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1. Introduction

Phase retrieval problem arose in physics (see [10], [9], and the references
therein). It consists in the description of all probability measures on Rn or, more
generally, on a locally compact abelian group, for which the moduli of their char-
acteristic functions are equal to the modulus of the characteristic function of the
given measure. The similar question to this one is the following: which probabil-
ity measures can be restored by the moduli of their characteristic functions up
to a shift and central symmetry. To formulate the problem, let us introduce the
required notation and definitions. Let X be a locally compact abelian group, Y
be its character group, (x, y) be the value of character y ∈ Y on the element x ∈
X, M1(X) be the set of probability measures on the group X. Characteristic
function of the measure µ ∈M1(X) is determined by the formula

µ̂(y) =

∫
X

(x, y)µ(dx), y ∈ Y . (1.1)

Definition 1.1. We say that the measures µ, ν ∈M1(X) are equivalent and
write µ ∼ ν if

|ν̂(y)| = |µ̂(y)|, y ∈ Y . (1.2)

Let µx be the shift of measure µ by element x ∈ X and let µ− be the measure
obtained from µ by central symmetry:

µx(E) = µ(E + x), µ−(E) = µ(−E),

where E is a Borel set in X. It is easy to see that µ ∼ µx, µ ∼ µ−, µ ∼ µ−x for
any measure µ ∈M1(X) and any x ∈ X.
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Definition 1.2. We say that a measure µ ∈M1(X) has a trivial equivalence
class if only the measures µx and µ−x , x ∈ X, are equivalent to it.

The set of measures from M1(X) that have a trivial equivalence class is de-
noted by TEC(X). Note that the normal distribution on R belongs to the class
TEC(R) that follows from Cramer’s decomposition theorem for the normal dis-
tribution, and the Poisson distribution does not belong to the class TEC(R).

Papers [1–8] were aimed to give a complete or partial description of the class
TEC(X) for some groups X. In papers [2,3], the triviality of the equivalence class
for uniform distributions on intervals of the group Zn of residue classes modulo n,
on the Cartesian product of intervals of the group Zl, on the unit ball in Rl was
studied. In [8], there was obtained a criterion by which a two-point measure on
Zn has a trivial equivalence class. In [2], a necessary and sufficient condition was
found for the fact that a generalized Poisson distribution on the group Zl2, l ≥
2, whose spectral measure is proportional to the Haar measure, belongs to the
class TEC(Zl2) (Theorem 1.4 below). In [6], a necessary and sufficient condition
was obtained for a generalized Poisson distribution with an arbitrary spectral
measure to belong to the class TEC(Z2

2). In [7], there was set a criterion for
a generalized Poisson distribution on the group Z3

2, whose spectral measure is
arbitrarily distributed on any three generators of the group, to belong to the
class TEC(Z3

2) (Theorem 1.5 below).
Sometimes it is possible to obtain a complete description of the class TEC(X).

It is easy to see that TEC(Z2) = M1(Z2). The classes TEC(Z3) and TEC(Z4)
are fully described in [8], the class TEC(Z2

2) is described in [6] (Theorem 1.6
below). In this paper, we obtain a complete description of the class TEC(Z3

2)
(Theorem 2.5 below).

Let us formulate some of the results from the papers [2, 6, 7]. We need the
following definition.

Definition 1.3. Let ρ be a finite measure on the group X. The generalized
Poisson distribution with spectral measure ρ is the distribution

Πρ = e−ρ(X)
∞∑
k=0

1

k!
ρ∗k.

The characteristic function of the distribution Πρ has the form

Π̂ρ(y) = exp

{∫
X

[(x, y)− 1]ρ(dx)

}
.

Let mX denote the Haar measure on the group X. For a compact group X we
put mX(X) = 1. The following theorem gives a necessary and sufficient condition
under which the measure Πλm (here, m is the Haar measure on the group Zl2,
λ > 0) belongs to the class TEC(Zl2), l = 2, 3, . . ..

Theorem 1.4 ([2]). The measure Πλm belongs to the class TEC(Zl2), l =
2, 3, . . . , if and only if λ < ln 3.
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Theorem 1.5 gives a necessary and sufficient condition under which the gener-
alized Poisson distribution on the group Z3

2, whose spectral measure is arbitrarily
distributed on any three generators of the group, belongs to the class TEC(Z3

2).

Theorem 1.5 ([7]). Let π be a generalized Poisson distribution on the group
Z3
2, whose spectral measure is concentrated on any three generators and assigns

masses a, b, c to them. A measure π belongs to the class TEC(Z3
2) if and only if

the system of inequalities
e−2a + e−2b + e−2(a+b) > 1,

e−2b + e−2c + e−2(b+c) > 1,

e−2a − e−2b + e−2c + e−2(a+b) + e−2(b+c) − e−2(c+a) + e−2(a+b+c) > 1

is satisfied, or one of the two systems of inequalities obtained from this system by
cyclic permutations of the parameters a, b, c is satisfied.

The following theorem gives the full description of the class TEC(Z2
2). Let

µ ∈M1(Z2
2). We denote amax = max{µ({x}) : x ∈ Z2

2}. Let S(µ) be the support
of the measure µ, |C| be the number of elements of the set C.

Theorem 1.6 ([6]). The class TEC(Z2
2) contains the following measures and

only them:

1) all measures µ for which |S(µ)| ≤ 2;

2) all measures µ for which |S(µ)| = 3 and amax ≥ 1/2;

3) all measures µ for which |S(µ)| = 4 and one of the following two conditions
is satisfied :

a) amax > 1/2,

b) amax < 1/2 and the sum of the masses of some two elements of the group
is equal to the sum of the masses of the other two elements.

We note that µ /∈ TEC(Z2
2) if |S(µ)| = 4 and amax = 1/2.

2. Main result

To formulate the main result, we need some notation.

