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Generalized Fourier Quasicrystals, Almost
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Let S be an absolutely convergent Dirichlet series with bounded spectrum
and a real zero set A, let µ be the sum of the unit masses at the points of
the set A. The main result of the paper states that the Fourier transform
of µ in the sense of distributions is a pure point measure. Conversely, given
a sequence A of real points, a sufficient condition on the Fourier transform
of µ is found for A to be the zero set of an absolutely convergent Dirichlet
series with bounded spectrum, besides a criterion on the Fourier transform
of µ is found for A to be the zero set of an almost periodic entire function
of exponential growth. These results are based on a new representation of
almost periodic sets.
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1. Introduction

A crystalline measure on Rd is a complex measure µ, which is a tempered
distribution, and both µ and its distributional Fourier transform µ̂ are measures
with discrete locally finite support. When, in addition, both |µ| and |µ̂| are
tempered distributions, µ is called a Fourier quasicrystal.

Fourier quasicrystals can be considered as mathematical models for atomic
arrangement having a discrete diffraction pattern. There are a lot of papers
devoted to the study of properties of Fourier quasicrystals or, more generally,
crystalline measures. See, for example, papers [2, 19] and, in particular, the
fundamental paper [14].

Measures of the form

µ =
∑
λ∈Λ

cλδλ, cλ ∈ N, (1.1)

constitute the most important case of a Fourier quasicrystal. In [10], P. Kurasov
and P. Sarnak discovered the existence of nontrivial measures of the form 1.1 with
a uniformly discrete support, whose Fourier transform is an atomic measure with
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locally finite support. A complete description of these measures was given by
A. Olevsky and A. Ulanovsky in [17,18]. Namely, they showed that the supports
Λ of these measures are precisely the zero sets of exponential polynomials with
pure imaginary exponents and only real zeros with multiplicities cλ at points λ ∈
Λ. Conversely, zero sets of such exponential polynomials are the supports of some
Fourier quasicrystals of the form (1.1).

In this paper, using the same methods, we present similar results for measures
(1.1) with the distribution Fourier transform

µ̂ =
∑
γ∈Γ

bγδγ , (1.2)

where Γ is an arbitrary countable set. In this case, the corresponding Poisson’s
formula ∑

λ∈Λ

cλf̂(λ) =
∑
γ∈Γ

bγf(γ)

holds for every function f from Schwartz’ class. For the description of these
measures, we apply the concept of almost periodic sets due to M. Krein and
B. Levin [12, Appendix VI]. In modern notation (cf. [15, 20]), a locally finite set
Λ with multiplicities cλ at points λ ∈ Λ is almost periodic if the convolution of
measure (1.1) with every continuous function with compact support is an almost
periodic function. Therefore, almost periodic sets are in fact multisets. We write
an almost periodic set as a sequence A = {an}n∈Z, where each point an = λ
occurs cλ times.

In Section 2, we give the original definition of almost periodic sets due to
Krein and Levin, which is equivalent to the above one. We also establish some
properties of almost periodic sets. In particular, we show that such sets have the
form {αn+ φ(n)}n∈Z with α > 0 and an almost periodic mapping φ : Z→ R.

In Section 3, we consider an absolutely convergent Dirichlet series with
bounded spectrum and a real set of zeros A = {an}n∈Z. We prove that the
Fourier transform µ̂A of the corresponding measure µA =

∑
n δan is always a

pure point measure. Notice that the zero set of any absolutely convergent Dirich-
let series (or, more generally, of any holomorphic function with almost periodic
modulus) is almost periodic (cf. [8]).

In Section 4, we study the inverse problem. Given a locally finite set A =
{an}n∈Z ⊂ R, let µA =

∑
n δan of form (1.1) with the Fourier transform µ̂A of

form (1.2). We show that the conditions

i) |µ̂A| is a tempered distribution, and

ii)
∫ 1

0 s
−2|µ̂A|(0, s)ds <∞

imply that A is the zero set of an absolutely convergent Dirichlet series with
bounded spectrum.

By [5, Lemma 1], the first condition implies that the multiset A = {an}n∈Z,
where each point an = λ occurs cλ times, is almost periodic. As it was proven
in [8], every almost periodic set A ⊂ R is exactly the zero set of some entire
almost periodic function. Every almost periodic function is bounded on the
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real line and, according to the Phragmen–Lindelöf principle, any almost periodic
entire function grows at least exponentially fast. In Section 4, we find a criterion
for A to be the zero set of an almost periodic entire function of the exponential
growth through Γ and βγ from equality (1.2).

2. Almost periodic sets

Definition 2.1 (see [1, 13]). A continuous function g(x) on the real line is
almost periodic if for any ε > 0 the set of ε-almost periods

Eε = {τ ∈ R : sup
x∈R
|g(x+ τ)− g(x)| < ε}

is relatively dense, i.e., Eε ∩ (x, x+ L) 6= ∅ for all x ∈ R and some L depending
on ε.

For example, every sum

Q(x) =
∑

qne
2πixωn , ωn ∈ R, qn ∈ C,

∑
n

|qn| <∞,

is an almost periodic function.

Spectrum of an almost periodic function g is the set

sp g =

{
w ∈ R : lim

t→∞

1

2T

∫ T

−T
e−2πiωxg(x)dx 6= 0

}
.

It is easy to see that spQ(x) = {ωn : qn 6= 0}. Notice that spectra of almost
periodic functions are at most countable set.

Definition 2.2 (see [1, 13]). A continuous function g(z) on the strip

S = {z = x+ iy : −∞ ≤ a < y < b ≤ +∞} ⊂ C

is almost periodic if for any α, β such that [α, β] ⊂ (a, b) and ε > 0 the set of
ε-almost periods

Eα,β,ε = {τ ∈ R : sup
x∈R,α≤y≤β

|g(x+ τ + iy)− g(x+ iy)| < ε}

is relatively dense, i.e., Eα,β,ε∩(x, x+L) 6= ∅ for all x ∈ R and some L depending
on ε, α, β.

