the isomorphism ρ, with which a principal
(G, σ, σX)-bundle (E, ρ) over X is equipped, induces a lift to E of the holo-
morphic involution σX of X (that is, an isomorphism ρ̃ : E → E which moves
the fiber over each x ∈ X to the fiber over σX(x)) such that ρ̃(eg) = ρ̃(e)s(g) for
e ∈ E and g ∈ G, and ρ̃2 is an automorphism of E induced by a central element
of E.
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3. Stability of principal (SO(2n,C), σ, σX)-bundles

In this section, proper notions of stability, semistability and polystability for
principal (SO(2n,C), σ, σX)-bundles over a compact connected Riemann surface
admitting a holomorphic involution σX for n > 2, are discussed. In particular, it
is proved that the polystability of a principal (SO(2n,C), σ, σX)-bundle (E, ρ) is
equivalent to the polystability of the principal G-bundle E over X.

First, let G be a semisimple complex Lie group and σ be an order 2 outer
automorphism of G. Given a principal (G, σ, σX)-bundle (E, ρ) over X, the holo-
morphic principal G-bundle Ad(E) = E ×G G is defined as the quotient of E ×
G, where (e1, g1) and (e2, g2) are identified if there exists h ∈ G such that e2 =
e1h and g2 = h−1g1h. A choice of a representative s ∈ Aut(G) of order 2 of
σ induces an isomorphism of principal G-bundles sAd : Ad(E) → Ad(σ(E)) de-
fined by sAd(e, g) = (e, s(g)). The isomorphism ρ induces then an isomorphism
of principal G-bundles ρAd : Ad(E) → Ad(σ∗Xσ(E)) = σ∗X Ad(σ(E)) such that
(σ∗XρAd) ◦ ρAd : Ad(E)→ Ad(E) is the identity. Then

(
σ∗Xs

−1
Ad

)
◦ ρAd : Ad(E)→

σ∗X Ad(E) is an isomorphism of principal G-bundles over X. So, it defines an
order 2 isomorphism ρ′ : Ad(E)→ Ad(E) which moves the fiber over a point x ∈
X to the fiber over σX(x). Now, let ad(E) = E ×G g be the holomorphic vector
bundle over X associated to E for the adjoint action of G on g whose typical fiber
is g. This bundle can be understood as the quotient of E×g, where two elements
(e1, v1) and (e2, v2) are identified exactly when there exists h ∈ G such that e2 =
e1h and v2 = ad(h−1)(v1). Therefore, it is the Lie algebra bundle corresponding
to Ad(E). The holomorphic isomorphism ρ′ of Ad(E) gives rise to a holomorphic
isomorphism ρ′′ : ad(E)→ ad(E) defined by taking the quotient of ρ× ds : E ×
g → E × g that moves the fiber over each x ∈ X to the fiber over σX(x). Of
course, this is an involution that preserves the Lie algebra structure on the fibers
of ad(E). Notice that ρ′′ induces an isomorphism

ad(E)→ ad(σ∗Xσ(E)) = σ∗Xσ(ad(E)). (3.1)

Given any x ∈ X, a complex linear subspace M of the fiber ad(E)x of ad(E)
over x is called parabolic subalgebra if it is the Lie subalgebra of a parabolic
subalgebra p of ad(E)x (that is, if M = p for some parabolic subalgebra p of
ad(E)x which corresponds with certain parabolic subgroup P of G). Similarly,
a holomorphic vector subbundle F ⊆ ad(E) is called the parabolic subalgebra
bundle if for each base point x ∈ X, the fiber Fx over x is a parabolic subalgebra
of ad(E)x.

Definition 3.1. A principal (G, σ, σX)-bundle (E, ρ) over X is semistable
(respectively, stable) if for every parabolic subbundle F of ad(E) with ρ′′(F ) =
F it is satisfied that degF ≤ 0 (respectively, degF < 0), where ρ′′ is defined in
(3.1).

