Journal of Mathematical Physics, Analysis, Geometry 2024, Vol. 20, No. 2, pp. [172](#page-0-0)[–194](#page-22-0) doi: <https://doi.org/10.15407/mag20.02.172>

Positive Matrix Representations of Rational Positive Real Functions of Several Variable[s](#page-0-1)

Michail Bessmertny˘ı

A rational homogeneous (of degree one) positive real matrix-valued function of several variables can be represented as a Schur complement to the diagonal block of a linear homogeneous matrix-valued function with positive semidefinite real matrix coefficients (the long-resolvent representation). The numerators of the partial derivatives of a positive real function are sums of squares of polynomials.

Key words: positive real function, matrix-valued function, Schur complement, long-resolvent representation, sum of squares

Mathematical Subject Classification 2020: 32A08, 47A56, 94C05

1. Introduction

The long-resolvent representation theorem (see $[4-6]$ $[4-6]$) asserts that each rational $m \times m$ matrix-valued function $f(z_1, \ldots, z_d)$ is a Schur complement

$$
f(z) = A_{11}(z) - A_{12}(z)A_{22}(z)^{-1}A_{21}(z)
$$
\n(1.1)

of the block $A_{22}(z)$ of a linear $(m + l) \times (m + l)$ matrix-valued function (linear pencil)

$$
A(z) = \{A_{ij}(z)\}_{i,j=1}^2 = A_0 + z_1 A_1 + \dots + z_d A_d.
$$
 (1.2)

If, moreover, $f(z)$ satisfies additional conditions from the list:

(i) $\overline{f(\bar{z}_1,\ldots,\bar{z}_d)} = f(z_1,\ldots,z_d),$ (ii) $f(z)^T = f(z)$, (iii) $f(\lambda z_1, \ldots, \lambda z_d) = \lambda f(z_1, \ldots, z_d), \lambda \in \mathbb{C} \setminus \{0\},\$

then one can choose matrices A_k , $k = 0, 1, \ldots, d$, to be [\(i\)](#page-0-2) real (respectively, [\(ii\)](#page-0-3) symmetric, [\(iii\)](#page-0-4) such that $A_0 = 0$). Another proof of this theorem has been recently obtained in [\[22\]](#page-22-1).

A particular role is played by the Bessmertnyĭ class $\mathbb{R}\mathcal{B}_{d}^{m\times m}$ $\binom{m \times m}{d}$ (see [\[1,](#page-21-2)[16,](#page-22-2)[17,](#page-22-3)[22\]](#page-22-1)) of functions [\(1.1\)](#page-0-5) with a positive real homogeneous matrix pencil:

$$
A(z) = z_1 A_1 + \dots + z_d A_d, \quad A_k^T = \overline{A}_k = A_k \ge 0, \quad k = 1, \dots, d.
$$

[©] Michail Bessmertny˘ı, 2024

Positive definiteness is understood in the sense of quadratic forms. Functions of class $\mathbb{R}\mathcal{B}_{d}^{m\times m}$ $\frac{m \times m}{d}$ are characteristic functions of electric circuits containing ideal transformers and elements of d type, where each element of the kth type has an impedance z_k [\[4,](#page-21-0) [5,](#page-21-3) [9\]](#page-21-4). If $f(z) \in \mathbb{R} \mathcal{B}_{d}^{m \times m}$ $\binom{m\times m}{d}$, then, from (1.1) , we get:

- (iv) $f(z) + f(z)^* \geq 0, z \in \Pi^d = \{z \in \mathbb{C}^d \mid \text{Re } z_1 > 0, \ldots, \text{Re } z_d > 0\},\$
- (v) $f(z)$ is holomorphic on Π^d .

A function $f(z)$ satisfying conditions [\(i\)–](#page-0-2)[\(v\)](#page-1-0) is called positive real [\[5\]](#page-21-3). The class of rational positive real functions is denoted by $\mathbb{R} \mathcal{P}_{d}^{m \times m}$ $\substack{m\times m\d}$.

It is clear that $\mathbb{R}\mathcal{B}_{d}^{m\times m} \subseteq \mathbb{R}\mathcal{P}_{d}^{m\times m}$ $\mathbb{R}^{m \times m}_{d}$. For $d = 1, 2$, we have $\mathbb{R}\mathcal{B}_{d}^{m \times m} = \mathbb{R}\mathcal{P}_{d}^{m \times m}$. $\substack{m\times m\d}$. If $d \geq 3$, then the question of the coincidence of the classes $\mathbb{R}\mathcal{B}_{d}^{\mathfrak{m}\times\mathfrak{m}}$ $\mathbb{R}^{\widetilde{m} \times m}_{d}$ and $\mathbb{R} \tilde{\mathcal{P}}^{m \times m}_{d}$ d still remains open (see $[2,16,22]$ $[2,16,22]$ $[2,16,22]$), with the exception of functions of degree 2 and some others [\[5,](#page-21-3)[7,](#page-21-6)[8\]](#page-21-7). In this paper, we prove $\mathbb{R}\mathcal{B}_{d}^{m\times m} = \mathbb{R}\mathcal{P}_{d}^{m\times m}$ $\int_{d}^{m \times m}$ for all $d \geq 1$.

It was proved in [\[2,](#page-21-5) Theorem 4.1] that $f(z) \in \mathbb{R}\mathcal{B}_{d}^{m \times m}$ $\int_{d}^{m \times m}$ if and only if there exist rational matrix-valued functions $\Phi_k(z)$, $k = 1, \ldots, d$, holomorphic on Π^d that satisfy the conditions:

$$
\Phi_k(\lambda z_1, \dots, \lambda z_d) = \Phi_k(z_1, \dots, z_d), \quad \lambda \in \mathbb{C} \setminus \{0\},
$$

$$
\overline{\Phi_k(\bar{z}_1, \dots, \bar{z}_d)} = \Phi_k(z_1, \dots, z_d),
$$

$$
f(z) = \sum_{k=1}^d z_k \Phi_k(z) \Phi_k(w)^*, \quad w, z \in \mathbb{C}^d.
$$
 (1.3)

Characterizations of the form [\(1.3\)](#page-1-1) for various generalizations of the class $\mathbb{R}\mathcal{B}_{d}^{m\times m}$ d were obtained in $[2, 3, 16, 17]$ $[2, 3, 16, 17]$ $[2, 3, 16, 17]$ $[2, 3, 16, 17]$ $[2, 3, 16, 17]$ $[2, 3, 16, 17]$ $[2, 3, 16, 17]$. In $[16, 17]$ $[16, 17]$, non-rational analogs of the classes $\mathbb{R}\mathcal{P}_{d}^{m\times m}$ $\mathbb{R}^{m \times m}_{d}$ and $\mathbb{R}\mathcal{B}_{d}^{m \times m}$ were studied, where the coefficients of long-resolvent representations are bounded linear operators on a Hilbert space. In [\[2\]](#page-21-5), for rational Cayley inner Herglotz–Agler functions over the right poly-halfplain (here the term "Cayley inner" means that the Cayley transform over the values of function is an inner function), long-resolvent representation [\(1.1\)](#page-0-5) was obtained, in which the matrix A_0 is skew-symmetric and the other matrices A_k are symmetric positive semidefinite. Thus, the class of Cayley inner rational Herglotz–Agler functions is an extension of the class $\mathbb{R} \mathcal{B}_{d}^{m \times m}$ $\frac{m\times m}{d}$. In [\[3\]](#page-21-8), non-rational analogs of Cayley inner Herglotz–Agler functions were studied, where the coefficients of the long-resolvent representation are linear operators on a Hilbert space, with A_0 possibly unbounded.

For rational functions, relation [\(1.3\)](#page-1-1) requires the representation of nonnegative polynomials as a sum of squares of rational functions holomorphic in Π^d . The Artin solution of Hilbert's 17th problem on the representation of a non-negative polynomial as a sum of squares of rational functions says nothing on the location of the singularities of functions in the decomposition [\[19,](#page-22-4) Ch. XI, Corollary 3.3]. A similar class of positive real functions in d variables (without condition (iii) of homogeneity of degree 1) was considered by T. Koga $[18]$. Koga's method is based on the following statement.

Lemma 1.1 (Koga's Sum-of-Squares Lemma). Let $p(x_1, \ldots, x_d)$ be a polynomial with real coefficients, quadratic in each variable. If $p(x) \geq 0$ for real x_i ,

 $i=1,\ldots,d,$ then $p(x)=\sum h_j(x)^2,$ where $h_j(x)$ are polynomials linear in each variable.

As noted by N.K. Bose, Koga's proof is wrong [\[11\]](#page-21-9). A counterexample is the non-negative polynomial not representable as a sum of polynomial squares constructed by M.-D. Choi [\[14\]](#page-21-10):

$$
x_1^2y_1^2 + x_2^2y_2^2 + x_3^2y_3^2 - 2(x_1y_1x_2y_2 + x_2y_2x_3y_3 + x_1y_1x_3y_3) + 2(x_1^2y_2^2 + x_2^2y_3^2 + x_3^2y_1^2).
$$
 (1.4)

In Koga's method, a nonnegative polynomial is a partial Wronskian

$$
F_k(x) = W_{x_k}[q, p] = q(x)\frac{\partial p(x)}{\partial x_k} - p(x)\frac{\partial q(x)}{\partial x_k}
$$
\n(1.5)

of a pair of polynomials such that $q(z)$, $p(z) \neq 0$, $z \in \Pi^d$. The polynomial [\(1.4\)](#page-2-0) does not satisfy this condition. The representation [\(1.5\)](#page-2-1) strongly restricts the class of nonnegative polynomials. In this paper, we will prove a theorem that "rehabilitates" T. Koga's method.

Theorem 1.2 (Sum-of-Squares Theorem). If $P(z)/q(z) \in \mathbb{R}P_{d}^{m \times m}$ $\int_{d}^{m \times m}$, then the partial Wronskians

$$
W_{z_k}[q, P] = q(z)\frac{\partial P(z)}{\partial z_k} - P(z)\frac{\partial q(z)}{\partial z_k}
$$

are sums of squares of polynomials.

This theorem made it possible to prove the main result: $\mathbb{R}\mathcal{P}_{d}^{m\times m} = \mathbb{R}\mathcal{B}_{d}^{m\times m}$ d for every $d \geq 1$.

The paper is organized as follows. In Section [2,](#page-3-0) we explain terminology and provide preliminary information. In Section [3,](#page-5-0) we recall the simplest properties of functions of the class $\mathbb{R}\mathcal{P}_{d}^{m\times m}$ $\binom{m\times m}{d}$ and properties of the degree reduction operator of a rational function. For a multi-affine function, a criterion for belonging to the class $\mathbb{R}\mathcal{P}_{d}^{m\times m}$ $\binom{m\times m}{d}$ is obtained (Theorem [3.7\)](#page-6-0). Section [4](#page-7-0) studies the properties of the denominators of rational functions in the Artin decomposition into the sum of squares. Theorem [4.3](#page-7-1) and Proposition [4.4](#page-7-2) allow localizing the singularities of rational functions in the Artin decomposition. A convenient representation for the partial Wronskians $W_{z_k}[q;p]$ is given in Theorem [5.1](#page-8-0) (Product Polarization The-orem) in Section [5.](#page-8-1) In fact, for a rational function $f = p/q$, this theorem implies Hefer's expansion $f(z) - f(\zeta) = \sum (z_k - \zeta_k) F_k(z, \zeta)$ with additional conditions of symmetry $F_k(z,\zeta) = F_k(\zeta, z)$.

In Section [6,](#page-11-0) we study the set of Gram matrices of a given $2n$ -form and prove the Representation Defect Lemma (Lemma [6.7\)](#page-14-0). This lemma allows one to obtain a new long-resolvent representation from a given representation if one of the matrices of the new representation is known.

In Section [7,](#page-15-0) a representation of a rational function with one nonnegative partial Wronskian is obtained in Theorem [7.1.](#page-15-1) This representation contains the Artin denominator of the nonnegative partial Wronskian in explicit form.

