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A Discrete Blaschke Theorem for Convex

Polygons in 2-Dimensional Space Forms
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Let M be a 2-dimensional space form. Let P be a convex polygon in M .
For these polygons, we define (and justify) a curvature κi at each vertex Ai
of the polygon and prove the following Blaschke-type theorem: “If P is a
convex polygon in M with curvature at its vertices κi ≥ κ0 > 0, then the
circumradius R of P satisfies taλ(R) ≤ π/(2κ0) and the equality holds if
and only if the polygon is a doubly covered segment”.
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1. Introduction and the main result

We start recalling that an n-dimensional space form M
n
λ of curvature λ is

a complete simply connected n-dimensional Riemannian manifold of constant
sectional curvature λ. The only ones are: when λ = 0, the Euclidean space Rn,
when λ > 0, the n-dimensional sphere of radius 1/

√
λ in the Euclidean space

Rn+1, and when λ < 0, the hyperbolic space of sectional curvature λ that can be
visualized as the upper connected component of the Minkowski sphere of radius
1/
√
|λ| in the Minkowski space Rn+1

1 .
In the book of Blaschke [1], it is proved that if Γ is a closed convex regular

curve in the Euclidean plane that bounds a compact convex region Ω and the
curvature κ of Γ is bounded from below by some constant κ0 > 0, then, for every
point p ∈ Γ, the circle tangent to Γ at p, with radius R = 1

κ0
and with the unit

normal vector that points to its center pointing also to the interior of Ω, bounds
a disk that contains Ω.

This result was extended by H. Karcher [14] for other space forms, and by
A.D. Milka [15] for non regular curves. Before stating it, we recall a notation
that allows us to describe the geometry of space forms in a unified way:

sλ(t) =


sin(
√
λt)√
λ

if λ > 0

t if λ = 0
sinh(
√
|λ|t)√
|λ|

if λ < 0

, cλ(t) =


cos(
√
λt) if λ > 0

1 if λ = 0

cosh(
√
|λ|t) if λ < 0

,
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taλ(t) =
sλ(t)

cλ(t)
, coλ(t) =

cλ(t)

sλ(t)
. (1.1)

The functions above satisfy the following computational rules:

c′λ = −λ sλ, s′λ(t) = cλ(t), c2λ + λ s2λ = 1,
1

c2λ(t)
= 1 + λta2λ(t), (1.2)

sλ(t+ u) = sλ(t)cλ(u) + cλ(t)sλ(u) and cλ(t+ u) = cλ(t)cλ(u)− λ sλ(t)sλ(u),

where “ ′ ” denotes the derivative with respect to t.
We shall recall also the following concept:

Given any convex closed curve Γ inM
2
λ, the circumradius of Γ is the minimal

value of R such that a disk of radius R in M
2
λ contains the domain bounded by Γ.

With this concept, the Blaschke–Karcher–Milka theorem can be stated in the
following form:

Theorem 1.1 ([15]). If Γ is a closed rectifiable curve in M
2
λ that bounds a

compact convex region Ω and with specific curvature κ ≥ κ0 > 0 is λ ≥ 0 and
κ0 >

√
−λ if λ < 0, then the circumradius R of Γ satisfies taλ(R) ≤ 1

κ0
.

Understanding the statement of this theorem requires to explain the concept
of specific curvature used in [15]. Its definition requires the following chain of
definitions:

Definition 1.2 ([15]). Given a (non necessarily closed) polygon P in M
2
λ,

the sum of the supplementary of the internal angles Âi of P ,
∑n

i=1(π − Âi), is
called the turning of P .

Given a rectifiable curve γ of length s in M
2
λ, we shall denote by Pn a polygon

with n vertices in γ. If γ is not closed, Pn is chosen so that its endpoints coincide
with the endpoints of γ. The polygon is called inscribed into γ.

Definition 1.3 ([15]). The turning τ(γ) of γ is the upper limit of the turnings
of inscribed polygons Pn when the length of the arc-segments of γ between any
pair of consecutive vertices of Pn goes to zero as n→∞.

Definition 1.4 ([15]). The specific curvature of a curve γ of length s is the
quotient τ(γ)/s. A convex curve Γ is said to have specific curvature bounded
from below by some constant κ0 if every arc γ of Γ has the specific curvature no
smaller than κ0.

Remark 1.5. It follows from these definitions that every convex closed curve,
which is piecewise C2 and its C2 arcs have curvature κ > κ0, has the specific
curvature bounded from below by κ0.