Let now F ⊆ ad(E) be a parabolic subalgebra bundle such that ρ′′(F ) =
F . For each x ∈ X, let Rx(F ) ⊆ F be the nilpotent radical of the parabolic
subalgebra Fx. The sheaf R(F ), given by all these nilpotent radicals, satisfies
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that ρ′′(R(F )) = R(F ) and the quotient F/R(F ) is a bundle of reductive Lie
algebras over X. A Levi subalgebra bundle of F is a holomorphic subbundle
L(F ) ⊆ F such that each fiber L(F )x is a Lie subalgebra of Fx isomorphic to
Fx/Rx(F ) through the composition

L(F ) ↪→ F → F/R(F ).

Notice that the fibers of a Levi subalgebra bundle are reductive subalgebras. This
allows us to extend the notion of stability and semistability to this kind of Lie
algebra bundles: a Levi subalgebra bundle L(F ) with ρ′′(F ) = F is semistable
(respectively, stable) if for every parabolic subalgebra bundle S ⊆ L(F ) such that
ρ′′(S) = S it is satisfied that deg(S) ≤ 0 (respectively, deg(S) < 0).

Definition 3.2. Let (E, ρ) be a semistable principal (G, σ, σX)-bundle over
X. Then it is polystable if either (E, ρ) is stable as a principal (G, σ, σX)-bundle
or there is a proper parabolic subalgebra bundle F ⊆ ad(E) and a Levi subalgebra
bundle L(F ) ⊆ F such that ρ′′(F ) = F , ρ′′(L(F )) = L(F ), and L(F ) is stable,
where ρ′′ is defined in (3.1).

Remark 3.3. The definitions given for principal (G, σ, σX)-bundles over X are
compatible with the notions introduced by Ramanathan [17] and Behrend [8].

The following results explore the notions of stability, semistability and
polystability of principal (G, σ, σX)-bundles over X and relate them to those
of the corresponding principal G-bundles. The main objective is to prove that
thus defined principal (G, σ, σX)-bundle (E, ρ) is stable (respectively, semistable,
polystable) if and only if the principal G-bundle E over X is stable (respectively,
semistable, polystable) when G = SO(2n,C) for n > 2.

Lemma 3.4. Let (E, ρ) be a principal (G, σ, σX)-bundle over X. Then it is
semistable if and only if the vector bundle ad(E) is semistable.

Proof. In the case, where ad(E) is semistable as a vector bundle, (E, ρ) is
semistable by definition. For the converse, suppose that (E, ρ) is semistable and
ad(E) is not semistable. Let

0 ( F1 ( F2 ( · · · ( Fn = ad(E)

be the Harder-Narasimhan filtration of the vector bundle ad(E). Then, as a
consequence of [1, Lemma 2.11], n must be odd and F(n+1)/2 be a parabolic
subalgebra bundle of ad(E) over a dense open subset U of X such that the com-
plement X \U is a complex analytic subset of codimension at least 2. Moreover,
{ρ′′(Fi)}ni=1 is a Harder-Narasimhan filtration of the same vector bundle because
ρ′′ is an isomorphism of ad(E). Therefore, from the uniqueness of the Harder-
Narasimhan filtration, it is deduced that ρ′′(F(n+1)/2) = F(n+1)/2. Also, from
the properties of the filtration, degF(n+1)/2 > 0. Then F(n+1)/2 is a parabolic
subalgebra bundle, which contradicts the semistability condition for (E, ρ).
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Lemma 3.5. Let (E, ρ) be a stable principal (G, σ, σX)-bundle over X. Then
ad(E) is polystable as a vector bundle.

Proof. Assume that (E, ρ) is stable. Then, by Lemma 3.4, ad(E) is
semistable. Suppose that ad(E) is not polystable. Then there exists a unique
filtration

0 = F0 ( F1 ( F2 ( · · · ( Fn = ad(E)

such that, for each i with 1 ≤ i ≤ n, the quotient sheaf Fi/Fi−1 is the socle of the
sheaf ad(E)/Fi−1. Recall that every semistable sheaf admits a unique maximal
polystable subsheaf of the same slope as the sheaf called the socle of the sheaf
as proved in [14, Lemma 1.5.5]. As in Lemma 3.4, the subbundle F(n+1)/2 is a
parabolic subalgebra bundle such that ρ′′(F(n+1)/2) = F(n+1)/2, by uniqueness of
the filtration, and degF(n+1)/2 > 0. Therefore, (E, ρ) is not stable. Then the
polystability of ad(E) is concluded.