In Section [8](#page-16-0) on the basis of Theorem [7.1,](#page-15-1) the Sum-of-Squares Theorem (Theorem [8.2\)](#page-16-1) is proved.

In Section [9,](#page-18-0) a long-resolvent representation of a rational positive real matrixvalued function with a positive semidefinite matrix pencil is obtained in Theorem [9.1.](#page-18-1)

2. Terminology, notations and preliminaries

Let $\mathbb{R}[z]$ be a ring of polynomials in the variables $(z_1, \ldots, z_d) \in \mathbb{C}^d$ with real coefficients. We say $p(z) \in \mathbb{R}[z]$ is affine in z_k if $\deg_{z_k} p(z) = 1$, and we say $p(z)$ is multi-affine if it is affine in z_k for all $k = 1, \ldots, d$.

Recall that a circular region is a proper subset of the complex plane, which is bounded by circles (straight lines). In particular, the half-plane is a circular region. We need the following statement about symmetric multiaffine polynomials.

Theorem 2.1 (Grace–Walsh–Szegö, [\[13,](#page-21-11) Theorem 2.12]). Let p be a symmetric multi-affine polynomial in n complex variables, let C be an open or a closed circular region in \mathbb{C} , and let z_1, \ldots, z_n be any fixed points in the region \mathcal{C} . If $\deg p = n$ or C is convex, then there exists at least one point $\xi \in C$ such that $p(z_1, \ldots, z_n) = p(\xi, \ldots, \xi).$

A polynomial $p(z)$ is called a form $(n$ -form) if $p(\lambda z_1 \ldots, \lambda z_d) = \lambda^n p(z_1 \ldots, z_d)$, $\lambda \in \mathbb{C}$.

A rational matrix-valued function will be written in the form $f(z)$ $P(z)/q(z)$, where $P(z) = {p_{ij}(z)}_{i,j=1}^m$ is a matrix polynomial and $q(z)$ is a scalar polynomial. In fact, division $P(z)/q(z)$ is the standard operation of multiplying of the matrix $P(z)$ by the number $q(z)^{-1}$.

The matrix A is called real if $\overline{A} = A$ (where the bar denotes the replacement of each element of A by a complex conjugate number). The symbol A^T denotes the transpose of A. If A is a matrix with complex elements, then $A^* = \overline{A}^T$ is the Hermitian conjugate matrix.

A real symmetric $m \times m$ matrix A is called positive semidefinite $(A > 0)$ if the inequality $\eta^T A \eta \geq 0$ holds for all $\eta \in \mathbb{R}^m$, and positive definite $(A > 0)$ if $\eta^T A \eta > 0$ for all $\eta \neq 0$.

A matrix-valued form $F(z)$ is called positive semidefinite or PSD if $F(x)$ > 0 for all $x \in \mathbb{R}^d$. A matrix-valued PSD form $F(z)$ is called a sum of squares or SOS if $F(z) = H(z)H(z)^{T}$, where $H(z)$ is some matrix-valued polynomial.

If $\alpha = (\delta_1, \ldots, \delta_d) \in \mathbb{N}_0^d$, then $z^{\alpha} = z_1^{\delta_1} \cdots z_d^{\delta_d}$ is a monomial. Let $\{z^{\alpha_j}\}_{j=1}^M$ be a set of all monomials of degree n in variables z_1, \ldots, z_d . Each 2n-form $F(z)$ can be represented as

$$
F(z) = (z^{\alpha_1} \cdots z^{\alpha_M}) \begin{pmatrix} a_{11} & \cdots & a_{1M} \\ \vdots & \ddots & \vdots \\ a_{M1} & \cdots & a_{MM} \end{pmatrix} \begin{pmatrix} z^{\alpha_1} \\ \vdots \\ z^{\alpha_M} \end{pmatrix} .
$$
 (2.1)

The symmetric matrix $A = \{a_{jk}\}_{j,k=1}^M$ is called a Gram matrix of a 2n-form $F(z)$. The Gram matrix is not uniquely determined by the $2n$ -form. It is known [\[20,](#page-22-6) Theorem 1 that PSD form $F(z)$ is a SOS form if and only if $F(z)$ has a positive semidefinite Gram matrix.

If K is a field, then $K(x_1, \ldots, x_d)$ denotes the set of rational functions in variables x_1, \ldots, x_d with coefficients from the field K.

Theorem 2.2 (Artin, [\[19,](#page-22-4) Chap. XI, Corollary 3.3]). Let K be a real field admitting only one ordering. Let $f(x) \in K(x_1, \ldots, x_d)$ be a rational function that does not take negative values: $f(a) \geq 0$ for all $a = (a_1, \ldots, a_d) \in K^d$, in which $f(a)$ is defined. Then $f(x)$ is a sum of squares in $K(x_1, \ldots, x_d)$.

If $F(z)$ is a SOS form, then $s(z)^2 F(z)$ is also a SOS form for each form $s(z)$. If $F(z)$ is not representable as a sum of squares of polynomials, then the question arises: for which $s(z)$ is the form $s(z)^2 F(z)$ also not a SOS form?

Proposition 2.3 ([\[15,](#page-22-7) Lemma 2.1]). Let $F(x)$ be a PSD not SOS form and let $s(x)$ be an irreducible indefinite form in $\mathbb{R}[x_1,\ldots,x_d]$. Then s^2F is also a PSD not SOS form.

Proof. Clearly, s^2F is PSD. If $s^2F = \sum_k h_k^2$, then for every real tuple a with $s(a) = 0$, it follows that $s^2 F(a) = 0$. This implies $h_k(a)^2 = 0 \forall k$. So, on the real variety $s = 0$, we have $h_k = 0$ as well. Thus, (see [\[10\]](#page-21-12), Theorem 4.5.1) for each k, there exists g_k such that $h_k = sg_k$. This gives $F = \sum_k g_k^2$, which is a contradiction. \Box

Corollary 2.4. Let $F(x)$ be a matrix-valued PSD not SOS form and let $s(x)$ be an irreducible indefinite form in $\mathbb{R}[x_1,\ldots,x_d]$. Then s^2F is also a PSD not SOS form.

In the univariate case, coprime polynomials have no common zeros. For several variables, the situation is different (for example, examine the polynomials z_1) and z_2). Let $\mathcal{Z}(h) = \{z \in \mathbb{C}^d \mid h(z) = 0\}$ be a zero set of the polynomial h.

Theorem 2.5 ([\[21,](#page-22-8) Theorem 1.3.2]). Suppose that $d > 1$ and $s(z)$, $h(z) \in$ $\mathbb{C}[z_1,\ldots,z_d]$ are coprime polynomials such that $s(0) = h(0) = 0$. If Ω is a neighborhood of zero in \mathbb{C}^d , then:

- (a) neither of the sets $\mathcal{Z}(s) \cap \Omega$ and $\mathcal{Z}(h) \cap \Omega$ is a subset of the other,
- (b) for any $a \in \mathbb{C}$, there exists $z \in \Omega$ such that $h(z) \neq 0$, $s(z)/h(z) = a$.

The assertion [\(a\)](#page-4-0) of this theorem remains valid for polynomials coprime in the ring $\mathbb{R}[z_1, \ldots, z_d]$.

A polynomial $p(z) \in \mathbb{R}[z_1, \ldots, z_d]$ is called a polynomial with Hurwitz property or a stable polynomial if $p(z) \neq 0$ on Π^d [\[12,](#page-21-13) [13\]](#page-21-11). A homogeneous stable polynomial is called a Hurwitz form. If $F(z)$ is a Hurwitz form, then the polynomial

$$
F(x_1,\ldots,x_{k-1},z_k,x_{k+1},\ldots,x_d)
$$

has only real zeros in z_k for fixed $x_1, \ldots, x_{k-1}, x_{k+1}, \ldots, x_d \in \mathbb{R}$.

3. Degree reduction operator and positivity

Proposition 3.1. If $f(z) = P(z)/q(z) \in \mathbb{R}P_d^{m \times m}$ $\binom{m\times m}{d}$, then partial Wronskians

$$
W_{z_k}[q, P] = q(z)\frac{\partial P(z)}{\partial z_k} - P(z)\frac{\partial q(z)}{\partial z_k}, \quad k = 1, \dots, d,
$$
\n(3.1)

are PSD forms.

Proof. Suppose $k = 1$. If $\hat{x} = (x_2, \dots, x_d) \in \mathbb{R}^{d-1}$, then $\text{Im } \varphi(\zeta) = f(\zeta, \hat{x}) > 0$, $\text{Im } \zeta > 0$ and $\text{Im } \varphi(\zeta) = 0$. $\text{Im } \zeta = 0$. Hence the inequality $\text{Im } f(\zeta, \hat{x}) \geq 0$, $\text{Im } \zeta > 0$, and $\text{Im } \varphi(\zeta) = 0$, $\text{Im } \zeta = 0$. Hence the inequality $d\varphi(\zeta)/d\zeta|_{\zeta \in \mathbb{R}} \geq 0$ holds. From this,

$$
W_{z_k}[q, P](x) = q(x)^2 d\varphi(\zeta) / d\zeta|_{\zeta=x_1} \ge 0, \quad x \in \mathbb{R}^d.
$$

Proposition 3.2. Assume $f = P/q \in \mathbb{R}P_d^{m \times m}$ $\int_{d}^{m \times m}$. If $\deg_{z_k} P > \deg_{z_k} q$, then there exists a real $m \times m$ matrix $A_k \geq 0$ and a matrix form $P_1(z)$ with the following properties:

- (a) $\deg_{z_k} P_1(z) = \deg_{z_k} q(z),$
- (b) $f_1(z) = P_1(z)/q(z) \in \mathbb{R} \mathcal{P}_d^{m \times m}$ $\frac{m\times m}{d}$,
- (c) $f(z) = z_k A_k + f_1(z)$.

Proof. Suppose that $k = 1$. If $\hat{z} = (z_2, \ldots, z_d) \in \Pi^{d-1}$, then, for the function $\varphi(\zeta) = f(\zeta, \hat{z})$, the inequality $\varphi(\zeta) + \varphi(\zeta)^* \geq 0$ holds for Re $\zeta > 0$. The degrees of the numerator and denominator of such function cannot differ by more than 1. It follows that $\lim_{z_1\to\infty} f(z)/z_1 = A_1(\hat{z}) = \text{res}_{\zeta=\infty} \varphi(\zeta) \geq 0$. Since $A_1(\hat{z})$ is holomorphic on Π^{d-1} , we see that $A_1(\hat{z}) \equiv A_1 \geq 0$ is a constant matrix and $f(z, \hat{z}) = f(z, \hat{z})$ is a constant matrix and $f_1(z_1, \hat{z}) = f(z_1, \hat{z}) - z_1A_1$ is positive real. $f_1(z)$ is homogeneous. Then we have $f_1(z) \in \mathbb{R} \mathcal{P}_d^{m \times m}$. $f_1(z) \in \mathbb{R} \mathcal{P}_d^{m \times m}$ $_{d}^{m\times m}.$

Further simplification is based on the use of the degree reduction operator [\[13,](#page-21-11) [18\]](#page-22-5). In some cases, we can restrict ourselves to considering multi-affine functions. An example of multi-affine k-forms are the elementary symmetric polynomials:

$$
\sigma_k(\zeta_1,\ldots,\zeta_n) = \sum_{i_1 < i_2 < \cdots < i_k} \zeta_{i_1} \zeta_{i_2} \cdots \zeta_{i_k}, \quad \sigma_0(\zeta_1,\ldots,\zeta_n) \equiv 1. \tag{3.2}
$$

Definition 3.3. Let $p(z_0, z) = \sum_{k=0}^{n_0} p_{l-k}(z) z_0^k$ be an *l*-form. A map

$$
\mathbf{D}_{z_0}^{n_0} : \sum_{k=0}^{n_0} p_{l-k}(z) z_0^k \mapsto \sum_{k=0}^{n_0} p_{l-k}(z) {n_0 \choose k}^{-1} \sigma_k(\zeta_1, \dots, \zeta_{n_0})
$$
(3.3)

is called a degree reduction operator in the variable z_0 . If $f(z_0, z) =$ $p(z_0, z)/q(z_0, z)$, $\deg_{z_0} f(z_0, z) = n_0$, then the degree reduction operator is defined as

$$
\mathbf{D}_{z_0}^{n_0}[p(z_0,z)/q(z_0,z)] = \mathbf{D}_{z_0}^{n_0}[p(z_0,z)]/\mathbf{D}_{z_0}^{n_0}[q(z_0,z)].
$$
\n(3.4)

Under the condition $\zeta_1 = \cdots = \zeta_{n_0} = z_0$, we get the original function. Thus, the operator $\mathbf{D}_{z_0}^{n_0}$ is invertible. It turns out that the degree reduction operator [\(3.4\)](#page-5-1) has the following property.

