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Multiple Solutions for Problems Involving

p(x)-Laplacian and p(x)-Biharmonic

Operators
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In this paper, we consider the following p(x)-biharmonic problem with
Hardy nonlinearity:

∆2
p(x)u−∆p(x)u = λ

|u|p(x)−2u

δ(x)2p(x)
+ f(x, u) in Ω,

u = 0 on ∂Ω,

|∇u|p(x)−2 ∂u

∂n
= g(x, u) on ∂Ω,

where Ω ⊂ RN (N ≥ 3), ∆p(x) is the p(x)-Laplacian and ∆2
p(x) is the p(x)-

biharmonic operator. More precisely, under some appropriate conditions
on the nonlinearities f and g, we combine the variational methods with the
theory of the generalized Lebesgue and Sobolev spaces to prove the existence
and the multiplicity of solutions.
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1. Introduction

In this paper, we are interested in the existence and the multiplicity of solu-
tions for the following p(x)-biharmonic problem:

∆2
p(x)u−∆p(x)u = λ

|u|p(x)−2u

δ(x)2p(x)
+ f(x, u) in Ω,

u = 0 on ∂Ω,

|∇u|p(x)−2 ∂u

∂n
= g(x, u) on ∂Ω,

(1.1)

where Ω ⊂ RN , N ≥ 3, is a bounded domain, ∂
∂n is the outer unit normal

derivative, δ(x) denotes the Euclidian distance from x to the boundary ∂Ω,
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∆2
p(·)u = ∆(|∆u|p(·)−2∆u) is the p(·)-biharmonic operator, and (−∆)p(x)u =

−div(|∇u|p(x)−2∇u) is the p(·)-Laplacian operator.
Hereafter, we assume that p is a continuous function on Ω satisfying the

inequality

1 < p− = inf
Ω
p(x) ≤ p+ = sup

Ω

p(x) <
N

2
. (1.2)

Also, we assume that 0 < λ < CH , where CH is a positive constant in the
p(·)-Hardy inequality given by

CH =
p−

p+
min

((
N(p− − 1)(N − 2p−)

(p−)2

)p−
,

(
N(p+ − 1)(N − 2p+)

(p+)2

)p+)
.

We recall that the p(·)-Hardy inequality is given by∫
Ω

|∆u(x)|p(x)

p(x)
dx ≥ CH

∫
Ω

|u(x)|p(x)

p(x)δ(x)2p(x)
dx (1.3)

for all u ∈W 2,p(x)
0 (Ω), where W

2,p(x)
0 (Ω) is defined in Section 2 below.

We note that the p(x)-biharmonic and p(x)-Laplacian operators present a
more complicated non-linearity. Additionally, problems involving these types of
operators have been widely studied. This is due to their important applications
in several fields such as non-Newtonian fluids, viscous fluids, and chemical het-
erogeneous. For more information, we refer readers to the references [7, 16,22].

Very recently, problems like (1.1) attracted a considerable attention from sev-
eral researchers. See, for example, the papers [1,8,11,13–15,17–19,21]. In partic-
ular, in [15], the authors proved the existence result for the following eigenvalue
problem: ∆2

p(x)u = λ
|u|p(x)−2u

δ(x)2p(x)
+ µ|u|p(x)−2u in Ω,

u = 0 on ∂Ω.

(1.4)

Later, by using a variational approach and the symmetric mountain pass theorem,
in [12], M. Jennane proved that the problem

∆2
p(x)u−∆p(x)u = a(x)|u|α(x)−2u+ λ

(
b1(x)(x)|u|β(x)−2u− b2(x)|u|γ(x)−2u

)
in Ω,

u = 0 on ∂Ω

admits infinitely many solutions.
Motivated by the above-mentioned works, we will use the mountain pass the-

orem to prove the existence of a nontrivial solution for problem (1.1). Moreover,
we will use the Z2-mountain pass theorem to prove that under additional assump-
tions, problem (1.1) possesses infinitely many weak solutions.