Lemma 3.6. Let (E, ρ) be a polystable principal (G, σ, σX)-bundle over X.
Then the vector bundle ad(E) is polystable.

Proof. If (E, ρ) is strictly polystable (if it is stable, the statement holds by
Lemma 3.5), then it is semistable. So, ad(E) is semistable by Lemma 3.4. There
exists a proper parabolic subalgebra bundle F and a Levi subalgebra bundle L(F )
as in Definition 3.2. Suppose that ad(E) is not polystable. Let

0 = F0 ( F1 ( F2 ( · · · ( Fn = ad(E)

be the unique filtration as in the proof of Lemma 3.5. Then F1 is the socle of
ad(E). The Levi subalgebra bundle L(F ) is stable, and thus L(F ) ⊆ F1.

The vector bundle F(n−1)/2 of the filtration is the nilpotent radical bundle
of the parabolic subalgebra bundle F(n+1)/2, so F(n−1)/2 is composed of nilpo-
tent elements. Since F1 is contained in F(n−1)/2, all the elements of F1 are also
nilpotent. This is also true for the Levi subalgebra bundle L(F ). But this is
a contradiction because the fibers of L(F ) are reductive subalgebras of g. This
concludes that ad(E) must be polystable as a vector bundle.

Lemma 3.7. Let (E, ρ) be a polystable principal (SO(2n,C), σX , σ)-bundle
over X, for some n > 2, such that the principal SO(2n,C)-bundle E is strictly
polystable. Then (E, ρ) is strictly polystable.

Proof. From the strict polystability of E, the existence of a filtration 0  I  
I⊥  E of E such that

E = I ⊕ I⊥/I ⊕ E/I⊥,
where I is an isotropic subbundle of E, is deduced. It is satisfied that E/I⊥ ∼=
I∗, so I ⊕ E/I⊥ ∼= H(I) = I ⊕ I∗. Let E′ = I⊥/I. Then E = H(I)⊕ E′, where
I, I∗ and E′ are stable vector bundles, and H(I) and E′ are mutually orthogonal
subbundles of E. With the natural identification of total spaces, ρ leaves invariant
the preceding filtration. Moreover, the preceding filtration induces a parabolic
subbundle F of ad(E) such that α̃′′(F ) = F in terms of the map defined in (3.1).
This proves that (E, ρ) is strictly polystable.
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Lemma 3.8. Let (E, ρ) be a principal (G, σ, σX)-bundle over X. Suppose
that the principal G-bundle E is polystable. Then (E, ρ) is polystable.

Proof. Let F ⊆ ad(E) be a proper parabolic subalgebra bundle of ad(E) such
that the following conditions hold:

1. The bundle F reduces to a Levi subalgebra bundle L(F );

2. F is minimal satisfying the preceding condition.

It is satisfied that ρ′′(F ) = F (if it is not the case, where F ∩ ρ′′(F ) ( F is a
parabolic subalgebra bundle which contradicts that F is minimal). Therefore,
α̃′′(L(F )) = L(F ). In addition, L(F ) is stable. If it is not so, let q be the
subalgebra bundle of L(F ) which violates the stability condition, and let R(L(F ))
be the nilpotent radical. Then q ⊕ R(L(F )) ( L(F ) and it contradicts the
minimality assumption on F .

Proposition 3.9. Let σX be a holomorphic involution of X and σ be the
nontrivial outer automorphism of order 2 of SO(2n,C) for n > 2. Let (E, ρ) be
a principal (SO(2n,C), σX , σ)-bundle over X. Then (E, ρ) is stable (respectively,
semistable, polystable) if and only if the principal SO(2n,C)-bundle E over X is
stable (respectively, semistable, polystable).