Theorem 3.4. Let $P(z_0, z)$, $q(z_0, z)$ be coprime. If $f = P/q \in \mathbb{R} \mathcal{P}_{d+1}^{m \times m}$, $\deg_{z_0} f = n_0$, then $\widehat{f}(\zeta_1, \ldots, \zeta_{n_0}, z) = \mathbf{D}_{z_0}^{n_0} [f(z_0, z)]$ is a function of class $\mathbb{R} \mathcal{P}_{d+n_0}^{m \times m}$ $\begin{array}{c} \n m \times m \\ \n d+n_0 \n \end{array}$ affine and symmetric in variables $\zeta_1, \ldots, \zeta_{n_0}$.

We need some lemmas. Recall that the Hurwitz form is a homogeneous stable polynomial.

Lemma 3.5. The coprime numerator and denominator of a scalar positive real function are Hurwitz forms.

Proof. The homogeneity of the polynomials is obvious. Stability easily follows from a similar fact for functions of one variable having a nonnegative real part in the right half-plane. \Box

Lemma 3.6. Let $p(z_0, z)$ be a Hurwitz form. If $\deg_{z_0} p(z_0, z) = n_0$, then the polynomial $\widehat{p}(\zeta_1,\ldots,\zeta_{n_0},z)=\mathbf{D}_{z_0}^{n_0}[p(z_0,z)]$ is also a Hurwitz form in variable $\zeta_1,\ldots,\zeta_{n_0},z.$

Proof. If $z \in \Pi^d$, then the polynomial $p(z_0, z)$ has no zeros for $\text{Re } z_0 > 0$. Suppose Re $\zeta_i > 0$, $j = 1, ..., n_0$ are fixed. By the Grace-Walsh-Szegö Theorem, there exists a point ξ , Re $\xi > 0$ such that $\hat{p}(\zeta_1, \ldots, \zeta_{n_0}, z) = p(\xi, z) \neq 0$. The homogeneity of $\widehat{p}(\zeta_1, \ldots, \zeta_{n_0}, z)$ is obvious. \Box

Proof of Theorem [3.4.](#page-6-1) A matrix-valued function $f(z_0, z)$ is positive real if and only if for any real row vector η scalar function $\eta f(z_0, z)\eta^T$ is positive real. Since addition does not move out of the class of positive real functions, we see that $z_{d+1} + p(z_0, z)/q(z_0, z)$ is a positive real function in variables z_0, z, z_{d+1} . By Lemma [3.6,](#page-6-2) the polynomial

$$
\mathbf{D}_{z_0}^{n_0}[z_{d+1}q(z_0,z)+p(z_0,z)]=z_{d+1}\mathbf{D}_{z_0}^{n_0}[q(z_0,z)]+\mathbf{D}_{z_0}^{n_0}[p(z_0,z)]
$$

is a Hurwitz form. This implies $\text{Re} \left(\mathbf{D}_{z_0}^{n_0} [p(z_0, z)] / \mathbf{D}_{z_0}^{n_0} [q(z_0, z)] \right) \geq 0$ for $(\zeta_1,\ldots,\zeta_{n_0},z_1,\ldots,z_d)\in\Pi^{d+n_0}$. Symmetry in the variables $\zeta_1,\ldots,\zeta_{n_0}$ is obvious.

Theorem 3.7. A multi-affine real homogeneous $(f(\lambda z) = \lambda f(z), \lambda \in \mathbb{C} \setminus \{0\})$ rational matrix-values function $f(z) = P(z)/q(z)$ belongs to the class $\mathbb{R} \mathcal{P}_{d}^{m \times m}$ $\stackrel{m\times m}{d}$ iff all Wronskians $W_{z_k}[q, P], k = 1, \ldots, d$, are PSD forms.

Proof. The necessity is proved in Proposition [3.1.](#page-5-2) Let us prove the sufficiency. Since $f(z)$ is multi-affine, we see that

$$
f(z) = \frac{z_k P_1(\hat{z}) + P_2(\hat{z})}{z_k q_1(\hat{z}) + q_2(\hat{z})}, \quad \hat{z} = (z_1, \dots, z_{k-1}, z_{k+1}, \dots, z_d).
$$

It follows from here that

Im
$$
f(z_k, \hat{x}) = \frac{W_{z_k}[q, P](\hat{x})}{|z_k q_1(\hat{x}) + q_2(\hat{x})|^2}
$$
Im z_k , $\hat{x} \in \mathbb{R}^{d-1}$.

Hence Im $f(z_k, \hat{x}) \geq 0$, Im $z_k > 0$ for each $k = 1, \ldots, d$ (for any other real vari-ables). So, as seen from Theorem 2.4 in [\[6\]](#page-21-1), Im $f(z) \geq 0$ in the upper polyhalfplane. It follows from the homogeneity of $f(z)$ that $f(z) \in \mathbb{R}P_d^{m \times m}$ $\substack{m\times m\d}$. \Box

4. Artin's denominators of PSD not SOS form

Let $F(z) \in \mathbb{R}[z_1, \ldots, z_d]$ be a PSD not SOS form. By Artin's theorem, there exists a form $s(z)$ such that $s(z)^2 F(z)$ is a SOS form. The form $s(z)$ is called Artin's denominator of $F(z)$.

Proposition 4.1. Suppose s^2F is a SOS form. If each irreducible factor of s is an indefinite form, then F is also a SOS form.

Proof. Suppose F is a PSD not SOS form. Let $s = s_1 \cdots s_m$ be the decomposition of s into irreducible factors. Successively applying Proposition [2.3](#page-4-1) to the forms

$$
F_1 = s_1^2 F
$$
, $F_2 = s_2^2 F_1$, ..., $F_m = s_m^2 F_{m-1}$,

 \Box

we obtain $F_m = s^2 F$ is a PSD not SOS form, which is a contradiction.

Definition 4.2. Artin's denominator s of a PSD not SOS form F is called an Artin minimal denominator if a form $\hat{s} = s/s_i$ is not Artin's denominator of F for each irreducible factor s_i of s.

Theorem 4.3. Each PSD not SOS form $F(z)$ has a non-constant Artin minimal denominator $s(z)$. The irreducible factors of Artin's minimal denominator do not change sign on \mathbb{R}^d .

Proof. By the Artin theorem, there exists a form $r(z)$ for which $r(z)^2 F(z)$ is a SOS form. Each irreducible factor of the form $r(z)$ is either indefinite or it does not change sign on \mathbb{R}^d . Then $r(z) = r_0(z)s(z)$, where all irreducible factors of the form $s(z)$ do not change sign on \mathbb{R}^d , and irreducible factors of the form $r_0(z)$ are indefinite. Consider the form $F_1(z) = s(z)^2 F(z)$. By the assumption, $r_0^2 F_1 = r^2 F$ is a SOS. Since every irreducible factor of $r_0(z)$ is indefinite, we see that F_1 is a SOS form (Proposition [4.1\)](#page-7-3). Then $s(z)$ is also the Artin denominator for F. Let s_0 be some irreducible factor of the form s. If s/s_0 remains the Artin denominator of F, then the factor s_0 is removed from s. Removing all "excess" irreducible factors from the form s, we obtain the Artin denominator with the required properties. \Box

Proposition 4.4. Let $s(z)$ be a non-constant real irreducible form that does not change sign on \mathbb{R}^d . Then there exists a point z' from the open upper polyhalfplane such that $s(z') = 0$.

Proof. Suppose that for any k such that $\partial s(z)/\partial z_k \neq 0$, the polynomial $s(z_k, \hat{x}) = s(x_1, \ldots, x_{k-1}, z_k, x_{k+1}, \ldots, x_d)$ has only real zeros in z_k for each fixed $\hat{x} \in \mathbb{R}^{d-1}$. Then the equation $s = 0$ defines a real manifold of dimension $d - 1$.
By Theorem 4.5.1 from [10], the ideal generated by the polynomial s is real, and By Theorem 4.5.1 from $[10]$, the ideal generated by the polynomial s is real, and the irreducible form $s(z)$ is indefinite. This contradicts the assumption.

The complex zeros of $s(z_k, \hat{x})$ form complex conjugate pairs. Then there exists $z = (x_1, \ldots, x_{k-1}, \eta_k, x_{k+1}, \ldots, x_d)$, Im $\eta_k > 0$ such that $s(z) = 0$. Let $z'_j = x_j +$ $iy_j, j \neq k$. If $y_j > 0$ is sufficiently small, then $s(z_k, \hat{z}')$ still vanishes at some z'_k from the open upper half-plane. \Box

5. Product Polarization Theorem

The following statement is an analogue of the theorem on the long-resolvent representation of a rational function.

Theorem 5.1 (Product Polarization Theorem). Let $q(z)$, $p(z)$ be real forms of degree n and $n + 1$ satisfy the conditions

$$
\deg_{z_k} q(z) \leq n_k, \quad \deg_{z_k} p(z) \leq n_k, \ k = 1, \ldots, d.
$$

Let $\Psi(z) = (z^{\alpha_1}, \ldots, z^{\alpha_N})$ be a row vector of all monomials of degree n for which $\deg_{z_k} z^{\alpha_j} \leq n_k$. Then there exist real symmetric matrices A_k , $k = 1, \ldots, d$ such that

$$
q(\zeta)p(z) = \Psi(\zeta)(z_1A_1 + \dots + z_dA_d)\Psi(z)^T, \qquad \zeta, z \in \mathbb{C}^d,
$$
\n(5.1)

$$
W_{z_k}[q, p] = \Psi(z) A_k \Psi(z)^T, \qquad k = 1, ..., d. \qquad (5.2)
$$

We need some lemmas.