Let Z2 = {0, 1} be additive group of the residue classes modulo 2,

X = Z3
2 = {x = (α, β, γ) : α, β, γ ∈ {0, 1}} .

We denote the elements of the group Z3
2 as follows:

x0 = (0, 0, 0), x1 = (1, 0, 0), x2 = (0, 1, 0), x3 = (0, 0, 1),

x4 = (1, 1, 0), x5 = (1, 0, 1), x6 = (0, 1, 1), x7 = (1, 1, 1).

For the zero element x0 of the group Z3
2, we will also use the notation 0.
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The group of characters of the group Z3
2 is isomorphic to Z3

2. The value of
the character y = (ξ, η, ζ), ξ, η, ζ ∈ {0, 1} on the element x = (α, β, γ) ∈ Z3

2 is
determined by the formula

(x, y) = (−1)αξ+βη+γζ .

Let us denote by A1 the set of all subgroups of the group Z3
2 isomorphic to

Z2:

A1 = {Hi = {x0, xi} : i = 1, . . . , 7} .

Let us denote by A2 the set of all subgroups of the group Z3
2 isomorphic to Z2

2:

A2 = {Ki : i = 1, . . . , 7} ,
K1 = {x0, x2, x3, x6}, K2 = {x0, x1, x3, x5}, K3 = {x0, x1, x2, x4},
K4 = {x0, x1, x6, x7}, K5 = {x0, x3, x4, x7}, K6 = {x0, x2, x5, x7},
K7 = {x0, x4, x5, x6}. (2.1)

In what follows, the representation of the group Z3
2 as a direct sum of a group

from A1 and a group from A2 will play an important role.

Let µ ∈M1(Z3
2). The values of the masses of the measure µ on the elements

of the group Z3
2 are denoted by

ai = µ({xi}), i = 0, 1, . . . , 7.

Thus we have ai ≥ 0,
∑7

i=0 ai = 1. We also denote

amax := max{ai : i = 0, 1, . . . , 7}.

From (1.1), we find the general form of the characteristic function µ̂, µ ∈
M1(Z3

2),

µ̂(y) =
7∑
i=0

ai(xi, y), ai ≥ 0,
7∑
i=0

ai = 1. (2.2)

Since all non-zero elements of the group Z3
2 have order 2, the central symmetry

is the identity mapping. Therefore Definition 1.2 is simplified: the measure µ ∈
M1(Z3

2) has a trivial equivalence class if only the shifts of µ are equivalent to it.

Let E be a subset of Z3
2. We denote

u(E) := max {µ({x}) : x ∈ E} , v(E) := min {µ({x}) : x ∈ E} .

Definition 2.1. Let us denote by U(E) the set of measures µ ∈ M1(Z3
2)

satisfying the condition

2u(E) > µ(E).

In other words, U(E) is the set of such measures for which the maximum mass
of the elements of the set E is greater than the sum of the remaining masses of
the elements of this set.
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Definition 2.2. Let us denote by V (E) the set of measures µ ∈ M1(Z3
2)

satisfying the condition
1/2 + 2v(E) < µ(E).

In other words, V (E) is the set of such measures for which the sum of 1/2
and minimum mass of the elements of the set E is smaller than the sum of the
remaining masses of the elements of this set.

Let K ∈ A2. The coset of the subgroup K in the group Z3
2, different from K,

will be denoted by K.
For convenience of reference, we formulate the following statement in the form

of a lemma. It easily follows from the description of subgroups of Z3
2.

Lemma 2.3. Let H ∈ A1, K ∈ A2, and H ∩K = {0}. Then the following
statements are valid:

1) there are exactly three subgroups Li ∈ A2 containing H;

2) non-zero elements of the subgroup K belong to the different subgroups Li, i =
1, 2, 3;

3) there are exactly four subgroups K(j) ∈ A2, j = 1, 2, 3, 4, such that H∩K(j) =
{0};

4) for each j0 = 1, 2, 3, 4 and for each j 6= j0, there is a unique element zj ∈
K(j) such that zj 6∈ H, zj 6∈ K(j0).
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Fig. 2.1

We illustrate Lemma 2.3 with the help of Fig. 2.1. If we take H =
{0, x1}, then L1 = {0, x1, x2, x4}, L2 = {0, x1, x3, x5}, L3 = {0, x1, x6, x7} (see
Fig. 2.1(b), where subgroups L1, L2, L3 are marked with different shadings). Let

K(j0) = {0, x2, x3, x6} and K(j) = {0, x3, x4, x7}, see Fig. 2.1(a). Then K(j) =
{x1, x2, x5, x6}, and since the conditions zj /∈ H, zj /∈ K(j0) must be satisfied, we
see that zj 6= x1, zj 6= x2, zj 6= x6. Therefore zj = x5.

To introduce Definition 2.4, we need the following notation. Let H = {0, g} ∈
A1, K ∈ A2, and K∩H = {0}. Let L1, L2, L3 be all subgroups from A2 containing
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H (see items 1 and 2 of Lemma 2.3). For all i = 1, 2, 3, we denote by ti an element
from Li that belongs to K and ti 6= g. Let si ∈ Li and si 6= 0, g, ti. Thus, Li =
{0, g, si, ti}, i = 1, 2, 3, K = {0, s1, s2, s3}.

Definition 2.4. We denote by W (H,K) the set of measures µ ∈ M1(Z3
2)

such that the following three equalities hold:

µ({0, ti}) = µ({g, si}), i = 1, 2, 3.

For example, if H = {x0, x1}, K = {x0, x2, x3, x6} (see Fig. 2.1(b)), then L1 =
{x0, x1, x2, x4}, L2 = {x0, x1, x3, x5}, L3 = {x0, x1, x6, x7}, t1 = x4, t2 = x5, t3 =
x7, s1 = x2, s2 = x3, s3 = x6. In this case, three equalities from Definition 2.4
have the forms:

µ({x0, x4}) = µ({x1, x2}), µ({x0, x5}) = µ({x1, x3}), µ({x0, x7}) = µ({x1, x6}).