The rest of this paper is organized as follows. In Section 2, we recall some
notions and basic results on the generalized Sobolev and Lebesgue spaces. In
Section 3, we state and prove the main results of this paper.
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2. Preliminaries and variational setting

In this section, we recall some necessary properties of variable exponent
Lebesgue and Sobolev spaces. For more details, see [10,23].

Let Ω be a bounded domain in RN , N ≥ 3. We consider the set

C+(Ω) =
{
p ∈ C(Ω) | ∀x ∈ Ω p(x) > 1

}
.

For all p ∈ C+(Ω) , we define the variable exponent Lebesgue space by

Lp(x)(Ω) =

{
u : Ω→ R

∣∣∣∣ u is measurable and

∫
Ω
|u(x)|p(x)dx <∞

}
.

Equipped with the Luxemburg norm

|u|p(x) = inf

{
µ > 0

∣∣∣∣∣
∫

Ω

∣∣∣∣u(x)

µ

∣∣∣∣p(x)

dx ≤ 1

}
,

Lp(x)(Ω) becomes a separable and reflexive Banach space if and only if

1 < p− ≤ p+ <∞.

Moreover, in the following proposition, we see that the Hölder inequality holds.

Proposition 2.1 ([10, 23]). For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), where
1

p(x) + 1
p′(x) = 1, we have∣∣∣∣∫

Ω
uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

(p′)−

)
|u|p(x)|v|p′(x).

A very important role in manipulating generalized Lebesgue spaces with vari-
able exponents is played by the modular of ρp(x) : Lp(x)(Ω)→ R, which is defined
by

ρp(x)(u) =

∫
Ω
|u(x)|p(x)dx.

Proposition 2.2 ([10,23]). For all u ∈ Lp(x)(Ω), we have:

1. |u|p(x) < 1 (= 1, > 1)⇔ ρp(x)(u) < 1(respectively, = 1, > 1).

2. |u|p(x) > 1⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x).

3. |u|p(x) < 1⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x).

Another interesting property of the variable exponent Lebesgue space is given
in the proposition below.

Proposition 2.3 ([10, 23]). Let p and q be measurable functions such that
q ∈ L∞(RN ) and 1 ≤ p(x), q(x) ≤ ∞ for all x ∈ RN . Let u ∈ Lp(x)(RN ) with
u 6= 0, then we have:

1. |u|p(x)q(x) ≤ 1⇒ |u|p
+

p(x)q(x) ≤ ‖u|
p(x)|q(x) ≤ |u|

p−

p(x)q(x).
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2. |u|p(x)q(x) ≥ 1⇒ |u|p
−

p(x)q(x) ≤ ‖u|
p(x)|q(x) ≤ |u|

p+

p(x)q(x).

For u ∈ Lp(x)(∂Ω), we put

ρ∂(u) =

∫
∂Ω
|u(x)|p(x)dσ.

Proposition 2.4 ([10,23]). For all u ∈ Lp(x)(∂Ω), we have:

1. |u|Lp(x)(∂Ω) > 1⇒ |u|p
−

Lp(x)(∂Ω)
≤ ρ∂(u) ≤ |u|p

+

Lp(x)(∂Ω)
.

2. |u|Lp(x)(∂Ω) < 1⇒ |u|p
+

Lp(x)(∂Ω)
≤ ρ∂(u) ≤ |u|p

−

Lp(x)(∂Ω)
.

Now, the generalized Sobolev space W k,p(x)(Ω) is defined for any positive
integer k by

W k,p(x)(Ω) =

{
ϕ ∈ Lp(x)(Ω)

∣∣∣∣∣ ∂α1+···+αnϕ

∂α1x1 · · · ∂αnxn
∈ Lp(x)(Ω),

n∑
i=1

αi ≤ k

}
.

In this space, we introduce the norm

‖ϕ‖k,p(x) =
∑

α1+···+αn≤k

∣∣∣∣ ∂α1+···+αnϕ

∂α1x1 · · · ∂αnxn

∣∣∣∣
p(x)

.