Lemma 5.2. Suppose $k \geq 0$ is an integer. If $\zeta^{\mu_1} = \zeta_2 \zeta_4 \cdots \zeta_{2k}, \zeta^{\nu} =$ $\zeta_1\zeta_3\cdots\zeta_{2k+1}$, then there exist real symmetric $(2k+1)\times(2k+1)$ matrices C_j , $j = 1, 2, \ldots, 2k + 1$ and multi-affine monomials $\{\zeta^{\mu_j}\}_{j=2}^{2k+1}$ of degree k in variables $\zeta_1, \ldots, \zeta_{2k+1}$ such that

$$
(\zeta_1 C_1 + \dots + \zeta_{2k+1} C_{2k+1}) \begin{pmatrix} \zeta^{\mu_1} \\ \zeta^{\mu_2} \\ \vdots \\ \zeta^{\mu_{2k+1}} \end{pmatrix} = \begin{pmatrix} \zeta^{\nu} \\ 0 \\ \vdots \\ 0 \end{pmatrix} . \tag{5.3}
$$

Proof. If $k = 0$, then $\zeta^{\mu_1} = 1$ (empty product) and $\zeta^{\nu} = \zeta_1$. We have $\zeta^{\nu} =$ $\zeta_1 \cdot 1$, and the matrix pencil $C(z) = \zeta_1 \cdot 1$ has a size of 1×1 . For $k \geq 1$, the multi-affine monomials $\{\zeta^{\mu_j}\}_{j=2}^{2k+1}$ are defined by the relations

$$
\zeta^{\mu_2} = \zeta_3 \zeta_5 \cdots \zeta_{2k+1}, \quad \zeta^{\mu_j} = \zeta_{j-2} \zeta^{\mu_{j-2}} / \zeta_{j-1}, \quad j = 3, \ldots, 2k+1.
$$

Notice that $\zeta^{\mu_{2k+1}} = \zeta^{\nu}/\zeta_{2k+1}, \zeta^{\mu_{2k}} = \zeta_{2k+1}\zeta^{\mu_1}/\zeta_{2k}.$ Let us define the matrix pencil $C(\zeta) = \{c_{ij}(\zeta)\}_{i,j=1}^{2k+1}$:

$$
c_{ij}(\zeta) = \begin{cases} (-1)^{\max\{i,j\}} \zeta_{\min\{i,j\}}/2, & \text{if } |i-j| = 1, \\ \zeta_{\max\{i,j\}}/2 & \text{if } |i-j| = 2k, \\ 0, & \text{otherwise.} \end{cases}
$$

It is easy to see that $C(\bar{\zeta}) = C(\zeta) = C(\zeta)^T$. Let us calculate the components $b_i = b_i(\zeta)$ of the right-hand side of [\(5.3\)](#page-8-2):

$$
b_1 = \sum_{j=1}^{2k+1} c_{1j}(\zeta) \zeta^{\mu_j} = c_{12}(\zeta) \zeta^{\mu_2} + c_{1,2k+1}(\zeta) \zeta^{\mu_{2k+1}} = \zeta^{\nu}.
$$

For $2 \leq i \leq 2k$, we obtain

$$
b_i = \sum_{j=1}^{2k+1} c_{ij}(\zeta)\zeta^{\mu_j} = c_{i,i-1}(\zeta)\zeta^{\mu_{i-1}} + c_{i,i+1}(\zeta)\zeta^{\mu_{i+1}}
$$

= $(-1)^i(\zeta_{i-1}\zeta^{\mu_{i-1}} - \zeta_i\zeta^{\mu_{i+1}})/2 = (-1)^i(\zeta_{i-1}\zeta^{\mu_{i-1}} - \zeta_{i-1}\zeta^{\mu_{i-1}})/2 = 0.$

For $i = 2k + 1$, we get

$$
b_{2k+1} = \sum_{j=1}^{2k+1} c_{2k+1,j}(\zeta)\zeta^{\mu_j} = c_{2k+1,1}(\zeta)\zeta^{\mu_1} + c_{2k+1,2k}(\zeta)\zeta^{\mu_{2k}} = 0.
$$

Lemma 5.3. Let z^{α_1} , z^{β} be monomials of degree n and $n + 1$ satisfy the conditions

$$
\deg_{z_k} z^{\alpha_1} \leq n_k, \quad \deg_{z_k} z^{\beta} \leq n_k, \ k = 1, \dots, d.
$$

Then there exist matrices $B_k = \overline{B_k} = B_k^T$, $k = 1, \ldots, d$, such that

$$
(z_1B_1 + \dots + z_dB_d) \begin{pmatrix} z^{\alpha_1} \\ z^{\alpha_2} \\ \vdots \\ z^{\alpha_N} \end{pmatrix} = \begin{pmatrix} z^{\beta} \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \tag{5.4}
$$

where $\{z^{\alpha_j}\}_{j=1}^N$ are all monomials of degree n for which $\deg_{z_k} z^{\alpha_j} \leq n_k$.

Proof. Let z^{γ} be the greatest common divisor of the monomials z^{α_1} , z^{β} . Then $z^{\alpha_1} = m_1(z)z^{\gamma}, z^{\beta} = m_2(z)z^{\gamma}$, where the subsets of the variables of the monomials $m_1(z)$, $m_2(z)$ do not intersect. If deg $m_1(z) = k$, then deg $m_2(z) =$ $k + 1$. By Lemma [5.2,](#page-8-3) there exist matrices $C_k = \overline{C_k} = C_k^T$ such that

$$
(\zeta_1 C_1 + \dots + \zeta_{2k+1} C_{2k+1}) \begin{pmatrix} \zeta_2 \zeta_4 \cdots \zeta_{2k} z^{\gamma} \\ \zeta^{\mu_2} z^{\gamma} \\ \vdots \\ \zeta^{\mu_{2k+1}} z^{\gamma} \end{pmatrix} = \begin{pmatrix} \zeta_1 \zeta_3 \cdots \zeta_{2k+1} z^{\gamma} \\ 0 \\ \vdots \\ 0 \end{pmatrix} . \tag{5.5}
$$

In [\(5.5\)](#page-9-0), we replace the variables $\zeta_2, \zeta_4, \ldots, \zeta_{2k}$ by the variables of the monomial $m_1(z)$, and the variables $\zeta_1, \zeta_3, \ldots, \zeta_{2k+1}$ by the variables of the monomial $m_2(z)$ such that

$$
\zeta_2\zeta_4\cdots\zeta_{2k}z^{\gamma} \mapsto m_1(z)z^{\gamma} = z^{\alpha_1}, \quad \zeta_1\zeta_3\cdots\zeta_{2k+1}z^{\gamma} \mapsto m_2(z)z^{\gamma} = z^{\beta}.
$$

From [\(5.5\)](#page-9-0), we obtain

$$
(z_{j_1}D_{j_1} + \dots + z_{j_r}D_{j_r})\begin{pmatrix}z^{\widehat{\alpha}_1} \\ z^{\widehat{\alpha}_2} \\ \vdots \\ z^{\widehat{\alpha}_{2k+1}}\end{pmatrix} = \begin{pmatrix}z^{\beta} \\ 0 \\ \vdots \\ 0\end{pmatrix}, \quad z^{\widehat{\alpha}_1} = z^{\alpha_1}, \quad (5.6)
$$

where z_{j_1}, \ldots, z_{j_r} are the variables of the monomials $m_1(z), m_2(z)$. The matrices D_{j_s} are the sums of the corresponding matrices C_i from [\(5.5\)](#page-9-0).

Since each monomial ζ^{μ_j} , $j = 2, \ldots, 2k+1$ contains only a part of the variables with even indices, we see that for the variables z_i that are present in the monomial $m_1(z)z^{\gamma}$ inequality $\deg_{z_i} z^{\hat{\alpha}_j} \leq \deg_{z_i} z^{\alpha_1} \leq n_i$ holds. Similarly, for z_k that are present in $m_2(z)z^{\gamma}$ we get $\deg_{z_k} z^{\widehat{\alpha}_j} \leq \deg_{z_k} z^{\beta} \leq n_k$.

If $z^{\alpha_1}, z^{\alpha_2}, \ldots, z^{\alpha_M}$ are pairwise distinct monomials from the set $z^{\widehat{\alpha}_1}, z^{\widehat{\alpha}_2}, \ldots, z^{\widehat{\alpha}_{2k+1}},$ then there exists a matrix $B = \{b_{ij}\}\$ such that

$$
\begin{pmatrix} z^{\widehat{\alpha}_{1}} \\ z^{\widehat{\alpha}_{2}} \\ \vdots \\ z^{\widehat{\alpha}_{2k+1}} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ b_{21} & b_{22} & \cdots & b_{2,M} \\ \vdots & \vdots & \ddots & \vdots \\ b_{2k+1,1} & b_{2k+1,2} & \cdots & b_{2k+1,M} \end{pmatrix} \begin{pmatrix} z^{\alpha_{1}} \\ z^{\alpha_{1}} \\ \vdots \\ z^{\alpha_{M}} \end{pmatrix}.
$$

From (5.6) , we get

$$
(z_{j_1}B_{j_1} + \dots + z_{j_r}B_{j_r})\begin{pmatrix} z^{\alpha_1} \\ z^{\alpha_1} \\ \vdots \\ z^{\alpha_M} \end{pmatrix} = \begin{pmatrix} z^{\beta} \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \qquad (5.7)
$$

where $(z_{j_1}B_{j_1} + \cdots + z_{j_r}B_{j_r}) = B^T(z_{j_1}D_{j_1} + \cdots + z_{j_r}D_{j_r})B$. We extend the set ${z^{\alpha_j}}_{j=1}^M$ to the set ${z^{\alpha_i}}_{i=1}^N$ of all pairwise distinct monomials of degree n for which deg_{z_k} $z^{\alpha_i} \leq n_k$, $k = 1, ..., d$. Supplementing the matrices in [\(5.7\)](#page-10-0) with zero entries, we obtain [\(5.4\)](#page-9-2). \Box

Proof of Theorem [5.1.](#page-8-0) Let $q(z) = \sum_{j=1}^{N} a_j z^{\alpha_j}$, $p(z) = \sum_{\nu=1}^{l} b_{\nu} z^{\beta_{\nu}}$. By Lemma [5.3,](#page-9-3) for fixed monomials z^{α_j} , z^{β_ν} , there exists a symmetric real linear matrix pencil $B_{i\nu}(z)$ such that

$$
B_{j\nu}(z)\begin{pmatrix} z^{\alpha_1} \\ \vdots \\ z^{\alpha_j} \\ \vdots \\ z^{\alpha_N} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ z^{\beta_\nu} \\ \vdots \\ 0 \end{pmatrix}, \quad j = 1, \dots, N, \quad \nu = 1, \dots, l. \tag{5.8}
$$

We define $A(z) = z_1 A_1 + \cdots + z_d A_d = \sum_{j=1}^{N} a_j \sum_{\nu=1}^{l} b_{\nu} B_{j\nu}(z)$. Then

$$
A(z)\begin{pmatrix} z^{\alpha_1} \\ \vdots \\ z^{\alpha_N} \end{pmatrix} = \begin{pmatrix} a_1 p(z) \\ \vdots \\ a_N p(z) \end{pmatrix}.
$$
 (5.9)

Since $a_j, b_\nu \in \mathbb{R}$ and $\overline{B_{j\nu}(\overline{z})} = B_{j\nu}(z) = B_{j\nu}(z)^T$, we see that

$$
\overline{A(\overline{z})} = A(z) = A(z)^T.
$$

Multiplying [\(5.9\)](#page-10-1) on the left by the row vector $(\zeta^{\alpha_1}, \ldots, \zeta^{\alpha_N})$, $\zeta \in \mathbb{C}^d$, we obtain (5.1) . In addition, (5.2) follows from (5.1) . \Box

6. Representation Defect Lemma

Let $\{z^{\alpha_j}\}_{j=1}^N$ be a set of all monomials of degree n satisfying the conditions $\deg_{z_k} z^{\alpha_j} \leq n_k, k = 1, \ldots, d$, and $F(z)$ a real 2n-form such that $\deg_{z_k} F(z) \leq$ $2n_k$. Suppose $F(z)$ has two Gram matrices A_1, A_2 : $F(z) = \Psi(z)A_1 \Psi(z)^T$ $\Psi(z)A_2\Psi(z)^T$, where $\Psi(z) = (z^{\alpha_1}, \ldots, z^{\alpha_N})$. The symmetric matrix $S =$ ${s_{ij}}_{i,j=1}^N = A_1 - A_2$ satisfies the relation

$$
\Psi(z)S\Psi(z)^{T} = \sum_{i,j=1}^{N} s_{ij}z^{\alpha_i}z^{\alpha_j} \equiv 0.
$$
\n(6.1)

The set of matrices S satisfying (6.1) is a linear space L_0 . Now we construct a special basis of this linear space.