The main result of the paper is the following theorem. Note that item I.2(c)
of this theorem uses the items 3) and 4) of Lemma 2.3. Item II.2 uses item 3)
of this lemma. Without loss of generality, we may assume that the condition
amax = a0 is satisfied.

Theorem 2.5. Let µ ∈ M1(Z3
2) and amax = a0. Then µ ∈ TEC(Z3

2) if and
only if there exists a decomposition of the group Z3

2:

Z3
2 = X1 ⊕X2, X1 ∈ A1, X2 ∈ A2, (2.3)

such that conditions I.1 and I.2 are satisfied for amax ≤ 1/4 and one of the
conditions II.1–II.4 is satisfied for amax > 1/4:

I.1. The projection of the measure µ on X2 parallel to X1 is equal to the Haar
measure mX2 of the subgroup X2.

I.2. At least one of the following three requirements is true:

a) The projection of the measure µ on X1 parallel to X2 is equal to the
Haar measure mX1 of the subgroup X1.

b) The sum of the masses of some two elements of the subgroup X2 is
equal to the sum of the masses of its other two elements.

c) Let K(j), j = 1, 2, 3, 4, be all subgroups of A2 that do not contain X1.
Then there is j0 such that the condition µ ∈ U(K(j0)) is satisfied and
the equality

u
(
K(j)

)
= µ({zj})

holds for any j 6= j0, where zj ∈ K(j), zj /∈ X1, zj /∈ K(j0).

II.1. For any subgroup K ∈ A2 the following conditions are true:

a) µ ∈ U(K) or µ ∈ U(K);

b) µ ∈ V (K) or µ ∈ V (K).

II.2. The following two conditions hold :
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a) µ ∈W (X1,K) for at least one subgroup K ∈ A2 that does not contain
X1;

b) µ ∈ U(K) or µ ∈ U(K) for any subgroup K ∈ A2 that does not contain
X1.

II.3. The following two conditions hold :

a) There is a two-point subset E ⊂ X2 such that for both elements g ∈
X1 the equality

µ(g + E) = µ(g + (X2 \ E)) (2.4)

is valid;

b) µ ∈ U(K) or µ ∈ U(K) for each subgroup K ∈ A2, K 6= X2.

II.4. The following three conditions hold :

a) The projection of the measure µ on X1 parallel to X2 is equal to the
Haar measure mX1 of the group X1;

b) µ ∈ V (K) or µ ∈ V (K) for any subgroup K ∈ A2, K 6= X2;

c) µ ∈ U(K) or µ ∈ U(K) for any subgroup K ∈ A2.

Notice that in the statement of condition II.1 of Theorem 2.5, decomposi-
tion (2.3) is not used.

Let us indicate a simple sufficient condition under which a measure belongs
to the class TEC(Z3

2).

Corollary 2.6. If amax > 5/6, then µ ∈ TEC(Z3
2).

Proof. Let K be an arbitrary subgroup from A2. Since, without loss of gen-
erality, we can assume that amax = a0, we have that condition µ ∈ U(K), and
hence condition II.1(a), are satisfied. Since v(K) < 1/6 and µ(K) > 5/6, we see
that

1/2 + 2v(K) < 1/2 + 2 · 1/6 = 5/6 < µ(K).

Therefore, condition II.1(b) is satisfied. Hence, µ ∈ TEC(Z3
2).

3. Examples

In this section, we give the examples of measures that satisfy various condi-
tions of Theorem 2.5. In examples 3.1–3.7, we assume that the subgroups X1

and X2, appearing in the formulation of Theorem 2.5, are as follows:

X1 = {x0, x1}, X2 = {x0, x2, x3, x6}.

In examples 3.8, 3.9, we consider the measures that do not belong to the class
TEC(Z3

2).

Let us give an example of a distribution that satisfies conditions I.1 and
I.2(a).
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Example 3.1. We consider the distribution µ with masses

a0 = 1/8 + 4ε, a1 = 1/8− 4ε, a2 = 1/8− 3ε, a3 = 1/8− 2ε,

a4 = 1/8 + 3ε, a5 = 1/8 + 2ε, a6 = 1/8 + ε, a7 = 1/8− ε (3.1)

for 0 ≤ ε ≤ 1/32. It should be noticed that for ε = 0 we obtain the Haar measure
on the group Z3

2. Since a0 + a1 = a2 + a4 = a3 + a5 = a6 + a7 = 1/4, we see that
condition I.1 is satisfied. Since a0 + a2 + a3 + a6 = 1/2, we see that condition
I.2(a) is satisfied.

Let us give an example of a distribution that does not satisfy condition I.2(a),
but satisfies conditions I.1 and I.2(b).

Example 3.2. We consider the distribution with masses

a0 = a3 = 1/4−ε, a1 = a5 = ε, a2 = a6 = 2ε, a4 = a7 = 1/4−2ε (0 < ε < 1/8).

Since a0 + a1 = a2 + a4 = a3 + a5 = a6 + a7 = 1/4 and a0 + a2 = a3 + a6, we see
that I.1 and I.2(b) are true. Since a0 + a2 + a3 + a6 = 1/2 + 2ε, condition I.2(a)
is not satisfied.

Next, we give an example of a distribution that satisfies conditions I.1 and
I.2(c).

Example 3.3. We consider the distribution µ with masses

a0 = 1/4− ε, a1 = ε, a2 = a3 = a6 = 2ε,

a4 = a5 = a7 = 1/4− 2ε (0 < ε < 1/28).

Since a0 + a1 = a2 + a4 = a3 + a5 = a6 + a7 = 1/4, we obtain that condition I.1
is satisfied. Let us show that condition I.2(c) is satisfied. All subgroups of A2

that do not contain subgroup X1 (see Lemma 2.3, item 3)) are as follows:

K(1) = K1 = {x0, x2, x3, x6}, K(2) = K5 = {x0, x3, x4, x7},
K(3) = K6 = {x0, x2, x5, x7}, K(4) = K7 = {x0, x4, x5, x6}.