Proof. This is a consequence of Lemmas 3.4, 3.5, 3.6, 3.7, and 3.8 under the
observation that the adjoint bundle ad(E) is stable, semistable, or polystable if
and only if so is the principal bundle [1].

4. Form of principal (SO(2n,C), σ, σX)-bundles and fixed points

For any semisimple complex Lie group G and any outer automorphism σ of
G of order 2, the combination of the automorphism of M(G) induced by the
action of σ, defined in (2.1), and the automorphism induced by the action of
the fixed holomorphic involution σX by pullback, allows the definition of a new
automorphism of M(G) given by

E 7→ σ∗X(σ(E)). (4.1)

Notice that if s is a holomorphic involution of SO(2n,C) representing σ, then
s leaves the elements of the center of SO(2n,C) fixed. In this situation, by Defi-
nition 2.1, a principal (SO(2n,C), σ, σX)-bundle over X is a pair (E, ρ), where E
is a fixed point of the automorphism defined in (4.1). This follows from Propo-
sition 3.9 since the polystability of a principal (SO(2n,C), σ, σX)-bundle (E, ρ)
coincides with the polystability of the corresponding principal SO(2n,C)-bundle
E. Moreover, the condition that requires a fixed point E of the automorphism de-
fined in (4.1) define a principal (SO(2n,C), σ, σX)-bundle is that the isomorphism
ρ : E → σ∗X(σ(E)), whose existence is guaranteed as E is fixed by (4.1), satisfies
that (σ∗Xρ) ◦ ρ is the automorphism of E induced by an element of the center
of SO(2n,C). Consequently, the description of the principal (SO(2n,C), σ, σX)-
bundles over X gives a complete description of the simple fixed points of the
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automorphism of M(SO(2n,C)) defined in (4.1), where simple refers to a prin-
cipal SO(2n,C) that does not admit any automorphism except those defined by
the elements of the center of the structure group (that is, a change of sign).

In Theorem 4.2, in addition to providing an explicit expression of a principal
(SO(2n,C), σ, σX)-bundle over X, it is shown that the fixed points of the au-
tomorphism of M(SO(2n,C)) defined in (4.1) must be fixed points of both the
automorphism defined in (2.1) and the automorphism induced by σX and defined
by taking the pullback. The converse is obviously true.

Lemma 4.1. Let n > 2, E be a principal SO(2n,C)-bundle over X, and let
g ∈ SO(2n,C) be a semisimple noncentral element such that E admits a reduction
of structure group to the centralizer Z(g) of g in SO(2n,C). Then the underlying
vector bundle of E admits a nontrivial decomposition into a direct sum of vector
subbundles of one of the following forms:

1. E1 ⊕ E2, where both subbundles have even rank;

2. E1 ⊕E2 ⊕E3 ⊕E4, where the ranks of E1 and E2 are even, and E3 and E4

are isotropic subbundles with the same rank.

In any case, in each fiber, the indicated subbundles are the eigenspaces of the
action of g.

Proof. Since g is semisimple, it is diagonalizable with eigenvalues λ1, . . . , λ2n.
These eigenvalues do not depend on the fiber of E chosen since they define locally
constant functions and X is connected. Let e1, . . . , e2n be a local basis on which
g diagonalizes and such that g(ei) = λiei for every i. If this basis is orthogonal,
then λ2i = 1 for every i. So, the only eigenvalues are +1 and −1, and the induced
decomposition E = E1⊕E2 is orthogonal. Of course, since g is special orthogonal
and the rank of E is even, both subbundles have even rank. If the basis above is
not orthogonal, then there exists k with 2 ≤ k ≤ 2n such that