Proposition 6.1. Suppose L_0 is a linear space of real symmetric matrices satisfying condition (6.1) . Then there exists a basis in L_0 such that the nonzero submatrices of the basis matrices are located at the intersection of rows and columns corresponding to monomials $z_r^2 z^{\gamma}$, $z_r z_l z^{\gamma}$, $z_l^2 z^{\gamma}$ that are present as entries in the row vector $\Psi(z)$:

$$
\left(z_r^2 z^\gamma, z_r z_l z^\gamma, z_l^2 z^\gamma\right) \begin{pmatrix} 0 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} z_r^2 z^\gamma \\ z_r z_l z^\gamma \\ z_l^2 z^\gamma \end{pmatrix} = 0, \tag{6.2}
$$

and monomials $z_r z^{\gamma_1}$, $z_l z^{\gamma_1}$, $z_l z^{\gamma_2}$, $z_r z^{\gamma_2}$ ($z^{\gamma_1} \neq z^{\gamma_2}$) that are present as entries in $\Psi(z)$:

$$
(z_r z^{\gamma_1}, z_l z^{\gamma_1}, z_l z^{\gamma_2}, z_r z^{\gamma_2}) \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} z_r z^{\gamma_1} \\ z_l z^{\gamma_1} \\ z_l z^{\gamma_2} \\ z_r z^{\gamma_2} \end{pmatrix} = 0.
$$
 (6.3)

Remark 6.2. Since $\sum_{i,j=1}^{N} s_{ij} z^{\alpha_i} z^{\alpha_j} = \sum_{k} c_k z^{\beta_k} = 0$, and $z^{\beta_i} \neq z^{\beta_j}$, $i \neq j$, we see that

$$
c_k = \sum_{\alpha_i + \alpha_j = \beta_k} s_{ij} = 0.
$$
\n
$$
(6.4)
$$

If the sum [\(6.4\)](#page-11-2) contains $m \geq 2$ different elements s_{ij} , then $m-1$ elements can be chosen as arbitrary. Then multi-index β_k defines an $(m-1)$ -dimensional subspace in L_0 .

Let $\beta = (r_1, \ldots, r_d)$ be a multi-index with non-negative components and $|\beta|$ $r_1 + \cdots + r_d = 2n > 0$. Let Θ_β denote the set of all unordered pairs $\pi = (z^{\alpha_i}, z^{\alpha_j})$ of all monomials z^{α_i} , z^{α_j} ($|\alpha_i| = |\alpha_j| = n$) such that $z^{\alpha_i} z^{\alpha_j} = z^{\beta}$ and $\deg_{z_k} z^{\alpha_s} \leq$ n_k for all s, k. If $2n_k < r_k$ for some k, then the set Θ_β is empty. Therefore, $\Theta_\beta \neq$ ∅ if and only if

$$
2n_k \geq r_k, \quad k = 1, \dots, d.
$$

It is easy to see that the monomial $z^{\alpha} = z_1^{\delta_1} \cdots z_d^{\delta_d}$ ($|\alpha| = n$) is an element of the pair $\pi \in \Theta_{\beta}$ if and only if

$$
0 \le \delta_k \le \min\{n_k, r_k\}, \quad 0 \le r_k - \delta_k \le \min\{n_k, r_k\}, \quad k = 1, \dots, d. \tag{6.5}
$$

For each monomial $z^{\alpha} = z_1^{\delta_1} \cdots z_d^{\delta_d}$ ($|\alpha| = n$) satisfying condition [\(6.5\)](#page-12-0), there is a unique monomial z^{μ} such that $(z^{\alpha}, z^{\mu}) \in \Theta_{\beta}$.

Definition 6.3. Let $\pi_i = (z^{\alpha_i}, z^{\mu_i}) \in \Theta_\beta$, $z^{\alpha_i} = z_1^{\delta_1} \cdots z_s^{\delta_s} \cdots z_l^{\delta_l} \cdots z_d^{\delta_d}$ and $\delta_s < \min\{n_s, r_s\}, \delta_l > 0$. The monomial

$$
z^{\alpha_j} = z_1^{\delta_1} \cdots z_s^{\delta_s+1} \cdots z_l^{\delta_l-1} \cdots z_d^{\delta_d}
$$

satisfies condition [\(6.5\)](#page-12-0). Then there is a unique monomial z^{μ_j} such that $\pi_j =$ $(z^{\alpha_j}, z^{\mu_j}) \in \Theta_\beta$. The map

$$
(z^{\alpha_i}, z^{\mu_i}) = \pi_i \mapsto \pi_j = (z^{\alpha_j}, z^{\mu_j}) \in \Theta_\beta \tag{6.6}
$$

is called an elementary transformation in Θ_{β} . Multi-indices α_i , α_j of monomials z^{α_i} , z^{α_j} are related by

$$
\alpha_j = \alpha_i + (0, \dots, 0, 1, 0, \dots, 0, -1, 0, \dots, 0).
$$

Remark 6.4. Since we do not distinguish between the pairs (z^{α}, z^{μ}) and (z^{μ}, z^{α}) , there may exist a pair $\pi \in \Theta_{\beta}$ that dots not change under an elementary transformation.

To prove Proposition [6.1](#page-11-3) we need several lemmas.

Lemma 6.5. For any $\pi, \hat{\pi} \in \Theta_{\beta}, \pi \neq \hat{\pi}$, there exists a "connecting" π and $\hat{\pi}$ chain of elements $\pi_k \in \Theta_\beta$ such that each next element is an elementary transformation of the previous one.

Proof. Let $\beta = (r_1, \ldots, r_d)$ and $\pi = (z^{\alpha}, z^{\mu}), \hat{\pi} = (z^{\hat{\alpha}}, z^{\hat{\mu}}),$ where $z^{\alpha} =$ $z_1^{\delta_1} \cdots z_d^{\delta_d}$ and $z^{\hat{\alpha}} = z_1^{\delta_1} \cdots z_d^{\delta_d}$. Since $\pi \neq \hat{\pi}$, we may assume that $z^{\alpha} \neq z^{\hat{\alpha}}$. From the relations $|\beta| = 2n > 0$ and $|\alpha| = |\widehat{\alpha}| = n$, it follows that $\sum_{k=1}^{d} m_k = 0$, where $m_k = \delta_k - \delta_k \ (k = 1, \ldots, d).$

Let m be the sum of all positive components of $\gamma = (m_1, \ldots, m_d)$. Then there exist m elementary tuples γ_l , $l = 1, 2, ..., m$, not necessarily all different, such that:

- (i) each elementary tuple $\gamma_l = \left(e_1^{(l)}\right)$ $e_1^{(l)}, \ldots, e_d^{(l)}$ $\binom{l}{d}$ has only two non-zero components $+1$ and -1 ;
- (ii) $|m_k - e_k^{(l)}|$ $|k^{(l)}| \leq |m_k|, k = 1, \ldots, d, l = 1, \ldots, m);$ (iii) $\gamma_1 + \cdots + \gamma_m = \gamma$.

If $m = 1$, then the tuple γ is elementary and $\gamma_1 = \gamma$.

Let $m > 1$ and let γ_1 be an elementary tuple containing $+1$ in place of some positive component and -1 in place of some negative component of the tuple γ . The sum of all positive components of $\gamma - \gamma_1$ is equal to $m - 1$ and the sum of all components is still zero.

Repeating the previous argument for $\gamma - \gamma_1$, we obtain the elementary tuple γ_2 . At the $(m-1)$ -th step, the elementary tuple $\gamma - \gamma_1 - \cdots - \gamma_{m-1} = \gamma_m$ is formed.

Consider a sequence of multi-indices:

$$
\alpha, \ \alpha_1 = \alpha + \gamma_1, \ \ldots, \alpha_l = \alpha_{l-1} + \gamma_l, \ \ldots, \alpha_m = \alpha_{m-1} + \gamma_m = \widehat{\alpha}.
$$

From [\(i\)–](#page-12-1)[\(iii\),](#page-12-2) it follows that the components $\nu_k^{(l)}$ $\alpha_k^{(l)}$ of each multi-index $\alpha_l =$ $(\nu_1^{(l)}$ $v_1^{(l)}, \ldots, v_d^{(l)}$ $\binom{d}{d}$, $l = 1, \ldots, m - 1$, satisfy the condition

$$
\min\{\delta_k,\widehat{\delta}_k\} \leq \nu_k^{(l)} \leq \max\{\delta_k,\widehat{\delta}_k\}, \quad k=1,\ldots,d.
$$

For $\alpha = (\delta_1, \ldots, \delta_d)$ and $\hat{\alpha} = (\delta_1, \ldots, \delta_d)$, inequalities [\(6.5\)](#page-12-0) are valid. Then

$$
\begin{cases} 0 \le \min\{\delta_k, \widehat{\delta}_k\} \le \nu_k^{(l)} \le \max\{\delta_k, \widehat{\delta}_k\} \le \min\{n_k, r_k\}, \\ 0 \le r_k - \max\{\delta_k, \widehat{\delta}_k\} \le r_k - \nu_k^{(l)} \le r_k - \min\{\delta_k, \widehat{\delta}_k\} \le \min\{n_k, r_k\}. \end{cases}
$$

Therefore, all "intermediate" multi-indices α_l ($l = 1, \ldots, m-1$) also satisfy [\(6.5\)](#page-12-0) and determine the sequence of elements

$$
\pi
$$
, $\pi_1 = (z^{\alpha_1}, z^{\mu_1}), \dots, \pi_{m-1} = (z^{\alpha_{m-1}}, z^{\mu_{m-1}}), \hat{\pi}$

of the set Θ_{β} , in which neighboring elements are related by an elementary transformation of the form [\(6.6\)](#page-12-3). \Box

Lemma 6.6. If Θ_{β} contains $m \geq 2$ elements, then in the set Θ_{β} there exist $(m-1)$ different pairs $\{\pi_k, \pi_\nu\}$ such that π_ν is an elementary transformation of π_k .

Proof. Let us associate the finite graph with the set Θ_{β} . The vertices are elements of the set Θ_{β} . The edges form pairs $\{\pi_k, \pi_{\nu}\}\ (\pi_k \neq \pi_{\nu})$ of elements are connected by an elementary transformation. By Lemma [6.1,](#page-11-1) the graph is connected. Then the graph tree contains $m-1$ edges. In the graph tree different edges are incident to different pairs of vertices. \Box

Proof of Proposition 6.1. The linear space L_0 is the direct sum of subspaces L_{β_k} , each of which corresponds to its own multi-index β_k ($|\beta_k| = 2n$). Let us construct a basis in each of these subspaces. Suppose Θ_{β_k} contains $m \geq 2$ elements. By Lemma [6.6,](#page-13-0) in Θ_{β_k} there exist $m-1$ different pairs $\{\pi_k, \pi_\nu\}$ such that π_k and π_{ν} are connected by an elementary transformation. Let us show that each pair $\{\pi_k, \pi_\nu\}$ defines a basis matrix of the form [\(6.2\)](#page-11-4) or [\(6.3\)](#page-11-5). The following cases are possible:

(a) One of the elements of a pair $\{\pi_k, \pi_\nu\}$ has the form $\pi_k = (z^{\alpha_i}, z^{\alpha_i})$, and $\pi_{\nu} = (z^{\alpha_j}, z^{\alpha_l})$. Let z^{γ} be the greatest common divisor of the monomials $z^{\alpha_j}, z^{\alpha_i}$, z^{α_l} . Since π_{ν} is an elementary transformation of π_k , then there exist variables z_r , z_l such that

$$
z^{\alpha_j} = z_r^2 z^{\gamma}, \quad z^{\alpha_i} = z_r z_l z^{\gamma}, \quad z^{\alpha_l} = z_l^2 z^{\gamma}.
$$

This triplet of monomials defines a basis matrix of the form [\(6.2\)](#page-11-4).

(b) $\pi_k = (z^{\alpha_i}, z^{\alpha_j}), z^{\alpha_i} \neq z^{\alpha_j}; \pi_{\nu} = (z^{\alpha_i}, z^{\alpha_s}), z^{\alpha_l} \neq z^{\alpha_s}, \text{ and } \pi_{\nu} \text{ is an }$ elementary transformation of π_k . Then there exist variables z_r , z_l such that $z^{\alpha_i} = z_r z^{\gamma_1}, z^{\alpha_l} = z_l z^{\gamma_1}, z^{\alpha_j} = z_l z^{\gamma_2}, z^{\alpha_s} = z_r z^{\gamma_2}.$ Notice that $z^{\gamma_1} \neq z^{\gamma_2}$. Indeed, if $z^{\gamma_1} = z^{\gamma_2}$, then $\pi_k = \pi_{\nu}$, which is impossible. This quadruple of monomials defines a basis matrix of the form [\(6.3\)](#page-11-5).