Let us take j0 = 1. It is easy to see that

max{ai : xi ∈ K(1)} = a0 = 1/4− ε > 6ε = a2 + a3 + a6

for 0 < ε < 1/28. Therefore, µ ∈ U(K(1)).
For j = 2, we have

max{ai : xi ∈ K(2)} = max{a1, a2, a5, a6} = a5 = 1/4− 2ε (0 < ε ≤ 1/16),

and we can take z2 = x5 (see Lemma 2.3, item 4): z2 = x5 /∈ X1, z2 /∈ K(1).
For j = 3, we have

max{ai : xi ∈ K(3)} = max{a1, a3, a4, a6} = a4 = 1/4− 2ε (0 < ε ≤ 1/16),
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and we can take z3 = x4: z3 = x4 /∈ X1, z3 /∈ K(1).
For j = 4, we have

max{ai : xi ∈ K(4)} = max{a1, a2, a3, a7} = a7 = 1/4− 2ε (0 < ε ≤ 1/16),

and we can take z4 = x7: z4 = x7 /∈ X1, z4 /∈ K(1).
Thus, condition I.2(c) is satisfied. Therefore, µ ∈ TEC(Z3

2) for 0 < ε < 1/28.

Example 3.4. Condition II.1 is satisfied for any measure for which amax >
5/6. This follows from Corollary 2.6 of Theorem 2.5.

Let us give an example of a measure that satisfies condition II.2.

Example 3.5. We consider the distribution µ with masses

a0 = 8/24 + 3ε, a1 = 7/24 + 3ε,

a2 = a3 = a6 = 2/24− ε, a4 = a5 = a7 = 1/24− ε,

where 0 ≤ ε ≤ 1/24. Let K = X2 = {x0, x2, x3, x6}. The subgroups containing
the subgroup X1 (see Lemma 2.3, item 1)) are as follows:

L1 = {x0, x1, x2, x4}, L2 = {x0, x1, x3, x5}, L3 = {x0, x1, x6, x7}.

Notice that x2 ∈ L1, x3 ∈ L2, x6 ∈ L3. We put s1 = x2, s2 = x3, s3 = x6. Then
t1 = x4, t2 = x5, t3 = x7. It is easy to see that the condition µ ∈ W (X1,K) is
satisfied since

µ({x0, x4}) = µ({x1, x2}) = 9/24 + 2ε,

µ({x0, x5}) = µ({x1, x3}) = 9/24 + 2ε,

µ({x0, x7}) = µ({x1, x6}) = 9/24 + 2ε.

Therefore, condition II.2(a) is satisfied. Let us check the fulfilment of condi-
tion II.2(b). For the subgroup {x0, x2, x3, x6} 6⊃ X1, we have

max{a0, a2, a3, a6} = a0 = 8/24 + 3ε > 3 · (2/24− ε) = a2 + a3 + a6.

For the subgroup {x0, x3, x4, x7} 6⊃ X1, we have

max{a0, a3, a4, a7} = a0 = 8/24 + 3ε > 4/24− 3ε

= (2/24− ε) + 2(1/24− ε) = a3 + a4 + a7.

Similar inequalities are also valid for subgroups {x0, x2, x5, x7} 6⊃ X1,
{x0, x4, x5, x6} 6⊃ X1. Therefore, condition II.2(b) is satisfied, and hence µ ∈
TEC(Z3

2).
Let us give an example of a distribution that satisfies condition II.3.

Example 3.6. We consider the distribution µ with masses

a0 = 1/4 + ε, a1 = a4 = a5 = a7 = 1/8− ε,
a2 = a3 = 1/8 + ε, a6 = ε (1/16 < ε < 1/8). (3.2)
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We take E = {x2, x3}. Then X2 \ E = {x0, x6}. We check the fulfilment of
condition II.3(a).

Let us show that equality (2.4) holds for g = x0:

µ({x2, x3}) = 2(1/8 + ε) = 1/4 + 2ε,

µ({x0, x6}) = 1/4 + ε+ ε = 1/4 + 2ε.

Let us show that equality (2.4) holds for g = x1:

µ({x1 + {x2, x3}}) = µ({x4, x5}) = 2(1/8− ε) = 1/4− 2ε,

µ({x1 + {x0, x6}}) = µ({x1, x7}) = 2(1/8− ε) = 1/4− 2ε.

Let us check that condition II.3(b) is satisfied. For K = {x0, x1, x3, x5},
condition µ ∈ U(K) means that

a1 + a3 + a5 = (1/8− ε) + (1/8 + ε) + (1/8− ε) = 3/8− ε < 1/4 + ε = a0,

and this inequality is satisfied for any ε such that 1/16 < ε < 1/8. The condition
µ ∈ U(K) for K = {x0, x1, x2, x4}, {x0, x3, x4, x7}, {x0, x2, x5, x7} can be checked
in the same way. For K = {x0, x4, x5, x6}, the condition µ ∈ U(K) means that

a4 + a5 + a6 = 2(1/8− ε) + ε = 1/4− ε < 1/4 + ε = a0.

This inequality is true for any ε > 0. The condition µ ∈ U(K) for K =
{x0, x1, x6, x7} can be verified in a similar way. Thus, condition II.3(b) is verified.
Therefore, µ ∈ TEC(Z3

2).
Let us give an example of a distribution that satisfies condition II.4.

Example 3.7. We consider the distribution µ with masses

a0 = 1/2− ε, a2 = a3 = a6 = ε/3, a1 = a4 = a5 = a7 = 1/8 (0 < ε < 3/16).

Since a0 + a2 + a3 + a6 = 1/2, condition II.4(a) is fulfilled. Let us check that
condition II.4(b) is satisfied. Let K = K2 = {x0, x1, x3, x5}. We have:

a0 + a1 + a3 + a5 = (1/2− ε) + 1/8 + ε/3 + 1/8 = 3/4− 2ε/3,

1/2 + 2 min{a0, a1, a3, a5} = 1/2 + 2ε/3.