The first definition of almost periodic sets due to M. Krein and B. Levin ap-
peared in [12]. Here we give this definition in a simplified form. The most general
definition, where the behavior of A near the boundary is taken into account, was
given by H. Tornehave in [21]. For the connection between almost periodic sets
of general form and zeros of holomorphic almost periodic functions in terms of
Chern cohomology, see [3].
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Definition 2.3 ([12, Appendix VI]). Let S be a horizontal strip of finite
width. A discrete locally finite multiset A = {an}n∈Z ⊂ S is called almost
periodic if for any ε > 0 there is Lε <∞ such that the set of its ε-almost periods

Eε = {τ ∈ R : ∃σ : Z→ Z σ is a bijection and sup
n
|an + τ − aσ(n)| < ε} (2.1)

has a nonempty intersection with every interval (x, x+ Lε).

In our paper, we primarily consider the case of almost periodic sets on the
real line.

Set µA =
∑

n δan . Clearly, the mass of µA in any point x ∈ R is equal to the
multiplicity of this point in the sequence {an}n∈Z.

It was proven in [8] that almost periodicity of A is equivalent to the almost
periodicity of the convolution µA ? ϕ for every C∞-function ϕ(x), x ∈ R, with
compact support. It is easy to see that C∞-functions can be replaced by con-
tinuous functions with compact support. Indeed, let us take a C∞-function ϕ ≥
0 such that ϕ(x) ≡ 1 for 0 < x < 1. If µA ? ϕ is almost periodic, then it is
uniformly bounded, hence µA[x, x+ 1] < k1 for all x ∈ R with some constant k1.
For any continuous function ψ with support in (0, 1) we can take ϕ ∈ C∞ such
that supx∈R |ψ(x)− ϕ(x)| < ε/k1. We obtain that every ε-almost period of µA ?
ϕ is the 2ε-almost period of µA ? ψ.

In fact, we have proven the following proposition

Proposition 2.4 ([8]). For any almost periodic set there exists k1 ∈ N such
that #A ∩ [x, x+ 1] ≤ k1. In addition, #A ∩ [x, x+ h) ≤ k1(h+ 1).

Here and below, #H means the number of points in the multiset H, taking
into account their multiplicities.

Proposition 2.5. For any almost periodic set there exists k2 ∈ N such that
for every h > 0 and every half-intervals [x1, x1 + h), [x2, x2 + h) we have

|#A ∩ [x1, x1 + h)−#A ∩ [x2, x2 + h)| ≤ k2.

Also, for every x ∈ R, h > 0, M ∈ N,

|#A ∩ [x, x+ h)− (1/M)#A ∩ [x, x+Mh)| ≤ k2.

Proof. Let L1, E1 be defined in (2.1), and τ ∈ E1 ∩ [x1 − x2, L1 + x1 − x2).
Since

[x2, x2 + h) + τ ⊂ [x1, x1 + L1 + h),

we see that each an ∈ [x2, x2 + h) can be associated with the point aσ(n) ∈ [x1 −
1, x1 + L1 + h+ 1). Therefore,

#A∩[x2, x2+h) ≤ #A∩[x1, x1+h)+#A∩[x1−1, x1)+#A∩[x1+h, x1+h+L1+1).

By Proposition 2.4, the last two terms are bounded by k1 + (L1 + 2)k1. The
opposite inequality can be proved in a similar way.
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To prove the second statement we have to sum up all the inequalities

#A ∩ [x, x+ h)− k2 ≤ #A ∩ [x+ (m− 1)h, x+mh) ≤ k2 + #A ∩ [x, x+ h)

for m = 1, 2, . . . ,M .

Proposition 2.6. Let A be an almost periodic set. There is a strictly positive
density d such that for any η > 0 and any half-interval I with length l(I) > Nη

we have ∣∣∣∣#A ∩ Il(I)
− d
∣∣∣∣ < η.

Proof. Let

I1 = [x1, x1 + h1), I2 = [x2, x2 + h2)

be two half-intervals such that h1/h2 = p/q, p, q ∈ N. We have

#A ∩ I1

h1
− #A ∩ I2

h2
=

#A ∩ I1

h1
− #A ∩ qI1

qh1
+

#A ∩ qI1

qh1

− #A ∩ pI2

ph2
+

#A ∩ pI2

ph2
− #A ∩ I2

h2
.

Applying Proposition 2.5, we get∣∣∣∣#A ∩ I1

h1
− #A ∩ I2

h2

∣∣∣∣ ≤ k2

h1
+

k2

qh1
+
k2

h2
≤ k2

(
2

h1
+

1

h2

)
. (2.2)

For arbitrary h1, h2 take a half-interval I ′ = [x1, x1 + h′) such that h1 < h′ <
h1 + 1 and h′/h2 rational. We have∣∣∣∣#A ∩ I1

h1
− #A ∩ I ′

h′

∣∣∣∣ ≤ #A ∩ [x1 + h1, x1 + h′)

h′
+

#A ∩ I1

h1h′
.

By Proposition 2.4, we get∣∣∣∣#A ∩ I1

h1
− #A ∩ I ′

h′

∣∣∣∣ ≤ k1

h′
+
k1(h1 + 1)

h1h′
.

Applying (2.2) with I ′ instead of I1, for all I1, I2, we obtain∣∣∣∣#A ∩ I1

l(I1)
− #A ∩ I2

l(I2)

∣∣∣∣ ≤ k2

(
2

l(I1)
+

1

l(I2)

)
+ k1

(
2

l(I1)
+

1

l(I1)2

)
.

Therefore the limit exists

d = lim
l(I)→∞

#A ∩ I
l(I)

.