We recall that (W k,p(x)(Ω), ‖ · ‖k,p(x)) is a separable and reflexive Banach space.

Moreover, the closure of C∞0 (Ω) in W k,p(x)(Ω) denoted by W
k,p(x)
0 (Ω) is also a

separable and reflexive Banach space.
In the rest of this paper, we will deal with the generalized Sobolev space

E = W 2,p(·)(Ω) ∩W 1,p(·)
0 (Ω)

equipped with the norm

‖u‖p(x) = |∆u|p(x) + |∇u|p(x).

We note that the norms ‖u‖p(x) and |∆u|p(x) are equivalent. Moreover, the norm

‖u‖ = inf

{
µ > 0

∣∣∣∣∣
∫

Ω

∣∣∣∣∆u(x)

µ

∣∣∣∣p(x)

+

∣∣∣∣∇u(x)

µ

∣∣∣∣p(x)

dx ≤ 1

}

is also equivalent to ‖u‖p(x) and |∆u|p(x).

Theorem 2.5 ([10,23]). We have:

1. If q ∈ C+(Ω) with q(x) < p∗(x), for any x ∈ Ω, then the embedding from E
into Lq(x)(Ω) is compact and continuous, where

p∗(x) =


Np(x)

N − 2p(x)
if p(x) < N,

∞ if p(x) ≥ N.
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2. If q ∈ C+(∂Ω) with q(x) < p∗(x), for any x ∈ ∂Ω, then the trace embedding
from E into Lq(x)(∂Ω) is compact and continuous, where

p∗(x) =


(N − 1)p(x)

N − 2p(x)
if p(x) < N,

∞ if p(x) ≥ N.

Lemma 2.6 ([12]).

1. ∆2
p(x) : W

2,p(x)
0 (Ω) → W

−2,p′(x)
0 (Ω) is a mapping of type S+, i.e., if un ⇀ u

weakly in W
2,p(·)
0 (Ω) and lim supn→∞〈∆2

p(x)(un), un − u〉 ≤ 0, then un → u

strongly in W
2,p(·)
0 (Ω).

2. −∆p(x) : W
1,p(x)
0 (Ω)→W

−1,p′(x)
0 (Ω) is a mapping of type S+.

For simplicity, we denote

Γ(u) =

∫
Ω
|∆u|p(x) + |∇u|p(x) dx.

Proposition 2.7 ([9, 15]). For u ∈ E, we have:

1. If Γ(u) ≥ 1, then ‖u‖p− ≤ Γ(u) ≤ ‖u‖p+ .
2. If Γ(u) ≤ 1, then ‖u‖p+ ≤ Γ(u) ≤ ‖u‖p− .
3. Γ(u) ≥ 1(= 1,≤ 1)⇔ ‖u‖ ≥ 1(= 1,≤ 1).

We recall now the mountain pass theorem and the Z2-mountain pass theorem
that will be used in the proofs of our results.

Definition 2.8. Let E be a Banach space and χ ∈ C1(E,R), c ∈ R. We say
that χ satisfies the (PS)c condition if any sequence un ⊂ E such that

χ(un)→ c and χ′(un)→ 0 in X ′ as n→∞,

contains a subsequence converging to a critical point of χ.

In what follows, we write the (PS)c condition simply as the (PS) condition if
it holds for every level c ∈ R for the Palais–Smale condition at level c.

Finally, from [2], we recall the following theorems that we will be used in the
proofs of our main results.

Theorem 2.9 (mountain pass theorem). Let E be a Banach space. Let χ ∈
C1(E,R) satisfy the following conditions:

1. χ(0) = 0;

2. χ satisfies the Palais–Smale condition;

3. there exist positive constants η and % such that if ||u‖ = η, then χ(u) ≥ %;

4. there exist e ∈ E with ‖e‖ > η such that χ(e) ≤ 0.
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Then χ possesses a critical value c ≥ % which can be characterized as

c = inf
γ∈Γ

max
t∈[0,1]

χ(γ(t)),

where
Γ = {γ ∈ C([0, 1], E) | γ(0) = 0, γ(1) = e}.