All pairs $\{\pi_k, \pi_\nu\}$ are different. Then the constructed set of $(m-1)$ matrices is linearly independent. \Box

Lemma 6.7 (Representation Defect Lemma). Suppose that a real symmetric $(N \times N)$ -matrix S_1 satisfies the following conditions:

(a) $\Psi(z)S_1\Psi(z)^T \equiv 0,$ (b) $S_1 \frac{\partial^{n_1} \Psi(z)^T}{\partial x^{n_1}}$ $\overline{\partial z_1^{n_1}}$ ≡ 0,

where $\Psi(z) = (z^{\alpha_1}, \ldots, z^{\alpha_N})$ is a row vector of all monomials of degree n such that $\deg_{z_k} z^{\alpha_j} \leq n_k$, $k = 1, ..., d$. Then there exist real symmetric $(N \times N)$ -matrices $S_k, k = 2, \ldots, d$ for which

$$
(z_1S_1 + z_2S_2 + \dots + z_dS_d)\Psi(z)^T \equiv 0.
$$
 (6.7)

Proof. Without loss of generality, we can assume

$$
\Psi(z) = (z_1^{n_1}\varphi(\widehat{z}), \psi(z_1, \widehat{z})),
$$

where $\deg_{z_1} \psi(z_1, \hat{z}) = (n_1 - 1), \hat{z} = (z_2, \dots, z_d).$ Then

$$
S_1 \frac{\partial^{n_1} \Psi(z)^T}{\partial z_1^{n_1}} = \begin{pmatrix} S_{11} & S_{12} \\ S_{12}^T & \hat{S}_1 \end{pmatrix} \begin{pmatrix} n_1! \varphi(\hat{z})^T \\ 0 \end{pmatrix} \equiv 0.
$$

Hence $S_{11} = 0$, $S_{12}^T = 0$ and $\psi(z_1, \hat{z})\hat{S}_1\psi(z_1, \hat{z})^T = 0$. We rewrite [\(6.7\)](#page-14-1) in block form

$$
\begin{pmatrix}\nS_{11}(\hat{z}) & S_{12}(\hat{z}) \\
S_{12}(\hat{z})^T & z_1 \hat{S}_1 + S_{22}(\hat{z})\n\end{pmatrix}\n\begin{pmatrix}\nz_1^{n_1} \varphi(\hat{z})^T \\
\psi(\hat{z})^T\n\end{pmatrix} = \begin{pmatrix}\n0 \\
0\n\end{pmatrix}.
$$
\n(6.8)

Let us find a solution $\{S_{ij}(\hat{z})\}_{i,j=1}^2$ of [\(6.8\)](#page-14-2) when in place of the matrix \widehat{S}_1 there are basis matrices $\widehat{S}_{1,j}$. For the basis matrix [\(6.3\)](#page-11-5), there exist $z_1 z^{\gamma_1}, z_1 z^{\gamma_2} \in \Psi(z)$ such that the corresponding nonzero submatrix of the solution (together with the basis matrix) has the form

$$
\begin{pmatrix}\n0 & 0 & -z_{\nu} & z_k & 0 & 0 \\
0 & 0 & 0 & 0 & -z_k & z_{\nu} \\
-z_{\nu} & 0 & 0 & 0 & z_1 & 0 \\
z_k & 0 & 0 & 0 & 0 & -z_1 \\
0 & -z_k & z_1 & 0 & 0 & 0 \\
0 & z_{\nu} & 0 & -z_1 & 0 & 0\n\end{pmatrix}\n\begin{pmatrix}\nz_1 z^{\gamma_2} \\
z_1 z^{\gamma_1} \\
z_k z^{\gamma_1} \\
z_{\nu} z^{\gamma_1} \\
z_{\nu} z^{\gamma_2} \\
z_k z^{\gamma_2}\n\end{pmatrix} \equiv 0.
$$

Similarly, for basis matrix [\(6.2\)](#page-11-4) and monomials $z_1z_rz^{\gamma}, z_1z_lz^{\gamma} \in \Psi(z)$, we have

$$
\begin{pmatrix}\n0 & 0 & 0 & -z_l & z_r \\
0 & 0 & z_l & -z_r & 0 \\
\hline\n0 & z_l & 0 & 0 & -z_1 \\
-z_l & -z_r & 0 & 2z_1 & 0 \\
z_r & 0 & -z_1 & 0 & 0\n\end{pmatrix}\n\begin{pmatrix}\nz_1z_rz^{\gamma} \\
z_1z_lz^{\gamma} \\
z_r^2z^{\gamma} \\
z_l^2z^{\gamma}\n\end{pmatrix} \equiv 0.
$$

The matrix \widehat{S}_1 is a linear combination of basis matrices $\widehat{S}_{1,j}$ of the forms [\(6.2\)](#page-11-4), (6.3) . Then any solution of equation (6.8) is a linear combination of such solutions. \Box

7. Functions with PSD not SOS Wronskian

Let $f(z) = p(z)/q(z)$ be a scalar function. If the partial Wronskian $W_{z_k}[q, p]$ is a PSD form, then the following statement holds.

Theorem 7.1. Let $f(z) = p(z)/q(z)$, $z \in \mathbb{C}^d$, be a real homogeneous (of degree one) rational function such that $\deg_{z_k} p \leq \deg_{z_k} q$, $k = 1, ..., d$.

If $s(z)^2W_{z_1}[q,p] = H(z)H(z)^T$ is a SOS form for some form $s(z)$, then there exist real symmetric matrices A_1, A_2, \ldots, A_d (where A_1 is positive semidefinite) for which

$$
f(z) = \frac{\Psi(\zeta)}{q(\zeta)s(\zeta)} (z_1 A_1 + z_2 A_2 + \dots + z_d A_d) \frac{\Psi(z)^T}{q(z)s(z)}, \quad \zeta, z \in \mathbb{C}^d,
$$
 (7.1)

$$
W_{z_k}[q, p] = \frac{\Psi(z)}{s(z)} A_k \frac{\Psi(z)^T}{s(z)}, \quad k = 1, ..., d,
$$
 (7.2)

$$
\Psi(z)A_1\Psi(z)^T = H(z)H(z)^T.
$$
\n(7.3)

Here $\Psi(z) = (z^{\alpha_1}, \ldots, z^{\alpha_N})$ satisfies the conditions $\deg z^{\alpha_j} = \deg(qs)$ and $\deg_{z_k} z^{\alpha_j} \leq \deg_{z_k}(qs), k = 1, \ldots, d.$

Proof. By Theorem [5.1,](#page-8-0) there exists a matrix pencil $B(z)$ for which

$$
q(\zeta)s(\zeta)p(z)s(z) = \Psi(\zeta) (z_1B_1 + z_2B_2 + \dots + z_dB_d) \Psi(z)^T, \tag{7.4}
$$

$$
W_{z_k}[qs, ps] = \Psi(z)B_k \Psi(z)^T, \quad k = 1, ..., d.
$$
 (7.5)

Let deg_{z1} $\Psi(z) = n_1$. Differentiating [\(7.4\)](#page-15-2) $(n_1 + 1)$ times in z_1 , we obtain

$$
B_1 \frac{\partial^{n_1} \Psi(z)^T}{\partial z_1^{n_1}} \equiv 0. \tag{7.6}
$$

By the assumption, $s^2W_{z_1}[q,p] = W_{z_1}[qs,ps]$ is a SOS form. Then there exists a matrix $A_1 \geq 0$ for which

$$
\Psi(z)B_1\Psi(z)^T = s^2W_{z_1}[q, p] = H(z)H(z)^T = \Psi(z)A_1\Psi(z)^T.
$$

Since $W_{z_1}[qs, ps](x) \geq 0$, then, $\deg_{z_1} W_{z_1}[qs, ps] \leq 2(n_1 - 1)$. Therefore, if $\deg_{z_1}(z^{\alpha_i}z^{\alpha_i}) = 2n_1$, then the matrix $A_1 = \{a_{ij}\}\$ has a corresponding diagonal elements $a_{ii} = 0$. Then, from $A_1 \geq 0$, we obtain

$$
A_1 \frac{\partial^{n_1} \Psi(z)^T}{\partial z_1^{n_1}} \equiv 0. \tag{7.7}
$$

By [\(7.7\)](#page-16-2) and [\(7.6\)](#page-15-3), it follows that the matrix $S_1 = A_1 - B_1$ satisfies the assumptions of Representation Defect Lemma. Then there exist real symmetric matrices S_2, \ldots, S_d such that

$$
\Psi(\zeta)(z_1S_1 + z_2S_2 + \dots + z_dS_d)\Psi(z)^T \equiv 0.
$$
\n(7.8)

Adding [\(7.8\)](#page-16-3) to [\(7.4\)](#page-15-2) and dividing both sides of the resulting identity by the product $q(\zeta)s(\zeta)q(z)s(z)$, we obtain [\(7.1\)](#page-15-4). Relations [\(7.2\)](#page-15-5), [\(7.3\)](#page-15-6) follow from the identities $s^2W_{z_k}[q, p] = W_{z_k}[qs, ps] = \Psi(z)A_k\Psi(z)^T$. \Box

8. Sum-of-Squares Theorem

Let $(i\Pi)^d = \{z \in \mathbb{C}^d \mid \text{Im } z_1 > 0, \ldots, \text{Im } z_d > 0\}$ be an open upper polyhalfplane.

Lemma 8.1. Let $h(z), s_0(z) \in \mathbb{R}[z_1, \ldots, z_d]$ be coprime forms and let $s_0(z)$ be an irreducible non-constant form that does not change sign on \mathbb{R}^d . Then there exists a point $z' \in (i\Pi)^d$ for which $s_0(z') = 0$, $h(z') \neq 0$.

Proof. By Proposition [4.4,](#page-7-2) there exists a point $z \in (i\Pi)^d$ such that $s_0(z) =$ 0. Suppose that $h(z) = 0$. Let $\Omega \subset (i\Pi)^d$ be a neighborhood of z. By Theorem [2.5,](#page-4-2) $s_0(z') = 0$, $h(z') \neq 0$ for some point $z' \in \Omega \subset (i\Pi)^d$. \Box

Theorem 8.2 (Sum-of-Squares Theorem). If $P/q \in \mathbb{R}P_d^{m \times m}$ $\hat{d}^{m \times m}_d$, then the partial Wronskians

$$
W_{z_k}[q, P] = q(z)\frac{\partial P(z)}{\partial z_k} - P(z)\frac{\partial q(z)}{\partial z_k}, \quad k = 1, \dots, d \tag{8.1}
$$

are matrix-valued SOS forms.

Proof. By Proposition [3.1,](#page-5-2) the Wronskians $W_{z_k}[q, P]$ are PSD forms. If $d =$ 2, then each PSD form is a SOS form. We will assume $d \geq 3$. By Proposition [3.2,](#page-5-3) $f(z) = z_1 A_1 + \cdots + z_d A_d + f_1(z)$, where $f_1 = P_1/q \in \mathbb{R} \mathcal{P}_d^{m \times m}$ $d^{m \times m}$, deg_z_k P_1 = $\deg_{z_k} q$ and $A_k \geq 0$, $k = 1, \ldots, d$. If $W_{z_k}[q, P_1]$ is a SOS form, then $W_{z_k}[q, P] =$ $q(z)^2 A_k + W_{z_k}[q, P_1]$ is also a SOS form.

We will assume that $\deg_{z_1} P(z) = \deg_{z_1} q(z) = n_1$. Let us act on the function $f(z)$ by the degree reduction operator in the variable $z₁$. We obtain a function

$$
\widehat{f}(\zeta_1,\ldots,\zeta_{n_1},z_2,\ldots,z_d)=\widehat{P}/\widehat{q}\in\mathbb{R}\mathcal{P}_{n_1+(d-1)}^{m\times m}.
$$

 $f(\zeta_1, \ldots, \zeta_{n_1}, \hat{z})$ is multi-affine and symmetric in variables $\zeta_1, \ldots, \zeta_{n_1}$. If $W_{\zeta_1}[\hat{q}, P]$ is a SOS, then $W_{z_1}[q, P] = n_1 W_{\zeta_1}[\widehat{q}, \widehat{P}] \Big|_{\zeta_1 = \cdots = \zeta_{n_1} = z_1}$ is also a SOS. Therefore,

without loss of generality, we can assume $n_1 = 1$ and $\deg_{z_k} P = \deg_{z_k} q$, $k =$ $1, \ldots, d$.