It is easy to check that the set A has nonempty intersection with every interval
of length 2 + L1, hence this limit is strictly positive.

This result was generalized to multidimensional Euclidean spaces in [7].
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Theorem 2.7. Let A = {an} ⊂ R be an almost periodic set of density d such
that an ≤ an+1 for all n ∈ Z. Then

an = n/d+ φ(n) with an almost periodic mapping φ : Z→ R. (2.3)

Proof. We can assume that a0 < a1. It follows from Proposition 2.4 that
every interval of length 1 contains at least one subinterval of length 1/(2k1) that
does not intersect A. Take

ε < min{1/(6k1), (a1 − a0)/3}.

Divide R into an infinite number of disjoint half-intervals Ij = (tj , tj+1], j ∈ Z
such that tj+1 − tj < 2 and A ∩ (tj − 2ε, tj + 2ε) = ∅ for all j.

Let τ be any number from Eε in (2.1), and σ be the corresponding bijection.
Then ρ(j) ∈ Z corresponds to any j such that σ is the bijection of A ∩ Ij to
A ∩ Iρ(j). Hence, #(A ∩ Ij) = #(A ∩ Iρ(j)). Let σj be the monotone increasing
bijection of A ∩ Ij on A ∩ Iρ(j). Check that

|an + τ − aσj(n)| < ε an ∈ Ij . (2.4)

Assume the opposite. Let n0 be the minimal number such that (2.4) does not
satisfy. If an0 + τ + ε ≤ aσj(n0), then an + τ + ε ≤ ak for all n ≤ n0 and k ≥
σj(n0), an ∈ Ij , ak ∈ Iρ(j). Therefore, k 6= σ(n) for these numbers, and σ gives
a correspondence between points of the set {n ≤ n0 : an ∈ Ij} and points of the
set {k < σj(n0) : ak ∈ Iρ(j)}. But, by the definition of σj , we have

#{n ≤ n0 : an ∈ Ij} = #{k ≤ σj(n0) : ak ∈ Iρ(j)}
= 1 + #{k < σj(n0) : ak ∈ Iρ(j)}.

We come to a contradiction.

If an0 + τ ≥ aσj(n0) + ε, then an + τ ≥ ak + ε for all n ≥ n0 and k ≤
σj(n0), an ∈ Ij , ak ∈ Iρ(j). Therefore, k 6= σ(n) for these numbers, and σ gives
a correspondence between points from the set {n ≥ n0 : an ∈ Ij} and points of
the set {k > σj(n0) : ak ∈ Iρ(j)}. But, by the definition of σj , we have

#{n ≥ n0 : an ∈ Ij} = #{k ≥ σj(n0) : ak ∈ Iρ(j)}
= 1 + #{k > σj(n0) : ak ∈ Iρ(j)}.

We also get a contradiction.

Since the numbers #(A∩ Ij) and #(A∩ Iρ(j)) coincide, we see that the differ-
ences between indices of the first elements in these sets coincide for all j. Hence,
there is a number h ∈ Z such that inequality (2.1) satisfies for all n ∈ N with
σ(n) = n+ h.

From the definition of τ for all k ∈ N and N ∈ N it follows that

−ε < akh − τ − a(k−1)h < ε and −Nε < aNh −Nτ − a0 < Nε.
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Let I be the smallest segment containing a0 and aNh. The last inequality implies
that its length satisfies the inequality

Nτ −Nε < l(I) < Nτ +Nε.

On the other hand, taking into account that ends of I can be points A with
multiplicity no more than k1, we have

Nh− 2(k1 − 1) ≤ #A ∩ I ≤ Nh+ 2(k1 − 1).

Therefore,
Nh− 2(k1 − 1)

Nτ +Nε
≤ #A ∩ I

l(I)
≤ Nh+ 2(k1 − 1)

Nτ −Nε
.

Passing to the limit asN →∞ and using Proposition 2.6, we obtain the inequality

τ − ε ≤ h/d ≤ τ + ε.

Set φ(n) := an − n/d. Then, for all n ∈ Z, we get

φ(n+ h)− φ(n) = an+h − (n+ h)/d− an + n/d = aσ(n) − (an + τ) + (τ − h/d).

Using (2.1), we obtain |φ(n+ h)−φ(n)| < 2ε. Therefore, h is a 2ε-almost period
of the function φ. The set of ε-almost periods τ of A is relatively dense, therefore
the set of such integers h is also relatively dense.

Remark 2.8. The proof of this theorem in [6] contains gaps.

Remark 2.9. The converse assertion is simple since for every ε-almost period
τ ∈ Z of the mapping φ(n) the number τ/d is an ε-almost period of the almost
periodic set A = {n/d+ φ(n)} with any d > 0 and bijections in (2.1) of the form
σ(n) = n+ τ .

Corollary 2.10. For any almost periodic set A = {an} such that 0 6∈ A there
is a finite limit

L := lim
N→∞

∑
|an|<N

1/an.

Moreover, the sum
1

z − a0
+
∑
n∈N

[
1

z − an
+

1

z − a−n

]
converges absolutely and uniformly on every disjoint with A compact set K.

Proof. Let A = {n/d + φ(n)}n∈Z. Since the numbers φ(n) are uniformly
bounded, we see that the sums∑

n∈Z,|an|<N

1

an
and

∑
n∈Z,|n|<dN

1

n/d+ φ(n)
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differ for a uniformly bounded with respect to N number of terms, and each of
these terms tends to 0 as N →∞. Then∑

n∈Z,0<|n|<N

1

n/d+ φ(n)

=
∑

n∈N,0<n<N

φ(n) + φ(−n)

φ(n)φ(−n) + nφ(−n)/d− nφ(n)/d− (n/d)2
.