Further developments of related Blaschke theorems are done by obtaining
conditions under which a convex set in Rn can be included in other set [7, 9, 17]
or its generalization to Riemannian manifolds, where the ball is the convex set
which is included in another set [13].
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In Theorem 1.1 (and in the other cited developments), the hypothesis of
strong convexity (κ ≥ κ0 > 0) is necessary, the theorem is not true for κ ≥ 0.
Therefore it cannot be applied to closed convex polygons. Here we shall show
that it is possible to have a version of the theorem for polygons once we give an
appropriate definition of curvature at the vertices of a polygon. We shall take
the following one:

Definition 1.6. Let A be a vertex of a convex polygon P in a space form

M
2
λ. When λ > 0, the lengths `i of the sides of P must satisfy `i < π/

√
λ. Let

Â be the interior angle of P at the vertex A, and let `1, `2 be the lengths of the
sides of P that meet at vertex A. We define the “curvature of P at A” by the
number

κA =
(π − Â)

taλ(`1/2) + taλ(`2/2)
. (1.3)

When λ = 0, the Definition 1.3 becomes

κA =
2(π − Â)

`1 + `2
. (1.4)

The reasons why we have chosen Definition 1.3 are given in the next section.
The version of Theorem 1.1 that we prove for polygons is:

Theorem 1.7. Let P be a closed convex polygon in M
2
λ, with side lengths

less than π/
√
λ if λ > 0, and with curvature at each vertex Ai satisfying κAi ≥

κ0, with κ0 > 0 if λ > 0 and 2κ0/π >
√
−λ if λ < 0. When λ 6= 0, we also

assume that π
2κ0
≥ taλ(`i/2) for every i. Then the circumradius R of P satisfies

taλ(R) ≤ π/(2κ0), (1.5)

and the equality holds if and only if the polygon degenerates to a doubly covered
segment.

Remark 1.8. Let us observe that for a polygon with n vertices, it follows from
the Gauss–Bonnet formula and Definition 1.3 that κAi ≥ κ0 implies that if we
denote by S the area of the domain bounded by the polygon P and by L its
perimeter, then

κ0

n∑
i=1

(taλ(`i/2) + taλ(`i+1/2)) ≤
n∑
i=1

(π − Âi) = 2π − λS.

Therefore,
1

κ0
≥

2
∑n

1=1 taλ(`i/2)

2π − λS
.

If λ = 0, then
∑n

1=1(`i/2) ≥ `M , where `M := max{`1, . . . , `n}, and

π

2κ0
≥ `M/2. (1.6)

That is, the hypothesis “ π
2κ0
≥ taλ(`i/2) for every i” added when λ 6= 0 is

automatically satisfied when λ = 0 as a consequence of the lower bound of κAi .
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Remark 1.9. For λ 6= 0, the hypothesis π
2κ0
≥ taλ(`M/2) is satisfied if∑n

i=1 taλ(`i/2) ≥ 2π−λS
π taλ(`M/2), which may be is true in general.

In the literature, a curve in M
2
λ satisfying κ ≥ κ0 is called κ0-convex (see, for

instance, [2–4, 10, 12]). For κ0 big enough, these curves are characterized by the
fact that at any point they are contained in a disc of radius R with κ0 = coλ(R).
For polygons, Theorem 1.7 says that the concept is quantitatively different, here,
when κAi ≥ κ0, the relation between κ0 and R is (2/π)κ0 = coλ(R).

For the Euclidean plane, Definition (1.4) was used in [5] in the study of
approximations of surfaces by planar triangulations, and in [6] it was studied
how good this definition is for approximating the curvature of a planar curve by
a polygonal line. Other applications of this definition in the Euclidean case were
done in [8]. Related but different definitions of curvature of a polygon in the
Euclidean plane were used for other applications in [16] and [18].

Some people would prefer to take (1.4) as a definition for the curvature of a

convex polygon for every M
2
λ, without taking into account the value of λ. In the

last section of the paper we give the corresponding result (Theorem 4.1) for this
definition.

2. About Definition 1.6

If we consider a convex polygon as a limit of smooth curves approaching it
and the curvature at a vertex as the limit of the curvature of the points at the
curves whose limit is the vertex, then the curvature becomes infinite. Obviously,
this is not a good definition for many geometric properties. We use a definition
satisfying the following properties:

P1 the curvature of a vertex is bigger as the interior angle is lower;

P2 the curvature of a vertex is bigger as the lengths of the adjacent sides is
shorter;

P3 if we have a regular polygon inscribed in a circle and we take the number
of sides of the regular polygon increasing up to infinite, the curvature of the
vertices approach the curvature of the circle.

Properties P1 and P3 correspond to a natural geometric intuition. Prop-
erty P2 is related to the fact that we want to generalize Theorem 1.1 which
fails when κ0 = 0 (in the Euclidean case) because with κ0 = 0 you may have
straight lines with arbitrary length which are the obstacle for upper bounds for
the circumradius.