Theorem 2.10 (Z2-mountain pass theorem). Let E be an infinite dimen-
sional real Banach space. Let χ ∈ C1(E,R) satisfy the following conditions:

1. χ is an even functional such that χ(0) = 0;

2. χ satisfies the (PS) condition;

3. there exist positive constants η and % such that if ‖u‖ = η, then χ(u) ≥ %;

4. for each finite-dimensional subspace X1 ⊂ E, the set {u ∈ X1, χ(u) ≥ 0} is
bounded in E.

Then χ has an unbounded sequence of critical values.

3. Main results

In this section, we will state our main results. For this aim, we put

f(x, u) = φ1(x)ψ1(u) and g(x, u) = φ2(x)ψ2(u),

where φ1, ψ1, φ2 and ψ2 are measurable functions satisfying some integrability
conditions. Precisely, we assume the following hypotheses:

(A1) There exist c > 0, α, S ∈ C+(Ω) such that for all (x, u) ∈ Ω× R, we have

φ1 ∈ L
S(x)

S(x)−α(x) (Ω), ψ1(u) ≤ c|u|α(x)−1

and
p+ < α(x) < S(x) < p∗(x). (3.1)

(A2) There exist M1 > 0, θ1 > p+ such that for all x ∈ Ω, we have

0 < θ1φ1(x)Ψ1(u) ≤ φ1(x)ψ1(u)u, |u| ≥M1,

where Ψ1(t) =
∫ t

0 ψ1(s) ds.

(A3) There exist c′ > 0, β, T ∈ C+(∂Ω) such that for all (x, u) ∈ ∂Ω × R, we
have

φ2 ∈ L
T (x)

T (x)−β(x) (∂Ω), ψ2(u) ≤ c′|u|β(x)−1,

and
p+ < β(x) < T (x) < p∗(x). (3.2)

(A4) There exist M2 > 0, θ2 > p+ such that for all x ∈ ∂Ω, we have

0 < θ2φ2(x)Ψ2(u) ≤ φ2(x)ψ2(u)u, |u| ≥M2,

where Ψ2(t) =
∫ t

0 ψ2(s) ds.
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(A5) For all x ∈ Ω and for all y ∈ ∂Ω, we have

ψ1(−x) = −ψ1(x) and ψ2(−y) = −ψ2(y).

Definition 3.1. A function u ∈ E is a weak solution for problem (1.1) if for
any v ∈ E we have∫

Ω
|∆u|p(x)−2∇u∇v dx+

∫
Ω
|∇u|p(x)−2∇u∇v dx− λ

∫
Ω

|u|p(x)−2uv

δ(x)2p(x)
dx

−
∫

Ω
φ1(x)ψ1(u)v(x) dx−

∫
∂Ω
φ2(x)ψ2(u)v(x) dx = 0.

Now we are ready to state our main results.

Theorem 3.2. Under hypotheses (A1)–(A4), there exists λ∗ > 0 such that
for any λ ∈ (0, λ∗), problem (1.1) has nontrivial weak solutions.

Theorem 3.3. Under hypotheses (A1)–(A5), there exists λ∗ > 0 such that
for any λ ∈ (0, λ∗) problem (1.1) has infinitely many solutions.

The energy functional associated with problem (1.1) is defined as follows:

χ(u) =

∫
Ω

|∆u(x)|p(x)

p(x)
dx+

∫
Ω

|∇u(x)|p(x)

p(x)
dx− λ

∫
Ω

|u(x)|p(x)

p(x)δ(x)2p(x)
dx

−
∫

Ω
φ1(x)Ψ1(u) dx−

∫
∂Ω
φ2(x)Ψ2(u) dx.