Suppose that $W_{z_1}[q, P]$ is a PSD not SOS form. Since $n_1 = 1$, we see that the PSD form $W_{z_1}[q, P]$ does not depend on the variable z_1 . Let $s(\hat{z}) = s(z_2, \ldots, z_d)$
be its Artin's minimal dependence $s(\hat{z})^2 W$ [s, P] = $C(\hat{z})C(\hat{z})^T$. Each irre be its Artin's minimal denominator: $s(\hat{z})^2 W_{z_1}[q, P] = G(\hat{z})G(\hat{z})^T$. Each irreducible factor $s_i(\hat{z})$ of the form $s(z)$ cannot be a divisor of all elements of the polynomial matrix $G(\hat{z})$, otherwise s/s_j is also Artin's denominator of $W_{z_1}[q, P]$,
which controllets the minimality of a Then there exists a diagonal element which contradicts the minimality of s. Then there exists a diagonal element $f_{ii}(z) = p(z)/q(z)$ of the matrix $f(z)$ such that

$$
s(\widehat{z})^2 W_{z_1}[q, p] = H(\widehat{z}) H(\widehat{z})^T,
$$
\n(8.2)

where the polynomial row vector $H(\hat{z})$ has at least one component (we denote it by $h(\hat{z})$) such that $s_0(\hat{z}), h(\hat{z})$ are coprime (here $s_0(\hat{z})$) is some irreducible factor of Artin's minimal denominator $s(\hat{z})$.

By Theorem [7.1,](#page-15-1) there exists a symmetric matrix pencil

$$
A(z) = z_1 A_1 + z_2 A_2 + \cdots + z_d A_d
$$

with a positive semidefinite matrix $A_1 \geq 0$ and the monomial row vector $\Psi(z)$ such that

$$
f_{ii}(z) = \frac{p(z)}{q(z)} = \frac{\Psi(\zeta)}{q(\zeta)s(\zeta)}(z_1A_1 + \dots + z_dA_d)\frac{\Psi(z)^T}{q(z)s(z)},
$$
(8.3)

$$
W_{z_1}[q, p] = \frac{\Psi(z)}{s(\hat{z})} A_1 \frac{\Psi(z)^T}{s(\hat{z})} = \frac{H(\hat{z})}{s(\hat{z})} \frac{H(\hat{z})^T}{s(\hat{z})}.
$$
 (8.4)

From (8.3) , we get

Im
$$
f_{ii}
$$
 = Im $z_1 \frac{H(\hat{z})}{q(z)s(\hat{z})} \frac{H(\hat{z})^*}{q(z)s(\hat{z})} + \sum_{k=2}^d \text{Im } z_k \frac{\Psi(z)}{q(z)s(\hat{z})} A_k \frac{\Psi(z)^*}{q(z)s(\hat{z})}.$ (8.5)

By Lemma [8.1,](#page-16-4) there exists $\hat{z} \in (i\Pi)^{d-1}$ for which $s_0(\hat{z}^i) = 0$, $h(\hat{z}^i) \neq 0$. Let $\Omega_{d-1} \subset (i\Pi)^{d-1}$ be a neighborhood of the point \hat{z} . Since $f_{ii}(z)$ is a positive real function, we see that for any fixed $x'_1 \in \mathbb{R}$, the inequality $\text{Im } f_{ii}(x'_1, \hat{z}) > 0$ holds
for $\hat{z} \in \Omega$, $\subset (\partial \Pi)^{d-1}$ From $(8, 5)$ we obtain for $\widehat{z} \in \Omega_{d-1} \subset (i\Pi)^{d-1}$. From [\(8.5\)](#page-17-1), we obtain

Im
$$
f_{ii}(x'_1, \hat{z}) = \sum_{k=2}^d \frac{\Psi(x'_1, \hat{z})}{q(x'_1, \hat{z})s(\hat{z})} A_k \frac{\Psi(x'_1, \hat{z})^*}{q(x'_1, \hat{z})s(\hat{z})} \text{Im } z_k > 0.
$$
 (8.6)

Then, for a sufficiently small positive fixed $y'_1 > 0$, there exists a neighborhood $\Omega'_{d-1} \subseteq \Omega_{d-1}$ of the point $\widehat{z'}$ for which

$$
\sum_{k=2}^{d} \text{Im} \, z_k \frac{\Psi(x_1' + iy_1', \hat{z})}{q(x_1' + iy_1', \hat{z})s(\hat{z})} A_k \frac{\Psi(x_1' + iy_1', \hat{z})^*}{q(x_1' + iy_1', \hat{z})s(\hat{z})} > 0, \quad \hat{z} \in \Omega_{d-1}'. \tag{8.7}
$$

Let $z'_1 = x'_1 + iy'_1$ (Im $z'_1 > 0$). From [\(8.5\)](#page-17-1), we get

Im
$$
f_{ii}(z'_1, \hat{z}) = \text{Im } z'_1 \sum_j \frac{|h_j(\hat{z})|^2}{|q(z'_1, \hat{z})s(\hat{z})|^2} + \sum_{k=2}^d \text{Im } z_k \frac{\Psi A_k \Psi^*}{|q(z'_1, \hat{z})s(\hat{z})|^2}.
$$
 (8.8)

According to [\(8.7\)](#page-17-2), for $\hat{z} \in \Omega_{d-1}'$, the second term in [\(8.8\)](#page-18-2) is positive. Since $s(z^i) = 0$ and $h(z^i) \neq 0$, then the first term increases indefinitely at $\hat{z} \rightarrow \hat{z}^i$. This implies Im $f_{ii}(z) \rightarrow +\infty$. Then the diagonal element $f_{ii}(z)$ is not holomorphic in the open upper poly-halfplane. This is a contradiction. \Box

9. Representations of positive real functions

Theorem 9.1 (Main theorem). Each rational function $f(z)$ of class $\mathbb{R}\mathcal{P}_{d}^{m\times m}$ d is the Schur complement

$$
f(z) = A_{11}(z) - A_{12}(z)A_{22}(z)^{-1}A_{21}(z)
$$
\n(9.1)

of the block $A_{22}(z)$ of a linear $(m+l) \times (m+l)$ matrix pencil

$$
A(z) = \{A_{ij}(z)\}_{i,j=1}^2 = z_1 A_1 + \dots + z_d A_d
$$

with real symmetric positive semidefinite matrix coefficients A_k , $k = 1, \ldots, d$.

Corollary 9.2. We have $\mathbb{R}\mathcal{P}_d^{m\times m} = \mathbb{R}\mathcal{B}_d^{m\times m}$ $\int_{d}^{m \times m}$ for every $d \geq 1$.

We need the following generalization of Darlington's theorem for functions of several variables (see also [\[18\]](#page-22-5)).

Proposition 9.3. Let a rational multi-affine matrix-valued function $f(z) \in$ $\mathbb{R}\mathcal{P}_d^{m\times m}$ $\frac{m\times m}{d}$ be represented as

$$
f(z) = \frac{P(z)}{q(z)} = \frac{z_1 P_1(\hat{z}) + P_2(\hat{z})}{z_1 q_1(\hat{z}) + q_2(\hat{z})}, \quad q_1(\hat{z}) \neq 0, \quad \hat{z} = (z_2, \dots, z_d).
$$

If $W_{z_1}[q, P] = \Phi_1(\widehat{z})\Phi_1(\widehat{z})^T$ is a SOS, and Φ_1 is of size $m \times r$, then

$$
g(\widehat{z}) = \begin{pmatrix} g_{11}(\widehat{z}) & g_{12}(\widehat{z}) \\ g_{21}(\widehat{z}) & g_{22}(\widehat{z}) \end{pmatrix} = \frac{1}{q_1(\widehat{z})} \begin{pmatrix} P_1(\widehat{z}) & \Phi_1(\widehat{z}) \\ \Phi_1(\widehat{z})^T & q_2(\widehat{z}) I_r \end{pmatrix}
$$
(9.2)

is a multi-affine function of class $\mathbb{R}\mathcal{P}_{d-1}^{(m+r)\times(m+r)}$ $\binom{(m+r)\times(m+r)}{d-1}$, and

$$
f(z) = g_{11}(\hat{z}) - g_{12}(\hat{z}) (g_{22}(\hat{z}) + z_1 I_r)^{-1} g_{21}(\hat{z}).
$$
\n(9.3)

Proof. Representation [\(9.3\)](#page-18-3) follows from the obvious identity

$$
f(z) = \frac{z_1 P_1(\hat{z}) + P_2(\hat{z})}{z_1 q_1(\hat{z}) + q_2(\hat{z})} = \frac{P_1}{q_1} - \frac{\Phi_1 \Phi_1^T}{q_1^2 (z_1 + q_2/q_1)}.
$$
(9.4)

The multi-affinity of $g(\hat{z})$ is obvious. Let us prove that

$$
g(\widehat{z}) \in \mathbb{R}\mathcal{P}_{d-1}^{(m+r)\times(m+r)}.
$$

By Theorem [3.7,](#page-6-0) it suffices to prove that $W_{z_k} = q_1^2 \partial g(\hat{z})/\partial z_k$, $k = 2, ..., d$, are
PSD forms. The function $f(z)$ is multi effine. Then PSD forms. The function $f(z)$ is multi-affine. Then

$$
f(z) = \frac{P(z)}{q(z)} = \frac{z_1 z_k \hat{P}_1 + z_1 \hat{P}_2 + z_k \hat{P}_3 + \hat{P}_4}{z_1 z_k \hat{q}_1 + z_1 \hat{q}_2 + z_k \hat{q}_3 + \hat{q}_4}.
$$
(9.5)

From (9.5) and (9.2) , we get

$$
\Phi_1 \Phi_1^T = z_k^2 \left(\widehat{q}_3 \widehat{P}_1 - \widehat{q}_1 \widehat{P}_3 \right) \n+ z_k \left(\widehat{q}_4 \widehat{P}_1 - \widehat{q}_1 \widehat{P}_4 + \widehat{q}_3 \widehat{P}_2 - \widehat{q}_2 \widehat{P}_3 \right) + \left(\widehat{q}_4 \widehat{P}_2 - \widehat{q}_2 \widehat{P}_4 \right), \qquad (9.6)
$$

$$
W_{z_k} = q_1^2 \frac{\partial g(\hat{z})}{\partial z_k} = \begin{pmatrix} \widehat{P}_1 \widehat{q}_2 - \widehat{P}_2 \widehat{q}_1 & \Phi_k(\widehat{z}) \\ \Phi_k(\widehat{z})^T & (\widehat{q}_2 \widehat{q}_3 - \widehat{q}_1 \widehat{q}_4) I_r \end{pmatrix},
$$
(9.7)

where $\Phi_k(\hat{z}) = (z_k\hat{q}_1 + \hat{q}_2)\partial\Phi_1/\partial z_k - \hat{q}_1\Phi_1, k = 2, \ldots, d.$

Note the identity

$$
\left(\widehat{P}_1\widehat{q}_2 - \widehat{P}_2\widehat{q}_1\right) = \Phi_k(\widehat{z})\left(\widehat{q}_2\widehat{q}_3 - \widehat{q}_1\widehat{q}_4\right)^{-1}\Phi_k(\widehat{z})^T.
$$
\n(9.8)

Indeed,

$$
\Phi_k(\hat{z})\Phi_k(\hat{z})^T = (z_k\hat{q}_1 + \hat{q}_2)^2 \frac{\partial \Phi_1}{\partial z_k} \frac{\partial \Phi_1^T}{\partial z_k} \n- (z_k\hat{q}_1^2 + \hat{q}_1\hat{q}_2) \left(\frac{\partial \Phi_1}{\partial z_k}\Phi_1^T + \Phi_1 \frac{\partial \Phi_1^T}{\partial z_k}\right) + \hat{q}_1^2 \Phi_1 \Phi_1^T.
$$
\n(9.9)