The first assertion follows from the Cauchy criterion. The second one follows
from the absolutely convergence of the series∑

n∈N

[
1

z − an
+

1

z − a−n

]
=
∑
n∈N

[
2z − φ(−n)− φ(n)

(n/d+ φ(n)− z)(−n/d+ φ(−n)− z)

]
.

In [12, Appendix VI], M. Krein and B. Levin considered zero sets Zf of entire
almost periodic functions f of exponential growth. They proved that if Zf ⊂ R,
then zeros an form an almost periodic set satisfying (2.3) and

sup
τ∈Z

∑
n∈Z\{0}

n−1[φ(n+ τ)− φ(n)] <∞. (2.5)

On the other hand, they proved that any almost periodic set A ⊂ R satisfying
conditions (2.3) and (2.5) is the set of zeros of an entire almost periodic function
of exponential growth.

It follows from Theorem 2.7 that condition (2.3) can be omitted in the last
result.

Theorem 2.7 was generalized by W. Lawton [11] to almost periodic sets in
Rm, m > 1, whose spectrum is contained in a finitely generated additive group.

3. Zeros of infinite exponential sums

By S(R), denote the Schwartz space of test functions ϕ ∈ C∞(R) with the
finite norms

Nn,m(ϕ) = sup
R

max
k≤m

∣∣∣(1 + |x|n)ϕ(k)(x)
∣∣∣ , n,m = 0, 1, 2, . . .

These norms generate the topology on S(R). Elements of the space S∗(R) of
continuous linear functionals on S(R) are called tempered distributions.

The Fourier transform of a tempered distribution f is given by the equality

f̂(ϕ) = f(ϕ̂) for all ϕ ∈ S(R),

where

ϕ̂(t) =

∫
Rd

ϕ(x)e−2πixt dx
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is the Fourier transform of the function ϕ. The inverse Fourier transform of ϕ
we denote by ϕ̌ . The Fourier transform is a bijection of S(R) onto itself and a
bijection of S∗(R) onto itself.

Let T be the class of exponential sums

f(x) =
∑
n

qne
2πiωnx, qj ∈ C \ {0}

with finite Wiener’s norm ‖f‖W :=
∑

n |qn| and a bounded spectrum Ω := {ωn} ⊂
R.

Any function f(x) ∈ T can be extended to the whole complex plane as an
entire almost periodic function f(z) of exponential type σ = supn |ωn|; the zero
set A = {an} of f(z) lies in some horizontal strip of finite width if and only if
inf Ω ∈ Ω and sup Ω ∈ Ω (cf. [12, Chap. VI, Corollary 2]). Moreover, A is an
almost periodic set (cf. [12, Appendix VI, Lemma 1]).

If 0 6∈ A and an = αn+ φ(n) with φ : Z→ R of the form

φ(n) =
∑
j

pje
2πiρjn, ρj ∈ [0, 1),

∑
j

|pj | <∞, (3.1)

then the function
(1− z/a0)

∏
n∈N

(1− z/an)(1− z/a−n)

expands into an absolutely convergent exponential series (cf. [12, Appendix VI,
Th.9]) and hence belongs to T.

Theorem 3.1. Suppose that f ∈ T has a zero set A = {an} ⊂ R, and µA =∑
n δan. Then the Fourier transform µ̂A is a pure point measure.

Proof. It follows from Proposition 2.4 that the measure µA satisfies the con-
dition µA([−r, r]) = O(r) as r →∞. Hence the measure µA and the distribution
µ̂A are tempered distributions. To prove that µ̂A is a measure, we check the
estimate

|(µ̂A, ϕ)| ≤ C max
|t|<T

|ϕ(t)| (3.2)

for any T <∞ and any C∞-function ϕ with support on the interval (−T, T ). If
this is the case, the distribution µ̂ has a unique expansion to a linear functional on
the space of continuous functions g on [−T, T ] such that g(−T ) = g(T ) = 0 with
bound (3.2). Since we can extend this functional to the space of all continuous
functions on [−T, T ] with bound (3.2), we see that µ̂A is a complex measure.

Let ϕ be a C∞-function with support in (−T, T ). Set

Φ(z) =

∫ ∞
−∞

ϕ(t)e−2πitzdt.

Clearly, Φ(z) is an entire function that equals the Fourier transform of the func-
tion ϕ(t)e2πty. Therefore, Φ(x + iy) belongs to S(R) for each fixed y ∈ R, and
for its inverse Fourier transform we have

Φ̌(ω + iy) = ϕ(ω)e2πωy, ω ∈ R. (3.3)
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Let ω1 = inf Ω, ω2 = sup Ω. Then the corresponding coefficients q1, q2 do not
vanish. Taking into account that

∑
n |qn| < ∞, we can take a number M such

that ∑
n>M

|qn|
min |q1|, |q2|

< 1/3, (3.4)

and then s, s′ > 0 such that∑
n≤M,n6=1

e2π(ω1−ωn)s|qn/q1| < 1/3,
∑

n≤M,n6=2

e2π(ωn−ω2)s′ |qn/q2| < 1/3. (3.5)

Since f(z) is almost periodic, it follows from [12, Ch.6,L.1] that for every ε > 0
there exists m = m(ε) > 0 such that

|f(z)| ≥ m for − s′ ≤ Im z ≤ s and z 6∈ A(ε) := {z : dist(z,A) < ε}.

By Proposition 2.4, for ε small enough, each connected component of A(ε) con-
tains no segment of length 1, hence its diameter is less than 1. Therefore, there
are two sequences Rk → +∞, R′k → −∞ such that

|f(x+ iy)| > m for x = Rk or x = R′k, −s′ ≤ y ≤ s.

Consider the integrals of the function Φ(z)f ′(z)f−1(z) over the boundaries of
rectangles

Πk = {z = x+ iy : R′k < x < Rk, −s′ < y < s}.