Remark 3.4. From hypotheses (A1), (A4), the Hölder inequality, Proposition
2.2 and Proposition 2.7, we can see that χ ∈ C1(E,R). Moreover,

〈χ′(u), v〉 =

∫
Ω
|∆u|p(x)−2∇u∇v dx+

∫
Ω
|∇u|p(x)−2∇u∇v dx

− λ
∫

Ω

|u|p(x)−2uv

δ(x)2p(x)
dx−

∫
Ω
φ1(x)ψ1(u)v(x) dx−

∫
∂Ω
φ2(x)ψ2(u)v(x) dx.

Hence, if u ∈ E is a critical point of the functional χ, then u is a weak solution
of problem (1.1).

Lemma 3.5. Under (A1), (A3) and for all 0 < λ < CH , there exist η, % > 0
such that for u ∈ E,

‖u‖ = η ⇒ χ(u) ≥ %.

Proof. By (A1) and (A3), for all x ∈ Ω, we have

φ1(x)Ψ1(u) ≤ c
∫ u

0
|φ1(x)‖s|α(x)−1 ds ≤ c

α(x)
|φ1(x)‖u|α(x), (3.3)

φ2(x)Ψ2(u) ≤ c
∫ u

0
|φ2(x)‖s|β(x)−1 ds ≤ c′

β(x)
|φ2(x)‖u|β(x). (3.4)
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Also, by (1.3), we have

λ

CH

∫
Ω

|∆u(x)|p(x)

p(x)
dx ≥ λ

∫
Ω

|u(x)|p(x)

p(x)δ(x)2p(x)
dx.

This implies that∫
Ω

|∆u(x)|p(x)

p(x)
dx−λ

∫
Ω

|u(x)|p(x)

p(x)δ(x)2p(x)
dx ≥

(
1− λ

CH

)∫
Ω

|∆u(x)|p(x)

p(x)
dx. (3.5)

Let u ∈ E with ‖u‖ < 1. By (3.5) and by using the fact that 0 < λ < CH , we
have

χ(u) ≥
(

1− λ

CH

)∫
Ω

|∆u(x)|p(x)

p(x)
dx+

∫
Ω

|∇u|p(x)

p(x)
dx

−
∫

Ω
φ1(x)Ψ1(u) dx−

∫
∂Ω
φ2(x)Ψ2(u) dx

≥

(
1− λ

CH

)
p+

Γ(u)−
∫

Ω
φ1(x)Ψ1(u) dx−

∫
∂Ω
φ2(x)Ψ2(u) dx. (3.6)

By (3.6), (3.3), (3.4), Hölder inequality and Proposition 2.4, there exist con-
stants c, c′ > 0 such that

χ(u) ≥

(
1− λ

CH

)
p+

Γ(u)− c

α−

∫
Ω
|φ1(x)||u|α(x) dx− c′

β−

∫
∂Ω
|φ2(x)||u|β(x) dx

≥

(
1− λ

CH

)
p+

Γ(u)− c1

α−
|φ1|

L
S(x)

S(x)−α(x) (Ω)

∣∣|u|α(x)
∣∣
L
S(x)
α(x) (Ω)

− c2

β−
|φ2|

L
T (x)

T (x)−β(x) (∂Ω)

∣∣|u|β(x)
∣∣
L
T (x)
β(x) (∂Ω)

≥

(
1− λ

CH

)
p+

Γ(u)− c1

α−
|φ1|

L
S(x)

S(x)−α(x) (Ω)
max

(
|u|α−

LS(x)(Ω)
, |u|α+

LS(x)(Ω)

)
− c2

β−
|φ2|

L
T (x)

T (x)−β(x) (∂Ω)
max

(
|u|β

−

LT (x)(∂Ω)
, |u|β

+

LT (x)(∂Ω)

)
.