The condition µ ∈ V (K) takes the form 1/2+2ε/3 < 3/4−2ε/3 and it is satisfied
for 0 < ε < 3/16. For other subgroups Ki, i = 3, . . . , 7, the check is made in the
same way.

Let us check the fulfilment of condition II.4(c). If K = K1 = {x0, x2, x3, x6},
we have

a0 = 1/2− ε > 3ε/3 = ε = a2 + a3 + a6 (0 < ε < 1/4).

If K = K2 = {x0, x1, x3, x5}, we have

a1 + a3 + a5 = 1/8 + ε/3 + 1/8 = 1/4 + ε/3 < 1/2− ε = a0 (0 < ε < 3/16).

For other subgroups Ki, i = 3, . . . , 7, the check is the same as that for K2.
Therefore, µ ∈ TEC(Z3

2) for 0 < ε < 3/16.
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Let us give two examples of the measures that do not belong to the class
TEC(Z3

2). Let X1 and X2 be the arbitrary subgroups of the group Z3
2 that

satisfy the condition (2.3).

Example 3.8. We consider the distribution µ with masses

a0 = 1/4 + ε, a1 = a2 = · · · = a7 = (3/4− ε)/7 (0 < ε ≤ 1/20).

For this distribution, we have amax > 1/4. Let us show that conditions II.1(a),
II.2(b), II.3(b), II.4(c) are not satisfied. Let K be an arbitrary subgroup of A2,
K = {x0, xi, xj , xk}, where i, j, k are different and nonzero. The condition µ /∈
U(K) means that a0 ≤ ai + aj + ak, that is,

1/4 + ε ≤ 3(1/7)(3/4− ε).

This inequality holds for ε ≤ 1/20. The condition µ /∈ U(K) means that

(1/7)(3/4− ε) ≤ 3(1/7)(3/4− ε).

This inequality holds for ε ≤ 3/4. Thus, µ /∈ TEC(Z3
2).

In the previous example, the measure satisfied condition amax > 1/4. In the
following example, the condition amax ≤ 1/4 is valid.

Example 3.9. We consider the distribution with masses

a0 = 1/4− ε, a1 = a2 = · · · = a7 = (3/4 + ε)/7 (ε ∈ [0, 1/8) ∪ (1/8, 1/4]).

We show that condition I.1 is not satisfied. We have

a0 + ai = 5/14− (6/7)ε 6= 1/4 if ε 6= 1/8, i = 1, 2, . . . , 7.

Therefore, condition I.1 is not satisfied. Thus, µ /∈ TEC(Z3
2). Note that this

measure is the Haar measure of the group Z3
2 if ε = 1/8. Therefore, it belongs to

the class TEC(Z3
2).

In examples 3.1–3.7 the subgroups X1 and X2 are known. Let us show how
to find the subgroups X1 and X2 for the concrete measure µ. The subgroups X1

and X2 for the given measure µ are found by sorting of all possible cases. We can
choose one of the subgroups X1, X2 in seven ways. Then we can choose another
subgroup in four ways in order that

Z3
2 = X1 ⊕X2, X1 ∈ A1 X2 ∈ A2.

Therefore, we have 28 variants of the pair X1, X2.

Further, we consider two examples, which show how to find X1 and X2 for
the concrete measure µ.
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Example 3.1′. Let µ ∈M1(Z3
2) be a distribution with masses (3.1), where 0 <

ε ≤ 1/32. Since amax = a0 < 1/4, we need to find a suitable condition among
the conditions of part I of Theorem 2.5.

Since a0 + a1 = a2 + a4 = a3 + a5 = a6 + a7 = 1/4, we see that condition I.1
is valid if X1 = {x0, x1}. Since a0 + ai 6= 1/4 for i = 2, . . . , 7, condition I.1 is
not valid for X1 = {x0, xi}, i = 2, . . . , 7. Therefore, we take X1 = {x0, x1}. For
X1 = {x0, x1}, the expansion Z3

2 = X1 ⊕X2 is valid for the following subgroups
X2:

{x0, x2, x3, x6}, {x0, x2, x5, x7}, {x0, x3, x4, x7}, {x0, x4, x5, x6}.

Condition I.2(a) is fulfilled for the subgroup X2 = {x0, x2, x3, x6} from this list
of subgroups because

a0 + a2 + a3 + a6 = 1/2.

But it is not fulfilled for the other subgroups from this list because

a0 + a2 + a5 + a7 = 1/2 + 2ε 6= 1/2,

a0 + a3 + a4 + a7 = 1/2 + 4ε 6= 1/2,

a0 + a4 + a5 + a6 = 1/2 + 10ε 6= 1/2

for ε > 0.
Therefore, we put X1 = {x0, x1}, X2 = {x0, x2, x3, x6}.

Example 3.6′. Let µ ∈ M1(Z3
2) be a distribution with masses (3.2). Since

amax = a0 > 1/4, we have to find a suitable condition among the conditions
of part II of Theorem 2.5. Let us show that condition II.1(a) is not valid.
Indeed, this condition must be valid for any subgroup K ∈ A2. But for K =
{x0, x2, x3, x6}, we have K = {x1, x4, x5, x7} and

max{ai : xi ∈ K} = a0 = 1/4 + ε < 1/4 + 3ε = a2 + a3 + a6,

max{ai : xi ∈ K} = a1 = 1/8− ε < 3(1/8− ε) = a4 + a5 + a7.

Thus, condition II.1(a) is not valid.
It can be shown that condition II.2 is also not valid. (The verification of this

fact is easy but somewhat long.)
Let us show that condition II.3 is valid for a suitable choice of X1, X2, E.