It is obvious that our definition 1.6 satisfies P1 and P2. In the next propo-
sition, we shall check that it also satisfies P3.

Proposition 2.1. Let C be a circle of radius R (< π/(2
√
λ) if λ > 0) in

M
2
λ, and let Pn be a regular polygon of n sides inscribed in C. If κn denotes the

curvature at any vertex An of the polygon Pn, then limn→∞ κn = coλ(R), which
is the curvature of C.
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Proof. Let us recall some trigonometric formulae of the space forms. Let ∆
be a geodesic triangle with sides a, b, c and opposite vertices A,B,C. Let Â, Â, Ĉ
be the angles at these vertices. Then the following formulae hold:

cos Â =
cλ(a)− cλ(b) cλ(c)

λ sλ(b) sλ(c)
, (2.1)

(when λ = 0, the quotient in the second term of (2.1) must be understood taking
limits for λ→ 0, giving the standard cosine law in Euclidean plane),

sin Â

sλ(a)
=

sin Â

sλ(b)
=

sin Ĉ

sλ(c)
. (2.2)

Let An, Bn be two consecutive vertices of the polygon bounding a side AnBn of
length `n. Let Mn be the middle point of AnBn between An and Bn. Let O be
the center of the circle. Consider the geodesic triangle OMnBn and denote by
dn the length of the geodesic OMn. One has M̂n = π/2. We can apply (2.1) and
(2.2) to this triangle to obtain

cλ(R) = cλ(dn)cλ(`n/2), sλ(dn) = sλ(R) sin(Ân/2).

From these two equalities and the formulae (1.2), we obtain

c2λ(R)

c2λ(`n/2)
= c2λ(dn) = 1− λs2λ(dn) = 1− λ s2λ(R) sin2(Ân/2).

Then

sin2(Ân/2) =
1

λ s2λ(R)
−

co2λ(R)

λ c2λ(`n/2)
= 1 +

co2λ(R)

λ

(
1− 1

c2λ(`n/2)

)
cos2(Ân/2) = 1− sin2(Ân/2) = co2λ(R)ta2λ(`n/2),

and
taλ(`n/2) = taλ(R) cos(Ân/2) = taλ(R) sin(π/2− Ân/2). (2.3)

We apply now the definition (1.3) to the curvature κn of Ân,

κn =
(π − Ân)

2taλ(`n/2)
=

2(π/2− Ân/2)

2taλ(R) sin(π/2− Ân/2)
. (2.4)

But limn→∞ Ân = π, then the limit of the quotient in (2.4) for n→∞ is coλ(R),
as claimed in Proposition 2.1.

Definition 1.6 is not the unique one that satisfies properties P1 to P3. If we
take (1.4) as a definition of the curvature at A for any value of λ, it is obvious that
it satisfies P1 and P2. Moreover, P3 follows from the same proof of Proposition
2.1, taking into account that limn→∞

taλ(`n/2)
(`n/2)

= 1. We prefer (1.3) because it

gives a clean bound (1.5) in Theorem 1.7, but some people may prefer the other
definition.
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3. Proof of the theorem 1.7

Let A1, A2, . . . , An be the consecutive vertices of the polygon P . Let Âi be
the angles at these vertices, and `1, . . . , `i, . . . , `n be the lengths of the sides
AnA1, . . . , Ai−1Ai, . . . , An−1An, respectively (see Figure 3.1).

For every segment Ai−1Ai, we construct a segment of circle Ci of radius ρi
with center Oi in a line orthogonal to Ai−1Ai in its middle point and in the ray
in the inward direction, and with boundary points Ai and Ai+1.

Fig. 3.1

Each angle βi at Ai of the isosceles triangle Ai−1AiOi satisfies 0 < βi < π/2,
and the analogue of (2.3) for this triangle is

taλ(`i/2) = taλ(ρi) cosβi = taλ(ρi) sin(δi) (3.1)

if we take δi = π/2− βi.
We now take the curve obtained as the union of the segments of circle Ci.

This curve is convex if and only if, for every i = 1, .., n, the tangent vectors at Ai
of the circles Ci−1 and Ci with the curve Ci−1 oriented from Ai−1 to Ai and the
curve Ci oriented from Ai to Ai+1 form an angle 2 θi in the interval [0, π]. This
angle is the same as the one formed by the normals at Ai to Ci−1 and Ci pointing
inward. These normals are AiOi and AiOi+1, and this angle is non negative if
and only if βi + βi+1 ≥ Âi, that is, π − δi − δi+1 ≥ π − (π − Âi),

δi + δi+1 ≤ π − Âi. (3.2)
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For every i, let us choose ρi such that taλ(ρi) = π
2κ0