Since Φ(x± iy) tends to zero as x = Rk → +∞, x = R′k → −∞ uniformly with
respect to −s′ ≤ y ≤ s, we get that these integrals tend to∫ −∞

+∞
Φ(x+ is)f ′(x+ is)f−1(x+ is) dx

+

∫ +∞

−∞
Φ(x− is′)f ′(x− is′)f−1(x− is′) dx =: I1 + I2. (3.6)

The Residue Theorem implies

I1 + I2 = 2πi
∑

λ:f(λ)=0

Resλ Φ(z)f ′(z)f−1(z)

= 2πi
∑

λ:f(λ)=0

a(λ)Φ(λ) = 2πi(µA,Φ), (3.7)

where a(λ) is the multiplicity of the zero of f(z) at the point λ.
We have for z = x+ is, s > 0,

f(z) = q1e
2πi(x+is)ω1

(
1 +

M∑
n=2

(qn/q1)e2πi(ωn−ω1)(x+is)

+
∑
n>M

(qn/q1)e2πi(ωn−ω1)(x+is)

)
.
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Set

H(x) :=
∞∑
n=2

(qn/q1)e2πi(ωn−ω1)xe2π(ω1−ωn)s =
∞∑
n=2

hn(s)e2πi(ωn−ω1)x.

By (3.4) and (3.5), we have ‖H‖W < 2/3. Since ‖ · ‖W is the norm in the algebra
of all absolutely convergent exponential sums, we get

(1 +H(x))−1 =

∞∑
j=0

(−1)jHj(x), ‖(1 +H)−1‖W ≤
∞∑
j=0

‖Hj‖W < 3. (3.8)

We have

f−1(x+ is) = q−1
1 e2πω1se−2πiω1x(1 +H(x))−1,

f ′(x+ is) =
∞∑
n=1

2πiωnqne
−2πωnse2πiωnx

and

f ′(x+ is)f−1(x+ is) =
∞∑
n=1

2πiωn(qn/q1)e−2π(ωn−ω1)se2πi(ωn−ω1)x(1 +H(x))−1.

(3.9)
Rewrite f ′f−1 in the form

f ′(x+ is)f−1(x+ is) =
∑
γ∈Γ1

pγe
2πiγx, pγ = pγ(s) ∈ C,

with some countable Γ1 ⊂ R+ ∪ {0}. Since Ω is bounded, we obtain from (3.8)
and (3.9),∑
γ∈Γ1

|pγ | = ‖f−1(x+is)f ′(x+is)‖W ≤ 6πmax
n
{|ωn|e2π(ωn−ω1)s}

∑
n

|qn/q1| =: Cf .

The function Φ(x + is) belongs to S(R) for s fixed, hence |x|2Φ(x + is) → 0
as |x| → ∞. Changing the order of integration and summation and taking into
account (3.3), for the first integral in (3.6), we obtain

I1 = −
∑
γ∈Γ1

pγ

∫ +∞

−∞
Φ(x+ is)e2πiγxdx = −

∑
γ∈Γ1

pγe
2πγsϕ(γ).

Since suppϕ ⊂ (−T, T ), we get the bound

|I1| ≤ Cfe2πTs max
|t|≤T

|ϕ(t)|.

Similar reasoning shows that the second integral in (3.6) with the appropriate s′

has the same estimate.
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Since ϕ̂(x) = Φ(x), we obtain from (3.7) that

(µA, ϕ̂) = (2πi)−1(I1 + I2).

Therefore,
|(µ̂A, ϕ)| = |(µA, ϕ̂)| ≤ C(f, T ) sup

|y|≤T
|ϕ(y)|,

and µ̂A is a measure. Since µA is almost periodic, Theorem 5.5 from [16] implies
that µ̂A is a pure point measure.

4. Entire functions with given almost periodic zero sets

In this section, we assume that a measure µ of form (1.1) is a tempered
distribution, its Fourier transform µ̂ is a pure point measure of form (1.2), the
measure |µ̂| is a tempered distribution, and A = {an}n∈Z is a multiset in which
each point an = λ ∈ suppµ occurs cλ times. In what follows, we will assume that
0 6∈ A ⊂ R. By [5, Lemma 1], µ is an almost periodic measure and A is an almost
periodic set. Since µ̂ is also a measure, Theorem 5.5 from [16] implies that every
number bγ from (1.2) equals the corresponding Fourier coefficient of the measure
µ, i.e.,

bγ = lim
T→∞

1

2T

∫ T

−T
e−2πiγxµ(dx).

In particular, b−γ = b̄γ and b0 ≥ 0. Moreover, b0 coincides with the density d of
the set A. Also, it can be checked (cf. [4]) that the condition |µ̂| ∈ S∗(R) implies

|µ̂|(−r, r) =
∑
|γ|<r

|bγ | = O(rκ) as r →∞ (4.1)

with some κ <∞.
From Proposition 2.4 and Corollary 2.10 it follows that the set A satisfies the

conditions
nA(r) := #(A ∩ (−r, r)) = O(r) (r →∞),

and ∣∣∣∣∣∣
∑

n:|an|<r

1/an

∣∣∣∣∣∣ is bounded in r > 1.

By Lindelöf’s Theorem (see [9]), the product

F (z) :=
∞∏

n=−∞
(1− z/an)ez/an

is an entire function of exponential growth. Taking Corollary 2.10 into account
again, we see that the function

f(z) = (1− z/a0)
∏
n∈N

(1− z/an)(1− z/a−n) = e−LzF (z) (4.2)
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is also a well-defined entire function of exponential growth with the zero set A.
It should be noticed that f(z̄) = f(z). Introduce the notation

R+ := {x ∈ R : x > 0}, R− := −R+, C+ := {z ∈ C : Im z > 0}, C− := −C+.