λ1λ2 = 1,

λ2λ3 = 1,

· · ·
λk−1λk = 1,

λkλ1 = 1,

and λ2j = 1 for j > k. The eigenvectors corresponding to λ1, . . . , λk are of course
isotropic. If k is odd, then it can easily be checked that it must be λ1 = · · · = λk
and that this eigenvalue is a square root of unity (so +1 or −1). In this case, the
desired decomposition of the underlying vector bundle of E is of the form E1 ⊕
E2, where E1 is the (+1)-eigenspace of E and E2 is the (−1)-eigenspace of E.
The ranks of E1 and E2 are even because g is special orthogonal. However, if k is
even, then it must be λ1 = λ3 = · · · = λk−1 and λ2 = λ4 = · · · = λk. Therefore,
there exist two eigenvalues, λ and µ, such that

λ = λ1 = λ3 = · · · = λk−1,
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µ = λ2 = λ4 = · · · = λk,

and λµ = 1. If λ = µ, the situation is analogous to the previous one, since λ2 =
1 in this case. On the other hand, if λ 6= µ, then the announced decomposition
is of the form E1 ⊕ E2 ⊕ E3 ⊕ E4, where E1 is the (+1)-eigenspace, E2 is the
(−1)-eigenspace, E3 is the λ-eigenspace, and E4 is the µ-eigenspace, the last two
being isotropic subbundles with the same rank. Notice that in any case, the
decomposition of E is nontrivial since g is not a central element.

Theorem 4.2. Let σX be a holomorphic involution of X and σ be the non-
trivial outer automorphism of order 2 of SO(2n,C) for n > 2. Let (E, ρ) be
a principal (SO(2n,C), σ, σX)-bundle over X. Then the underlying holomorphic
vector bundle of E admits a nontrivial decomposition into a direct sum of vector
subbundles over X of one of the following forms:

1. E1 ⊕ E2, where both subbundles have even rank, or

2. E1 ⊕E2 ⊕E3 ⊕E4, where the ranks of E1 and E2 are even, and E3 and E4

are isotropic subbundles with the same rank.

The subbundles of the decomposition satisfy that σ∗XEi
∼= Ei for every i.

Proof. Let ρ : E → σ∗Xσ(E) be the isomorphism announced in Definition 2.1.
Given a choice of an element e ∈ E, there exists ge ∈ SO(2n,C) such that ρ(e) =
ege. This ge is well defined up to conjugacy, that is, if other element eh ∈ E
(with h ∈ SO(2n,C)) is chosen, then the induced element of SO(2n,C) is h−1geh
since ρ(eh) = eh(h−1geh). Moreover, the conjugacy class of ge does not depend
on the fiber chosen of E since its trace is a constant function on X. Also, ge is a
semisimple element since the group Out(SO(2n,C)) is finite, and it is not central
because the actions of σ∗X and σ are not trivial. Then the subvariety {ε ∈ E :
ρ(ε) = εge} of E is a reduction of structure group of E to the centralizer Z(ge).
By Lemma 4.1, the underlying vector bundle of E decomposes as a direct sum
of proper vector subbundles as announced in the statement, where the different
summands are the eigenspaces of the action of ge. Notice also that if s is an order-
2 automorphism of SO(2n,C) which represents σ, then s admits every element of
Z(ge) as fixed points. Indeed, if e ∈ E is an element of the described reduction
of structure group and g ∈ Z(ge), then ρ(eg) = egge = egeg by the definition of
the reduction and since g commutes with ge. But, on the other hand, it must be
ρ(eg) = eges(g), so s(g) = g. Since E ∼= σ∗Xσ(E) and the action of σ on E leaves
invariant its reduction to Z(ge), this finally proves that for each i, there exists
j such that σ∗XEi

∼= Ej . Of course, given an eigenvalue α of ge since ρ(e) is an
α-eigenvector of ge if e is an α-eigenvector of ge, given that ρ commutes with the
action of ge, it must be σ∗XEi

∼= Ei for every i.