Using 1 < S(x) < p∗(x), 1 < T (x) < p∗(x), by Proposition 2.2, there exist
c1, c2 > 0 such that

|u|LS(x)(Ω) ≤ c1‖u‖ and |u|LT (x)(∂Ω) ≤ c2‖u‖. (3.7)

By (3.7), we obtain

χ(u) ≥

(
1− λ

CH

)
p+

‖u‖p+ − c1

α−
|φ1|

L
S(x)

S(x)−α(x) (Ω)
‖u‖α−

− c2

β−
| φ2|

L
T (x)

T (x)−β(x) (∂Ω)
‖u‖β−
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≥ ‖u‖p+

(

1− λ
CH

)
p+

− c1

α−
|φ1|

L
S(x)

S(x)−α(x) (Ω)
‖u‖α−−p+

− c2

β−
| φ2|

L
T (x)

T (x)−β(x) (∂Ω)
‖u‖β−−p+

)

≥ ‖u‖p+

(

1− λ
CH

)
p+

− κ‖u‖min(α−−p+,β−−p+)

 ,

where

κ =
c1

α−
|φ1|

L
S(x)

S(x)−α(x) (Ω)
+

c2

β−
|φ2|

L
T (x)

T (x)−β(x) (∂Ω)
.

Since α−, β− > p+ and 0 < λ < CH , we can choose ‖u‖ = η small enough such
that

(1− λ
CH

)

p+
− κηmin(α−−p+,β−−p+) > 0.

Then

χ(u) ≥ ηp+(
(1− λ

CH
)

p+
− κηmin(α−−p+,β−−p+)) = % > 0.

Next, denote ϕ′ : E → E∗ defined by

〈ϕ′(u), v〉 =

∫
Ω

|u(x)|p(x)−2

δ(x)2p(x)
u(x)v(x) dx.

Lemma 3.6 ([15]). The functional ϕ′ is sequentially weakly-strongly contin-
uous, namely, (

un ⇀ u in E
)
⇒
(
ϕ′(un)→ ϕ′(u) in E∗

)
.

Lemma 3.7. Assume that (A1)–(A4) are satisfied. Then there exists 0 <
λ∗ < CH such that for any λ ∈ (0, λ∗), χ satisfies the (PS) condition.

Proof. Suppose that {un} ⊂ E such that

χ(un)→ c, χ′(un)→ 0 in E∗ as n→∞,

where c is a positive constant. Then, for n large enough, there exists M1 > 0
such that

|χ(un)| ≤M1. (3.8)

Also, since χ′(un)→ 0 in E∗, we have 〈χ′(un), un〉 → 0. In particular, 〈χ′(un), un〉
is bounded. Thus, there exists M2 > 0 such that

|〈χ′(un), un〉| ≤M2. (3.9)



244 Abdelhakim Sahbani, Abdeljabbar Ghanmi, and Rym Chammem

We claim that the sequence {un} is bounded. If it is not true, by passing a
subsequence, if necessary, we may assume that ‖un‖ → ∞. Without loss of
generality, we can also assume that ‖un‖ ≥ 1. So, from (3.8) and (3.6), we get

M1 ≥ χ(un) ≥

(
1− λ

CH

)
p+

Γ(un)−
∫

Ω
φ1(x)Ψ1(un) dx−

∫
∂Ω
φ2(x)Ψ2(un) dx.

From (3.9), we obtain

M2 ≥ −〈χ′(un), un〉 = −Γ(un) +

∫
Ω
φ1(x)ψ1(un)un dx+

∫
∂Ω
φ2(x)ψ2(un)un dx.

By virtue of assumptions (A2) and (A4), we have

θM1 +M2 ≥
((

1− λ

CH

)
θ

p+
− 1

)
Γ(un)

+

∫
Ω

(φ1(x)ψ1(un)un − θφ1(x)Ψ1(un)) dx

+

∫
∂Ω

(φ2(x)ψ2(un)un − θφ2(x)Ψ2(un))dx

≥
((

1− λ

CH

)
θ

p+
− 1

)
Γ(un) ≥

((
1− λ

CH

)
θ

p+
− 1

)
‖un‖p

−
, (3.10)

where θ = min(θ1, θ2).

Now, let λ∗ =

(
1− p+

θ

)
CH . Then, by the fact that θ > p+ for all λ ∈

(0, λ∗), one has (
1− λ

CH

)
θ

p+
− 1 > 0.