Proposition 4.1. For all z = x+ iy ∈ C+,

f ′(z)

f(z)
=

1

z − a0
+
∑
n∈N

[
1

z − an
+

1

z − a−n

]
= −2πi

∑
γ∈Γ∩R+

bγe
2πiγz − πid, (4.3)

and for all z = x+ iy ∈ C−,

f ′(z)

f(z)
=

1

z − a0
+
∑
n∈N

[
1

z − an
+

1

z − a−n

]
= 2πi

∑
γ∈Γ∩R−

bγe
2πiγz + πid, (4.4)

where d is the density of the almost periodic set A.

The function f ′(z)/f(z) is almost periodic on each line y = y0 6= 0.

Proof. Set

ξz(t) =

{
−2πie2πitz if t > 0

0 if t ≤ 0
, z ∈ C+, ξz(t) =

{
2πie2πitz if t < 0

0 if t ≥ 0
, z ∈ C−.

It is not hard to check that in the sense of distributions ξ̂z(λ) = 1/(z−λ) for z ∈
C+ ∪ C−.

Let ϕ(t) be an even nonnegative C∞-function such that suppϕ ⊂ (−1, 1) and∫
ϕ(t) dt = 1. Set ϕε(t) = ε−1ϕ(t/ε) for ε > 0. Fix z = x + iy ∈ C+. The

functions ξz(t) ? ϕε(t) and ξ̂z(λ)ϕ̂ε(λ) belong to S(R). Therefore,

(µ̂, ξz ? ϕε(t)) = (µ, ξ̂z(λ)ϕ̂ε(λ)).

Then, for any T0 <∞, we have

i

2π
(µ̂(t), ξz ? ϕε(t)) = d

∫ 0

−ε
e−2πiszϕε(s) ds+

∑
0<|γ|≤ε

bγe
2πiγz

∫ γ

−ε
e−2πiszϕε(s) ds

+
∑

ε<γ<T0

bγe
2πiγz

∫ ε

−ε
e−2πiszϕε(s) ds

+
∑
γ≥T0

bγe
2πiγz

∫ ε

−ε
e−2πiszϕε(s) ds = I0 + I1 + I2 + I3.

Thus, we have

i

2π
(µ̂, ξz) =

∑
0<γ≤ε

bγe
2πiγz +

∑
ε<γ<T0

bγe
2πiγz +

∑
γ≥T0

bγe
2πiγz = S1 + S2 + S3.
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Set m(s) =
∑

γ∈Γ: 0<γ≤s |bγ |. Then

∑
γ≥T0

|bγ |e−2πγy =

∫ ∞
T0

e−2πsym(ds) ≤ lim
T→∞

m(T )e−2πTy+2πy

∫ ∞
T0

e−2πsym(s) ds.

(4.5)
Property (4.1) implies that I3 and S3 are less than a given η > 0 for T0 large
enough. Taking into account that

∑
−ε<γ<T0 |bγ | <∞, we get

I0 → d/2, I1 → 0, S1 → 0,

I2 − S2 =
∑

ε<γ<T0

bγe
2πiγz

∫ ε

−ε
(e−2πisz − 1)ϕε(s)ds→ 0 as ε→ 0,

and

lim
ε→0

(µ, ξ̂z(λ)ϕ̂ε(λ)) = (µ̂, ξz(t))− 2πid/2 = −2πi
∑

γ∈Γ∩R+

bγe
2πiγz − πid.

On the other hand, we have

(µ, ξ̂z(λ)ϕ̂ε(λ)) =
ϕ̂(εa0)

z − a0
+
∑
n∈N

[
ϕ̂(εan)

z − an
+
ϕ̂(εa−n)

z − a−n

]
. (4.6)

The function ϕ̂(t) tends to 1 as t→ 0 and |ϕ̂(t)| ≤ 1. We have[
ϕ̂(εan)

z − an
+
ϕ̂(εa−n)

z − a−n

]
= ϕ̂(εa−n)

[
1

z − an
+

1

z − a−n

]
+

1

z − an
[ϕ̂(εan)−ϕ̂(εa−n)].

Since ϕ̂ is even, we get with bounded θ(n) and φ(n),

ϕ̂(εan)− ϕ̂(εa−n) = ϕ̂(εn/d+ εφ(n))− ϕ̂(−εn/d+ εφ(−n))

= ϕ̂′(εn/d+ εθ(n))ε[φ(n) + φ(−n)].

Since ϕ̂(t) belongs to the Schwartz space, we see that ϕ̂′(t) = O(1/|t|) as t→∞.
Hence, for ε|n/d+ θ(n)| > 1,

|ε[ϕ̂′(εn/d+ εθ(n))]| ≤ C|n|−1

with a constant C < ∞. The same estimate (with another constant C) is valid
for ε|n/d+ θ(n)| ≤ 1. Then for all n ∈ N and ε > 0,

|ϕ̂(εan)− ϕ̂(εa−n)| ≤ (C/n)2 sup
n
|φ(n)|.

Hence the right-hand side of (4.6) for all ε > 0 is majorized by the sum

1

|z − a0|
+
∑
n∈N

∣∣∣∣ 1

z − an
+

1

z − a−n

∣∣∣∣+
∑
n∈N

C ′

n|z − an|
. (4.7)
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By Theorem 2.7, we have 1/(z−an) = O(1/n). Taking into account also Corollary
2.10, we get the convergence of both sums in (4.7). Therefore, we can pass to the
limit in (4.6) as ε→ 0 and obtain (4.3).

By (4.5), for y0 > 0,∑
γ≥1

|bγ |e−2πγy0 <∞,
∑

0<γ<1

|bγ | <∞.

Therefore the series in the right-hand side of (4.3) converges absolutely and uni-
formly for Im z ≥ α > 0 , and f ′(z)/f(z) is almost periodic on the line y =
y0.

In the case y0 < 0, we apply (4.3) to the function f(z̄) and obtain (4.4).