At first, we choose the subgroup X2. For this purpose, we verify for which of the
seven subgroups (2.1) equality (2.4) is valid with g = x0, i. e.,

µ(E) = µ(X2 \ E) (3.3)

for some two-point subset E ⊂ X2. If X2 = {x0, x2, x3, x6} and E = {x2, x3},
then the following equalities hold:

µ(E) = µ({x2, x3}) = 1/4 + 2ε,

µ(X2 \ E) = µ({x0, x6}) = 1/4 + 2ε.
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Notice that if we take other subgroup from (2.1) for X2, then condition (3.3)
is not valid. Indeed, if X2 = {x0, x1, x3, x5}, then for E = {x0, x1}, we have

µ(E) = 3/8, µ(X2 \ E) = 1/4;

for E = {x0, x3}, we have

µ(E) = 3/8 + 2ε, µ(X2 \ E) = 1/4− 2ε;

for E = {x0, x5}, we have

µ(E) = 3/8, µ(X2 \ E) = 1/4.

Therefore, X2 = {x0, x1, x3, x5} is not suitable. In complete analogy with this
case, other subgroups from (2.1) are not suitable. Thus, we have to put X2 =
{x0, x2, x3, x6}.

If X2 = {x0, x2, x3, x6}, we must choose X1 from the subgroups

{x0, x1}, {x0, x4}, {x0, x5}, {x0, x7}.

Let us verify for which subgroup from this list equality (2.4),

µ(g + E) = µ(g + (X2 \ E)),

is valid for g 6= x0, E = {x2, x3}. While considering Example 3.6, we showed
that this equality is valid for g = x1. Therefore, we take X1 = {x0, x1}.

If g = x4, we have

µ(x4 + {x2, x3}) = µ({x1, x7}) = 1/4− 2ε,

µ(x4 + {x0, x6}) = µ({x4, x5}) = 1/4− 2ε.

Therefore, we may take X1 = {x0, x4}.
If g = x5, we have

µ(x5 + {x2, x3}) = µ({x7, x1}) = 1/4− 2ε,

µ(x5 + {x0, x6}) = µ({x5, x4}) = 1/4− 2ε,

and we may take X1 = {x0, x5}.
If g = x7, we have

µ(x7 + {x2, x3}) = µ({x5, x4}) = 1/4− 2ε,

µ(x7 + {x0, x6}) = µ({x7, x1}) = 1/4− 2ε,

and we may take X1 = {x0, x7}.
Therefore, we put X2 = {x0, x2, x3, x6} and X1 = {x0, xi}, where i = 1, 4, 5, 7.

The fulfilment of condition II.3(b) for X2 = {x0, x2, x3, x6} was shown in
Example 3.6.
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4. Derivation of Theorems 1.4–1.6 from Theorem 2.5

Let us show that Theorem 2.5 implies Theorem 1.4 in the case of l = 3 and
Theorems 1.5 and 1.6.

We show that the sufficiency in Theorem 1.4 for the case l = 3 follows from
item II.1 of Theorem 2.5. Indeed, if m is the Haar measure of the group Z3

2, we

have Π̂λm(y) = 1 for y = 0 and Π̂λm(y) = e−λ in other cases. Therefore, as it is
easy to check, the masses of the measure Πλm are as follows: the mass of the zero
element of the group Z3

2 is equal to (1+7e−λ)/8, and the masses of the remaining
elements of the group are equal to (1 − e−λ)/8. Therefore, condition II.1(a) of
Theorem 4 takes the form (1 + 7e−λ)/8 > 3(1− e−λ)/8 and is satisfied for e−λ >
1/5, while condition II.1(b) takes the form 1/2 < (1 + 7e−λ)/8 + (1 − e−λ)/8
and is satisfied for e−λ > 1/3. Thus, the conditions of item II.1 of Theorem 2.5
are satisfied for the measure Πλm for λ < ln 3, which proves the sufficiency in
Theorem 1.4.

The sufficiency in Theorem 1.5 also follows from item II.1 of Theorem 2.5. If
one of the three systems of inequalities from the formulation of Theorem 1.5 is
true, the conditions of item II.1 of Theorem 2.5 are satisfied. (The proof of this
fact is lengthy, so we omit it.)

Let us show how the sufficiency in Theorem 1.6 follows from Theorem 2.5.
To do this, we consider several cases:

1) amax > 1/2, |S(µ)| = 2, 3, 4;

2) amax = 1/2, |S(µ)| = 2;

3) amax = 1/2, |S(µ)| = 3;

4) amax < 1/2, |S(µ)| = 4 and the sum of some two masses of elements from
S(µ) is equal to the sum of two other masses.

Item 4) is divided into three sub-items, differing in the number of coinciding
masses:

(i) all masses of elements are equal (the Haar measure on Z2
2);

(ii) among the masses, there are two pairs of the same mass, but not all of these
masses are equal;

(iii) all masses are different or there are exactly two identical masses among
them.

(The case when there are exactly three identical masses among them is impossible,
since in this case the condition that the sum of some two masses is equal to the
sum of two other masses cannot be satisfied.)

It is easy to see that condition II.1 of Theorem 2.5 is satisfied under condition
1) of Theorem 1.6.

Let us show that, under condition 4(i), conditions I.1 and I.2(a) of Theo-
rem 2.5 are satisfied. Without loss of generality, we can assume that S(µ) =
{x0, x1, x3, x5}. Then a0 = a1 = a3 = a5 = 1/4, a2 = a4 = a6 = a7 = 0. Let us
put X1 = {x0, x2}, X2 = {x0, x3, x4, x7}. Since a0 + a2 = a1 + a4 = a3 + a6 =
a5 +a7 = 1/4, condition I.1 of Theorem 2.5 is satisfied. Since a0 +a3 +a4 +a7 =
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a1 + a2 + a5 + a6 = 1/2, condition I.2(a) is satisfied. Therefore µ ∈ TEC(Z3
2).