So, by letting n tend to infinity in equation (3.10), we get a contradiction. We
conclude that {un} is bounded in E. So, there exists a subsequence {un} and u
in E such that {un} converges weakly to u in E. Using Proposition 2.2 and the
fact that S(x) < p∗(x), we conclude that the sequence {un} converges strongly
to u in LS(x)(Ω) .

Now, we will show that {un} converges strongly to u in E. We know that

〈χ′(un), un − u〉 = 〈∆2
p(x)(un), un − u〉 − 〈∆p(x), (un)un − u〉 − λ〈ϕ′(un), un − u〉

−
∫

Ω
φ1(x)ψ1(un)(un − u) dx−

∫
∂Ω
φ2(x)ψ2(un)(un − u) dσ. (3.11)

Using hypothesis (A1), the Hölder inequality, Proposition 2.2 and Proposition
2.7, we have∫

Ω
φ1(x)ψ1(un)(un − u)dx ≤

∫
Ω
C|φ1(x)‖un|α(x)−1|un − u| dx

≤ C|un − u|LS(x) |φ1(x)|
L

S(x)
S(x)−α(x)

∣∣|un|α(x)−1
∣∣
L

S(x)
α(x)−1
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≤ C|un − u|LS(x) |φ1(x)|
L

S(x)
S(x)−α(x)

max
(
|un|α

+−1|LS(x) , |un|
α+−1|LS(x)

)
≤ C ′|un − u|LS(x) |φ1(x)|

L
S(x)

S(x)−α(x)
max

(
‖un‖α

+−1, ‖un‖α
+−1

)
for some constants C > 0 and C ′ > 0.

From the last inequalities, we deduce that

lim
n→∞

∫
Ω
φ1(x)ψ1(un)(un − u) dx = 0. (3.12)

Similarly, we can obtain

lim
n→∞

∫
∂Ω
φ2(x)ψ2(un)(un − u) dσ = 0. (3.13)

Next, by Lemma 3.6, we will show that

lim
n→∞

〈ϕ′(un), un − u〉 = 0. (3.14)

Indeed, since, 〈χ′(un), un − u〉 → 0, then by equations (3.12), (3.13) and (3.14),
we conclude that

〈∆2
p(x)(un), un − u〉 − 〈∆p(x), (un)un − u〉 → 0.

Finally, since ∆2
p(x) −∆p(x) is of type (S+), (see Lemma 2.6), we conclude that

un → u strongly in E. Therefore, χ satisfies the (PS) condition.

Lemma 3.8. Assuming (A1)–(A4), there exists u∗ ∈ E such that ‖u∗‖ > η
and χ(u∗) < 0, where η is given by Lemma 3.5.

Proof. By (A2) and (A4), there exist two positive constants m1 and m2 such
that

φ1(x)Ψ1(t) ≥ m1 |t|θ1 for all (x, t) ∈ Ω× R. (3.15)

φ2(x)Ψ2(t) ≥ m2 |t|θ2 for all (x, t) ∈ ∂Ω× R. (3.16)

Let e ∈ E with
∫

Ω |e|
θidx > 0, i = 1, 2 and let t > 1. Then we have

χ(te) =

∫
Ω

|∆(te)|p(x)

p(x)
dx− λ

∫
Ω

|te|p(x)

p(x)δ(x)2p(x)
dx+

∫
Ω

|∇(te)|p(x)

p(x)
dx

−
∫

Ω
φ1(x)Ψ1(te) dx−

∫
∂Ω
φ2(x)Ψ2(te) dx.

We deduce from (3.15) and (3.16) that

χ(te) ≤ tp
+

p−

∫
Ω

(
|∆(e)|p(x) + |∇(e)|p(x)

)
dx−m1t

θ1

∫
Ω
|e|θ1dx−m2t

θ2

∫
∂Ω
|e|θ2 dx.

Since min(θ1, θ2) > p+, then we get

χ(te)→ −∞ as t→∞.

We can choose t0 > 0 such that the function u∗ = t0e satisfies ‖u∗‖ > η, and
χ(u∗) < 0.
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Now we are ready to prove the first main result of this paper.