Theorem 4.2. If ∫ 1

0
s−2|µ̂A|(0, s) ds <∞, (4.8)

then the function f from (4.2) with the zero set A can be rewritten in the form

f(z) =
∑
ω∈Ω

qωe
2πiωz qω ∈ C \ {0}, ω ∈ R,

∑
ω∈Ω

|qω| <∞,

where the countable bounded set Ω satisfies the conditions sup Ω ∈ Ω, inf Ω ∈ Ω.

Proof. The sum in the right-hand side of (4.3) converges absolutely and uni-
formly in x ∈ R and y ≥ α > 0. Changing the order of summation and integra-
tion, we get for z = x+ iy ∈ C+,

log f(z)− log f(i) =

∫ z

i

f ′(z)

f(z)
dz = −

∑
γ∈Γ∩R+

bγ
e2πiγz − e−2πγ

γ
−idπz−πd. (4.9)

It is easy to check that the convergence of the integral in (4.8) implies (in fact,
is equivalent to) the convergence of the series∑

0<γ<1

|bγ |γ−1 =

∫ 1

0
s−1d|µ̂|(0, s),

and (4.5) implies ∑
γ≥1

|bγ |γ−1e−2πγ <∞.

Therefore,

log f(x+ i) + idπx = −
∑

0<γ<1

(bγ/γ)e−2πγe2πiγx −
∑
γ≥1

(bγ/γ)e−2πγe2πiγx + C0

(4.10)
with some constant C0 ∈ C, and ‖ log f(x+ i) + idπx‖W <∞. Since ‖FG‖W ≤
‖F‖W ‖G‖W , we obtain

f(x+ i)eidπx =
∑
ω∈Ω

pωe
2πiωx,
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∑
ω∈Ω

|pω| = ‖f(x+ i)eidπx‖W ≤ e‖ log f(x+i)+idπx‖W <∞,

with pω ∈ C and a countable spectrum Ω ⊂ R+ ∪ {0}. The entire function f(z +
i)eidπz has exponential growth, therefore, by [12, § 1, Chap. VI], Ω is bounded.
Hence the function

f(z) =
∑
ω∈Ω

pωe
π(2ω−d)eπi(2ω−d)z

is also a Dirichlet series and ‖f‖W < ∞. Moreover, all zeros of f are real,
therefore, by [12, Chap. VI, Corollary 2], we have sup Ω ∈ Ω, inf Ω ∈ Ω.

Set

g(z) :=
∑

γ∈Γ,0<γ<1

bγ
e2πiγz − 1

γ
.

Since the sum
∑

γ∈Γ,0<γ<1 |bγ | is bounded and

g(z) =
∞∑
k=1

(2πiz)k

k!

∑
γ∈Γ,0<γ<1

γk−1bγ ,

we see that g(z) is a well-defined entire function. Then, for z ∈ C+ ∪ R,

|g(z)| ≤

[ ∑
γ∈Γ,0<γ<ε

+
∑

γ∈Γ,ε≤γ<1

] ∣∣∣∣1− e2πiγz

γz

∣∣∣∣ |z||bγ |
≤ 4π|z|

∑
0<γ<ε

|bγ |+
2

ε

∑
ε≤γ<1

|bγ |. (4.11)

The sum
∑

0<|γ|<ε |bγ | is arbitrary small for small ε, therefore, |g(z)| = o(|z|) as
|z| → ∞, z ∈ C+ ∪ R. Moreover, in every strip {z : | Im z| < M},

|g(z)− g(x)| ≤
∑

γ∈Γ,0<γ<1

|bγ |
∣∣∣∣e2πiγx e

−2πγy − 1

γ

∣∣∣∣ < C(M). (4.12)

Theorem 4.3. If g(z) is uniformly bounded for z = x ∈ R, then the function
(4.2) with the zero set A is almost periodic of exponential type πd.

Conversely, if A is the zero set of an entire almost periodic function of expo-
nential growth, then the function g(z) is uniformly bounded on R.

Proof. By (4.5), the sums∑
γ≥1

bγγ
−1e−2πγ ,

∑
0<γ<1

bγ
1− e−2πγ

γ

are finite. Hence we can rewrite (4.9) as

log f(z) = −
∑

0<γ<1

bγ
e2πiγz − 1

γ
−
∑
γ≥1

bγ
e2πiγz

γ
− idπz + const. (4.13)
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Here the second sum is uniformly bounded in every half-plane Im z ≥ α > 0. If
the function g(x) is uniformly bounded on R, then, by (4.12), the first sum in
(4.13) is bounded on every line Im z = M > 0. Therefore the functions log |f(z)|
and f(z) are bounded on this line, and f(z) is also bounded on every line Im z =
−M < 0 as well. Since the function f(z) has exponential growth, the Phragmen–
Lindelöf Theorem implies that f is bounded in every horizontal strip of bounded
width.

Furthermore, combining (4.13) and (4.11), we get

lim
y→+∞

y−1 log |f(iy)| = πd.

The function f(z) is bounded on the real line, therefore the Phragmen–Lindelöf
Theorem implies that |f(z)| ≤ Meyπd for all z ∈ C+. Also, |f(z)| ≤ Me−yπd for
all z ∈ C−, therefore f(z) has the exponential type πd.

Further, the function log f(z) + idπz is bounded on the line Im z = 1. Its
derivative (log f(x + i))′ + idπ is almost periodic, hence, by Bohr’s Theorem
(cf. [13, Theorem 1.2.1]), the functions log f(x+ i)+ idπx and f(x+ i) are almost
periodic in the variable x. By [13, Theorem 1.2.3], the function f(z) is almost
periodic in every strip where it is bounded, and hence it is almost periodic in C.