Corollary 4.3. Let σX be a holomorphic involution of X and σ be the non-
trivial outer automorphism of order 2 of SO(2n,C) for n > 2. Let (E, ρ) be a
stable principal (SO(2n,C), σ, σX)-bundle over X. Then the underlying holomor-
phic vector bundle of E admits a nontrivial decomposition into a direct sum of
vector subbundles of even rank E1 ⊕ E2 such that σ∗XE1

∼= E1 and σ∗XE2
∼= E2.
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Proof. Under the conditions of the statement, the underlying vector bundle of
E admits a nontrivial decomposition into a direct sum of vector subbundles of one
of the two forms described in Theorem 4.2. Since the principal (SO(2n,C), σ, σX)-
bundle is stable, then the principal SO(2n,C)-bundle E is stable by Proposition
3.9. If the decomposition of the underlying vector bundle of E obtained were
of the form E1 ⊕ E2 ⊕ E3 ⊕ E4 with E3 and E4 isotropic, then E would not be
stable as a special orthogonal bundle. Hence, the decomposition into a direct sum
of even rank vector subbundles must be of the form E1 ⊕ E2 . The conditions
σ∗XE1

∼= E1 and σ∗XE2
∼= E2 follow from Theorem 4.2.

5. Conclusion

Let X be a compact connected Riemann surface of genus g ≥ 2 which admits
a nontrivial holomorphic involution σX , and let G be a semisimple complex Lie
group. Suppose, in addition, that G admits a nontrivial outer automorphism σ
of order 2. There is introduced the notion of principal (G, σX , σ)-bundle over X
as pairs (E, ρ), where E is a principal G-bundle over X and ρ : E → σ∗X(σ(E))
is a holomorphic isomorphism of G-bundles over X such that (σ∗Xρ) ◦ ρ : E →
E acts as the product by an element of the center of G. Principal (G, σX , σ)-
bundles over X are fixed points of the automorphism of the moduli space of
polystable G-bundles over X defined by combining the actions of σ and σX on
it. Moreover, every simple fixed point of such automorphism induces a principal
(G, σX , σ)-bundle over X. Proper notions of stability and polystability are given
for these geometric objects. When these definitions are applied to the case of
G = SO(2n,C) for n > 2 and the unique outer automorphism of order 2 that
this group admits, it is proved that a principal (SO(2n,C), σX , σ)-bundle (E, ρ)
over X is stable or polystable if and only if so is the principal SO(2n,C)-bundle.
Finally, it is proved that if (E, ρ) is such principal (SO(2n,C), σX , σ)-bundle over
X, then the underlying vector bundle of E admits a decomposition into two or
four vector subbundles over X. In the case of four vector subbundles, two of them
are isotropic subbundles with the same rank. These principal (SO(2n,C), σX , σ)-
bundles described as a direct sum of four vector subbundles are strictly polystable.
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Нерухомi точки головного SO(2n;C)-розшарування
над компактною рiмановою поверхнею

Álvaro Antón-Sancho

Нехай X є компактною зв’язною рiмановою поверхнею роду g ≥ 2,
оснащеною голоморфною iнволюцiєю σX , та нехай G є напiвпростою
комплексною групою Лi, яка дозволяє зовнiшню iнволюцiю σ. Голов-
не (G, σX , σ)-розшарування над X є парою (E, ρ), де E є головним G-
розшаруванням над X, а ρ : E → σ∗

X(σ(E)) є таким iзоморфiзмом, що
(σ∗

Xρ) ◦ ρ : E → E є автоморфiзмом E, який дiє як добуток з еле-
ментом центру групи G. У цiй роботi головне (G, σX , σ)-розшарування
над X введено в розгляд i дослiджено у частковому випадку, коли G =
SO(2n,C). Показано, що умови стiйкостi i мультистiйкостi для головно-
го (SO(2n,C), σX , σ)-розшарування збiгаються з такими ж умовами для
вiдповiдного головного SO(2n,C)-розшарування. Наприкiнцi, наведено
явний вигляд, якого набирає головне (SO(2n,C), σX , σ)-розшарування, i
дослiджено стiйкiсть таких (SO(2n,C), σX , σ)-розшарувань.

Ключовi слова: головне розшарування, ортогональна група, простiр
модулiв, рiманова поверхня, автоморфiзм
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