Proof of Theorem 3.2. By Lemma 3.5, we have

inf
‖u‖=η

χ(u) ≥ % > 0 = χ(0).

On the other hand, Lemma 3.8 implies the existence of u∗ ∈ E such that ‖u∗‖ >
η, for some η > 0, and

χ(u∗) < 0 = χ(0). (3.17)

By Lemma 3.7, we know that χ is a C1 function satisfying the Palais–Smale
conditions. Hence, from Theorem 2.9, χ has a critical point, which is a weak
solution for problem (1.1). Finally, due to (3.17), we see that u∗ is nontrivial.

Next, we prove the second main result of this paper. Actually, we need to
prove the following lemma.

Lemma 3.9. Under hypotheses (A1)–(A4), if X is a finite dimensional sub-
space of E, then the set

H = {u ∈ X | χ(u) ≥ 0}

is bounded in E.

Proof. Let u ∈ H. Firstly, we have

χ(u) ≤ 1

p−

∫
Ω
|∆u|p(x)dx+

1

p−

∫
Ω
|∇u|p(xdx−

∫
Ω
φ1(x)Ψ1(u)dx.

Then, by (3.15), (3.16) and Proposition 2.3, we have

χ(u) ≤ 1

p−
Γ(u)−m1

∫
Ω
|u|θ1 dx−m2

∫
∂Ω
|u|θ2 dx

≤ 1

p−
Γ(u)−m1|u|θ1Lθ1 ≤

1

p−
(
‖u‖p+ + ‖u‖p−

)
−m1|u|θ1Lθ .

Since X is a finite dimensional subspace, then | · |Lθ1 and ‖ · ‖ are equivalent.
Hence, there exists a positive constant C such that

‖u‖θ1 ≤ C|u|θ1
Lθ1

.

Then

χ(u) ≤ 1

p−
(
‖u‖p+ + ‖u‖p−

)
− m1

C
‖u‖θ1 .

Using the fact that p− < p+ < θ1, we deduce that the set H is bounded in E.

Proof of Theorem 3.3. It is clear that χ(0) = 0. On the other hand, from
hypothesis (A5), we see that χ is an even functional. So, from Lemma 3.5, Lemma
3.7 and Lemma 3.9, we conclude that all conditions of Theorem 2.10 are satisfied.
Hence χ has an unbounded sequence of critical values which are an unbounded
sequence of nontrivial solutions for problem (1.1).
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Множиннi розв’язки для задач, що мiстять
p(x)-лапласiан i p(x)-бiгармонiчний оператор

Abdelhakim Sahbani, Abdeljabbar Ghanmi, and Rym Chammem

У роботi розглянуто таку p(x)-бiгармонiчну задачу з нелiнiйнiстю
Гардi: 

∆2
p(x)u−∆p(x)u = λ

|u|p(x)−2u

δ(x)2p(x)
+ f(x, u) in Ω,

u = 0 on ∂Ω,

|∇u|p(x)−2 ∂u

∂n
= g(x, u) on ∂Ω,

де Ω ⊂ RN (N ≥ 3), ∆p(x) є p(x)-лапласiаном i ∆2
p(x) є p(x)-бiгармонiчним

оператором. Точнiше, для доведення iснування i множинностi розв’язкiв

https://doi.org/10.1080/17476933.2023.2287007
https://doi.org/10.1080/17476933.2023.2287007
mailto:abdelhakim.sahbani@gmail.com
mailto:Abdeljabbar Ghanmi
mailto:Rym.chemmam@gmail.com


Multiple Solutions for Problems Involving p(x)-Laplacian 249

варiацiйнi методи скомбiновано з теорiєю узагальнених просторi Лебега
i Соболєва за вiдповiдних умов на нелiнiйностi f i g.

Ключовi слова: p(x)-бiгармонiчний оператор, p(x)-лапласiан, теорема
про симетричний гiрський перевал, узагальнений простiр Соболєва
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