. The choice is possible
because, by (1.6), we have that π

2κ0
≥ taλ(`i/2) for λ = 0. It is a hypothesis for

λ 6= 0, and for λ < 0, 2κ0/π >
√
−λ it is also a hypothesis. From the hypothesis

of κAi ≥ κ0, by using formula (3.1), we have

κ0 ≤
π − Âi

taλ(`i/2) + taλ(`i+1/2)
=

(π − Âi)
taλ(ρi) sin δi + taλ(ρi+1) sin δi+1

=
2, κ0
π

(π − Âi)
sin δi + sin δi+1

,

then

π − Âi ≥
π

2
(sin δi + sin δi+1) ≥ (δi + δi+1), (3.3)

an inequality which coincides with (3.2). As a consequence, the closed curve C
formed by the union of the Ci is convex and with curvature equal 2κ0

π at every
regular point. Then the specific curvature of C is bigger than 2κ0

π (see Remark
1.5) and, by Milka’s theorem, the circumradius satisfies (1.5).

The equality holds in (1.5) if and only if equalities hold in all the inequalities
of the above argument. In particular, equality implies sin δi = 2

π δi, which happens

if and only if δi = π/2. The other equalities that we must have are π − Âi =
c (sin δi + sin δi+1) = π, that is Ai = 0, and taλ(`i/2) = taλ(ρi) sin δi = π/κ0 and
it is satisfied only in a doubly covered segment of length π/κ0. It is a degenerate
polygon of curvature π/(2taλ(`i/2)) = κ0.

4. If we adopt definition (1.4)

In this section, we consider the curvature at a vertex of a convex polygon
defined by (1.4).

Let us define R0 by 1
κ0

= taλ(R0). From the inequality 2(π−Âi)
`i+`i+1

≥ κ0 =

coλ(R0) and the isoperimetric inequality L2 − 4πS + λS2 ≥ 0, (where L is the
perimeter of the polygon and S is the area of the region enclosed by it), it follows
that

sλ(R0) ≥
L

2π
≥ `M

π
.

For definition (1.4) of the curvature at a vertex, Theorem 1.7 must be changed
by:

Theorem 4.1. Let P be a compact convex polygon in M
2
λ with κAi ≥ κ0 and

such that, if λ > 0, the sides satisfy `i ≤ 2 e < π/
√
λ and, if λ < 0, one has

2κ0
π >

√
−λ and `i ≥ 2 e > 0. When λ 6= 0, we will also assume that e

taλ(e)
π

2κ0
≥

taλ(`i/2) for every i. Then the circumradius R of P satisfies

R ≤ π

2
R0 if λ = 0, (4.1)

taλ(R) ≤ taλ(e)

e

π

2
taλ(R0) if λ 6= 0, (4.2)
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and the equality holds if and only if the polygon degenerates into a doubly covered
segment.

We observe that, when λ < 0, we have taλ(e)
e

π
2 κ0

< π/(2κ0) for e > 0.

The proof is exactly the same for λ = 0. For λ > 0, one has that

`i/2 =
`i/2

taλ(`i/2)
taλ(`i/2) ≥ e

taλ(e)
taλ(`i/2).

Then, if for every i we choose ρi such that taλ(ρi) = e
taλ(e)

π
2κ0

, we obtain

κ0 ≤
π − Âi

(`i/2) + (`i+1/2)
≤ (π − Âi)

e
taλ(e)

(taλ(ρi) sin δi + taλ(ρi+1) sin δi+1)

= 2
κ0
π

(π − Âi)
sin δi + sin δi+1

, (4.3)

from which π − Âi ≥ (δi + δi+1) as in the proof of Theorem 1.7, the union of the
arcs Ci is convex, and the rest of the proof is the same as that for Theorem 1.7.

The proof for the case λ < 0 follows the same steps, with the unique change
that now the function `/2

taλ(`/2)
is decreasing and we have to bound it taking the

minimal value of `/2.
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Дискретна теорема Бляшке для опуклих
багатокутникiв в 2-вимiрних просторах постiйної

кривини
Alexander Borisenko and Vicente Miquel

Нехай M є 2-вимiрною площиною постiйної кривини, P є опуклим
багатокутником в M . Для цих багатокутникiв дано визначення криви-
ни κi в вершинах Ai i доведена дискретна теорема Бляшке: “якщо P є
опуклий багатокутник в M з кривинами вершин κi ≥ κ0 > 0, то радiус
R кола, описаного навколо P , задовольняє нерiвнiсть taλ(R) ≤ π/(2κ0),
i рiвнiсть виконується тодi i лише тодi, коли багатокутник є 2-покритим
сегментом”.

Ключовi слова: теорема Бляшке, кривина вершини, радiус описаного
кола, опуклий багатокутник
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