Let us show that, under condition 4(ii), condition II.2 of Theorem 2.5 is
satisfied. Without loss of generality, we can assume that S(µ) = {x0, x1, x3, x5},
amax = a0 < 1/2, a0+a5 = a1+a3, a0 = a1, a3 = a5, a0 6= a3. Let X1 = {x0, x1},
X2 = {x0, x2, x3, x6} (see Fig. 2.1(b)). We put K = {x0, x2, x3, x6} 6⊃ X1. Let us
show that µ ∈W (X1,K). We denote

L1 = {x0, x1, x2, x4}, L2 = {x0, x1, x3, x5}, L3 = {x0, x1, x6, x7}

(see item 1) of Lemma 2.3). We have Li ⊃ X1 for i = 1, 2, 3. It follows from the
conditions on the masses ai that the equalities

µ({x0, x4}) = µ({x1, x2}), µ({x0, x5}) = µ({x1, x3}),
µ({x0, x7}) = µ({x1, x6})

are valid. Therefore, condition II.2(a) is satisfied. It is easy to see that the
condition µ ∈ U(K) is satisfied: a0 > a2 + a3 + a6 = a3. The fulfilment of
condition II.2(b) for the remaining subgroups from A2 that do not contain X1 is
verified in a similar way. So, µ ∈ TEC(Z3

2).

Let us show that, under condition 2), condition II.2 of Theorem 2.5 is satis-
fied. Without loss of generality, we can assume that S(µ) = {x0, x1}, a0 = a1 =
1/2. The fulfilment of condition II.2 is checked in exactly the same way as for
the case 4(ii) if we put a3 = a5 = 0 in the previous argument.

Let us show that, under condition 4(iii), condition II.3 of Theorem 2.5 is
satisfied. We can assume that S(µ) = {x0, x1, x3, x5}, a0 > a1 ≥ a3 > a5, a0 +
a5 = a1 + a3. Let us put X1 = {x0, x2}, X2 = {x0, x1, x3, x5}, E = {x0, x5}.
Then X2 \ E = {x1, x3}. It is clear that

µ(E) = a0 + a5 = a1 + a3 = µ(X2 \ E),

µ(x2 + E) = µ({x2, x7}) = 0, µ(x2 + (X2 \ E)) = µ({x4, x6}) = 0.

Therefore, condition II.3(a) is satisfied. Let us check the fulfilment of condition
II.3(b). If K = {x0, x2, x3, x6}, we have µ ∈ U(K) since a0 > a2 + a3 + a6 = a3.
Analogously, the condition µ ∈ U(K) is satisfied for all other subgroups K ∈ A2,
K 6= X2. So, condition II.3(b) is satisfied. Therefore, µ ∈ TEC(Z3

2).

Let us show that, under condition 3), condition II.3 of Theorem 2.5 is also
satisfied. We can assume that S(µ) = {x0, x1, x3}, a0 = a1 + a3 = 1/2, a1 > 0,
a3 > 0. Condition II.3 is verified in exactly the same way as in the case 4(iii) if
we put a5 = 0 in the previous reasoning.

To verify the validity of Theorem 1.4 (for l = 3) and Theorems 1.5, 1.6 in the
direction of necessity, we have to show that if the conditions of one of them are
not satisfied, then condition I.1 or condition I.2 of Theorem 2.5 is not satisfied,
and also all four conditions II.1–II.4 are not satisfied. To check it is easy, but
lengthy. Therefore, we omit it.

Notice that the derivation of Theorem 1.6 from Theorem 2.5 turned out to
be more difficult than the proof of Theorem 1.6 itself.
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5. Scheme of the proof of Theorem 2.5

The proof of Theorem 1.6 from [6] is easy. The proof of Theorem 1.5 from [7]
is rather laborious. The proof of Theorem 2.5, based on the results of computer
calculations, is much more complicated, multi-step and lengthy. Let us briefly
describe the scheme of the proof of Theorem 2.5.

Let µ ∈ M1(Z3
2) be a given measure, ν ∈ M1(Z3

2) be a measure equivalent
to it, that is, condition (1.2) is satisfied. There arises the question: under which
conditions on the measure µ does the equality ν = µx hold for some x? In other
words, we look for the conditions on the measure µ under which the equality

ν̂(y) = (xj , y)µ̂(y) (5.1)

holds for some j = 0, 1, . . . , 7. Let the characteristic function of the measure µ
be of the form (2.2) and the characteristic function of the measure ν be equal to

ν̂(y) =
7∑
i=0

bi(xi, y).

If in equality (1.2), which is valid for all y = (ξ, η, ζ), we assume ξ, η, ζ = 0, 1,
then it can be written as a system of eight equalities:

b0 + b1 + b2 + b3 + b4 + b5 + b6 + b7 = 1,

|b0 − b1 + b2 + b3 − b4 − b5 + b6 − b7| = |a0 − a1 + a2 + a3 − a4 − a5 + a6 − a7|,
|b0 + b1 − b2 + b3 − b4 + b5 − b6 − b7| = |a0 + a1 − a2 + a3 − a4 + a5 − a6 − a7|,
|b0 + b1 + b2 − b3 + b4 − b5 − b6 − b7| = |a0 + a1 + a2 − a3 + a4 − a5 − a6 − a7|,
|b0 − b1 − b2 + b3 + b4 − b5 − b6 + b7| = |a0 − a1 − a2 + a3 + a4 − a5 − a6 + a7|,
|b0 − b1 + b2 − b3 − b4 + b5 − b6 + b7| = |a0 − a1 + a2 − a3 − a4 + a5 − a6 + a7|,
|b0 + b1 − b2 − b3 − b4 − b5 + b6 + b7| = |a0 + a1 − a2 − a3 − a4 − a5 + a6 + a7|,
|b0 − b1 − b2 − b3 + b4 + b5 + b6 − b7| = |a0 − a1 − a2 − a3 + a4 + a5 + a6 − a7|.