 $\Phi_1(\hat{z})$ is a multi-affine form. Differentiating [\(9.6\)](#page-19-1) in z_k and substituting the obtained expressions into [\(9.9\)](#page-19-2), we obtain [\(9.8\)](#page-19-3). Since $q(z)$ is a Hurwitz form, then, (see [\[13\]](#page-21-11), Proposition 2.8),

$$
h = \left. \frac{q}{\partial q / \partial z_1} \right|_{z_1 = 0} = \frac{z_k \widehat{q}_3 + \widehat{q}_4}{z_k \widehat{q}_1 + \widehat{q}_2} \in \mathbb{R} \mathcal{P}_{d-1}.
$$

Then $Q = (\hat{q}_2\hat{q}_3 - \hat{q}_1\hat{q}_4)$ is PSD. For $\hat{x} \in \mathbb{R}^{d-2}$, from [\(9.7\)](#page-19-4), [\(9.8\)](#page-19-3), we get

$$
W_{z_k}(\widehat{x}) = \begin{pmatrix} I_m & \Phi_k Q^{-1} \\ 0 & I_r \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & Q \end{pmatrix} \begin{pmatrix} I_m & 0 \\ Q^{-1} \Phi_k^T & I_r \end{pmatrix} \ge 0.
$$

Lemma 9.4. If $f(z) = g_{11} - g_{12} (g_{22} + z_1 I_{r_1})^{-1} g_{21}$ and

$$
\begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} - \begin{pmatrix} a_{13} \\ a_{23} \end{pmatrix} (a_{33} + z_2 I_{r_2})^{-1} (a_{31} \ a_{32}),
$$

then

$$
f(z) = A_{11} - (A_{12} A_{13}) \begin{pmatrix} A_{22} & A_{23} \ A_{32} & A_{33} \end{pmatrix}^{-1} \begin{pmatrix} A_{21} \ A_{31} \end{pmatrix},
$$

where

$$
\begin{pmatrix} A_{11} & A_{12} & A_{13} \ A_{21} & A_{22} & A_{23} \ A_{31} & A_{32} & A_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \ 0 & z_1 I_{r_1} & 0 \ 0 & 0 & z_2 I_{r_2} \end{pmatrix}.
$$

The assertion of the lemma can be verified by direct calculation.

Proof of Theorem [9.1.](#page-18-1) By Proposition [3.2,](#page-5-3) we may assume that

$$
\deg_{z_k} P = \deg_{z_k} q = n_k, \quad k = 1, \dots, d.
$$

Applying to $f(z)$ the degree reduction operator $\mathbf{D}_{z_k}^{n_k}$, in each variable z_k we obtain the multi-affine positive real function

$$
\widehat{f}(\zeta_1,\ldots,\zeta_n) = \mathbf{D}_{z_1}^{n_1} \cdots \mathbf{D}_{z_d}^{n_d} [f(z)] = \frac{\widehat{P}}{\widehat{q}} = \frac{\zeta_1 P_1(\widehat{\zeta}) + P_2(\widehat{\zeta})}{\zeta_1 q_1(\widehat{\zeta}) + q_2(\widehat{\zeta})},\tag{9.10}
$$

where $q_1(\widehat{\zeta}) \neq 0$. The matrix pencil representing the multi-affine function $\widehat{f}(\zeta)$ where $q_1(s)$ of the matrix periodic representing the matrix-dimension $f(s)$ will be constructed step by step. By Theorem [8.2,](#page-16-1) there exists $m \times r_1$ matrixvalued polynomial $\Phi_1(\hat{\zeta})$ such that $W_{\zeta_1}[\hat{q}, \hat{P}] = \Phi_1(\hat{\zeta})\Phi_1(\hat{\zeta})^T$. By Proposition [9.3,](#page-18-5) the function

$$
g^{(1)}(\widehat{\zeta}) = \begin{pmatrix} g_{11}^{(1)} & g_{12}^{(1)} \\ g_{21}^{(1)} & g_{22}^{(1)} \end{pmatrix} = \frac{1}{q_1(\widehat{\zeta})} \begin{pmatrix} P_1(\widehat{\zeta}) & \Phi_1(\widehat{\zeta}) \\ \Phi_1(\widehat{\zeta})^T & q_2(\widehat{\zeta}) I_{r_1} \end{pmatrix}
$$

belongs to the class $\mathbb{R}\mathcal{P}_{n-1}^{(m+r_1)\times(m+r_1)}$ $_{n-1}^{(m+r_1)\times(m+r_1)},$ and

$$
\widehat{f}(\zeta_1,\ldots,\zeta_n)=g_{11}^{(1)}-g_{12}^{(1)}\left(g_{22}^{(1)}+\zeta_1I_{r_1}\right)^{-1}g_{21}^{(1)}.
$$

The matrix-valued function $g^{(1)}(\hat{\zeta})$ depends only on $n-1$ variables and satisfies the conditions of Proposition [9.3.](#page-18-5) Then

$$
g^{(1)}(\widehat{\zeta}) = \begin{pmatrix} g_{11}^{(2)} & g_{12}^{(2)} \\ g_{21}^{(2)} & g_{22}^{(2)} \end{pmatrix} - \begin{pmatrix} g_{13}^{(2)} \\ g_{23}^{(2)} \end{pmatrix} \left(g_{33}^{(2)} + \zeta_2 I_{r_2} \right)^{-1} \left(g_{31}^{(2)} & g_{32}^{(2)} \right).
$$

By Lemma [9.4,](#page-19-5) we obtain

$$
\widehat{f}(\zeta) = g_{11}^{(2)} - \left(g_{12}^{(2)} g_{13}^{(2)}\right) \begin{pmatrix} g_{22}^{(2)} + \zeta_1 I_{r_1} & g_{23}^{(2)} \\ g_{32}^{(2)} & g_{33}^{(2)} + \zeta_2 I_{r_2} \end{pmatrix}^{-1} \begin{pmatrix} g_{21}^{(2)} \\ g_{31}^{(2)} \end{pmatrix},
$$

where the matrix-valued function $g^{(2)}$ depends only on $n-2$ variables and satisfies the conditions of Proposition [9.3.](#page-18-5)

Continuing the process, at the $n-1$ step we get a positive real matrix-valued function of one variable ζ_n : $g^{(n-1)}(\zeta_n) = \zeta_n A_n$, where $A_n = \{a_{ij}\}_{i,j=1}^N \geq 0$ (here a_{ij} are blocks of the appropriate size). Then

$$
\widehat{f}(\zeta_1,\ldots,\zeta_n)=A_{11}(\zeta)-A_{12}(\zeta)A_{22}(\zeta)^{-1}A_{21}(\zeta),
$$

where the positive real matrix pencil $A(\zeta) = \{A_{ij}(\zeta)\}_{i,j=1}^2$ has the form

$$
A(\zeta) = \zeta_n \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1N} \\ a_{21} & a_{22} & \cdots & a_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \cdots & a_{NN} \end{pmatrix} + \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & \zeta_1 I_{r_1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \zeta_{n-1} I_{r_{n-1}} \end{pmatrix}
$$

.

The degree reduction operator is invertible. Returning to the variables z_1, \ldots, z_d , we obtain a positive long-resolvent representation of the original function $f(z)$. \Box

References

- [1] J.A. Ball, Multidimensional circuit synthesis and multivariable dilation theory, Multidimens. Syst. Signal Process 22 (2011), 27–44.
- [2] J.A. Ball and D.S. Kaliuzhny˘ı-Verbovetski˘ı, Rational Cayley inner Herglotz–Agler functions: Positive kernel decompositions and transfer-function realizations, Linear Algebra and its Applications 456 (2014), 138–156.
- [3] J.A. Ball and D.S. Kaliuzhnyĭ-Verbovetskiĭ, Schur–Agler and Herglotz–Agler classes of functions: Positive-kernel decompositions and transfer-function realizations, Adv. Math. 280 (2015), 121–187.
- [4] M.F. Bessmertnyĭ, Realization of rational functions of several variables by means of a long resolvent, The manuscript was submitted by the Kharkov State University and deposited at VINITI, July 8, 1981, No. 3352-81, 86 p. (Russian).
- [5] M.F. Bessmertny˘ı, Functions of Several Variables in the Theory of Finite Linear Structures, Ph.D thesis, Kharkiv State University, 1982 (Russian).
- [6] M.F. Bessmertnyĭ, On realizations of rational matrix functions of several complex variables, Oper. Theory Adv. Appl. 134 (2002), 157–185.
- [7] M.F. Bessmertnyĭ, On realizations of rational matrix functions of several complex variables. II, Oper. Theory Adv. Appl. 143 (2003), 135–146.
- [8] M.F. Bessmertnyĭ, On realizations of rational matrix functions of several complex variables. III, Oper. Theory Adv. Appl. 149 (2004), 133–138.
- [9] M.F. Bessmertnyĭ, Functions of several variables in the theory of finite linear structures. Part I: Analysis, Oper. Theory Adv. Appl. 157 (2005), 91–106.
- [10] J. Bochnak, M. Coste, and M.-F. Roy, Real Algebraic Geometry, 95, Springer, Berlin, 1998.
- [11] N.K. Bose, New techniques and results in multidimensional problems, J. Franklin Inst. 301 (1976), 83–101.
- [12] P. Branden, Polynomials with the half-plane property and matroid theory, Adv. Math. 216 (2007), 302–320.
- [13] Y.-B. Choe, J.G. Oxley, A.D. Sokal, and D.G. Wagner, Homogeneous multivariate polynomials with the half-plane property, Adv. Applied Math. 32 (2002), 88–187.
- [14] M.-D. Choi, Positive semidefinite biquedratic forms, Linear Algebra and its Applications 12 (1975), 95–100.
- [15] C. Goel, S. Kuhlmann, and B. Reznick, On the Choi-Lam analogue of Hilbert's 1888 theorem for symmetric forms, Linear Algebra and its Applications 496 (2016), 114–120.
- [16] D.S. Kaliuzhnyĭ-Verbovetskiĭ, On the Bessmertnyĭ class of homogeneous positive holomorphic functions of several variables, Oper. Theory Adv. Appl. **149** (2004), 255–289.
- [17] D.S. Kaliuzhnyĭ-Verbovetskiĭ, On the Bessmertnyĭ class of homogeneous positive holomorphic functions on a product of matrix halfplanes, Oper. Theory Adv. Appl. 157 (2005), 139–164.
- [18] T. Koga, Synthesis of finite passive n-ports with prescribed positive real matrices of several variables, IEEE Trans. Circuit Theory, CT-15 (1968), 2–23.
- [19] S. Lang, Algebra, 3^{nd} ed., Springer-Verlag, New York, 2002.
- [20] V. Powers and T. Wörmann, An algorithm for sums of squares of real polynomials, J. Pure and Appl. Algebra 127 (1998), 99–104.
- [21] W. Rudin, Function Theory in Polydiscs, Benjamin, New York-Amsterdam, 1969.
- [22] A. Stefan and A. Welters, Extension of the Bessmertny˘ı realization theorem for rational functions of several complex variables, preprint, [https://arxiv.org/abs/](https://arxiv.org/abs/math/08088v3) [math/08088v3](https://arxiv.org/abs/math/08088v3).

Received June 23, 2023, revised December 12, 2023.

Michail Bessmertnyĭ,

V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, E-mail: bezsmermf@gmail.com

Додатнi матричнi зображення рацiональних позитивних дiйсних функцiй кiлькох змiнних

Michail Bessmertny˘ı

Рацiональну однорiдну (першого степеня) позитивну дiйсну матричну функцiю кiлькох змiнних можна зобразити як доповнення Шура до дiагонального блоку лiнiйної однорiдної матричної функцiї з невiд'ємно визначеними дiйсними матричними коефiцiєнтами (довго-резольвентне зображення). Чисельники частинних похiдних позитивної дiйсної функцiї є сумами квадратiв многочленiв.

Ключовi слова: позитивна дiйсна функцiя, матричнозначна функцiя, доповнення Шура, довго-резольвентне зображення, сума квадратiв