Now, let G(z) be an entire almost periodic function of exponential growth
with a zero set A. Clearly, G(z) = K1e

K2zf(z) with K1,K2 ∈ C. Taking into
account that the second sum in (4.13) is bounded on the line Im z = 1, we obtain

logG(x+ i) = K2x− g(x+ i)− idπx+O(1) as x→∞.

Since G(x + i) is almost periodic, we get infR |G(x + i)| > 0 and logG(x + i) =
iωx+O(1), where ω is the mean motion ([13], Chap. 2). Then (4.12) implies

K2x− g(x)− idπx− iωx = O(1).

By (4.11), g(x) = o(|x|), therefore, K2 = iπd+ iω and g(x) is bounded.

Acknowledgments. The author would like to thank the Department of
Mathematics and Computer Science of the Jagiellonian University for its hos-
pitality and Professor Lukasz Kosinski for his interest in this work.

References

[1] H. Bohr, Almost Periodic Functions, Chelsea Publishing Company, New York, 1951.

[2] M. Baake and R.V. Moody, Directions in Mathematical Quasicrystals, CRM Mono-
graph series, 13, Amer. Math. Soc., Providence RI, 2000.

[3] S.Yu. Favorov, Zeros of holomorphic almost periodic functions, J. Anal. Math. 84
(2001), 51–66.

[4] S.Yu. Favorov, Uniqueness theorems for Fourier quasicrystals and temperate distri-
butions with Discrete Support, Proc. Amer. Math. Soc. 149 (2021), 4431–4440.



296 Sergii Favorov

[5] S.Yu. Favorov, Large Fourier quasicrystals and Wiener’s theorem, J. Fourier Anal.
Appl. 25 (2019), 377–392.

[6] S.Yu. Favorov and Ye.Yu. Kolbasina, Perturbations of discrete lattices and almost
periodic sets, Algebra Discrete Math. 9 (2010), No. 2, 48–58.

[7] S.Yu. Favorov and Ye.Yu. Kolbasina, Almost periodic discrete sets, J. Math. Phys.
Anal. Geom. 6 (2010), 1–14.

[8] S.Yu. Favorov, A.Yu. Rashkovskii, and L.I. Ronkin, Almost periodic divisors in a
strip, J. Anal. Math. 74 (1998), 325–345.

[9] P.Koosis, The logarithmic integral, v.I, Cambridge university press, Cambridge-
New York-New Rochelle-Melburn-Sydney, 1988.

[10] P. Kurasov and P. Sarnak, Stable polynomials and crystalline measures, J. Math.
Phys. 61 (2020), Art. No. 083501, 13 pp.

[11] W. Lawton, Bohr Almost Periodic Sets of Toral Type, J. Geom. Anal. 32 (2022),
No. 2, 32–60.

[12] B.Ja. Levin, Distributions of Zeros of Entire Functions, Transl. Math. Monograph,
5 Amer. Math, Soc., Providence, R1, 1980.

[13] B.M. Levitan, Almost periodic functions, Gostehizdat, Moscow, 1953 (Russian).

[14] J.C. Lagarias Mathematical Quasicrystals and the Problem of Diffraction, Direc-
tions in mathematical quasicrystals, CRM Monograph series, 13, Amer. Math. Soc.,
Providence RI, 2000, 61–93.

[15] Y. Meyer, Quasicrystals, Almost Periodic Patterns, Mean–periodic Functions, and
Irregular Sampling, Afr. Diaspora J. Math. 13 (2012), 1–45.

[16] Y. Meyer, Global and local estimates on trigonometric sums, Trans. R. Norw. Soc.
Sci. Lett. 2 (2018), 1–25.

[17] A. Olevskii and A. Ulanovskii, Fourier quasicrystals with unit masses, C. R. Math.
Acad. Sci. Paris 358 (2020), 1207–1211.

[18] A. Olevskii and A. Ulanovskii, A Simple Crystalline Measure, preprint, https:

//arxiv.org/abs/2006.12037v2.

[19] J.Patera, Quasicrystals and Discrete Geometry, Fields Inst. Monogr., Amer. Math,
Soc., Providence RI, 1988.

[20] L.I. Ronkin, Almost periodic distributions and divisors in tube domains, Zap.
Nauchn. Sem. POMI 247 (1997), 210–236 (Russian).

[21] H. Tornehave, On the zeros of entire almost periodic function, Math. Fys. Medd.
Danske 42 (1989), 125–142.

Received August 27, 2023, revised January 1, 2024.

Sergii Favorov,

V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine,

E-mail: sfavorov@gmail.com

https://arxiv.org/abs/2006.12037v2
https://arxiv.org/abs/2006.12037v2
mailto:sfavorov@gmail.com


Generalized Fourier Quasicrystals 297

Узагальненi квазiкристали Фур’є, майже перiодичнi
множини та нулi рядiв Дiрiхле

Sergii Favorov

Нехай S є абсолютно збiжним рядом Дiрiхле з обмеженим спектром
i дiйсною нульовою множиною A, а µ є сумою одиничних мас у то-
чках множини A. Основний результат статтi стверджує, що перетво-
рення Фур’є µ у сенсi розподiлiв є чисто точковою мiрою. I навпаки,
для заданої послiдовностi A дiйсних точок знайдено достатню умову на
перетворення Фур’є µ для того, щоб A була нульовою множиною абсо-
лютно збiжного ряду Дiрiхле з обмеженим спектром; окрiм того, для
перетворення Фур’є µ знайдено критерiй того, що A є нульовою множи-
ною майже перiодичної цiлої функцiї експоненцiального зростання. Цi
результати базуються на новому поданнi майже перiодичних множин.

Ключовi слова: квазiкристал Фур’є, перетворення Фур’є в сенсi роз-
подiлiв, чисто точкова мiра, майже перiодична цiла функцiя, майже пе-
рiодична множина, нульова множина цiлої функцiї
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