Expanding the modulus in the seven equalities of this system, we see that (1.2) is
equivalent to a set of 27 = 128 systems of linear equations with eight unknowns bi
and eight given parameters ai. Computer calculations of the paper [7] give the
solution of each system. Careful analysis of the solutions shows that 128 systems
are divided into four sets according to the type of solutions; we denote them by
A, B, C, D.

The set A consists of eight systems whose solutions b0, b1, . . . , b7 are such that
the function ν̂(y) has the form (5.1). The set B consists of eight systems whose
solutions are such that

ν̂(y) = (xj , y)

7∑
i=0

(1/4− ai)(xi, y), j = 0, 1, . . . , 7.

To describe systems from the sets C and D, we will need the following substi-
tutions of the indices 0, 1, . . . , 7 (e is the unit substitution):

σ1 = e, σ2 = (12)(56), σ3 = (13)(46), σ4 = (12)(37),
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σ5 = (24)(67), σ6 = (35)(67), σ7 = (24)(35). (5.2)

The substitution σk, k = 2, 3, . . . , 7, transforms the subgroup K1 ∈ A2 into the
subgroup Kk (see (2.1)).

The set C consists of 56 systems, which are subdivided into 7 subsets Ck, k =
1, 2, . . . , 7, of 8 systems each. For solutions b0, b1, . . . , b7 of the systems from the
subset Ck, the function ν̂(y) has the form

ν̂(y) = (xj , y)ψk(y), j = 0, 1, . . . , 7,

where

ψ1(y) =
7∑
i=0

ci(xi, y),

c0 = (−a0 + a2 + a3 + a6)/2, c4 = (a1 − a4 + a5 + a7)/2,

c1 = (−a1 + a4 + a5 + a7)/2, c5 = (a1 + a4 − a5 + a7)/2,

c2 = (a0 − a2 + a3 + a6)/2, c6 = (a0 + a2 + a3 − a6)/2,
c3 = (a0 + a2 − a3 + a6)/2, c7 = (a1 + a4 + a5 − a7)/2. (5.3)

To obtain the coefficients of the function ψk(y), k = 2, 3, . . . , 7, it is necessary to
apply in formulas (5.3) the same substitution σk from (5.2) to the coefficients ai
and ci.

The set D consists of 56 systems, which are subdivided into 7 subsets Dk, k =
1, 2, . . . , 7, of 8 systems each. For solutions of systems from the subset Dk, the
function ν̂(y) has the form

ν̂(y) = (xj , y)ϕk(y), j = 0, 1, . . . , 7,

where

ϕ1(y) =
7∑
i=0

di(xi, y), di = 1/4− ci, i = 0, 1, . . . , 7.

Coefficients of the function ϕk(y), k = 2, 3, . . . , 7, are obtained from coefficients of
the function ϕ1(y) by using the substitution σk applied to coefficients ai and di.

A solution b0, b1, . . . , b7 of any of the systems is called trivial if the function
ν̂(y) satisfies equality (5.1) (this means that the measure ν is a shift of the
measure µ). We call a solution non-trivial if bi ≥ 0 for all i, and equality (5.1)
is not satisfied for any j. Since we are only interested in non-negative bi, we will
say that the system has no solution if bi < 0 for some i.

Since all systems of the set A have trivial solutions, for proving Theorem 2.5,
it is necessary to find conditions on ai under which each system from the sets B,
C, D either has a trivial solution or has no solutions.

The finding of a condition under which a particular system has no solutions
is not difficult. For example, at least one of the coefficients of the function ψ1(y)
is negative if and only if one of the two inequalities holds

2 max{a0, a2, a3, a6} > a0 + a2 + a3 + a6,
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2 max{a1, a4, a5, a7} > a1 + a4 + a5 + a7.

It is much more difficult to find out under what conditions a particular system
or group of systems has a trivial solution. To do this, one needs to find out when
the solution of this system b0, b1, . . . , b7 coincides with the set of coefficients of
some of the 8 functions (xj , y)µ̂(y), j = 0, 1, 2, . . . , 7. And this is the hardest part
of the proof.

Let us explain what the conditions of Theorem 2.5 mean. The inequality
amax ≤ 1/4 is a necessary and sufficient condition for the fact that all systems
of the set B have solutions. Condition I.1 is a necessary and sufficient condition
that all systems of the set B have trivial solutions. In order for all systems of
the sets C and D to have trivial solutions, it is necessary and sufficient that one
of the conditions I.2(a) and I.2(b) be satisfied. Condition II.1(a) is a necessary
and sufficient condition that all systems of the set C have no solutions. Condition
II.1(b) is a necessary and sufficient condition that all systems of the set D have
no solutions. Conditions I.1 and I.2(c) are necessary and sufficient conditions
that all systems of the set B, part of the systems of the set C, and part of the
systems of the set D have trivial solutions, and the remaining systems of the sets
C and D have no solutions. Condition amax > 1/4 and fulfilment of one of the
conditions II.2 and II.3 — this is a necessary and sufficient condition that all
systems of the set B, part of the systems of the set C and part of the systems
of the set D have no solutions, and the remaining systems of the sets C and D
have trivial solutions. Conditions amax > 1/4 and II.4 — this is a necessary
and sufficient condition that all systems of the sets B, C and part of the systems
of the set D have no solutions, and the remaining systems of the set D have
trivial solutions. Several cases that are not described here (for example, when all
systems of the set C have trivial solutions, and all systems of the set D have no
solutions) are impossible.
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Вiдновлення фази для ймовiрнiсних мiр на групi Z3
2

I.P. Il’inskaya

Нехай Z2 є групою класiв лишкiв за модулем 2. Надано повний опис
класу ймовiрнiсних мiр на групi Z3

2, якi визначаються модулем своєї
характеристичної функцiї однозначно з точнiстю до зсуву.

Ключовi слова: ймовiрнiсна мiра на групi, характеристична функцiя,
тривiальний клас еквiвалентностi, вiдновлення фази
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